Evaluation of the volumetric mass transfer coefficient as scale up parameter for CHO cell cultures for monoclonal antibodies production

dc.contributor.advisorGodoy Silva, Rubén Darío
dc.contributor.authorBello Hernández, Andrés Javier
dc.contributor.researchgroupGrupo de Investigación en Procesos Químicos y Bioquímicosspa
dc.date.accessioned2021-08-26T15:58:39Z
dc.date.available2021-08-26T15:58:39Z
dc.date.issued2021-08-20
dc.descriptionilustraciones, fotografías, gráficas, tablasspa
dc.description.abstractActualmente, los anticuerpos monoclonales (mAbs) corresponden al segmento más importante en el mercado de productos biotecnológicos con efecto terapéutico. La síntesis a escala industrial de este tipo de proteínas recombinantes se lleva a cabo en biorreactores empleando líneas celulares provenientes de un mamífero, las cuales son modificadas genéticamente para incluir dentro de su metabolismo la síntesis del mAb. Para comprender mejor la manera en la que estas células deben ser cultivadas, se realizan ensayos a escala laboratorio, en las cuales se determinan las condiciones más apropiadas para la producción en el biorreactor a escala industrial. Dentro de los retos más desafiantes en términos técnicos a replicar en reactores a escalas mayores a las del laboratorio se encuentra la velocidad de transferencia de masa de oxígeno. Este gas es vital para el cultivo de las células de mamífero dado su rol en la respiración, por lo tanto, en la obtención de energía para la vida celular. No obstante, dada la baja solubilidad del oxígeno en el agua, es necesario agitar y/o burbujear el medio de cultivo, y así, el gas se solubilizará más rápido en el líquido. La presente tesis de maestría evaluó la cinética del crecimiento, consumo de sustratos y síntesis de coproductos por una línea parental celular de Ovario de Hámster Chino en dos geometrías de cultivo, Erlenmeyer y Spinner. Con el fin de comparar los resultados en las dos configuraciones de biorreactores, se definieron las condiciones de operación (agitación y burbujeo) de manera tal que la velocidad de transferencia de oxígeno fuera igual en las dos geometrías. (Texto tomado de la fuente)spa
dc.description.abstractNowadays, monoclonal antibodies (mAbs) correspond to the most important segment in the market for biotechnological products with therapeutic effects. The synthesis of this type of recombinant proteins on an industrial scale is carried out in bioreactors using mammalian cell lines, which are genetically modified to include mAb synthesis within their metabolism. To better understand the way in which these cells should be cultured, tests are carried out on a laboratory scale, in which the conditions for production in the bioreactor on an industrial scale are determined rather. Assuring an adequate oxygen mass transfer rate is one of the most demanding challenges in technical terms to be replicated in reactors on larger scales than laboratory vessels. This gas is vital for the cultivation of mammalian cells given its role in respiration, and thus, in obtaining energy for cellular life. Nonetheless, since oxygen is sparingly soluble in water, it is necessary to stir and/or bubble the culture medium, for increasing the solubilization rate of the gas in the liquid. In this master's thesis, the kinetics of growth, consumption of substrates and synthesis of co-products by a parental cell line of Chinese Hamster Ovary were evaluated in two culture geometries, Erlenmeyer and Spinner. In order to compare the results in the two bioreactor configurations, the operating conditions (stirring and bubbling) were defined in such a way that the oxygen transfer rate was the same in the two geometries.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Químicaspa
dc.description.researchareaBioprocesosspa
dc.format.extent168 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80027
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería Química y Ambientalspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.references[1] M. Al-rubeai, Animal Cell Culture, vol. 9. 2015.spa
dc.relation.references[2] R. Pörtner, “Characteristics of Mammalian Cells and Requirements for Cultivation,” in Cell and Tissue Reaction Engineering, vol. 1, Berlin: Elsevier, 2009, pp. 13–53.spa
dc.relation.references[3] G. Lewis et al., “Chemical Engineering Research and Design Scale-down studies for assessing the impact of different stress parameters on growth and product quality during animal cell culture,” Chem. Eng. Res. Des., vol. 91, no. 11, pp. 2265–2274, 2013, doi: 10.1016/j.cherd.2013.04.002.spa
dc.relation.references[4] R. A. Rader, “(Re) defining biopharmaceutical,” Nat. Biotechnol., vol. 26, no. 7, pp. 743–751, 2008.spa
dc.relation.references[5] G. Walsh, “Biopharmaceuticals and biotechnology medicines: An issue of nomenclature,” Eur. J. Pharm. Sci., vol. 15, no. 2, pp. 135–138, 2002, doi: 10.1016/S0928-0987(01)00222-6.spa
dc.relation.references[6] D. J. A. Crommelin, G. Storm, R. Verrijk, L. De Leede, W. Jiskoot, and W. E. Hennink, “Shifting paradigms: Biopharmaceuticals versus low molecular weight drugs,” Int. J. Pharm., vol. 266, no. 1–2, pp. 3–16, 2003, doi: 10.1016/S0378-5173(03)00376-4.spa
dc.relation.references[7] M. K. Parr, O. Montacir, and H. Montacir, “Physicochemical characterization of biopharmaceuticals,” J. Pharm. Biomed. Anal., vol. 130, pp. 366–389, 2016, doi: 10.1016/j.jpba.2016.05.028.spa
dc.relation.references[8] N. V. dos Santos, V. de Carvalho Santos-Ebinuma, A. Pessoa Junior, and J. F. B. Pereira, “Liquid–liquid extraction of biopharmaceuticals from fermented broth: trends and future prospects,” J. Chem. Technol. Biotechnol., vol. 93, no. 7, pp. 1845–1863, 2018, doi: 10.1002/jctb.5476.spa
dc.relation.references[9] RNCOS E-Services Private Limited, “Global protein therapeutics market outlook 2020,” 2015. https://www.researchandmarkets.com/reports/3422491/global-protein-therapeutics-market-outlook-2020 (accessed Jul. 01, 2019).spa
dc.relation.references[10] EvaluatePharma, “World preview 2017, outlook to 2022,” 2017. [Online]. Available: http://info.evaluategroup.com/rs/607-YGS-364/images/WP17.pdf.spa
dc.relation.references[11] M. Kesik-Brodacka, “Progress in biopharmaceutical development,” Biotechnol. Appl. Biochem., vol. 65, no. 3, pp. 306–322, 2018, doi: 10.1002/bab.1617.spa
dc.relation.references[12] PhRMA, “2016 Biopharmaceutical Research Industry Profile,” Pharm. Res. Manuf. Am., p. 86, 2016, [Online]. Available: http://phrma-docs.phrma.org/sites/default/files/pdf/biopharmaceutical-industry-profile.pdf.spa
dc.relation.references[13] G. Walsh, “Biopharmaceutical benchmarks 2018,” Nat. Biotechnol., vol. 36, no. 12, pp. 1136–1145, 2018, doi: 10.1038/nbt0706-769.spa
dc.relation.references[14] C. Morrison, “Fresh from the biotech pipeline—2018,” Nat. Biotechnol., vol. 37, no. 2, pp. 118–123, 2019, doi: 10.1038/s41587-019-0021-6.spa
dc.relation.references[15] C. Nick, “The US Biosimilars Act,” Pharmaceut. Med., vol. 26, no. 3, pp. 145–152, 2012, doi: 10.1007/bf03262388.spa
dc.relation.references[16] S. J. Shire, W. Gombotz, K. Bechtold-Peters, and J. Andya, Current Trends in Monoclonal Antibody Development and Manufacturing, vol. 17, no. 1. 2010.spa
dc.relation.references[17] A. M. Scott, J. P. Allison, and J. D. Wolchok, “Monoclonal antibodies in cancer therapy,” Dtsch Med Wochenschr, vol. 12, pp. 14–21, 2012, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/3886339.spa
dc.relation.references[18] H. L. Levine and B. R. Cooney, “The Development of Therapeutic Monoclonal Antibody Products,” 2016.spa
dc.relation.references[19] La Merie, “Blockbuster Biologics 2017: Sales of Recombinant Therapeutic Antibodies & Proteins,” 2017. [Online]. Available: https://lamerie.com/report/blockbuster-biologics-2017-sales-of-recombinant-therapeutic-antibodies-proteins/.spa
dc.relation.references[20] L. Sompayrac, How the Immnune System works, Wiley Desk. Wiley-Blackwell, 2012.spa
dc.relation.references[21] M. Reth, “Matching cellular dimensions with molecular sizes,” Nat. Publ. Gr., vol. 14, no. 8, pp. 765–767, 2013, doi: 10.1038/ni.2621.spa
dc.relation.references[22] K. H. Roux, “Immunoglobulin Structure and Function as Revealed by Electron Microscopy,” Int. Arch. Allergy Immunol., vol. 120, pp. 85–99, 1999.spa
dc.relation.references[23] J. M. Woof, D. R. Burton, and N. T. Pines, “Human antibody-Fc receptor interactions illuminated by crystal structures,” Nat. Rev. Immunol., vol. 4, no. February, pp. 1–11, 2004, doi: 10.1038/nri1266.spa
dc.relation.references[24] G. Vidarsson, G. Dekkers, and T. Rispens, “IgG subclasses and allotypes: From structure to effector functions,” Front. Immunol., vol. 5, no. OCT, pp. 1–17, 2014, doi: 10.3389/fimmu.2014.00520.spa
dc.relation.references[25] K. Imai and A. Takaoka, “Comparing antibody and small-molecule therapies for cancer,” Nat. Rev. Cancer, vol. 6, no. 9, pp. 714–727, 2006, doi: 10.1038/nrc1913.spa
dc.relation.references[26] E. A. Padlan, “Anatomy of the antibody molecule,” Mol. Immunol., vol. 31, no. 3, pp. 169–217, 1994, doi: 10.1016/0161-5890(94)90001-9.spa
dc.relation.references[27] G. Köhler and C. Milstein, “Derivation of specific antibody‐producing tissue culture and tumor lines by cell fusion,” Eur. J. Immunol., vol. 6, no. 7, pp. 511–519, 1976, doi: 10.1002/eji.1830060713.spa
dc.relation.references[28] J. K. H. Liu, “The history of monoclonal antibody development - Progress, remaining challenges and future innovations,” Ann. Med. Surg., vol. 3, no. 4, pp. 113–116, 2014, doi: 10.1016/j.amsu.2014.09.001.spa
dc.relation.references[29] N. S. Lipman, L. R. Jackson, L. J. Trudel, and F. Weis-garcia, “Monoclonal Versus Polyclonal Antibodies: Distinguishing Characteristics, Applications, and Information Resources,” ILAR J., vol. 46, no. 3, pp. 258–268, 2005.spa
dc.relation.references[30] T. T. Hansel, H. Kropshofer, T. Singer, J. A. Mitchell, and A. J. T. George, “The safety and side effects of monoclonal antibodies,” Nat. Rev. Drug Discov., vol. 9, no. 4, pp. 325–338, 2010, doi: 10.1038/nrd3003.spa
dc.relation.references[31] J. P. Van Wauwe, J. R. De Mey, and J. G. Goossens, “OKT3 : a monoclonal anti-human T lymphocyte antibody with potent mitogenic properties,” J. Immunol., vol. 124, no. 6, pp. 2708–2713, 1980.spa
dc.relation.references[32] T. S. Mattu et al., “The Glycosylation and Structure of Human Serum IgA1, Fab, and Fc Regions and the Role of N -Glycosylation on Fc α Receptor Interactions,” J. Biol. Chem., vol. 4, no. 23, pp. 2260–2272, 1998, doi: 10.1074/jbc.273.4.2260.spa
dc.relation.references[33] E. Specht, S. Miyake-Stoner, and S. Mayfield, “Micro-algae come of age as a platform for recombinant protein production,” Biotechnol. Lett., vol. 32, no. 10, pp. 1373–1383, 2010, doi: 10.1007/s10529-010-0326-5.spa
dc.relation.references[34] R. Verma, E. Boleti, and A. J. T. George, “Antibody engineering : Comparison of bacterial , yeast , insect and mammalian expression systems,” J. Immunol. Methods, vol. 216, pp. 165–181, 1998.spa
dc.relation.references[35] M. Betrer, C. P. Chang, R. R. Robinson, and A. H. Horwitz, “Escherichia coli Secretion of an Active Chimeric Antibody Fragment,” Int. Genertic Eng. Inc., vol. 522, no. May, pp. 41–43, 1988.spa
dc.relation.references[36] O. Spadiut, S. Capone, F. Krainer, A. Glieder, and C. Herwig, “Microbials for the production of monoclonal antibodies and antibody fragments,” Trends Biotechnol., vol. 32, no. 1, pp. 54–60, 2014, doi: 10.1016/j.tibtech.2013.10.002.spa
dc.relation.references[37] M. Berdichevsky, M. R. Mallem, S. S. Shaikh, and T. I. Potgieter, “Improved production of monoclonal antibodies through oxygen-limited cultivation of glycoengineered yeast,” J. Biotechnol., vol. 155, no. 2, pp. 217–224, 2011, doi: 10.1016/j.jbiotec.2011.06.021.spa
dc.relation.references[38] Y. J. Lee and K. J. Jeong, “Challenges to production of antibodies in bacteria and yeast,” J. Biosci. Bioeng., vol. 120, no. 5, pp. 483–490, 2015, doi: 10.1016/j.jbiosc.2015.03.009.spa
dc.relation.references[39] K. R. Love, N. C. Dalvie, and J. C. Love, “The yeast stands alone: the future of protein biologic production,” Curr. Opin. Biotechnol., vol. 53, pp. 50–58, 2018, doi: 10.1016/j.copbio.2017.12.010.spa
dc.relation.references[40] S. R. Karg and P. T. Kallio, “The production of biopharmaceuticals in plant systems,” Biotechnol. Adv., vol. 27, no. 6, pp. 879–894, 2009, doi: 10.1016/j.biotechadv.2009.07.002.spa
dc.relation.references[41] B. De Muynck, C. Navarre, and M. Boutry, “Production of antibodies in plants : status after twenty years,” Plant Biotechnol. J., vol. 8, pp. 529–563, 2010, doi: 10.1111/j.1467-7652.2009.00494.x.spa
dc.relation.references[42] R. Strasser et al., “Generation of glyco-engineered Nicotiana benthamiana for the production of monoclonal antibodies with a homogeneous human-like N -glycan structure,” Plant Biotechnol. J., vol. 6, pp. 392–402, 2008, doi: 10.1111/j.1467-7652.2008.00330.x.spa
dc.relation.references[43] D. Palmberger, D. Rendic, P. Tauber, F. Krammer, I. B. H. Wilson, and R. Grabherr, “Insect cells for antibody production : Evaluation of an efficient alternative,” J. Biotechnol., vol. 153, pp. 160–166, 2011, doi: 10.1016/j.jbiotec.2011.02.009.spa
dc.relation.references[44] S. C. L. Ho, Y. W. Tong, and Y. Yang, “Generation of monoclonal antibody-producing mammalian cell lines,” Pharm. Bioprocess., no. May, pp. 71–87, 2014, doi: 10.4155/pbp.13.8.spa
dc.relation.references[45] F. Li, N. Vijayasankaran, A. Shen, R. Kiss, and A. Amanullah, “Cell culture processes for monoclonal antibody production,” MAbs, vol. 2, no. 5, pp. 466–479, 2010, doi: 10.4161/mabs.2.5.12720.spa
dc.relation.references[46] J. Zhu, “Mammalian cell protein expression for biopharmaceutical production,” Biotechnol. Adv., vol. 30, no. 5, pp. 1158–1170, 2012, doi: 10.1016/j.biotechadv.2011.08.022.spa
dc.relation.references[47] L. A. Palomares and O. T. Ramírez, “The effect of dissolved oxygen tension and the utility of oxygen uptake rate in insect cell culture,” Cytotechnology, vol. 22, no. 1–3, pp. 225–237, 1996, doi: 10.1007/BF00353943.spa
dc.relation.references[48] M. De Jesus and F. M. Wurm, “Manufacturing Recombinant Proteins in kg-ton Quantities Using Animal Cells in Bioreactors,” Compr. Biotechnol. Second Ed., vol. 3, no. 2, pp. 357–362, 2011, doi: 10.1016/B978-0-08-088504-9.00544-4.spa
dc.relation.references[49] J. Y. Kim, Y. G. Kim, and G. M. Lee, “CHO cells in biotechnology for production of recombinant proteins: Current state and further potential,” Appl. Microbiol. Biotechnol., vol. 93, no. 3, pp. 917–930, 2012, doi: 10.1007/s00253-011-3758-5.spa
dc.relation.references[50] S. Kumar et al., “Proceedings of the 21st Annual Meeting of the European Society for Animal Cell Technology (ESACT), Dublin, Ireland, June 7-10, 2009,” 2009. doi: 10.1007/978-94-007-0884-6.spa
dc.relation.references[51] S. Sommerfeld and J. Strube, “Challenges in biotechnology production - Generic processes and process optimization for monoclonal antibodies,” Chem. Eng. Process. Process Intensif., vol. 44, no. 10, pp. 1123–1137, 2005, doi: 10.1016/j.cep.2005.03.006.spa
dc.relation.references[52] S. Hammond, M. Kaplarevic, N. Borth, M. J. Betenbaugh, and K. H. Lee, “Chinese hamster genome database: An online resource for the CHO community at,” Biotechnol. Bioeng., vol. 109, no. 6, pp. 1353–1356, 2012, doi: 10.1002/bit.24374.spa
dc.relation.references[53] J. R. Birch and A. J. Racher, “Antibody production,” Adv. Drug Deliv. Rev., vol. 58, no. 5–6, pp. 671–685, 2006, doi: 10.1016/j.addr.2005.12.006.spa
dc.relation.references[54] J. Dumont, D. Euwart, B. Mei, S. Estes, and R. Kshirsagar, “Human cell lines for biopharmaceutical manufacturing: history, status, and future perspectives,” Crit. Rev. Biotechnol., vol. 36, no. 6, pp. 1110–1122, 2016, doi: 10.3109/07388551.2015.1084266.spa
dc.relation.references[55] A. S. Rathore, R. Bhambure, and V. Ghare, “Process analytical technology (PAT) for biopharmaceutical products,” Anal. Bioanal. Chem., vol. 398, no. 1, pp. 137–154, 2010, doi: 10.1007/s00216-010-3781-x.spa
dc.relation.references[56] H. Eagle, “Buffer Combinations for Mammalian Cell Culture,” Science (80-. )., vol. 174, pp. 500–503, 1971.spa
dc.relation.references[57] D. Gospodarowicz and J. S. Moran, “Growth Factors in Mammalian Cell Culture,” Annu. Rev. Biochem., vol. 45, no. 1, pp. 531–558, 2003, doi: 10.1146/annurev.bi.45.070176.002531.spa
dc.relation.references[58] X. Pan, M. Streefland, C. Dalm, R. H. Wijffels, and D. E. Martens, “Selection of chemically defined media for CHO cell fed-batch culture processes,” Cytotechnology, vol. 69, no. 1, pp. 39–56, 2017, doi: 10.1007/s10616-016-0036-5.spa
dc.relation.references[59] L. E. Quek, S. Dietmair, J. O. Krömer, and L. K. Nielsen, “Metabolic flux analysis in mammalian cell culture,” Metab. Eng., vol. 12, no. 2, pp. 161–171, 2010, doi: 10.1016/j.ymben.2009.09.002.spa
dc.relation.references[60] M. Schneider, I. W. Marison, and U. Von Stockar, “The importance of ammonia in mammalian cell culture,” J. Biotechnol., vol. 46, no. 3, pp. 161–185, 1996, doi: 10.1016/0168-1656(95)00196-4.spa
dc.relation.references[61] M. W. Glacken, R. J. Fleischaker, and A. J. Sinskey, “Large-scale Production of Mammalian Cells and Their Products: Engineering Principles and Barriers to Scale-up,” Ann. N. Y. Acad. Sci., vol. 413, no. 1, pp. 355–372, 1983, doi: 10.1111/j.1749-6632.1983.tb47912.x.spa
dc.relation.references[62] R. Eibl, C. Loffelholz, and D. Eibl, Single Use Technology In Biopharmaceutical Manufacture, 2011th ed. Hoboken, New Jersey, 2011.spa
dc.relation.references[63] S. Junne and P. Neubauer, “How scalable and suitable are single-use bioreactors?,” Curr. Opin. Biotechnol., vol. 53, pp. 240–247, 2018, doi: 10.1016/j.copbio.2018.04.003.spa
dc.relation.references[64] S. Werner, “Development of method for reliable power input measurements in conventional and single use stirred bioreactors at laboratory scale,” pp. 8–10, 2016, doi: 10.1002/elsc.201600096.This.spa
dc.relation.references[65] X. Zou, H. feng Hang, J. Chu, Y. ping Zhuang, and S. liang Zhang, “Oxygen uptake rate optimization with nitrogen regulation for erythromycin production and scale-up from 50 L to 372 m3scale,” Bioresour. Technol., vol. 100, no. 3, pp. 1406–1412, 2009, doi: 10.1016/j.biortech.2008.09.017.spa
dc.relation.references[66] J. P. Clark, Process and equipment selection. Elsevier, 2008.spa
dc.relation.references[67] J. S. Crater and J. C. Lievense, “Scale-up of industrial microbial processes,” FEMS Microbiol. Lett., vol. 365, no. 13, pp. 1–5, 2018, doi: 10.1093/femsle/fny138.spa
dc.relation.references[68] A. Das, “Impact of Continuous Processing Techniques on Biologics Supply Chains,” in Continuous Processing in Pharmaceutical Manufacturin, First., G. Subramanian, Ed. Wiley-VCH Verlag GmbH & Co., 2015, pp. 53–70.spa
dc.relation.references[69] J. N. Warnock and M. Al-Rubeai, “Bioreactor systems for the production of biopharmaceuticals from animal cells,” Biotechnol. Appl. Biochem., vol. 45, no. 1, p. 1, 2006, doi: 10.1042/BA20050233.spa
dc.relation.references[70] J. Büchs, “Introduction to advantages and problems of shaken cultures,” Biochem. Eng. J., vol. 7, no. 2, pp. 91–98, 2001, doi: 10.1016/S1369-703X(00)00106-6.spa
dc.relation.references[71] X. Zhang et al., “Shaken helical track bioreactors: Providing oxygen to high-density cultures of mammalian cells at volumes up to 1000 L by surface aeration with air,” N. Biotechnol., vol. 25, no. 1, pp. 68–75, 2008, doi: 10.1016/j.nbt.2008.03.001.spa
dc.relation.references[72] P. M. Doran, Bioprocess Engineering Principles, Second. 2013.spa
dc.relation.references[73] H. J. Noorman and J. J. Heijnen, “Biochemical engineering’s grand adventure,” Chem. Eng. Sci., vol. 170, pp. 677–693, 2017, doi: 10.1016/j.ces.2016.12.065.spa
dc.relation.references[74] G. Amaral et al., Practical design, construction and operation of food facilities, vol. 369, no. 1. 2013.spa
dc.relation.references[75] Q. Ye, J. Bao, and Z. Jian-Jiang, Bioreactor Engineering Research and Industrial Applications I, vol. 155. 2016.spa
dc.relation.references[76] C. Lattermann and J. Büchs, “Microscale and miniscale fermentation and screening,” Curr. Opin. Biotechnol., vol. 35, pp. 1–6, 2015, doi: 10.1016/j.copbio.2014.12.005.spa
dc.relation.references[77] F. Garcia-Ochoa, E. Gomez, V. E. Santos, and J. C. Merchuk, “Oxygen uptake rate in microbial processes: An overview,” Biochem. Eng. J., vol. 49, no. 3, pp. 289–307, 2010, doi: 10.1016/j.bej.2010.01.011.spa
dc.relation.references[78] T. Yao, “cell culture media : History , characteristics , and current issues,” no. January, pp. 99–117, 2017, doi: 10.1002/rmb2.12024.spa
dc.relation.references[79] W.-S. Hu and J. G. Aunins, “Large-scale mammalian cell culture,” Curr. Opin. Biotechnol., vol. 8, no. 2, pp. 148–153, 1997, doi: 10.1016/S0958-1669(97)80093-6.spa
dc.relation.references[80] M. Buchsteiner, L. E. Quek, P. Gray, and L. K. Nielsen, “Improving culture performance and antibody production in CHO cell culture processes by reducing the Warburg effect,” Biotechnol. Bioeng., vol. 115, no. 9, pp. 2315–2327, 2018, doi: 10.1002/bit.26724.spa
dc.relation.references[81] T. M. Duarte, N. Carinhas, L. C. Barreiro, M. J. T. Carrondo, P. M. Alves, and A. P. Teixeira, “Metabolic responses of CHO cells to limitation of key amino acids,” Biotechnol. Bioeng., vol. 111, no. 10, pp. 2095–2106, 2014, doi: 10.1002/bit.25266.spa
dc.relation.references[82] D. R. Gray, S. Chen, W. Howart, D. Inlow, and B. L. Maiorella, “CO2 in large-scale and high density CHO cell perfusion culture,” Cytotechnology, vol. 22, pp. 65–78, 1996.spa
dc.relation.references[83] M. Brunner, P. Doppler, T. Klein, C. Herwig, and J. Fricke, “Elevated pCO2 affects the lactate metabolic shift in CHO cell culture processes,” Eng. Life Sci., vol. 18, no. 3, pp. 204–214, 2018, doi: 10.1002/elsc.201700131.spa
dc.relation.references[84] A. Rita Costa, M. Elisa Rodrigues, M. Henriques, J. Azeredo, and R. Oliveira, “Guidelines to cell engineering for monoclonal antibody production,” Eur. J. Pharm. Biopharm., vol. 74, no. 2, pp. 127–138, 2010, doi: 10.1016/j.ejpb.2009.10.002.spa
dc.relation.references[85] J. Varley and J. Birch, “Reactor design for large scale suspension animal cell culture,” Cytotechnology, vol. 29, no. 3, pp. 177–205, 1999, doi: 10.1023/A:1008008021481.spa
dc.relation.references[86] N. Barbouche, “Réponse biologique de cellules animales à des contraintes hydrodynamiques : simulation numérique , expérimentation et modélisation en bioréacteurs de laboratoire,” 2018.spa
dc.relation.references[87] S. K. W. Oh, A. W. Nienow, M. Al-Rubeai, and A. N. Emery, “The effects of agitation intensity with and without continuous sparging on the growth and antibody production of hybridoma cells,” J. Biotechnol., vol. 12, no. 1, pp. 45–61, 1989, doi: 10.1016/0168-1656(89)90128-4.spa
dc.relation.references[88] J. J. Chalmers, “Mixing, aeration and cell damage, 30 + years later : what we learned, how it affected the cell culture industry and what we would like to know more about,” pp. 94–102, 2015.spa
dc.relation.references[89] R. V. Venkat, L. R. Stock, and J. J. Chalmers, “Study of hydrodynamics in microcarrier culture spinner vessels: A particle tracking velocimetry approach,” Biotechnol. Bioeng., vol. 49, no. 4, pp. 456–466, 1996, doi: 10.1002/(SICI)1097-0290(19960220)49:4<456::AID-BIT13>3.3.CO;2-I.spa
dc.relation.references[90] S. Xu et al., “A practical approach in bioreactor scale-up and process transfer using a combination of constant P/V and vvm as the criterion,” Biotechnol. Prog., vol. 33, no. 4, pp. 1146–1159, 2017, doi: 10.1002/btpr.2489.spa
dc.relation.references[91] F. Scargiali, A. Busciglio, F. Grisafi, and A. Brucato, “Mass transfer and hydrodynamic characteristics of unbaffled stirred bio-reactors : Influence of impeller design,” Biochem. Eng. J., vol. 82, pp. 41–47, 2014, doi: 10.1016/j.bej.2013.11.009.spa
dc.relation.references[92] S. Xu and H. Chen, “High-density mammalian cell cultures in stirred-tank bioreactor without external pH control,” J. Biotechnol., vol. 231, pp. 149–159, 2016, doi: 10.1016/j.jbiotec.2016.06.019.spa
dc.relation.references[93] T. Dreher, U. Husemann, S. Ruhl, and G. Greller, “Design space definition for a stirred single-use bioreactor family from 50 to 2000 L scale,” BMC Proc., vol. 7, no. Suppl 6, pp. 6–8, 2013.spa
dc.relation.references[94] J. R. Vallejos, K. A. Brorson, A. R. Moreira, and G. Rao, “Integrating a 250 mL-spinner flask with other stirred bench-scale cell culture devices: A mass transfer perspective,” Biotechnol. Prog., vol. 27, no. 3, pp. 803–810, 2011, doi: 10.1002/btpr.578.spa
dc.relation.references[95] F. Buttgereit, M. D. Brandt, T. C. Road, and C. Cb, “A hierarchy of ATP-consuming,” vol. 167, pp. 163–167, 1995.spa
dc.relation.references[96] J. M. Willey, L. M. Sherwood, and C. J. Woolverton, Prescott, Harley, and Klein’s Microbiology, McGraw-Hil. New York: Colin Whealey/Janice Roering-Blang, 2008.spa
dc.relation.references[97] B. C. Mulukutla, S. Khan, A. Lange, and W. Hu, “Glucose metabolism in mammalian cell culture : new insights for tweaking vintage pathways,” Trends Biotechnol., vol. 28, no. 9, pp. 476–484, 2010, doi: 10.1016/j.tibtech.2010.06.005.spa
dc.relation.references[98] W. G. Hopkins, Photosynthesis and Respiration. New York: Chelsea House, 2006.spa
dc.relation.references[99] J. Van der Valk et al., “Optimization of chemically defined cell culture media - Replacing fetal bovine serum in mammalian in vitro methods,” Toxicol. Vitr., vol. 24, pp. 1053–1063, 2010, doi: 10.1016/j.tiv.2010.03.016.spa
dc.relation.references[100] P. W. Hochachka, “Defense Strategies Against Hypoxia and Hypothermia,” Science (80-. )., vol. 231, pp. 234–241, 1986.spa
dc.relation.references[101] M. Bonora et al., “ATP synthesis and storage,” pp. 343–357, 2012, doi: 10.1007/s11302-012-9305-8.spa
dc.relation.references[102] A. Vazquez, J. Liu, Y. Zhou, and Z. N. Oltvai, “Catabolic efficiency of aerobic glycolysis : The Warburg effect revisited,” 2010.spa
dc.relation.references[103] A. R. Fernie, F. Carrari, and L. J. Sweetlove, “Respiratory metabolism : glycolysis , the TCA cycle and mitochondrial electron transport,” Curr. Opin. Plant Biol., vol. 7, pp. 254–261, 2004, doi: 10.1016/j.pbi.2004.03.007.spa
dc.relation.references[104] M. Akram, “Citric Acid Cycle and Role of its Intermediates in Metabolism,” Cell Biochem Biophys, vol. 68, pp. 475–478, 2014, doi: 10.1007/s12013-013-9750-1.spa
dc.relation.references[105] C. Nazaret, M. Heiske, K. Thurley, and J. Mazat, “Mitochondrial energetic metabolism : A simplified model of TCA cycle with ATP production,” vol. 258, pp. 455–464, 2009, doi: 10.1016/j.jtbi.2008.09.037.spa
dc.relation.references[106] E. Racker, A New Look at Mechanisms in Bioenergetics, First. New York: Academic Press, 1976.spa
dc.relation.references[107] S. Dietmair, N. E. Timmins, P. P. Gray, L. K. Nielsen, and J. O. Krömer, “Towards quantitative metabolomics of mammalian cells : Development of a metabolite extraction protocol,” Anal. Biochem., vol. 404, no. 2, pp. 155–164, 2010, doi: 10.1016/j.ab.2010.04.031.spa
dc.relation.references[108] V. Chevallier, M. R. Andersen, and L. Malphettes, “Oxidative stress ‐ alleviating strategies to improve recombinant protein production in CHO cells,” no. November 2019, pp. 1172–1186, 2020, doi: 10.1002/bit.27247.spa
dc.relation.references[109] M. Vergara et al., “High glucose and low specific cell growth but not mild hypothermia improve specific r-protein productivity in chemostat culture of CHO cells,” PLoS One, vol. 13, no. 8, pp. 1–22, 2018, doi: 10.1371/journal.pone.0202098.spa
dc.relation.references[110] C. T. Goudar, J. M. Piret, and K. B. Konstantinov, “Estimating cell specific oxygen uptake and carbon dioxide production rates for mammalian cells in perfusion culture,” Biotechnol. Prog., vol. 27, no. 5, pp. 1347–1357, 2011, doi: 10.1002/btpr.646.spa
dc.relation.references[111] L. V. Berkner and L. C. Marshall, “On the Origin and Rise of Oxygen Concentration in the Earth’s Atmosphere,” J. Atmos. Sci., vol. 22, no. 3, pp. 255–261, 1965.spa
dc.relation.references[112] J. M. Prausnitz, R. N. Lichtenthaler, and E. Gomez de Azevedo, Molecular Thermodynamics of Fluid-Phase Equilibria-PH PTR (1999).pdf, Third. Upper Saddle River, New Jersey, 1999.spa
dc.relation.references[113] C. E. Boyd, Water Quality, Third Edit. Springer Nature Switzerland, 2019.spa
dc.relation.references[114] J. D. Seader, E. J. Henley, and D. K. Roper, Separation Process Principles with Applications Using Process Simulators, Fourth. 2011.spa
dc.relation.references[115] D. D. McClure, J. M. Kavanagh, D. F. Fletcher, and G. W. Barton, “Oxygen transfer in bubble columns at industrially relevant superficial velocities: Experimental work and CFD modelling,” Chem. Eng. J., vol. 280, pp. 138–146, 2015, doi: 10.1016/j.cej.2015.06.003.spa
dc.relation.references[116] P. Sucosky, D. F. Osorio, J. B. Brown, and G. P. Neitzel, “Fluid Mechanics of a Spinner-Flask Bioreactor,” Biotechnol. Bioeng., vol. 85, no. 1, pp. 34–46, 2004, doi: 10.1002/bit.10788.spa
dc.relation.references[117] T. Anderlei, W. Zang, M. Papaspyrou, and J. Büchs, “Online respiration activity measurement (OTR, CTR, RQ) in shake flasks,” Biochem. Eng. J., vol. 17, no. 3, pp. 187–194, 2004, doi: 10.1016/S1369-703X(03)00181-5.spa
dc.relation.references[118] Z. Zheng, D. Sun, J. Li, X. Zhan, and M. Gao, “Improving oxygen transfer efficiency by developing a novel energy-saving impeller,” Chem. Eng. Res. Des., vol. 130, pp. 199–207, 2018, doi: 10.1016/j.cherd.2017.12.021.spa
dc.relation.references[119] P. A. Ruffieux, U. Von Stockar, and I. W. Marison, “Measurement of volumetric (OUR) and determination of specific (qO2) oxygen uptake rates in animal cell cultures,” J. Biotechnol., vol. 63, no. 2, pp. 85–95, 1998, doi: 10.1016/S0168-1656(98)00046-7.spa
dc.relation.references[120] T. E. Riedel, W. M. Berelson, K. H. Nealson, and S. E. Finkel, “Oxygen consumption rates of bacteria under nutrient-limited conditions,” Appl. Environ. Microbiol., vol. 79, no. 16, pp. 4921–4931, 2013, doi: 10.1128/AEM.00756-13.spa
dc.relation.references[121] F. Garcia-Ochoa, S. Escobar, and E. Gomez, “Specific oxygen uptake rate as indicator of cell response of Rhodococcus erythropolis cultures to shear effects,” Chem. Eng. Sci., vol. 122, pp. 491–499, 2015, doi: 10.1016/j.ces.2014.10.016.spa
dc.relation.references[122] F. Garcia-Ochoa and E. Gomez, “Bioreactor scale-up and oxygen transfer rate in microbial processes: An overview,” Biotechnol. Adv., vol. 27, no. 2, pp. 153–176, 2009, doi: 10.1016/j.biotechadv.2008.10.006.spa
dc.relation.references[123] C. M. Cooper, G. A. Fernstrom, and S. A. Miller, “Performance of Agitated Gas-Liquid Contactors—Correction,” Ind. Eng. Chem., vol. 36, no. 9, p. 857, 1944, doi: 10.1021/ie50417a601.spa
dc.relation.references[124] P. V. Danckwerts, “Significance of Liquids in Gas Absorption,” Eng. Process Dev., vol. 43, no. 6, pp. 1460–1467, 1951.spa
dc.relation.references[125] K. Ortiz-Ochoa, S. D. Doig, J. M. Ward, and F. Baganz, “A novel method for the measurement of oxygen mass transfer rates in small-scale vessels,” Biochem. Eng. J., vol. 25, no. 1, pp. 63–68, 2005, doi: 10.1016/j.bej.2005.04.003.spa
dc.relation.references[126] G. A. Hill, “Measurement of overall volumetric mass transfer coefficients for carbon dioxide in a well-mixed reactor using a pH probe,” Ind. Eng. Chem. Res., vol. 45, no. 16, pp. 5796–5800, 2006, doi: 10.1021/ie060242t.spa
dc.relation.references[127] L. A. Tribe, C. L. Briens, and A. Margaritis, “Communication to the Editor Determination of the Volumetric Mass Transfer Coefficient (k,a) Using the Dynamic &quot; Gas Out-Gas In &quot; Method: Analysis of Errors Caused by Dissolved Oxygen Probes,” Biotechnol. Bioeng., vol. 46, no. 4, pp. 388–392, 1995, doi: 10.1002/bit.260460412.spa
dc.relation.references[128] U. Maier, M. Losen, and J. Büchs, “Advances in understanding and modeling the gas-liquid mass transfer in shake flasks,” Biochem. Eng. J., vol. 17, no. 3, pp. 155–167, 2004, doi: 10.1016/S1369-703X(03)00174-8.spa
dc.relation.references[129] A. A. Lin and W. M. Miller, “CHO cell responses to low oxygen: Regulation of oxygen consumption and sensitization to oxidative stress,” Biotechnol. Bioeng., vol. 40, no. 4, pp. 505–516, 1992.spa
dc.relation.references[130] A. A. Lin, R. Kimura, and W. M. Millert, “Cells Under Oxygen-Limited Conditions,” vol. 42, pp. 339–350, 1993.spa
dc.relation.references[131] R. S. Senger et al., “Oxygen transfer characteristics of miniaturized bioreactor systems,” Biotechnol. Bioeng., vol. 110, no. 1, pp. 339–350, 2014, doi: 10.1016/j.apm.2013.05.032.spa
dc.relation.references[132] D. Flitsch et al., “Respiration activity monitoring system for any individual well of a 48-well microtiter plate,” J. Biol. Eng., vol. 10, no. 1, 2016, doi: 10.1186/s13036-016-0034-3.spa
dc.relation.references[133] P. A. Apostolidis, A. Tseng, M. E. Koziol, M. J. Betenbaugh, and B. Chiang, “Investigation of low viability in sparged bioreactor CHO cell cultures points to variability in the Pluronic F-68 shear protecting component of cell culture media,” Biochem. Eng. J., vol. 98, pp. 10–17, 2015, doi: 10.1016/j.bej.2015.01.013.spa
dc.relation.references[134] J. P. Clark, Practical Design, Construction and Operation of Food Facilites. 2009.spa
dc.relation.references[135] G. Jagschies, E. Lindskog, K. Lacki, and P. Galliher, Eds., Biopharmaceutical Processing: Development, design and implementation of manufacturing processes. 2018.spa
dc.relation.references[136] K. G. Clarke, Bioprocess engineering. An Introductory Engineering and Life Science Approach. Cambridge: Woodhead Publishing, 2013.spa
dc.relation.references[137] V. I. Sikavitsas, G. N. Bancroft, and A. G. Mikos, “Formation of three-dimensional cell/polymer constructs for bone tissue engineering in a spinner flask and a rotating wall vessel bioreactor,” J. Biomed. Mater. Res., vol. 62, no. 1, pp. 136–148, 2002, doi: 10.1002/jbm.10150.spa
dc.relation.references[138] M. Singh, F. K. Kasper, and A. G. Mikos, Tissue Engineering Scaffolds, Third Edit. Elsevier, 2013.spa
dc.relation.references[139] N. K. Gill, M. Appleton, F. Baganz, and G. J. Lye, “Design and characterisation of a miniature stirred bioreactor system for parallel microbial fermentations,” Biochem. Eng. J., vol. 39, no. 1, pp. 164–176, 2008, doi: 10.1016/j.bej.2007.09.001.spa
dc.relation.references[140] D. T. Monteil et al., “Disposable 600-mL orbitally shaken bioreactor for mammalian cell cultivation in suspension,” Biochem. Eng. J., vol. 76, pp. 6–12, 2013, doi: 10.1016/j.bej.2013.04.008.spa
dc.relation.references[141] L. Zhu et al., “Fluid dynamics of flow fields in a disposable 600-mL orbitally shaken bioreactor,” Biochem. Eng. J., vol. 129, pp. 84–95, 2018, doi: 10.1016/j.bej.2017.10.019.spa
dc.relation.references[142] T. A. Barrett, A. Wu, H. Zhang, M. S. Levy, and G. J. Lye, “Microwell engineering characterization for mammalian cell culture process development,” Biotechnol. Bioeng., vol. 105, no. 2, pp. 260–275, 2010, doi: 10.1002/bit.22531.spa
dc.relation.references[143] S. Suresh, V. C. Srivastava, and I. M. Mishra, “Critical analysis of engineering aspects of shaken flask bioreactors,” Crit. Rev. Biotechnol., vol. 29, no. 4, pp. 255–278, 2009, doi: 10.3109/07388550903062314.spa
dc.relation.references[144] R. J. Fleischaker Jr and A. J. Sinskey, “Oxygen demand and supply in cell culture,” Eur. J. Appl. Microbiol. Biotechnol., vol. 12, no. 4, pp. 193–197, 1981, doi: 10.1007/BF00499486.spa
dc.relation.references[145] P. Jorjani and S. Ozturk, “Effects of Cell Density and Temperature on Oxygen Consumption Rate for Different Mammalian Cell Lines,” Biotechnol. Bioeng., vol. 64, no. 3, pp. 349–356, 1999.spa
dc.relation.references[146] B. Bienz-Tadmor, P. A. Dicerbo, G. Tadmor, and L. Lasagna, “Biopharmaceuticals and conventional drugs: Clinical Success Rates,” Nat. Biotechnol., vol. 10, pp. 667–674, 1992, doi: doi:10.1038/nbt0692-667.spa
dc.relation.references[147] H. Schellekens, “Biosimilar therapeutics — what do we need to consider ?,” 2009, doi: 10.1093/ndtplus/sfn177.spa
dc.relation.references[148] R. M. Alldread et al., “Large Scale Suspension Culture of Mammalian Cells,” 2014. doi: 10.1002/9783527683321.ch12.spa
dc.relation.references[149] R. P. Evens and K. I. Kaitin, “The biotechnology innovation machine: A source of intelligent biopharmaceuticals for the pharma industry - Mapping biotechnology’s success,” Clin. Pharmacol. Ther., vol. 95, no. 5, pp. 528–532, 2014, doi: 10.1038/clpt.2014.14.spa
dc.relation.references[150] K. Jayapal, K. Wlaschin, W. Hu, and G. Yap, “Recombinant protein therapeutics from CHO cells-20 years and counting,” Chem. Eng. Prog., vol. 103, no. 10, pp. 40–47, 2007, [Online]. Available: http://www.aiche.org/sites/default/files/docs/pages/CHO.pdf.spa
dc.relation.references[151] L. Xie, W. Zhou, and D. Robinson, “Protein production by large-scale mammalian cell culture,” New Compr. Biochem., vol. 38, pp. 605–623, 2003, doi: 10.1016/S0167-7306(03)38035-4.spa
dc.relation.references[152] S. Reuveny, D. Velez, J. D. Macmillan, and L. Miller, “Factors affecting cell growth and monoclonal antibody production in stirred reactors,” J. Immunol. Methods, vol. 86, no. 1, pp. 53–59, 1986, doi: 10.1016/0022-1759(86)90264-4.spa
dc.relation.references[153] N. Kurano, C. Leist, F. Messi, S. Kurano, and A. Fiechter, “Growth behavior of Chinese hamster ovary cells in a compact loop bioreactor: 1. Effects of physical and chemical environments,” J. Biotechnol., vol. 15, no. 1–2, pp. 101–112, 1990, doi: 10.1016/0168-1656(90)90054-F.spa
dc.relation.references[154] T. Link et al., “Bioprocess development for the production of a recombinant MUC1 fusion protein expressed by CHO-K1 cells in protein-free medium ଝ,” vol. 110, pp. 51–62, 2004, doi: 10.1016/j.jbiotec.2003.12.008.spa
dc.relation.references[155] E. Trummer et al., “Process parameter shifting: Part I. Effect of DOT, pH, and temperature on the performance of Epo-Fc expressing CHO cells cultivated in controlled batch bioreactors,” Biotechnol. Bioeng., vol. 94, no. 6, pp. 1033–1044, Aug. 2006, doi: 10.1002/bit.21013.spa
dc.relation.references[156] L. Zhiming, W. Kang, J. Gaofeng, H. Kang, and H. Jingfeng, “CFD studies on hydrodynamic characteristics of shaking bioreactors with wide conical bottom,” J. Chem. Technol. Biotechnol., 2017, doi: 10.1002/jctb.5431.spa
dc.relation.references[157] D. T. Monteil et al., “A comparison of orbitally-shaken and stirred-tank bioreactors: pH modulation and bioreactor type affect CHO cell growth and protein glycosylation,” Biotechnol. Prog., vol. 32, no. 5, pp. 1174–1180, 2016, doi: 10.1002/btpr.2328.spa
dc.relation.references[158] S. Tissot, P. O. Michel, D. L. Hacker, L. Baldi, M. De Jesus, and F. M. Wurm, “KLa as a predictor for successful probe-independent mammalian cell bioprocesses in orbitally shaken bioreactors,” N. Biotechnol., vol. 29, no. 3, pp. 387–394, 2012, doi: 10.1016/j.nbt.2011.10.010.spa
dc.relation.references[159] C. Li, J. Xia, J. Chu, Y. Wang, Y. Zhuang, and S. Zhang, “Regular article CFD analysis of the turbulent flow in baffled shake flasks,” Biochem. Eng. J., vol. 70, pp. 140–150, 2013, doi: 10.1016/j.bej.2012.10.012.spa
dc.relation.references[160] W. Klöckner et al., “Correlation between mass transfer coefficient kLa and relevant operating parameters in cylindrical disposable shaken bioreactors on a bench-to-pilot scale,” J. Biol. Eng., vol. 7, no. 1, pp. 1–14, 2013, doi: 10.1186/1754-1611-7-28.spa
dc.relation.references[161] L. K. Zhu et al., “Studies on fluid dynamics of the flow field and gas transfer in orbitally shaken tubes,” Biotechnol. Prog., vol. 33, no. 1, pp. 192–200, 2017, doi: 10.1002/btpr.2375.spa
dc.relation.references[162] Y. Rigual-González et al., “Application of a new model based on oxygen balance to determine the oxygen uptake rate in mammalian cell chemostat cultures,” Chem. Eng. Sci., vol. 152, pp. 586–590, 2016, doi: 10.1016/j.ces.2016.06.051.spa
dc.relation.references[163] G. van Eikenhorst, Y. E. Thomassen, L. A. van der Pol, and W. A. M. Bakker, “Assessment of mass transfer and mixing in rigid lab-scale disposable bioreactors at low power input levels,” Biotechnol. Prog., vol. 30, no. 6, pp. 1269–1276, 2014, doi: 10.1002/btpr.1981.spa
dc.relation.references[164] Z. Xing, A. M. Lewis, M. C. Borys, and Z. J. Li, “A carbon dioxide stripping model for mammalian cell culture in manufacturing scale bioreactors,” Biotechnol. Bioeng., vol. 114, no. 6, pp. 1184–1194, 2017, doi: 10.1002/bit.26232.spa
dc.relation.references[165] J. Wutz et al., “Predictability of kLa in stirred tank reactors under multiple operating conditions using an Euler–Lagrange approach,” Eng. Life Sci., vol. 16, no. 7, pp. 633–642, 2016, doi: 10.1002/elsc.201500135.spa
dc.relation.references[166] L. Gimenez, C. Simonet, and L. Malphettes, “Scale-up considerations for monoclonal antibody production process: an oxygen transfer flux approach,” BMC Proc., vol. 7, no. Suppl 6, p. P49, 2013, doi: 10.1186/1753-6561-7-S6-P49.spa
dc.relation.references[167] T. Dreher, U. Husemann, T. Adams, D. de Wilde, and G. Greller, “Design space definition for a stirred single-use bioreactor family from 50 to 2000 L scale,” Eng. Life Sci., vol. 14, no. 3, pp. 304–310, 2014, doi: 10.1002/elsc.201300067.spa
dc.relation.references[168] B. Minow et al., “Biological performance of two different 1000 L single-use bioreactors applying a simple transfer approach,” Eng. Life Sci., vol. 14, no. 3, pp. 283–291, 2014, doi: 10.1002/elsc.201300147.spa
dc.relation.references[169] A. L. Damiani, M. H. Kim, and J. Wang, “An improved dynamic method to measure kLa in bioreactors,” Biotechnol. Bioeng., vol. 111, no. 10, pp. 2120–2125, 2014, doi: 10.1002/bit.25258.spa
dc.relation.references[170] R. Rakoczy, J. Lechowska, M. Kordas, M. Konopacki, K. Fijałkowski, and R. Drozd, “Effects of a rotating magnetic field on gas-liquid mass transfer coefficient,” Chem. Eng. J., vol. 327, no. 3, pp. 608–617, 2017, doi: 10.1016/j.cej.2017.06.132.spa
dc.relation.references[171] S. S. de Jesus, J. Moreira Neto, and R. Maciel Filho, “Hydrodynamics and mass transfer in bubble column, conventional airlift, stirred airlift and stirred tank bioreactors, using viscous fluid: A comparative study,” Biochem. Eng. J., vol. 118, pp. 70–81, 2017, doi: 10.1016/j.bej.2016.11.019.spa
dc.relation.references[172] J. R. Mounsef, D. Salameh, N. Louka, C. Brandam, and R. Lteif, “The effect of aeration conditions, characterized by the volumetric mass transfer coefficient K<inf>L</inf>a, on the fermentation kinetics of Bacillus thuringiensis kurstaki,” J. Biotechnol., vol. 210, pp. 100–106, 2015, doi: 10.1016/j.jbiotec.2015.06.387.spa
dc.relation.references[173] F. Scargiali, A. Busciglio, F. Grisafi, and A. Brucato, “Mass transfer and hydrodynamic characteristics of unbaffled stirred bioreactors influence of impeller design.pdf,” vol. 82, pp. 41–47, 2013.spa
dc.relation.references[174] A. Karimi et al., “Oxygen mass transfer in a stirred tank bioreactor using different impeller configurations for environmental purposes,” Iranian J. Environ. Health Sci. Eng., vol. 10, no. 1, p. 6, 2013, doi: 10.1186/1735-2746-10-6.spa
dc.relation.references[175] M. M. Buffo, L. J. Corrêa, M. N. Esperança, A. J. G. Cruz, C. S. Farinas, and A. C. Badino, “Influence of dual-impeller type and configuration on oxygen transfer, power consumption, and shear rate in a stirred tank bioreactor,” Biochem. Eng. J., vol. 114, pp. 130–139, 2016, doi: 10.1016/j.bej.2016.07.003.spa
dc.relation.references[176] M. Xie, J. Xia, Z. Zhou, J. Chu, Y. Zhuang, and S. Zhang, “Flow Pattern , Mixing , Gas Hold-Up and Mass Transfer Coe ffi cient of Triple-Impeller Con fi gurations in Stirred Tank Bioreactors,” Ind. Eng. Chem. Res., p. 140320091633005, 2014, doi: 10.1021/ie400831s.spa
dc.relation.references[177] J. C. Gabelle et al., “Impact of rheology on the mass transfer coefficient during the growth phase of Trichoderma reesei in stirred bioreactors,” Chem. Eng. Sci., vol. 75, pp. 408–417, 2012, doi: 10.1016/j.ces.2012.03.053.spa
dc.relation.references[178] C. Bach et al., “Evaluation of mixing and mass transfer in a stirred pilot scale bioreactor utilizing CFD,” Chem. Eng. Sci., vol. 171, no. 1, pp. 19–26, 2017, doi: 10.1016/j.ces.2017.05.001.spa
dc.relation.references[179] M. O. Albaek, K. V. Gernaey, M. S. Hansen, and S. M. Stocks, “Modeling enzyme production with Aspergillus oryzae in pilot scale vessels with different agitation, aeration, and agitator types,” Biotechnol. Bioeng., vol. 108, no. 8, pp. 1828–1840, 2011, doi: 10.1002/bit.23121.spa
dc.rightsDerechos reservados al autor, 2021spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.lembBiotecnología celular animal
dc.subject.lembAnimal cell biotechnology
dc.subject.proposalCultivo de células CHOspa
dc.subject.proposalCélulas de mamíferospa
dc.subject.proposalEscalado de Bioreactoresspa
dc.subject.proposalCoeficiente volumétrico de transferencia de masaspa
dc.subject.proposalMammalian cell cultureseng
dc.subject.proposalVolumetric mass transfer coefficienteng
dc.subject.proposalBioreactoreng
dc.subject.spinesCélulas productoras de anticuerpos
dc.subject.spinesAntibody-producing cells
dc.titleEvaluation of the volumetric mass transfer coefficient as scale up parameter for CHO cell cultures for monoclonal antibodies productioneng
dc.title.translatedTransferencia de masa como parámetro de escalamiento de cultivo de una línea celular CHO para la producción de anticuerpos monoclonalesspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
AndresJBelloH.2021.pdf
Tamaño:
3.45 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: