Variabilidad en atmósferas planetarias asociada al ciclo de actividad solar: El caso de Marte

dc.contributor.advisorVargas Domínguez, Santiago Jr
dc.contributor.advisorZuluaga Callejas, Jorge Iván Jr
dc.contributor.authorMolina Córdoba, Johan Nicolás
dc.contributor.orcid0000-0001-7938-8295spa
dc.contributor.refereePinzón Estrada, Giovanni Alejandro
dc.contributor.refereeFlor Torres, Lauren Melissa
dc.contributor.researchgroupGrupo de Astronomía Galáctica, Gravitación y Cosmologíaspa
dc.date.accessioned2023-12-05T20:29:31Z
dc.date.available2023-12-05T20:29:31Z
dc.date.issued2023-11-29
dc.descriptionilustraciones, diagramasspa
dc.description.abstractEste estudio presenta resultados con alta significación estadística sobre la existencia de una relación entre oscilaciones periódicas de un observable de la atmósfera de Marte (vapor de agua) y el índice Pectinton de flujo solar en radio centrado en la banda de 10.7 cm, alrededor del periodo de actividad solar característico de 11 años. Para caracterizar la variabilidad en la atmósfera de Marte, se utilizaron datos recopilados por el instrumento SPICAM de la sonda Mars Express durante un periodo de tiempo que abarca desde el año 2004 hasta el 2018. Se implementó el método de Periodograma de Lomb-Scargle para analizar la relación entre espectros de potencias de las dos señales alrededor del periodo de interés, teniendo como referente de calibración del método, la emergencia del pico asociado con el periodo estacional de Marte. El método se puso a prueba a través del análisis de los espectros de potencias generados sobre datos de abundancias de especies químicas de la atmósfera terrestre. Estos datos fueron obtenidos del modelo empírico NRLMSISE−00 proporcionado por el National Oceanic and Atmospheric Administration (NOAA). La ejecución del modelo reprodujo datos de abundancias químicas de diferentes especies atmosféricas, como N2, O2, N, H2, Ar y He, a alturas de 55 y 105 km, en una ventana de tiempo de 1961-2021. La investigación se enfoca en el campo de las ciencias planetarias, que incluye el estudio del clima espacial y las condiciones astrobiológicas en el entorno solar. Este enfoque resalta la importancia de considerar la búsqueda de modelos climatológicos a escala del Sistema Solar, que tomen en cuenta las conexiones y sinergias entre los cambios experimentados por los planetas en respuesta a la variabilidad solar durante el ciclo de actividad de la estrella. Los resultados sugieren la existencia de una relación entre los periodos de variabilidad en la concentración de diferentes especies químicas en las atmósferas de ambos planetas (Tierra y Marte) y las variaciones en el índice de flujo solar característico en radio. Esta relación destaca la importancia de comprender la interacción entre el Sol y los planetas en el sistema solar y cómo estas variaciones pueden influir en sus atmósferas y condiciones climatológicas. Es importante mencionar que aunque nuestros resultados iniciales brindan información valiosa que puede ampliar el campo hacia futuras investigaciones en el marco de la climatología planetaria y la física atmosférica, se requiere de análisis más detallados, contrastados con otras fuentes de datos (de otros orbitadores), que confirmen las relaciones encontradas en la investigación. (Texto tomado de la fuente)spa
dc.description.abstractThis study presents results with high statistical relevance about the existence of a relationship between periodic oscillations of an observable in the atmosphere of Mars (water vapor) and the Pectinton index of solar flux in radius centered on the 10.7 cm band, around the period of characteristic solar activity of 11 years. To characterize the variability in the atmosphere of Mars, data collected by the SPICAM instrument of the Mars Express probe over a period of time from 2004 to 2018 was used. The Lomb-Scargle Periodogram method was implemented to analyze the relationship between the power spectra of the two signals around the period of interest, taking as a reference for the calibration of the method, the emergence of the peak associated with the seasonal period of Mars. The method was put to the test through the analysis of the power spectra generated from abundance data of chemical species in the Earth’s atmosphere. These data were obtained from the empirical model NRLMSISE−00 provided by the National Oceanic and Atmospheric Administration (NOAA). The execution of the model reproduced data of chemical abundances of different atmospheric species, such as N2, O2, N, H2, Ar and He, at altitudes of 55 and 105 km, in a time window of 1961-2021. Research focuses on the field of planetary sciences, which includes the study of space weather and astrobiological conditions in the solar environment. This approach highlights the importance of considering the search for climate models at the scale of the Solar System, which take into account the connections and synergies between the changes experienced by the planets in response to solar variability during the star’s activity cycle. The results suggest the existence of a relationship between the periods of variability in the concentration of different chemical species in the atmospheres of both planets (Earth and Mars) and the variations in the characteristic solar flux index in radius. This relationship highlights the importance of understanding the interaction between the Sun and the planets in the solar system and how these variations can influence their atmospheres and weather conditions. It is important to mention that although our initial results provide valuable information that can broaden the field towards future research in the framework of planetary climatology and atmospheric physics, more detailed analysis is required, contrasted with other data sources (from other orbiters), that confirm the relationships found in the investigation.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMaestría en Ciencias: Astronomíaspa
dc.description.researchareaGroup of Solar Astrophysicsspa
dc.format.extentxix, 114 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85032
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Astronomíaspa
dc.relation.referencesActon, C., Bachman, N., Semenov, B., and Wright, E. (2018). A look towards the future in the handling of space science mission geometry. Planetary and Space Science, 150:9–12.spa
dc.relation.referencesActon Jr, C. H. (1996). Ancillary data services of nasa’s navigation and ancillary information facility. Planetary and Space Science, 44(1):65–70.spa
dc.relation.referencesAkeson, R., Chen, X., Ciardi, D., Crane, M., Good, J., Harbut, M., Jackson, E., Kane, S., Laity, A., Leifer, S., et al. (2013). The nasa exoplanet archive: data and tools for exoplanet research. Publications of the Astronomical Society of the Pacific, 125(930):989.spa
dc.relation.referencesAltieri, F., Zasova, L., D’Aversa, E., Bellucci, G., Carrozzo, F., Gondet, B., and Bibring, J.-P. (2009). O2 1.27 µm emission maps as derived from omega/mex data. Icarus, 204(2):499511.spa
dc.relation.referencesAstafyeva, E. (2019). Ionospheric detection of natural hazards. Reviews of Geophysics, 57(4):1265–1288.spa
dc.relation.referencesAulanier, G., D´emoulin, P., Schrijver, C., Janvier, M., Pariat, E., and Schmieder, B. (2013). The standard flare model in three dimensions-ii. upper limit on solar flare energy. Astronomy & Astrophysics, 549:A66.spa
dc.relation.referencesBruevich, E. and Yakunina, G. (2011). Solar activity indices in 21, 22 and 23 cycles. arXiv preprint arXiv:1102.5502.spa
dc.relation.referencesCarroll, B. W. and Ostlie, D. A. (2017). An introduction to modern astrophysics. Cambridge University Press.spa
dc.relation.referencesCatling, D. C. and Kasting, J. F. (2017). Atmospheric evolution on inhabited and lifeless worlds. Cambridge University Press.spa
dc.relation.referencesChandrasekhar, S. and Chandrasekhar, S. (1957). An introduction to the study of stellar structure, volume 2. Courier Corporation.spa
dc.relation.referencesChang, C.-J. and Kiang, J.-F. (2021). Simulations of switchback, fragmentation and sunspot pair in δ-sunspots during magnetic flux emergence. Sensors, 21(2):586.spa
dc.relation.referencesChicarro, A., Martin, P., and Trautner, R. (2004). The mars express mission: an overview. Mars Express: the scientific payload, 1240:3–13.spa
dc.relation.referencesCimino, G. and Calvin, W. (1996). Calibration and analysis of mariner 7 infrared spectra. In AAS/Division for Planetary Sciences Meeting Abstracts# 28, volume 28, pages 03–20.spa
dc.relation.referencesDavies, D. W. (1981). The mars water cycle. Icarus, 45(2):398–414.spa
dc.relation.referencesFedorova, A., Bertaux, J.-L., Betsis, D., Montmessin, F., Korablev, O., Maltagliati, L., and Clarke, J. (2018). Water vapor in the middle atmosphere of mars during the 2007 global dust storm. Icarus, 300:440–457.spa
dc.relation.referencesFedorova, A., Korablev, O., Bertaux, J.-L., Rodin, A., Montmessin, F., Belyaev, D., and Reberac, A. (2009). Solar infrared occultation observations by spicam experiment on mars-express: Simultaneous measurements of the vertical distributions of h2o, co2 and aerosol. Icarus, 200(1):96–117.spa
dc.relation.referencesFedorova, A., Montmessin, F., Korablev, O., Lef`evre, F., Trokhimovskiy, A., and Bertaux, J.-L. (2021). Multi-annual monitoring of the water vapor vertical distribution on mars by spicam on mars express. Journal of Geophysical Research: Planets, 126(1):e2020JE006616.spa
dc.relation.referencesForget, F. (1998). Improved optical properties of the martian atmospheric dust for radiative transfer calculations in the infrared. Geophysical research letters, 25(7):1105–1108.spa
dc.relation.referencesFranz, H. B., Trainer, M. G., Malespin, C. A., Mahaffy, P. R., Atreya, S. K., Becker, R. H., Benna, M., Conrad, P. G., Eigenbrode, J. L., Freissinet, C., et al. (2017). Initial sam calibration gas experiments on mars: Quadrupole mass spectrometer results and implications. Planetary and Space Science, 138:44–54.spa
dc.relation.referencesGeorgiev, G., Glenar, D. A., and Hillman, J. J. (2002). Spectral characterization of acoustooptic filters used in imaging spectroscopy. Applied optics, 41(1):209–217.spa
dc.relation.referencesGiorgetta, M. A., Manzini, E., and Roeckner, E. (2002). Forcing of the quasi-biennial oscillation from a broad spectrum of atmospheric waves. Geophysical Research Letters, 29(8):86–1.spa
dc.relation.referencesHaider, S. A., Mahajan, K. K., and Kallio, E. (2011). Mars ionosphere: A review of experimental results and modeling studies. Reviews of Geophysics, 49(4).spa
dc.relation.referencesHazra, G. (2021). Recent advances in the 3d kinematic babcock–leighton solar dynamo modeling. Journal of Astrophysics and Astronomy, 42(2):22.spa
dc.relation.referencesHedin, A. E. (1991). Extension of the msis thermosphere model into the middle and lower atmosphere. Journal of Geophysical Research: Space Physics, 96(A2):1159–1172.spa
dc.relation.referencesJakosky, B. M., Brain, D., Chaffin, M., Curry, S., Deighan, J., Grebowsky, J., Halekas, J., Leblanc, F., Lillis, R., Luhmann, J. G., et al. (2018). Loss of the martian atmosphere to space: Present-day loss rates determined from maven observations and integrated loss through time. Icarus, 315:146–157.spa
dc.relation.referencesJakosky, B. M. and Haberle, R. M. (1992). The seasonal behavior of water on mars. Mars, pages 969–1016.spa
dc.relation.referencesJakosky, B. M., Lin, R. P., Grebowsky, J. M., Luhmann, J. G., Mitchell, D., Beutelschies, G., Priser, T., Acuna, M., Andersson, L., Baird, D., et al. (2015). The mars atmosphere and volatile evolution (maven) mission. Space Science Reviews, 195:3–48.spa
dc.relation.referencesKleint, L. and Gandorfer, A. (2015). Prospects of solar magnetometry—from ground and in space. Space Science Reviews, 210(1-4):397–426.spa
dc.relation.referencesKlevs, M., Stefani, F., and Jouve, L. (2023). A synchronized two-dimensional α − ω model of the solar dynamo. arXiv preprint arXiv:2301.05452.spa
dc.relation.referencesKorablev, O., Bertaux, J.-L., Fedorova, A., Fonteyn, D., Stepanov, A., Kalinnikov, Y., Kiselev, A., Grigoriev, A., Jegoulev, V., Perrier, S., et al. (2006). Spicam ir acousto-optic spectrometer experiment on mars express. Journal of Geophysical Research: Planets, 111(E9).spa
dc.relation.referencesLeamon, R. J., McIntosh, S. W., and Marsh, D. R. (2018). Termination of solar cycles and correlated tropospheric variability.spa
dc.relation.referencesLevenberg, K. (1944). A method for the solution of certain non-linear problems in least squares. Quarterly of applied mathematics, 2(2):164–168.spa
dc.relation.referencesLi, J., Gui, Y., Xu, R., Zhang, Z., Liu, W., Lv, G., Wang, M., Li, C., and He, Z. (2021). Applications of aotf spectrometers in in situ lunar measurements. Materials, 14(13):3454.spa
dc.relation.referencesLinton, M., Dikpati, M., and Howe, R. (2021). Solar interior. Solar Physics and Solar Wind, pages 251–300.spa
dc.relation.referencesLipton, A. E., Moncet, J.-L., and Uymin, G. (2009). Approximations of the planck function for models and measurements into the submillimeter range. IEEE Geoscience and Remote Sensing Letters, 6(3):433–437.spa
dc.relation.referencesLomb, N. (1976). Least-squares frequency analysis of unequally spaced data. Astrophysics and Space Science, 39:16.spa
dc.relation.referencesMalandraki, O. E. and Crosby, N. B. (2018). Solar energetic particles and space weather: Science and applications. Solar particle radiation storms forecasting and analysis: the HESPERIA HORIZON 2020 project and beyond, pages 1–26.spa
dc.relation.referencesMaltagliati, L., Montmessin, F., Korablev, O., Fedorova, A., Forget, F., M¨a¨att¨anen, A., Lef`evre, F., and Bertaux, J.-L. (2013). Annual survey of water vapor vertical distribution and water–aerosol coupling in the martian atmosphere observed by spicam/mex solar occultations. Icarus, 223(2):942–962.spa
dc.relation.referencesMarquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear parameters. Journal of the society for Industrial and Applied Mathematics, 11(2):431–441.spa
dc.relation.referencesMcIntosh, S. W., Leamon, R. J., Egeland, R., Dikpati, M., Altrock, R. C., Banerjee, D., Chatterjee, S., Srivastava, A. K., and Velli, M. (2021a). Deciphering solar magnetic activity: 140 years of the ‘extended solar cycle’ –mapping the hale cycle. Solar Physics, 296(12).spa
dc.relation.referencesMcIntosh, S. W., Leamon, R. J., Egeland, R., Dikpati, M., Altrock, R. C., Banerjee, D., Chatterjee, S., Srivastava, A. K., and Velli, M. (2021b). Deciphering solar magnetic activity: 140 years of the ‘extended solar cycle’–mapping the hale cycle. Solar Physics, 296(12):189.spa
dc.relation.referencesMcMahon, S. K. (1996). Overview of the planetary data system. Planetary and Space Science, 44(1):3–12.spa
dc.relation.referencesMedvedev, A. S. and Yi˘git, E. (2019). Gravity waves in planetary atmospheres: Their effects and parameterization in global circulation models. Atmosphere, 10(9):531.spa
dc.relation.referencesMedvedev, A. S. and Yi˘git, E. (2019). Gravity Waves in Planetary Atmospheres: Their Effects and Parameterization in Global Circulation Models. Atmosphere, 10(9):531.spa
dc.relation.referencesMillour, E., Forget, F., Spiga, A., Colaitis, A., Navarro, T., Madeleine, J.-B., Chauffray, J.Y., Montabone, L., Lopez-Valverde, M., Gonzalez-Galindo, F., et al. (2012). Mars climate database version 5.spa
dc.relation.referencesMillour, E., Forget, F., Spiga, A., Vals, M., Zakharov, V., Montabone, L., Lefevre, F., Montmessin, F., Chaufray, J.-Y., Lopez-Valverde, M., et al. (2019). The latest mars climate database (version 6.0).spa
dc.relation.referencesNagaraja, K., Basuvaraj, P. K., Chakravarty, S., and Kumar, K. P. (2021). Solar wind-driven day-to-day effects on the martian thermosphere/exosphere composition. arXiv preprint arXiv:2103.01930.spa
dc.relation.referencesOstlie, D. A. and Carroll, B. W. (1996). An introduction to modern stellar astrophysics.spa
dc.relation.referencesPetrosyan, A., Galperin, B., Larsen, S. E., Lewis, S. R., M¨a¨att¨anen, A., Read, P. L., Renno, N., Rogberg, L. P. H. T., Savij¨arvi, H., Siili, T., Spiga, A., Toigo, A., and V´azquez, L. (2011). The martian atmospheric boundary layer. Reviews of Geophysics, 49(3).spa
dc.relation.referencesPicone, J., Hedin, A., Drob, D. P., and Aikin, A. (2002). Nrlmsise-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. Journal of Geophysical Research: Space Physics, 107(A12):SIA–15.spa
dc.relation.referencesPolyansky, O. L., Cs´asz´ar, A. G., Shirin, S. V., Zobov, N. F., Barletta, P., Tennyson, J., Schwenke, D. W., and Knowles, P. J. (2003). High-accuracy ab initio rotation-vibration transitions for water. Science, 299(5606):539–542.spa
dc.relation.referencesRothman, L. S. (2021). History of the hitran database. Nature Reviews Physics, 3(5):302304.spa
dc.relation.referencesSavitzky, A. and Golay, M. J. (1964). Smoothing and differentiation of data by simplified least squares procedures. Analytical chemistry, 36(8):1627–1639.spa
dc.relation.referencesScaife, A. A., Butchart, N., Warner, C. D., Stainforth, D., Norton, W., and Austin, J. (2000). Realistic quasi-biennial oscillations in a simulation of the global climate. Geophysical Research Letters, 27(21):3481–3484.spa
dc.relation.referencesScargle, J. D. (1982). Studies in astronomical time series analysis. ii-statistical aspects of spectral analysis of unevenly spaced data. Astrophysical Journal, Part 1, vol. 263, Dec. 15, 1982, p. 835-853., 263:835–853.spa
dc.relation.referencesShe, C.-Y., Yan, Z.-A., Gardner, C. S., Krueger, D. A., and Hu, X. (2022). Climatology and seasonal variations of temperatures and gravity wave activities in the mesopause region above ft. collins, co (40.6 n, 105.1 w). Journal of Geophysical Research: Atmospheres, 127(11):e2021JD036291.spa
dc.relation.referencesSingh, A. and Bhargawa, A. (2019). Prediction of declining solar activity trends during solar cycles 25 and 26 and indication of other solar minimum. Astrophysics and Space Science, 364(1):12.spa
dc.relation.referencesStates, R. J. and Gardner, C. S. (2000). Thermal structure of the mesopause region (80–105 km) at 40° n latitude. part i: Seasonal variations. Journal of the Atmospheric Sciences, 57(1):66–77.spa
dc.relation.referencesStix, M. (2004). The Sun: An Introduction. Astronomy and Astrophysics Library. Springer Berlin Heidelberg.spa
dc.relation.referencesTakahashi, M. (1996). Simulation of the stratospheric quasi-biennial oscillation using a general circulation model. Geophysical Research Letters, 23(6):661–664.spa
dc.relation.referencesThiemann, E. M. B., Andersson, L., Lillis, R., Withers, P., Xu, S., Elrod, M., Jain, S., Pilinski, M. D., Pawlowski, D., Chamberlin, P. C., Eparvier, F. G., Benna, M., Fowler, C., Curry, S., Peterson, W. K., and Deighan, J. (2018). The Mars Topside Ionosphere Response to the X8.2 Solar Flare of 10 September 2017. , 45(16):8005–8013.spa
dc.relation.referencesThorne, A., Litz´en, U., and Johansson, S. (1999). Spectrophysics: principles and applications. Springer Science & Business Media.spa
dc.relation.referencesTian, R., Jiang, C., Yang, G., Yin, W., Zhang, Y., and Zhao, Z. (2022). Solar cycle and seasonal variability of martian ionospheric irregularities from mars atmosphere and volatile evolution observations. The Astrophysical Journal, 931(1):18.spa
dc.relation.referencesTinetti, G., Meadows, V. S., Crisp, D., Fong, W., Velusamy, T., and Snively, H. (2005). Disk-averaged synthetic spectra of mars. Astrobiology, 5(4):461–482.spa
dc.relation.referencesTritschler, A., Rimmele, T., Berukoff, S., Casini, R., Craig, S., Elmore, D., Hubbard, R., Kuhn, J., Lin, H., Mcmullin, J., Reardon, K., Schmidt, W., Warner, M., and W¨oger, F. (2014). Dkist: Observing the sun at high resolution.spa
dc.relation.referencesVanderPlas, J. T. (2018). Understanding the lomb–scargle periodogram. The Astrophysical Journal Supplement Series, 236(1):16.spa
dc.relation.referencesVenkateswara Rao, N., Gupta, N., and Kadhane, U. R. (2020). Enhanced densities in the martian thermosphere associated with the 2018 planet-encircling dust event: Results from menca/mom and ngims/maven. Journal of Geophysical Research: Planets, 125(10):e2020JE006430.spa
dc.relation.referencesW. Anderson, P. (1954). A mathematical model for the narrowing of spectral lines by exchange or motion. Journal of the Physical Society of Japan, 9(3):316–339.spa
dc.relation.referencesWalker, J. C. (1965). Analytic representation of upper atmosphere densities based on jacchia’s static diffusion models. Technical report.spa
dc.relation.referencesWallace, J. M. and Hobbs, P. V. (2006). Atmospheric science: an introductory survey, volume 92. Elsevier.spa
dc.relation.referencesWithers, P., Bertaux, J.-L., Montmessin, F., Pratt, R., and Russo, J. (2009). Observations of tides and temperatures in the martian atmosphere by mars express spicam stellar occultations. In EGU General Assembly Conference Abstracts, page 5355.spa
dc.relation.referencesWoiceshyn, P. M. (1974). Global seasonal atmospheric fluctuations on mars. Icarus, 22(3):325–344.spa
dc.relation.referencesWolff, M. J., Lop´ez-Valverde, M., Madeleine, J.-B., Wilson, R. J., Smith, M., Fouchet, T., and Delory, G. (2017). Radiative process: Techniques and applications. The atmosphere and climate of Mars, 18:106.spa
dc.relation.referencesXu, M. G., Geiger, H., and Dakin, J. P. (1996). Modeling and performance analysis of a f iber bragg grating interrogation system using an acousto-optic tunable filter. Journal of lightwave technology, 14(3):391–396.spa
dc.relation.referencesZhang, J., Ji, Q., Sheng, Z., He, M., He, Y., Zuo, X., He, Z., Qin, Z., and Wu, G. (2023). Observation based climatology martian atmospheric waves perturbation datasets. Scientific Data, 10(1):4.spa
dc.relation.referencesZurek, R. W., Tolson, R. A., Bougher, S. W., Lugo, R. A., Baird, D. T., Bell, J. M., and Jakosky, B. M. (2017). Mars thermosphere as seen in MAVEN accelerometer data. Journal of Geophysical Research (Space Physics), 122(3):3798–3814.spa
dc.relation.referencesZwaan, C. (1968). The structure of sunspots. Annual Review of Astronomy and Astrophysics, 6(1):135–164.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc520 - Astronomía y ciencias afines::523 - Cuerpos y fenómenos celestes específicosspa
dc.subject.ddc530 - Física::535 - Luz y radiación relacionadaspa
dc.subject.ddc520 - Astronomía y ciencias afines::522 - Técnicas, procedimientos, aparatos, equipos, materialesspa
dc.subject.ddc530 - Física::536 - Calorspa
dc.subject.lembAtmósferaspa
dc.subject.lembAtmosphereeng
dc.subject.lembCirdulación atmosféricaspa
dc.subject.lembAtmospheric circulationeng
dc.subject.lembCiclo solarspa
dc.subject.lembSolar cycleeng
dc.subject.proposalAtmósferas planetariasspa
dc.subject.proposalMartespa
dc.subject.proposalCiclo Solarspa
dc.subject.proposalModelos climatológicosspa
dc.subject.proposalNRLMSISE−00spa
dc.subject.proposalPeriodograma de Lomb−Scarglespa
dc.subject.proposalMars Expressspa
dc.subject.proposalClima Espacialspa
dc.subject.proposalPlanetary atmosphereseng
dc.subject.proposalMarseng
dc.subject.proposalSolar Cycleeng
dc.subject.proposalClimatological modelseng
dc.subject.proposalLomb−Scargle Periodogrameng
dc.subject.proposalMars Expresseng
dc.subject.proposalSpace Weathereng
dc.subject.proposalNRLMSISE−00eng
dc.titleVariabilidad en atmósferas planetarias asociada al ciclo de actividad solar: El caso de Martespa
dc.title.translatedVariability in planetary atmospheres associated to solar activity cycle: The case of Marseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentAdministradoresspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentConsejerosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
dcterms.audience.professionaldevelopmentPadres y familiasspa
dcterms.audience.professionaldevelopmentPersonal de apoyo escolarspa
dcterms.audience.professionaldevelopmentProveedores de ayuda financiera para estudiantesspa
dcterms.audience.professionaldevelopmentPúblico generalspa
dcterms.audience.professionaldevelopmentReceptores de fondos federales y solicitantesspa
dcterms.audience.professionaldevelopmentResponsables políticosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameJohan Nicolás Molina Córdobaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1073692635.2023.pdf
Tamaño:
11.84 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Astronomía

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: