Diseño de uniones para perfiles pultruidos fabricados en PRFV
| dc.contributor.advisor | Meza Meza, Juan Manuel | |
| dc.contributor.author | Monsalve Gil, Héctor Iván | |
| dc.contributor.educationalvalidator | Acosta Correa, José David | |
| dc.contributor.googlescholar | ||
| dc.contributor.orcid | Monsalve Gi, Héctor Iván [0000000253165816] | |
| dc.contributor.orcid | Meza Meza, Juan Manuel [0000000180133775] | |
| dc.contributor.orcid | Acosta Correa, Jose David [0000000210286423] | |
| dc.contributor.researchgroup | Design of Advanced Compositesdadcomp | |
| dc.date.accessioned | 2026-02-20T18:34:32Z | |
| dc.date.available | 2026-02-20T18:34:32Z | |
| dc.date.issued | 2026 | |
| dc.description.abstract | Esta investigación tiene como objetivo el diseño y análisis de la unión principal de postes para taladros de exploración minera, fabricados con perfiles pultruidos de plástico reforzado con fibra de vidrio (PRFV). Se evalúa el comportamiento mecánico de estas uniones bajo esfuerzos de contacto con un pasador y se predicen los modos de falla mediante simulaciones por elementos finitos, validadas experimentalmente. El estudio se desarrolla en el contexto de la minería de oro en Colombia, donde la reducción de peso es un factor clave para mejorar la eficiencia operativa, este aspecto es relevantes debido al difícil acceso a las zonas donde operan los taladros y a la alta humedad del ambiente, lo que incrementa el desgaste de las estructuras metálicas. Se caracterizan perfiles comerciales de PRFV a través de ensayos mecánicos y odelos computacionales para determinar su viabilidad en la sustitución de estructuras metálicas. Los resultados muestran que los perfiles pultruidos reducen significativamente el peso de la estructura del taladro, facilitando su transporte y operación en terrenos difíciles. Además, se identificaron los modos de falla críticos en las uniones y se optimiza el diseño para mejorar su desempeño estructural. Se concluye que el uso de PRFV en estructuras mineras es viable, y que proporciona ventajas en términos de durabilidad, peso y resistencia mecánica. Esta investigación contribuye al desarrollo de nuevas aplicaciones para materiales compuestos en la industria minera y establece bases para futuras optimizaciones en el diseño de uniones estructurales. (Texto tomado de la fuente) | spa |
| dc.description.abstract | This research aims to design and analyze the main joint of posts for mining exploration drills, manufactured with pultruded fiberglass-reinforced plastic (GFRP) profiles. The study evaluates the mechanical behavior of these joints under contact stresses with a pin and predicts failure modes through finite element simulations validated experimentally. The study is conducted in the context of gold mining in Colombia, where weight reduction is a key factor for improving operational efficiency. This aspect is particularly relevant due to the difficult access to the areas where drilling rigs operate and the high humidity of the environment, which increases the wear of metallic structures. Commercial GFRP profiles are characterized through mechanical tests and computational models to determine their feasibility for replacing metallic structures. The results show that pultruded profiles can significantly reduce the weight of the drill structure, facilitating its transportation and operation in difficult terrains. Critical failure modes in the oints were identified, and the design was optimized to enhance structural performance. It is concluded that using GFRP in mining structures is viable, offering advantages in durability, weight, and mechanical resistance. This research contributes to the development of new applications for composite materials in the mining industry and lays the foundation for future optimizations in structural joint design. | eng |
| dc.description.curriculararea | Ingeniería Mecánica.Sede Medellín | |
| dc.description.degreelevel | Maestría | |
| dc.description.degreename | Magister en Ingeniería Mecánica | |
| dc.description.researcharea | Diseño, Manufactura y Mecánica Computacional | |
| dc.format.extent | 1 recursos en línea (237 páginas) | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.instname | Universidad Nacional de Colombia | spa |
| dc.identifier.repo | Repositorio Institucional Universidad Nacional de Colombia | spa |
| dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/89622 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Nacional de Colombia | |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | |
| dc.publisher.faculty | Facultad de Minas | |
| dc.publisher.place | Medellín, Colombia | |
| dc.publisher.program | Medellín - Minas - Maestría en Ingeniería Mecánica | |
| dc.relation.references | (ASTM). American Society for Testing and Materials. (2015). Standard Test Method for Compressive Properties of Rigid Plastics. Designation: D695 − 15. West Conshohocken,PA, USA,: American Society for Testing and Materials (ASTM). | |
| dc.relation.references | (ASTM)., A. S. (2014). Standard Test Method for Tensile Properties of Plastics, Designation: D638 − 14. West Conshohocken, PA, USA.: American Society for Testing and Materials (ASTM). | |
| dc.relation.references | AIMS International, L. (2024). Design Manual Fiberglass Grating and Structural Products. Houston, TX 77039. | |
| dc.relation.references | Aluko, O. (2011). An Analytical Method for Failure Prediction of Composite Pinned Joints. Proceedings of the World Congress on Engineering 2011 Vol III. London, U.K. | |
| dc.relation.references | Anay Aruna, K. K. (2016). Friction and Wear Behaviour of Glass Fibre Reinforced Polymer Composite (GFRP) under Dry and Oil Lubricated Environmental Conditions. Materials for Manufacturing (ICAAMM-2016). | |
| dc.relation.references | Ashby, M. F. (2011). Materials Selection in Mechanical Design (4th ed.). Butterworth-Heinemann. | |
| dc.relation.references | Bakis, C. E. (2002). Fiber-reinforced polymer composites for construction—state-of-the-art review. Journal of composites for construction, . 6(2), 73-87. | |
| dc.relation.references | Bank L.C. (2006). Composites for Construction: Structural Design with FRP Materials. 15 pp 298-502. New Jersey: Wiley & Sons. | |
| dc.relation.references | Bao, G. H. (1992). The role of material orthotropy in fracture specimens for composites. International Journal of Solids and Structures, 29(9), , 1105–1116. . | |
| dc.relation.references | Barbero Pozuelo Enrique, S. K. (25 de 02 de 2025). Universidad Carlos III de Madrid. Obtenido de https://ocw.uc3m.es/pluginfile.php/2482/mod_page/content/16/analisis_laminados.pdf | |
| dc.relation.references | Barbero, E. (2013). Finite Element Analysis of Composite Materials Using AbaqusTM. Boca Raton, FL: Taylor & Francis Group, LLC. | |
| dc.relation.references | Barboni, R. G. (1990). Three-Dimensional Analysis of Edge Effects in Composite Laminates with Circular Holes,. Composite Structures, 15: 115–136. | |
| dc.relation.references | C.S. Hong and J.H. Crews, J. (1979). Stress concentration factors for finite orthotropic laminates with a circular hole and uniaxial loading. NASA Technical Paper No. 1469. | |
| dc.relation.references | Camanho, P. &. (2006). A design methodology for mechanically fastened joints in laminated composite materials. . Composites Science and Technology, 66 (15), 3004-3020. | |
| dc.relation.references | Camanho, P. a. (1999). A Progressive Damage Model for Mechanically Fastened Joints in Composite Laminates. J. Composite Materials, 33: 2248–2280. | |
| dc.relation.references | Chang FK, S. R. (1982). Strength of mechanically fastened composite joints. J. Composite Materials Springer GS, 16:470–94. | |
| dc.relation.references | Chang, F. (1986). The Effect of Pin Load Distribution on the Strength of Pin Loaded Holes in Laminated Composites. J. Composite Materials, 20: 401–408. | |
| dc.relation.references | Chawla, K. K. (2012). Composite Materials: Science and Engineering (3rd ed.). C. Springer. | |
| dc.relation.references | Coelho Girão, A. M. (2017). Numerical evaluation of pin-bearing strength for the design of bolted connections of pultruded FRP material. Journal of Composites for Construction,, 21 (5). | |
| dc.relation.references | Collings, T. (1977). The Strength of Bolted Joints in Multi-Directional CFRP Laminates. Composites, 43–55. | |
| dc.relation.references | Cook, R. D. (2002). Concepts and applications of finite element analysis (4th ed.). Wiley. | |
| dc.relation.references | Copper, C., & Turvey, G. (1995). Effects of joint geometry and bolt torque on the structural performance of single bolt tension joints in pultruded GRP sheet material. . Compos. Struct. , 32, 217–226. | |
| dc.relation.references | Dano, M. G. (2000). Stress and failure analysis of mechanically fastened joints in composite laminates. . Composite Structures, 50 (3), 287-296. | |
| dc.relation.references | Dassault Systèmes Simulia Corp. . (2020). Dassault Systèmes. (2020). Abaqus/CAE, Version 2020. Dassault Systèmes Simulia Corp. | |
| dc.relation.references | Eplastics. (15 de 02 de 2025). Obtenido de https://www.eplastics.com/fiberglass/profiles/structural-fiberglass-frp-round-square-tube | |
| dc.relation.references | Fem Expert. (03 de Febrero de 2025). Obtenido de https://femexpert.es/teoria-mef/ | |
| dc.relation.references | Fibergrate Composite Structures Inc. (20 de Abril de 2024). Fibergrate Composite Structures. Obtenido de https://www.fibergrate.com/resource-center/design-resources/ | |
| dc.relation.references | Fiberline. (2003). Fiberline Desingn Manual. Kolding. | |
| dc.relation.references | García, Y. A. (2009). Análisis y diseño de materiales compuestos de fibra de vidrio. Universidad Central “Marta Abreu” de las Villas. | |
| dc.relation.references | Geeksforgeeks . (20 de Abril de 2024). Obtenido de https://www.geeksforgeeks.org/fiber-reinforced-plastic/ | |
| dc.relation.references | Gibson, R. F. (2012). Principles of Composite Material Mechanics. Boca Raton: CRC Press. | |
| dc.relation.references | Godwin, E., & Matthews, F. (1980). A review of the strength of joints in fibre-reinforced plastics (Part 1. Mechanically fastened joints). . Composites , 11, 155–160. . | |
| dc.relation.references | Gupta, A. S. (2022). A critical review on damage modeling and failure analysis of pin joints in fiber reinforced composite laminates. P. olymers and Polymer Composites,, 30, 1–13. | |
| dc.relation.references | Hart-Smith, L. (1980). Mechanically Fastened Joints for Advanced Composites-Phenomelogical Considerations and Simple Analysis. In: Leneo, E.M., Oplinger, D.W. and Burke, J.J. (eds.), Fibrous Composites in Structural Design, . New York.: Plenum Press, . | |
| dc.relation.references | J.M. Whitney, I. D. (1984). Experimental Mechanics of Fiber Reinforced Composite Materials. society for Experimental Mechanics, Brookfield Center, CT . | |
| dc.relation.references | Jin-Hwe Kweon, H.-S. A.-H. (2004). A new method to determine the characteristic lengths of composite joints without testing. Composite Structures, Pages 305-315. | |
| dc.relation.references | Jones, R. M. (1999). Mechanics of Composite Materials (2nd ed.). . Taylor & Francis. | |
| dc.relation.references | Karakuzu R., Ç. C. (2008). Failure behavior of laminated composite plates with two serial pin- loaded holes. . Composite Structures, 82 (2), 225-234. | |
| dc.relation.references | Kaw, K. (2005). Mechanics of Composite Materials. Boca Raton: CRC Press. | |
| dc.relation.references | Kelly G., &. H. (2004). Bearing strength of carbon fiber/epoxy laminates: effects of bolt-hole clearance. . Composites, Part B, 35, 331–343. | |
| dc.relation.references | Kretsis, G. a. (1985). The Strength of Bolted Joints in Glass Fiber/Epoxy Laminates,. J. Composite Materials, 16: 92–102. | |
| dc.relation.references | L.C., B. (2006). Composites for Construction: Structural Design with FRP Materials, Chapter 15 pp 298-502. New Jersey:: Wiley & Sons. | |
| dc.relation.references | Leguillon, D. .. (2002). Strength or toughness? A criterion for crack onset at a notch. Mech. A. Solids , 21(1), 61–72. | |
| dc.relation.references | M. Nguyen-Hoang, W. B. (2022). Open holes in composite laminates with finite dimensions: structural assessment by analytical methods. Archive of Applied Mechanics, 92:1101–1125. | |
| dc.relation.references | M.E. Waddoups, J. E. (1971). Macroscopic fracture mechanics of advanced composite materials, . J. Compos. Mater. , 5:446 . | |
| dc.relation.references | Mallick, P. K. (2007). Fiber-Reinforced Composites Materials, Manufacturing, and Design. Boca Raton: CRC Press. | |
| dc.relation.references | Novasuin. (20 de Abril de 2024). Obtenido de https://novasuin.com/geometria-de-perfiles/ | |
| dc.relation.references | Nuismer, J. W. (1974). Stress fracture criteria for laminated composites containing stress concentrations, . J. Compos. Mater., 8:253. | |
| dc.relation.references | P.P. Camanho, G. E. (2012). A finite fracture mechanics model for the prediction of the open-hole strength. Composites: Part A, 1219–1225. | |
| dc.relation.references | París Carballo, F. C. (2006). ntroducción al análisis y diseño con materiales compuestos. Sevilla: Universidad de Sevilla. | |
| dc.relation.references | Park, H. H. (2001a). Bearing failure analysis of mechanically fastened joints in composite laminates. Composite Structures,, 53 (2), 199-211. | |
| dc.relation.references | Quinn, W. a. (1977). The Effect of Stacking Sequence on the Pin-Bearing Strength in Glass Fiber Reinforced Plastic,. J. Composite Materials, 11: 139–145. | |
| dc.relation.references | Reddy, J. N. (2004). An introduction to the finite element method (3rd ed.). McGraw-Hill. | |
| dc.relation.references | SDI. (18 de 02 de 2025). Obtenido de https://solucionesdinamicassdi.com/es/motores-diesel/345-motor-diesel-de-10-hp-eje-roscacuna-de-3600-rpm-power-master.html | |
| dc.relation.references | Sen, F. P. (2008). Experimental failure analysis of mechanically fastened joints with clearance in composite laminates under preload. . Materials and Design, 29 (6), 1159-1169. | |
| dc.relation.references | Silence aircraft . (03 de Febrero de 2025). Obtenido de https://silence-aircraft.de/en/composits/ | |
| dc.relation.references | Tada, H. P. (2000). The Stress Analysis of Cracks Handbook. . New York: ASME Press. | |
| dc.relation.references | Taha, I. B. (2018). A Review of Pultrusion Process Parameters for Manufacturing of Fiber Reinforced Composites. , . Journal of Composite Materials, 52(27). | |
| dc.relation.references | Tecnicaindustrial. (20 de Abril de 2024). Obtenido de https://www.tecnicaindustrial.es/utilizacion-de-composites-de-matriz-polimeric/ | |
| dc.relation.references | Tecnologiadelosplasticos. (20 de Abril de 2024). Obtenido de https://tecnologiadelosplasticos.blogspot.com/2011/11/moldeo-manual-de-materiales-compuestos.html | |
| dc.relation.references | Waddoups ME, E. J. (1971). Macroscopic fracture mechanics of advanced composite materials. J Compos Mater, 5:446–54. | |
| dc.relation.references | Weißgraeber, P. L. (2015). .A reviewof finite fracturemechanics: crack initiation at singular and non-singular stress-raisers. Arch. Appl. Mech 86, , 375–401. | |
| dc.relation.references | Whitney JM, N. (1974). ress fracture criteria for laminated composites containing stress concentrations. J Compos Mater, 8:253–65. | |
| dc.relation.references | Whitney, H. K. (1975). Approximate stresses in an orthotropic plate containing a circular hole, . J. Compos. Mater., 9:157. | |
| dc.relation.references | Wu, S. W. (1971). A General Theory of Strength for Anisotropic Materials. Journal of Composite Materials, Vol. 5, No. 1, pp. 58-80. | |
| dc.relation.references | Yamada SE, S. C. (1978). Analysis of laminate strength and its distribution. . J Compos Mater , 12:275–84. | |
| dc.relation.references | Yoon, D., Kim, S., & Doh, Y. (2020). Study on bearing strength and failure mode of a carbon-epoxy composite laminate for designing bolted joint structures. . Compos. Struct. , 239, 112023. | |
| dc.relation.references | Zienkiewicz, O. C. (2005). The finite element method: Its basis and fundamentals (6th ed.). Elsevier. | |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
| dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
| dc.subject.ddc | 620 - Ingeniería y operaciones afines | |
| dc.subject.ddc | 620 - Ingeniería y operaciones afines::621 - Física aplicada | |
| dc.subject.lemb | Materiales compuestos | |
| dc.subject.lemb | Fibras de vidrio | |
| dc.subject.lemb | Uniones (Ingeniería) | |
| dc.subject.lemb | Resistencia de materiales | |
| dc.subject.lemb | Metodo de elementos finitos | |
| dc.subject.proposal | Fibra de vidrio | spa |
| dc.subject.proposal | Fibra de vidrio | spa |
| dc.subject.proposal | Uniones | spa |
| dc.subject.proposal | Curva característica | spa |
| dc.subject.proposal | Mecánica de la Fractura Finita | spa |
| dc.subject.proposal | Eementos finitos | spa |
| dc.subject.proposal | Composite materials | eng |
| dc.subject.proposal | Fiberglass | eng |
| dc.subject.proposal | Joints | eng |
| dc.subject.proposal | Characteristic curve | eng |
| dc.subject.proposal | Finite Fracture Mechanics | eng |
| dc.subject.proposal | Finite elements | eng |
| dc.title | Diseño de uniones para perfiles pultruidos fabricados en PRFV | spa |
| dc.title.translated | Design of Joints for pultruded profiles made of GFRP | eng |
| dc.type | Trabajo de grado - Maestría | |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
| dc.type.content | Text | |
| dc.type.driver | info:eu-repo/semantics/masterThesis | |
| dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | |
| dcterms.audience.professionaldevelopment | Estudiantes | |
| dcterms.audience.professionaldevelopment | Investigadores | |
| dcterms.audience.professionaldevelopment | Maestros | |
| dcterms.audience.professionaldevelopment | Especializada | |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 71370192.2026.pdf
- Tamaño:
- 16.62 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería Mecánica
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

