Modelado y simulación de la respuesta plasmónica de arreglos finitos de nanoesferas metálicas para diseño de biosensores
dc.contributor.advisor | Herreño Fierro, Aurelio | spa |
dc.contributor.advisor | Rey Gonzalez, Rafael Ramón | spa |
dc.contributor.author | Fernández Escobar, Sandra Milena | spa |
dc.contributor.researchgroup | Materiales Nanoestructurados y Sus Aplicaciones | spa |
dc.date.accessioned | 2024-06-20T01:33:07Z | |
dc.date.available | 2024-06-20T01:33:07Z | |
dc.date.issued | 2024-05-03 | |
dc.description | ilustraciones, diagramas, fotografías | spa |
dc.description.abstract | Esta tesis se desarrolla en el marco de la alianza entre la Universidad Nacional de Colombia, la Universidad Distrital Francisco José de Caldas y el Instituto Leibniz de Tecnología Fotónica (Jena, Alemania), para el desarrollo de una plataforma ultrasensible de detección plasmónica. Este trabajo consiste en realizar un análisis teórico-computacional de la respuesta plasmónica de diferentes configuraciones geométricas de nanoesferas de oro, con el fin de evaluar la configuración más viable para su aplicación en la plataforma de biodetección. Se emplea el método de Diferencias Finitas en el Dominio del Tiempo (FDTD) para estudiar las propiedades ópticas de diferentes configuraciones como nanoesfera aislada, dímero, hexágono y heptámero. Se presta especial atención a la influencia del entorno dieléctrico, la cantidad de nanoesferas en cada sistema y la separación entre ellas. Los resultados revelaron patrones distintivos en la respuesta plasmónica de los diferentes sistemas, evidenciando cambios significativos en función de las variaciones en el entorno dieléctrico y la disposición de las nanoesferas. A través de este análisis, se logra, identificar la configuración geométrica teórica óptima para ser implementada en la plataforma de biodetección, proporcionando valiosas perspectivas para futuras aplicaciones en el campo de la detección biomolecular. (Texto tomado de la fuente). | spa |
dc.description.abstract | This thesis is developed within the framework of the alliance between the National University of Colombia, the Francisco Jos\'{e} de Caldas District University, and the Leibniz Institute of Photonic Technology (Jena, Germany), with the aim of creating an ultrasensitive plasmonic detection platform. The work involves a theoretical-computational analysis of the plasmonic response of different geometric configurations of gold nanospheres to evaluate the most viable configuration for its application in the biodetection platform. The Finite Difference Time Domain (FDTD) method is used to study the optical properties of various configurations such as isolated nanosphere, dimer, hexagon, and heptamer. Special attention is given to the influence of the dielectric environment, the quantity of nanospheres in each system, and their separation. The results reveal distinctive patterns in the plasmonic response of different systems, showing significant changes based on variations in the dielectric environment and the arrangement of nanospheres. Through this analysis, the optimal theoretical geometric configuration is identified for implementation in the biodetection platform, providing valuable insights for future applications in the field of biomolecular detection. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias - Física | spa |
dc.description.researcharea | Plasm´onica | spa |
dc.format.extent | x, 68 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/86280 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Física | spa |
dc.relation.references | Blanco Bea, Duani ; Pérez Tejeda, Alain ; Acuña Pardo, Arlenis ; Carreño Cuador, Jenry: Nanomedicina: aspectos generales de un futuro promisorio.En: Revista Habanera de Ciencias Médicas 10 (2011), Nr. 3, p. 0–0 | spa |
dc.relation.references | Bohren, Craig F. ; Huffman, Donald R.: Absorption and scattering of light by small particles. John Wiley & Sons, 2008 | spa |
dc.relation.references | Chung, Taerin ; Lee, Seung-Yeol ; Song, Eui Y. ; Chun, Honggu ; Lee, Byoungho: Plasmonic nanostructures for nano-scale bio-sensing. En: Sensors 11 (2011), Nr. 11, p. 10907–10929 | spa |
dc.relation.references | Cuesta, Irene F.: Nanoimprint lithography: developments and nanodevice fabrication, Universitat Autónoma de Barcelona, Tesis de Grado, 2009 | spa |
dc.relation.references | Dahlin, Andreas B. ; Tegenfeldt, Jonas O. ; Höök, Fredrik: Improving the instrumental resolution of sensors based on localized surface plasmon resonance. En: Analytical chemistry 78 (2006), Nr. 13, p. 4416–4423 | spa |
dc.relation.references | Diaz-Egea, Carlos [u. a.]: Nano-análisis estructural y espectroscópico de nanoestructuras metálicas plasmónicas. (2016) | spa |
dc.relation.references | Estevez Díaz, Yordano: Fabricación y caracterización de un biosensor plasmónico, Universidad Autónoma de Nuevo León, Tesis de Grado, 2021 | spa |
dc.relation.references | Fox, Mark: Optical properties of solids. American Association of Physics Teachers, 2002 | spa |
dc.relation.references | García Álvarez, Julio C.: Electromagnetismo computacional. (2023) | spa |
dc.relation.references | Haran, Gilad ; Chuntonov, Lev: Artificial plasmonic molecules and their interaction with real molecules. En: Chemical reviews 118 (2018), Nr. 11, p. 5539–5580 | spa |
dc.relation.references | Herreño-Fierro, César A ; Patino, Edgar J. ; Armelles, Gaspar ; Cebollada, Alfonso: Surface sensitivity of optical and magneto-optical and ellipsometric properties in magnetoplasmonic nanodisks. En: Applied Physics Letters 108 (2016), Nr. 2, p.021109 | spa |
dc.relation.references | Hoa, Xuyen D. ; Kirk, AG ; Tabrizian, M: Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress. En: Biosensors and bioelectronics 23 (2007), Nr. 2, p. 151–160 | spa |
dc.relation.references | Homola, Jirí ; Piliarik, Marek: Surface plasmon resonance (SPR) sensors. Springer,2006 | spa |
dc.relation.references | Homola, Jirí Í ; Yee, Sinclair S. ; Gauglitz, G¨unter: Surface plasmon resonance sensors. En: Sensors and actuators B: Chemical 54 (1999), Nr. 1-2, p. 3–15 | spa |
dc.relation.references | Jackson, John D.: Classical electrodynamics. American Association of Physics Teachers, 1999 | spa |
dc.relation.references | Jatschka, Jacqueline ; Dathe, André; Csáki, Andrea ; Fritzsche, Wolfgang ; Stranik, Ondrej: Propagating and localized surface plasmon resonance sensingˆa€”A critical comparison based on measurements and theory. En: Sensing and bio-sensing research 7 (2016), p. 62–70 | spa |
dc.relation.references | Johnson, Peter B. ; Christy, R-WJPrB: Optical constants of the noble metals. En: Physical review B 6 (1972), Nr. 12, p. 4370 | spa |
dc.relation.references | Klar, T ; Perner, M ; Grosse, S ; Von Plessen, G ; Spirkl, W ; Feldmann, J: Surface-plasmon resonances in single metallic nanoparticles. En: Physical Review Letters 80 (1998), Nr. 19, p. 4249 | spa |
dc.relation.references | Knight, Mark W. ; Wu, Yanpeng ; Lassiter, J B. ; Nordlander, Peter ; Halas, Naomi J.: Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle. En: Nano letters 9 (2009), Nr. 5, p. 2188–2192 | spa |
dc.relation.references | Kretschmann, Erwin ; Raether, Heinz: Radiative decay of non radiative surface plasmons excited by light. En: Zeitschrift für Naturforschung A 23 (1968), Nr. 12, p. 2135–2136 | spa |
dc.relation.references | Maccaferri, Nicolò: Designer magneto-optics with plasmonic magnetic nanostructures. (2016) | spa |
dc.relation.references | Maier, Stefan A.: Surface plasmon polaritons at metal/insulator interfaces. En: Plasmonics: Fundamentals and Applications. Springer, 2007, p. 21–37 | spa |
dc.relation.references | Markel, VA ; Shalaev, VM ; Zhang, P ; Huynh, W ; Tay, L ; Haslett, TL ; Moskovits, M: Near-field optical spectroscopy of individual surface-plasmon modes in colloid clusters. En: Physical Review B 59 (1999), Nr. 16, p. 10903 | spa |
dc.relation.references | Mattos, Vicente S. ; de Castro Neto, Jarbas C. ; Guimaraes, Francisco Eduardo G. ; Caface, Raphael A. ; Materón, Elsa M.: Functionalization of nanostructured surfaces for optical sensor platforms. En: Optical Sensors 2023 Vol. 12572 SPIE, 2023, p. 170–176 | spa |
dc.relation.references | Mejía-Salazar, JR ; Oliveira Jr, Osvaldo N.: Plasmonic biosensing: Focus review. En: Chemical reviews 118 (2018), Nr. 20, p. 10617–10625 | spa |
dc.relation.references | Mie, Gustav: Contributions to the optics of turbid media, particularly of colloidal metal solutions. En: Contributions to the optics of turbid media 25 (1976), Nr. 3, p. 377–445 | spa |
dc.relation.references | Mikhailovsky, AA ; Petruska, MA ; Li, Kuiru ; Stockman, MI ; Klimov, VI: Phase-sensitive spectroscopy of surface plasmons in individual metal nanostructures. En: Physical Review B 69 (2004), Nr. 8, p. 085401 | spa |
dc.relation.references | Miljkovic, Vladimir D. ; Pakizeh, Tavakol ; Sepulveda, Borja ; Johansson, Peter ; Kall, Mikael: Optical forces in plasmonic nanoparticle dimers. En: The Journal of Physical Chemistry C 114 (2010), Nr. 16, p. 7472–7479 | spa |
dc.relation.references | Morales, Juan Carlos J.: Estudio de procesos resonantes en arreglos bidimensionales de nanopartículas. INAOE, 2012 | spa |
dc.relation.references | Noguez, Cecilia: Surface plasmons on metal nanoparticles: the influence of shape and physical environment. En: The Journal of Physical Chemistry C 111 (2007), Nr. 10, p.3806–3819 | spa |
dc.relation.references | Nordlander, Peter ; Oubre, C ; Prodan, E ; Li, K ; Stockman, MI: Plasmon hybridization in nanoparticle dimers. En: Nano letters 4 (2004), Nr. 5, p. 899–903 | spa |
dc.relation.references | Novotny, Lukas ; Hecht, Bert: Principles of nano-optics. Cambridge university press, 2012 | spa |
dc.relation.references | Oskooi, Ardavan F. ; Roundy, David ; Ibanescu, Mihai ; Bermel, Peter ; Joannopoulos, John D. ; Johnson, Steven G.: MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method. En: Computer Physics Communications 181 (2010), Nr. 3, p. 687–702 | spa |
dc.relation.references | Ritchie, Rufus H.: Plasma losses by fast electrons in thin films. En: Physical review 106 (1957), Nr. 5, p. 874 | spa |
dc.relation.references | Roh, Sookyoung ; Chung, Taerin ; Lee, Byoungho: Overview of the characteristics of micro-and nano-structured surface plasmon resonance sensors. En: Sensors 11 (2011), Nr. 2, p. 1565–1588 | spa |
dc.relation.references | Rojas Bejarano, Carlos J. [u. a.]: Resonancia de plasmones superficiales localizados en nanopartículas de oro y plata. (2020) | spa |
dc.relation.references | Rumpf, Raymond C.: Electromagnetic analysis using finite-difference time-domain. En: Lecture Notes in FDTD. USA (2012) | spa |
dc.relation.references | Sánchez, Yuliana Mariem E.: Automatización de un sistema de resonancia de plasmones de superficie para medición de índice de refracción, Tesis Doctoral, Centro de investigación óptica AC, Tesis de Grado, 2013 | spa |
dc.relation.references | Schneider, T ; Jahr, N ; Jatschka, J ; Csaki, A ; Stranik, O ; Fritzsche, W: Localized surface plasmon resonance (LSPR) study of DNA hybridization at single nanoparticle transducers. En: Journal of nanoparticle research 15 (2013), Nr. 4, p. 1–10 | spa |
dc.relation.references | Sönnichsen, C ; Geier, S ; Hecker, NE ; Von Plessen, G ; Feldmann, J ; Ditlbacher, H ; Lamprecht, B ; Krenn, JR ; Aussenegg, FR ; Chan, V Z. [u. a.]: Spectroscopy of single metallic nanoparticles using total internal reflection microscopy. En: Applied Physics Letters 77 (2000), Nr. 19, p. 2949–2951 | spa |
dc.relation.references | Sosa, Iván O ; Noguez, Cecila ; Barrera, Ruben G.: Optical properties of metal nanoparticles with arbitrary shapes. En: The Journal of Physical Chemistry B 107 (2003), Nr. 26, p. 6269–6275 | spa |
dc.relation.references | Tong, Ling ; Wei, Qingshan ; Wei, Alexander ; Cheng, Ji-Xin: Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects. En: Photochemistry and photobiology 85 (2009), Nr. 1, p. 21–32 | spa |
dc.relation.references | Vidal, Francisco J G. ; Moreno, Luis M.: Plasmones superficiales. En: Investigación y ciencia 67 (2008) | spa |
dc.relation.references | X, INCHAUSTI. Localized surface plasmons and chiro-optical effects in planar nanostructures. 2016 | spa |
dc.relation.references | Yee, Kane: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. En: IEEE Transactions on antennas and propagation 14 (1966), Nr. 3, p. 302–307 | spa |
dc.relation.references | Zhang, Jin Z. ; Noguez, Cecilia: Plasmonic optical properties and applications of metal nanostructures. En: Plasmonics 3 (2008), p. 127–150 | spa |
dc.relation.references | Zohar, Nir ; Chuntonov, Lev ; Haran, Gilad: The simplest plasmonic molecules: Metal nanoparticle dimers and trimers. En: Journal of Photochemistry and Photobiology C: Photochemistry Reviews 21 (2014), p. 26–39 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 530 - Física::535 - Luz y radiación relacionada | spa |
dc.subject.ddc | 530 - Física::537 - Electricidad y electrónica | spa |
dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computación | spa |
dc.subject.proposal | Plasmones superficiales localizados | spa |
dc.subject.proposal | Resonancia plasmónica | spa |
dc.subject.proposal | Plasmones | spa |
dc.subject.proposal | Biosensores | spa |
dc.subject.proposal | Localized surface plasmons | eng |
dc.subject.proposal | Finite-difference time-domain method | eng |
dc.subject.unesco | Modelo de simulación | spa |
dc.subject.unesco | Simulation models | eng |
dc.subject.wikidata | biosensor | spa |
dc.subject.wikidata | biosensor | eng |
dc.subject.wikidata | Plasmónica | spa |
dc.subject.wikidata | plasmonics | eng |
dc.title | Modelado y simulación de la respuesta plasmónica de arreglos finitos de nanoesferas metálicas para diseño de biosensores | spa |
dc.title.translated | Modeling and simulation of the plasmonic response of finite arrangements of metallic nanospheres for biosensor design | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1049629644.2024.pdf
- Tamaño:
- 1.76 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Física
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: