Diseño de uniones para perfiles pultruidos fabricados en PRFV

dc.contributor.advisorMeza Meza, Juan Manuel
dc.contributor.authorMonsalve Gil, Héctor Iván
dc.contributor.educationalvalidatorAcosta Correa, José David
dc.contributor.googlescholar
dc.contributor.orcidMonsalve Gi, Héctor Iván [0000000253165816]
dc.contributor.orcidMeza Meza, Juan Manuel [0000000180133775]
dc.contributor.orcidAcosta Correa, Jose David [0000000210286423]
dc.contributor.researchgroupDesign of Advanced Compositesdadcomp
dc.date.accessioned2026-02-20T18:34:32Z
dc.date.available2026-02-20T18:34:32Z
dc.date.issued2026
dc.description.abstractEsta investigación tiene como objetivo el diseño y análisis de la unión principal de postes para taladros de exploración minera, fabricados con perfiles pultruidos de plástico reforzado con fibra de vidrio (PRFV). Se evalúa el comportamiento mecánico de estas uniones bajo esfuerzos de contacto con un pasador y se predicen los modos de falla mediante simulaciones por elementos finitos, validadas experimentalmente. El estudio se desarrolla en el contexto de la minería de oro en Colombia, donde la reducción de peso es un factor clave para mejorar la eficiencia operativa, este aspecto es relevantes debido al difícil acceso a las zonas donde operan los taladros y a la alta humedad del ambiente, lo que incrementa el desgaste de las estructuras metálicas. Se caracterizan perfiles comerciales de PRFV a través de ensayos mecánicos y odelos computacionales para determinar su viabilidad en la sustitución de estructuras metálicas. Los resultados muestran que los perfiles pultruidos reducen significativamente el peso de la estructura del taladro, facilitando su transporte y operación en terrenos difíciles. Además, se identificaron los modos de falla críticos en las uniones y se optimiza el diseño para mejorar su desempeño estructural. Se concluye que el uso de PRFV en estructuras mineras es viable, y que proporciona ventajas en términos de durabilidad, peso y resistencia mecánica. Esta investigación contribuye al desarrollo de nuevas aplicaciones para materiales compuestos en la industria minera y establece bases para futuras optimizaciones en el diseño de uniones estructurales. (Texto tomado de la fuente)spa
dc.description.abstractThis research aims to design and analyze the main joint of posts for mining exploration drills, manufactured with pultruded fiberglass-reinforced plastic (GFRP) profiles. The study evaluates the mechanical behavior of these joints under contact stresses with a pin and predicts failure modes through finite element simulations validated experimentally. The study is conducted in the context of gold mining in Colombia, where weight reduction is a key factor for improving operational efficiency. This aspect is particularly relevant due to the difficult access to the areas where drilling rigs operate and the high humidity of the environment, which increases the wear of metallic structures. Commercial GFRP profiles are characterized through mechanical tests and computational models to determine their feasibility for replacing metallic structures. The results show that pultruded profiles can significantly reduce the weight of the drill structure, facilitating its transportation and operation in difficult terrains. Critical failure modes in the oints were identified, and the design was optimized to enhance structural performance. It is concluded that using GFRP in mining structures is viable, offering advantages in durability, weight, and mechanical resistance. This research contributes to the development of new applications for composite materials in the mining industry and lays the foundation for future optimizations in structural joint design.eng
dc.description.curricularareaIngeniería Mecánica.Sede Medellín
dc.description.degreelevelMaestría
dc.description.degreenameMagister en Ingeniería Mecánica
dc.description.researchareaDiseño, Manufactura y Mecánica Computacional
dc.format.extent1 recursos en línea (237 páginas)
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.repoRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/89622
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.publisher.facultyFacultad de Minas
dc.publisher.placeMedellín, Colombia
dc.publisher.programMedellín - Minas - Maestría en Ingeniería Mecánica
dc.relation.references(ASTM). American Society for Testing and Materials. (2015). Standard Test Method for Compressive Properties of Rigid Plastics. Designation: D695 − 15. West Conshohocken,PA, USA,: American Society for Testing and Materials (ASTM).
dc.relation.references(ASTM)., A. S. (2014). Standard Test Method for Tensile Properties of Plastics, Designation: D638 − 14. West Conshohocken, PA, USA.: American Society for Testing and Materials (ASTM).
dc.relation.referencesAIMS International, L. (2024). Design Manual Fiberglass Grating and Structural Products. Houston, TX 77039.
dc.relation.referencesAluko, O. (2011). An Analytical Method for Failure Prediction of Composite Pinned Joints. Proceedings of the World Congress on Engineering 2011 Vol III. London, U.K.
dc.relation.referencesAnay Aruna, K. K. (2016). Friction and Wear Behaviour of Glass Fibre Reinforced Polymer Composite (GFRP) under Dry and Oil Lubricated Environmental Conditions. Materials for Manufacturing (ICAAMM-2016).
dc.relation.referencesAshby, M. F. (2011). Materials Selection in Mechanical Design (4th ed.). Butterworth-Heinemann.
dc.relation.referencesBakis, C. E. (2002). Fiber-reinforced polymer composites for construction—state-of-the-art review. Journal of composites for construction, . 6(2), 73-87.
dc.relation.referencesBank L.C. (2006). Composites for Construction: Structural Design with FRP Materials. 15 pp 298-502. New Jersey: Wiley & Sons.
dc.relation.referencesBao, G. H. (1992). The role of material orthotropy in fracture specimens for composites. International Journal of Solids and Structures, 29(9), , 1105–1116. .
dc.relation.referencesBarbero Pozuelo Enrique, S. K. (25 de 02 de 2025). Universidad Carlos III de Madrid. Obtenido de https://ocw.uc3m.es/pluginfile.php/2482/mod_page/content/16/analisis_laminados.pdf
dc.relation.referencesBarbero, E. (2013). Finite Element Analysis of Composite Materials Using AbaqusTM. Boca Raton, FL: Taylor & Francis Group, LLC.
dc.relation.referencesBarboni, R. G. (1990). Three-Dimensional Analysis of Edge Effects in Composite Laminates with Circular Holes,. Composite Structures, 15: 115–136.
dc.relation.referencesC.S. Hong and J.H. Crews, J. (1979). Stress concentration factors for finite orthotropic laminates with a circular hole and uniaxial loading. NASA Technical Paper No. 1469.
dc.relation.referencesCamanho, P. &. (2006). A design methodology for mechanically fastened joints in laminated composite materials. . Composites Science and Technology, 66 (15), 3004-3020.
dc.relation.referencesCamanho, P. a. (1999). A Progressive Damage Model for Mechanically Fastened Joints in Composite Laminates. J. Composite Materials, 33: 2248–2280.
dc.relation.referencesChang FK, S. R. (1982). Strength of mechanically fastened composite joints. J. Composite Materials Springer GS, 16:470–94.
dc.relation.referencesChang, F. (1986). The Effect of Pin Load Distribution on the Strength of Pin Loaded Holes in Laminated Composites. J. Composite Materials, 20: 401–408.
dc.relation.referencesChawla, K. K. (2012). Composite Materials: Science and Engineering (3rd ed.). C. Springer.
dc.relation.referencesCoelho Girão, A. M. (2017). Numerical evaluation of pin-bearing strength for the design of bolted connections of pultruded FRP material. Journal of Composites for Construction,, 21 (5).
dc.relation.referencesCollings, T. (1977). The Strength of Bolted Joints in Multi-Directional CFRP Laminates. Composites, 43–55.
dc.relation.referencesCook, R. D. (2002). Concepts and applications of finite element analysis (4th ed.). Wiley.
dc.relation.referencesCopper, C., & Turvey, G. (1995). Effects of joint geometry and bolt torque on the structural performance of single bolt tension joints in pultruded GRP sheet material. . Compos. Struct. , 32, 217–226.
dc.relation.referencesDano, M. G. (2000). Stress and failure analysis of mechanically fastened joints in composite laminates. . Composite Structures, 50 (3), 287-296.
dc.relation.referencesDassault Systèmes Simulia Corp. . (2020). Dassault Systèmes. (2020). Abaqus/CAE, Version 2020. Dassault Systèmes Simulia Corp.
dc.relation.referencesEplastics. (15 de 02 de 2025). Obtenido de https://www.eplastics.com/fiberglass/profiles/structural-fiberglass-frp-round-square-tube
dc.relation.referencesFem Expert. (03 de Febrero de 2025). Obtenido de https://femexpert.es/teoria-mef/
dc.relation.referencesFibergrate Composite Structures Inc. (20 de Abril de 2024). Fibergrate Composite Structures. Obtenido de https://www.fibergrate.com/resource-center/design-resources/
dc.relation.referencesFiberline. (2003). Fiberline Desingn Manual. Kolding.
dc.relation.referencesGarcía, Y. A. (2009). Análisis y diseño de materiales compuestos de fibra de vidrio. Universidad Central “Marta Abreu” de las Villas.
dc.relation.referencesGeeksforgeeks . (20 de Abril de 2024). Obtenido de https://www.geeksforgeeks.org/fiber-reinforced-plastic/
dc.relation.referencesGibson, R. F. (2012). Principles of Composite Material Mechanics. Boca Raton: CRC Press.
dc.relation.referencesGodwin, E., & Matthews, F. (1980). A review of the strength of joints in fibre-reinforced plastics (Part 1. Mechanically fastened joints). . Composites , 11, 155–160. .
dc.relation.referencesGupta, A. S. (2022). A critical review on damage modeling and failure analysis of pin joints in fiber reinforced composite laminates. P. olymers and Polymer Composites,, 30, 1–13.
dc.relation.referencesHart-Smith, L. (1980). Mechanically Fastened Joints for Advanced Composites-Phenomelogical Considerations and Simple Analysis. In: Leneo, E.M., Oplinger, D.W. and Burke, J.J. (eds.), Fibrous Composites in Structural Design, . New York.: Plenum Press, .
dc.relation.referencesJ.M. Whitney, I. D. (1984). Experimental Mechanics of Fiber Reinforced Composite Materials. society for Experimental Mechanics, Brookfield Center, CT .
dc.relation.referencesJin-Hwe Kweon, H.-S. A.-H. (2004). A new method to determine the characteristic lengths of composite joints without testing. Composite Structures, Pages 305-315.
dc.relation.referencesJones, R. M. (1999). Mechanics of Composite Materials (2nd ed.). . Taylor & Francis.
dc.relation.referencesKarakuzu R., Ç. C. (2008). Failure behavior of laminated composite plates with two serial pin- loaded holes. . Composite Structures, 82 (2), 225-234.
dc.relation.referencesKaw, K. (2005). Mechanics of Composite Materials. Boca Raton: CRC Press.
dc.relation.referencesKelly G., &. H. (2004). Bearing strength of carbon fiber/epoxy laminates: effects of bolt-hole clearance. . Composites, Part B, 35, 331–343.
dc.relation.referencesKretsis, G. a. (1985). The Strength of Bolted Joints in Glass Fiber/Epoxy Laminates,. J. Composite Materials, 16: 92–102.
dc.relation.referencesL.C., B. (2006). Composites for Construction: Structural Design with FRP Materials, Chapter 15 pp 298-502. New Jersey:: Wiley & Sons.
dc.relation.referencesLeguillon, D. .. (2002). Strength or toughness? A criterion for crack onset at a notch. Mech. A. Solids , 21(1), 61–72.
dc.relation.referencesM. Nguyen-Hoang, W. B. (2022). Open holes in composite laminates with finite dimensions: structural assessment by analytical methods. Archive of Applied Mechanics, 92:1101–1125.
dc.relation.referencesM.E. Waddoups, J. E. (1971). Macroscopic fracture mechanics of advanced composite materials, . J. Compos. Mater. , 5:446 .
dc.relation.referencesMallick, P. K. (2007). Fiber-Reinforced Composites Materials, Manufacturing, and Design. Boca Raton: CRC Press.
dc.relation.referencesNovasuin. (20 de Abril de 2024). Obtenido de https://novasuin.com/geometria-de-perfiles/
dc.relation.referencesNuismer, J. W. (1974). Stress fracture criteria for laminated composites containing stress concentrations, . J. Compos. Mater., 8:253.
dc.relation.referencesP.P. Camanho, G. E. (2012). A finite fracture mechanics model for the prediction of the open-hole strength. Composites: Part A, 1219–1225.
dc.relation.referencesParís Carballo, F. C. (2006). ntroducción al análisis y diseño con materiales compuestos. Sevilla: Universidad de Sevilla.
dc.relation.referencesPark, H. H. (2001a). Bearing failure analysis of mechanically fastened joints in composite laminates. Composite Structures,, 53 (2), 199-211.
dc.relation.referencesQuinn, W. a. (1977). The Effect of Stacking Sequence on the Pin-Bearing Strength in Glass Fiber Reinforced Plastic,. J. Composite Materials, 11: 139–145.
dc.relation.referencesReddy, J. N. (2004). An introduction to the finite element method (3rd ed.). McGraw-Hill.
dc.relation.referencesSDI. (18 de 02 de 2025). Obtenido de https://solucionesdinamicassdi.com/es/motores-diesel/345-motor-diesel-de-10-hp-eje-roscacuna-de-3600-rpm-power-master.html
dc.relation.referencesSen, F. P. (2008). Experimental failure analysis of mechanically fastened joints with clearance in composite laminates under preload. . Materials and Design, 29 (6), 1159-1169.
dc.relation.referencesSilence aircraft . (03 de Febrero de 2025). Obtenido de https://silence-aircraft.de/en/composits/
dc.relation.referencesTada, H. P. (2000). The Stress Analysis of Cracks Handbook. . New York: ASME Press.
dc.relation.referencesTaha, I. B. (2018). A Review of Pultrusion Process Parameters for Manufacturing of Fiber Reinforced Composites. , . Journal of Composite Materials, 52(27).
dc.relation.referencesTecnicaindustrial. (20 de Abril de 2024). Obtenido de https://www.tecnicaindustrial.es/utilizacion-de-composites-de-matriz-polimeric/
dc.relation.referencesTecnologiadelosplasticos. (20 de Abril de 2024). Obtenido de https://tecnologiadelosplasticos.blogspot.com/2011/11/moldeo-manual-de-materiales-compuestos.html
dc.relation.referencesWaddoups ME, E. J. (1971). Macroscopic fracture mechanics of advanced composite materials. J Compos Mater, 5:446–54.
dc.relation.referencesWeißgraeber, P. L. (2015). .A reviewof finite fracturemechanics: crack initiation at singular and non-singular stress-raisers. Arch. Appl. Mech 86, , 375–401.
dc.relation.referencesWhitney JM, N. (1974). ress fracture criteria for laminated composites containing stress concentrations. J Compos Mater, 8:253–65.
dc.relation.referencesWhitney, H. K. (1975). Approximate stresses in an orthotropic plate containing a circular hole, . J. Compos. Mater., 9:157.
dc.relation.referencesWu, S. W. (1971). A General Theory of Strength for Anisotropic Materials. Journal of Composite Materials, Vol. 5, No. 1, pp. 58-80.
dc.relation.referencesYamada SE, S. C. (1978). Analysis of laminate strength and its distribution. . J Compos Mater , 12:275–84.
dc.relation.referencesYoon, D., Kim, S., & Doh, Y. (2020). Study on bearing strength and failure mode of a carbon-epoxy composite laminate for designing bolted joint structures. . Compos. Struct. , 239, 112023.
dc.relation.referencesZienkiewicz, O. C. (2005). The finite element method: Its basis and fundamentals (6th ed.). Elsevier.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines
dc.subject.ddc620 - Ingeniería y operaciones afines::621 - Física aplicada
dc.subject.lembMateriales compuestos
dc.subject.lembFibras de vidrio
dc.subject.lembUniones (Ingeniería)
dc.subject.lembResistencia de materiales
dc.subject.lembMetodo de elementos finitos
dc.subject.proposalFibra de vidriospa
dc.subject.proposalFibra de vidriospa
dc.subject.proposalUnionesspa
dc.subject.proposalCurva característicaspa
dc.subject.proposalMecánica de la Fractura Finitaspa
dc.subject.proposalEementos finitosspa
dc.subject.proposalComposite materialseng
dc.subject.proposalFiberglasseng
dc.subject.proposalJointseng
dc.subject.proposalCharacteristic curveeng
dc.subject.proposalFinite Fracture Mechanicseng
dc.subject.proposalFinite elementseng
dc.titleDiseño de uniones para perfiles pultruidos fabricados en PRFVspa
dc.title.translatedDesign of Joints for pultruded profiles made of GFRPeng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentEspecializada
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
71370192.2026.pdf
Tamaño:
16.62 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Mecánica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: