Forecasting the global solar radiation in Nariño – Colombia

dc.contributor.advisorRuiz Mendoza, Belizza Janet
dc.contributor.authorHoyos Gómez, Laura Sofía
dc.contributor.researcherPatricio Mendoza Araya
dc.contributor.researcherJosé Francisco Ruiz Muñoz
dc.contributor.researchgroupGIPEM - Grupo de Investigación en Potencia, Energía y Mercadosspa
dc.coverage.countryColombia
dc.coverage.regionNariño
dc.date.accessioned2021-06-22T20:17:41Z
dc.date.available2021-06-22T20:17:41Z
dc.date.issued2021
dc.descriptionfiguras, símbolos, tablaseng
dc.description.abstractIntroducing the community to technical projects requires a deal with the social, energy and environmental policies as well as the cultural field. To address an energy project from a socio-technical view requires the joint analysis of both the project and the community. This work focuses on the formulation of a methodology to ease the prioritization of projects and community participation. To evaluate the community, the Human Development Index and Sustainable Development Goal Index are adjusted to the context and available information of Nariño. The Net Present Value is used for the project evaluation. The Analytic Hierarchy Process allows for the evaluation of the community and project jointly and establishing prioritization objectives. Moreover, the co-construction methodology is the basis to formulate guidelines to work with the community. This research found that there is a relationship between the projects that seek to improve the quality of the life and education in Nariño. Solar irradiance is a worldwide available resource that could drive electrification processes in regions with low socio-economic indexes. Therefore, to know solar irradiance behavior and data is increasingly a mandatory activity. However, some interesting sites, generally socio-economic outcast places, do not rely on solar irradiance data, and if information exists, it is not complete. Therefore, researchers use some techniques to estimate this energy resource with information from other meteorological variables as temperature. Nevertheless, there is not a broad analysis of these techniques in tropical and mountainous environments. Therefore, this research analyzes the performance of three well-known empirical temperature-based models in tropical and mountainous environments. Moreover, this work proposes a new empirical technique that models solar irradiance in some areas better than the three techniques mentioned. Statistical error comparison allows us to choose the best model for each location and the data imputation model. Hargreaves and Samani's model presented better results in the Pacific zone, and the proposed model showed better results in the Andean and Amazon zones. Another significant result is the linear relationship between the new empirical model constants and the altitude 2.500 MASL. The solar energy potential maps are an enabler for solar energy use. However, the lack of solar irradiance information is a barrier to elaborating on this type of decision tool. This research proposed the estimation of solar irradiance using air temperature data to increase the sampled points with the Hargreaves and Samani and a proposed empirical model. Also, the leave-one-out cross-validation is the technique used to assess the performance of four spatial interpolation techniques in a tropical and mountainous environment. The information came from Nariño state in Colombian that covers an area of \(33.268 km^{2}\) . The proposed empirical model shows better performance in sites with an altitude above 2.500 MASL, located in the Andean and Amazon zone. Further, Ordinary Kriging was the interpolation technique with the best behavior. Accurate mechanisms for forecasting solar irradiance boost solar energy applications. There are several techniques to forecast global solar irradiance, such as numerical weather prediction and statistical techniques. In this context, this research compare four forecasting approaches Autoregressive Integrated Moving Average, Single Layer Feed Forward Network, Multiple Layer Feed Forward Network, and Long Short-Term Memory in a one-day ahead horizon using incomplete datasets measured in a tropical and mountainous environment. The results show that the neural network-based models outperform the ARIMA model. Furthermore, LSTM has better performance with a low number of input data and in cloudiness environments.eng
dc.description.abstractIncluir a las comunidades en proyectos socio-técnicos require abordar aspectos sociales, energéticos, ambientales, políticos y culturales. Dirigir un proyecto energético con un enfoque socio-técnico require el análisis en conjunto del proyecto y la comunidad impactada. En este sentido, este trabajo se enfoca en formular una metodología que facilite la priorización de proyectos y la participación de la comunidad. Para evaluar a la comunidad se adpatan los índices de desarrollo humano y los índices de los objetivos de desarrollo sustentable a la información disponible para Nariño. El valor presente neto es la herramienta usada para la evaluación del proyecto.El proceso de análisis jerárquico permite evaluar la comunidad y el proyecto conjuntamente y establecer objetivos de priorización. Por otra parte, la metodología de co-costrucción es la base de la directriz propuesta para trabajo con la comunidad. Esta investigación encontró que existe una relación entre los proyectos que buscan mejorar la calidad de vida y la educación en Nariño. La irradiancia solar es un recurso ampliamente disponible en el planeta, que podría contribuir al proceso de electrificación en lugares con bajos índices socio económicos. No obstante, en algunos lugares, la información de este recurso no está disponible o tiene baja calidad. Para superar este problema algunos investigadores han desarrollado técnicas para estimar la irradiancia solar. Una de esas técnicas son los modelos empíricos basados en temperatura para estimar el recurso. Sin embargo, no hay un amplio análisis del comportamiento de esas técnicas en ambientes tropicales y montañosos. Por lo tanto, esta investigación analiza el comportamiento de tres modelos empíricos basados en temperatura y un modelo propuesto bajo estas condiciones ambientales. Los errores estadísticos calculados permiten elegir el mejor modelo para cada punto evaluado. Con este modelo se hace la imputación de datos con el fin de incrementar la calidad de las bases de datos analizadas. El modelo propuesto se ajusta mejor a la zona Andina y amazónica, mientras el modelo de Hargreaves y Samani tiene mejores resultados en la zona Pacífica. Además, el modelo propuesto presenta una relación lineal entre las constantes empíricas y la altitud de las estaciones meteorológicas localizadas por encima de los 2.500 msnm. Los mapas que muestran el potencial de la energía solar facilitan el uso del recurso solar. Sin embargo, la falta de información de irradiancia solar son una barrera para elaborar este tipo de herramientas. Este investigación propone estimar la irradiancia global solar con datos de temperatura usando el modelo empírico de Hargreaves y Samaani y uno propuesto, para incrementar el número de puntos muestreados. Además, se implementa la técnica de validación cruzada conocida como dejar uno por fuera para evaluar el rendimiento de cuatro técnicas de interpolacióne espacial en un ambiente tropical y montañoso. La información usada es del departamento de Nariño-Colombia que tiene un área de 33.268 $km^{2}$. El modelo propuesto muestra un mejor comportamiento en sitios localizado a más de 2.500 msmnl, ubicados en la zona Andina y Amazonica. Además, Kriging ordinario es la mejor técnica de interpolación espacial. Los modelos de pronóstico de irradiancia solar impulsan las aplicaciones que usan energía solar. Existen varias técnicas para pronosticar la irradiancia solar global, como las númericas y las estadísticas. En este contexto, esta investigación compara cuatro enfoques de pronóstico estadístico: Promedio móvil integrado autorregresivo, red neuronal de una capa, red neuronal de multiples capas y memoria a corto y plazo, en un horizonte de un día por delante, utilizando conjuntos de datos incompletos medidos en un entorno tropical y montañoso. Los resultados muestran que los modelos basados en redes neuronales superan al modelo ARIMA. Además, LSTM tiene un mejor rendimiento con un número reducido de datos de entrada y en entornos de nubosidad.spa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctora en Ingenieríaspa
dc.description.funderLa Alianza del Pacífico financió la estancia de investigación de 6 meses en la Universidad de Chile. -- El Centro de Energía de la Universidad de Chile financió el viaje para realizar el trabajo de campo en la localidad de Huatacondo.spa
dc.description.notesLa autora incluye versión en español de la tesis.spa
dc.description.researchareaMeteorología Energética, Energía Solarspa
dc.description.sponsorshipAlianza del Pacíficospa
dc.description.sponsorshipCentro de Energía - Universidad de Chilespa
dc.format.extent131 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79679
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.departmentDepartamento de Ingeniería Eléctrica y Electrónicaspa
dc.publisher.facultyFacultad de Ingeniería y Arquitecturaspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Automáticaspa
dc.relation.referencesAbdullah, L., & Najib, L. (2016). Sustainable energy planning decision using the intuitionistic fuzzy analytic hierarchy process: choosing energy technology in Malaysia. International Journal of Sustainable Energy, 35(4), 360–377. Retrieved from https://doi.org/10.1080/14786451.2014.907292 doi: 10.1080/14786451.2014.907292spa
dc.relation.referencesAbreu, E. F., Canhoto, P., Prior, V., & Melicio, R. (2018). Solar resource assessment through long-term statistical analysis and typical data generation with different time resolutions using GHI measurements. Renewable Energy, 127, 398–411. Retrieved from https://doi.org/10.1016/j.renene .2018.04.068 doi: 10.1016/j.renene.2018.04.068spa
dc.relation.referencesAENOR. (2004). Redes de estaciones meteorológicas automáticas: directrices para la validación de registros meteorológicos procedentes de redes de estaciones automáticas. Validación en tiempo real.spa
dc.relation.referencesAgami Reddy, T. (2011). Applied Data Analysis and Modelling for Energy Engineers and Scientists. Springer London. doi: 10.1007/978-1-4419-9613-8spa
dc.relation.referencesAkinoglu, B. (2008a). Recent Advances in the Relations between Bright Sunshine Hours and Solar Irradiation. In Modeling solar radiation at the earth’s surface (pp. 115–143). Springer. doi: doi.org/ 10.1007/978-3-540-77455-6{\_}5spa
dc.relation.referencesAkinoglu, B. (2008b). Recent Advances in the Relations between Bright Sunshine Hours and Solar Irradiation. In Modeling solar radiation at the earth’s surface (pp. 115–143). Springer. doi: doi.org/ 10.1007/978-3-540-77455-6{\_}5spa
dc.relation.referencesAllen, R. G. (1997). Self-Calibrating Method for Estimating Solar Radiation From Air Temperature. Journal of Hydrologic Engineering, 2(250), 56–67.spa
dc.relation.referencesAlmorox, J., Hontoria, C., & Benito, M. (2011). Models for obtaining daily global solar radiation with measured air temperature data in Madrid (Spain). Applied Energy. doi: 10.1016/j.apenergy.2010.11 .003spa
dc.relation.referencesAntonanzas, J., Osorio, N., Escobar, R., Urraca, R., Martinez-de Pison, F. J., & Antonanzas-Torres, F. (2016). Review of photovoltaic power forecasting. Solar Energy, 136, 78–111. Retrieved from http://dx.doi.org/10.1016/j.solener.2016.06.069 doi: 10.1016/j.solener.2016.06 .069References 103spa
dc.relation.referencesArbeláez-Arias, F.-A. (2006). Desarrollo sostenible y sus indicadores (Tech. Rep.). Cali: Centro de Investigaciones y Documentación Socioeconómica. Retrieved from http://bibliotecavirtual.clacso .org.ar/Colombia/cidse-univalle/20121116025351/Doc93.spa
dc.relation.referencesArbeláez Pérez, O. A. (2019). Informe mensual de localidades sin telemetría de las ZNI (Tech. Rep.). Centro Nacional de Monitoreo.spa
dc.relation.referencesAslani, A. (2014). Private sector investment in renewable energy utilisation: Strategic analysis of stakeholder perspectives in developing countries. International Journal of Sustainable Energy, 33(1), 112–124. doi: 10.1080/14786451.2012.751916spa
dc.relation.referencesÁvila, A. F., Escobar, E., & Torres Tobar, C. (2014). DEPARTAMENTO DE NARIÑO (Tech. Rep.). Fundación Paz y Reconciliación; Redprodepaz.spa
dc.relation.referencesAznar, J., & Guijarro, F. (2012). Nuevos métodos de valoración: modelos multicriterio. Retrieved from http://medcontent.metapress.com/index/A65RM03P4874243N.pdfspa
dc.relation.referencesBadosa, J., Gobert, E., Grangereau, M., & Kim, D. (2017). Day-Ahead Probabilistic Forecast of Solar Irradiance: A Stochastic Differential Equation Approach. In P. Drobinski, M. Mougeot, D. Picard,spa
dc.relation.referencesR. Plougonven, & P. Tankov (Eds.), Mathematics & statistics (p. 22). Paris: Springer. Retrieved from http://www.springer.com/series/10533spa
dc.relation.referencesBakirci, K. (2009). Models of solar radiation with hours of bright sunshine: A review. doi: 10.1016/j.rser.2009 .07.011spa
dc.relation.referencesBalbás Egea, J. ff., & Eguren Egiguren, J. A. (2019). Bases for a sustainable energy model. Case study: Basque autonomous community. International Journal of Sustainable Energy, 38(9), 884–903. doi: 10 .1080/14786451.2019.1609474spa
dc.relation.referencesBenali, L., Notton, G., Fouilloy, A., Voyant, C., & Dizene, R. (2019). Solar radiation forecasting using artificial neural network and random forest methods: Application to normal beam, horizontal diffuse and global components. Renewable Energy, 132, 871–884. doi: 10.1016/j.renene.2018.08.044spa
dc.relation.referencesBenson, R. B., Paris, M. V., Sherry, J. E., & Justus, C. G. (1984). Estimation of daily and montly direct, diffuse and global solar radiation from sunshine duration measurements. Solar Energy, 32(4), 523– 535. doi: doi.org/10.1016/0038-092X(84)90267-6spa
dc.relation.referencesBerrar, D. (2018). Cross-validation. Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics, 1-3, 542–545. doi: 10.1016/B978-0-12-809633-8.20349-Xspa
dc.relation.referencesBertelsmann Stiftung, & Sustainable Development Solutions Network (SDSN). (2016). Índice y paneles de los ODS. Informe global (Tech. Rep.). Retrieved from http://sdgindex.org/assets/files/ SDG-Index-ES-02.pdfspa
dc.relation.referencesBesharat, F., Dehghan, A. A., & Faghih, A. R. (2013). Empirical models for estimating global solar radiation: A review and case study. doi: 10.1016/j.rser.2012.12.043104 Referencesspa
dc.relation.referencesBhattacharjee, S., Ghosh, S. K., & Chen, J. (2019). Semantic Kriging for Spatio-temporal Prediction (Vol. 839). Springer. doi: doi.org/10.1007/978-981-13-8664-0spa
dc.relation.referencesBlaga, R., Sabadus, A., Stefu, N., Dughir, C., Paulescu, M., & Badescu, V. (2019). A current perspective on the accuracy of incoming solar energy forecasting. Progress in Energy and Combustion Science, 70, 119–144. Retrieved from https://doi.org/10.1016/j.pecs.2018.10.003 doi: 10.1016/ j.pecs.2018.10.003spa
dc.relation.referencesBlumthaler, M. (2012). Solar Radiation of the High Alps. In C. Lütz (Ed.), Plants in alpine regions cell physiology of adaptation and survival strategies (pp. 11–20). Springer Wien New York. doi: 10.1007/ 978-3-7091-0136-0spa
dc.relation.referencesBoland, J. (2008). Time Series Modelling of Solar Radiation. In V. Badescu (Ed.), Modeling solar radiation at the earth surface (pp. 283–311). Retrieved from http://link.springer.com/10.1007/978-1 -4471-4649-0_5 doi: 10.1007/978-1-4471-4649-0{\_}5spa
dc.relation.referencesBox, G. E. P., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2016). Time series analysis : forecasting and control.spa
dc.relation.referencesBristow, K. L., & Campbell, G. S. (1984). On the relationship between incoming solar radiation and daily maximum and minimim temperature. Agricultural and Forest Meteorology, 31(2), 159–166.spa
dc.relation.referencesCamblong, H., Sarr, J., Niang, A. T., Curea, O., Alzola, J. A., Sylla, E. H., & Santos, M. (2009). Microgrids project, Part 1: Analysis of rural electrification with high content of renewable energy sources in Senegal. Renewable Energy, 34(10), 2141–2150. Retrieved from http://dx.doi.org/10.1016/ j.renene.2009.01.015 doi: 10.1016/j.renene.2009.01.015spa
dc.relation.referencesCasella, G., & Berger, R. L. (2002). Statistical Inference (Second ed.). Thomson.spa
dc.relation.referencesChandola, D., Gupta, H., Tikkiwal, V. A., & Bohra, M. K. (2020). Multi-step ahead forecasting of global solar radiation for arid zones using deep learning. Procedia Computer Science, 167(Iccids 2019), 626– 635. Retrieved from https://doi.org/10.1016/j.procs.2020.03.329 doi: 10.1016/j.procs .2020.03.329spa
dc.relation.referencesChen, J.-l., Liu, H.-b., Wu, W., & Xie, D.-t. (2011). Estimation of monthly solar radiation from measured temperatures using support vector machines - A case study. Renewable Energy, 36(1), 413– 420. Retrieved from http://dx.doi.org/10.1016/j.renene.2010.06.024 doi: 10.1016/ j.renene.2010.06.024spa
dc.relation.referencesCoimbra, C. F., Kleissl, J., & Marquez, R. (2013). Overview of Solar-Forecasting Methods and a Metric for Accuracy Evaluation. In J. Kleissl (Ed.), Solar energy forecasting and resource assessment (First ed., chap. Chapter 8). Elsevier. Retrieved from https://books.google.com.co/ books?hl=en&lr=&id=94KI0_SPwW8C&oi=fnd&pg=PP1&dq=Solar+energy+forecasting+ and+resource+assessment&ots=HcVnQHR7Mt&sig=XuSTldnWP5MKAP8J3YUHlBbfFCMReferences 105spa
dc.relation.referencesCORPONARIÑO. (2001). Plan De Gestion Ambiental Regional 2002 - 2012 (Tech. Rep.). San Juan de Pasto: Corponariño. Retrieved from http://corponarino.gov.co/expedientes/pgar20022012/ pgar2002-2012.pdfspa
dc.relation.referencesDai, K. Y., Liu, G. R., Lim, K. M., & Gu, Y. T. (2003). Comparison between the radial point interpolation and the Kriging interpolation used in meshfree methods. , 32, 60–70. doi: 10.1007/s00466-003-0462-zspa
dc.relation.referencesDANE, & Banco de la República de Colombia. (2016). Coyuntura económica regional.spa
dc.relation.referencesDannecker, L. (2015). Energy Time Series Forecasting. Springer Vieweg. doi: 10.1007/978-3-658-11039-0spa
dc.relation.referencesDawoud, F., Jbour, A., Al-salaymeh, A., Qoaider, L., & Fink, T. (2019). Innovative solutions for Renewable Energy and Energy Efficiency in Jordan. , 20(4), 201–216.spa
dc.relation.referencesDemirhan, H., & Renwick, Z. (2018). Missing value imputation for short to mid-term horizontal solar irradiance data. Applied Energy, 225(March), 998–1012. Retrieved from https://doi.org/ 10.1016/j.apenergy.2018.05.054 doi: 10.1016/j.apenergy.2018.05.054spa
dc.relation.referencesDepartamento Administrativo Nacional de Estadísitica - DANE. (2005). Déficit de vivienda. Retrieved from https://www.dane.gov.co/index.php/estadisticas-por-tema/pobreza -y-condiciones-de-vida/deficit-de-viviendaspa
dc.relation.referencesDepartamento Administrativo Nacional de Estadísitica - DANE. (2009). Metodología Déficit de Vivienda (Tech. Rep.). Bogotá: Departamento Adminstrativo Nacional de Estadística.spa
dc.relation.referencesDepartamento Administrativo Nacional de Estadísitica - DANE. (2016). Valor Agregado según ramas de actividad económica y PIB (Clasificación Cuentas Nacionales) Serie 2000 - 2014p, Base 2005*. Retrieved from http://www.dane.gov.co/index.php/estadisticas-por-tema/cuentas -nacionales/cuentas-nacionales-trimestrales#pib-por-rama-de-actividadspa
dc.relation.referencesDepartamento Administrativo Nacional de Estadísitica - DANE. (2017). Indicador de importancia económica municipal. Retrieved from https://www.dane.gov.co/index.php/estadisticas -por-tema/cuentas-nacionales/cuentas-nacionales-departamentales/indicador -de-importancia-economica-municipalspa
dc.relation.referencesDepartamento Administrativo Nacional de Estadísitica - DANE. (2018a). Encuesta de la calidad de vida (ECV). Retrieved from https://www.dane.gov.co/index.php/estadisticas-por-tema/ pobreza-y-condiciones-de-vida/calidad-de-vida-ecvspa
dc.relation.referencesDepartamento Administrativo Nacional de Estadísitica - DANE. (2018b). Estadísticas vitales nacimientos y defunciones. Retrieved from https://www.dane.gov.co/index.php/estadisticas-por -tema/salud/nacimientos-y-defuncionesspa
dc.relation.referencesDepartamento Administrativo Nacional de Estadísitica - DANE. (2018c). Fuerza laboral y educación. Retrieved from https://www.dane.gov.co/index.php/estadisticas-por-tema/ educacion/fuerza-laboral-y-educacion106 Referencesspa
dc.relation.referencesDepartamento Administrativo Nacional de Estadísitica-DANE. (2018d). Necesidades Básicas Insatisfechas. Retrieved from https://www.dane.gov.co/index.php/estadisticas-por-tema/pobreza -y-condiciones-de-vida/necesidades-basicas-insatisfechas-nbispa
dc.relation.referencesDepartamento Administrativo Nacional de Estadísitica - DANE. (2018e). Pobreza y desigualdad. Retrieved from https://www.dane.gov.co/index.php/estadisticas-por-tema/pobreza -y-condiciones-de-vida/pobreza-y-desigualdadspa
dc.relation.referencesDepartamento Administrativo Nacional de Estadísitica - DANE. (2019). Necesidades básicas insatisfechas (NBI). Retrieved from https://www.dane.gov.co/index.php/estadisticas-por-tema/ pobreza-y-condiciones-de-vida/necesidades-basicas-insatisfechas-nbispa
dc.relation.referencesDiagne, M., Mathieu, D., Lauret, P., Boland, J., & Schmutz, N. (2013). Review of solar irradiance forecasting methods and a proposition for small-scale insular grids. Renewable and Sustainable Energy Reviews, 27, 65–76. Retrieved from http://dx.doi.org/10.1016/j.rser.2013.06.042 doi: 10.1016/j.rser.2013.06.042spa
dc.relation.referencesDirección de Inversiones y Finanzas Públicas. (2006). Manual de valoración y cuantificación de beneficios (Tech. Rep.). Departamento Nacional de Planeación.spa
dc.relation.referencesDos Santos, C. M., De Souza, J. L., Ferreira Junior, R. A., Tiba, C., de Melo, R. O., Lyra, G. B., … Lemes, M. A. M. (2014). On modeling global solar irradiation using air temperature for Alagoas State, Northeastern Brazil. Energy. doi: 10.1016/j.energy.2014.04.116spa
dc.relation.referencesDos Santos, P. H., Neves, S. M., Sant’Anna, D. O., Oliveira, C. H. d., & Carvalho, H. D. (2019). The analytic hierarchy process supporting decision making for sustainable development: An overview of applications. Journal of Cleaner Production, 212, 119–138. Retrieved from https://doi.org/ 10.1016/j.jclepro.2018.11.270 doi: 10.1016/j.jclepro.2018.11.270spa
dc.relation.referencesEl Congreso de Colombia. (2014). POR MEDIO DE LA CUAL SE REGULA LA INTEGRACIÓN DE LAS ENERGÍAS RENOVABLES NO CONVENCIONALES AL SISTEMA ENERGÉTICO (No. May). Retrieved from http:// www.upme.gov.co/Normatividad/Nacional/2014/LEY_1715_2014.pdfspa
dc.relation.referencesEstévez, J., Gavilán, P., & Giráldez, J. V. (2011). Guidelines on validation procedures for meteorological data from automaticweather stations. Journal of Hydrology, 402(1-2), 144–154. doi: 10.1016/j.jhydrol .2011.02.031spa
dc.relation.referencesFan, J., Chen, B., Wu, L., Zhang, F., Lu, X., & Xiang, Y. (2018). Evaluation and development of temperaturebased empirical models for estimating daily global solar radiation in humid regions. Energy, 144, 903–914. Retrieved from https://doi.org/10.1016/j.energy.2017.12.091 doi: 10.1016/ j.energy.2017.12.091spa
dc.relation.referencesFeleki, E., Vlachokostas, C., & Moussiopoulos, N. (2018). Characterisation of sustainability in urban areas: An analysis of assessment tools with emphasis on European cities. Sustainable Cities and Society, 43(July), 563–577. Retrieved from https://doi.org/10.1016/j.scs.2018.08.025 doi: 10 .1016/j.scs.2018.08.025References 107spa
dc.relation.referencesFigueirêdo Neto, G. S., & Rossi, L. A. (2019). Photovoltaic energy in the enhancement of indigenous education in the Brazilian Amazon. Energy Policy, 132(May), 216–222. Retrieved from https:// doi.org/10.1016/j.enpol.2019.05.037 doi: 10.1016/j.enpol.2019.05.037spa
dc.relation.referencesGaspars-Wieloch, H. (2019). Project Net Present Value estimation under uncertainty. Central European Journal of Operations Research, 27(1), 179–197. doi: 10.1007/s10100-017-0500-0spa
dc.relation.referencesGhimire, S., Deo, R. C., Downs, N. J., & Raj, N. (2019). Global solar radiation prediction by ANN integrated with European Centre for medium range weather forecast fields in solar rich cities of Queensland Australia. Journal of Cleaner Production, 216, 288–310. Retrieved from https://doi.org/10.1016/ j.jclepro.2019.01.158 doi: 10.1016/j.jclepro.2019.01.158spa
dc.relation.referencesGhimire, S., Deo, R. C., Raj, N., & Mi, J. (2019). Deep solar radiation forecasting with convolutional neural network and long short-term memory network algorithms. Applied Energy, 253(April), 113541. Retrieved from https://doi.org/10.1016/j.apenergy.2019.113541 doi: 10.1016/j.apenergy .2019.113541spa
dc.relation.referencesGobernación de Nariño. (2016a). Plan participativo de Desarrollo Departamental. Plan de Desarrollo Departamental de Nariño, 255. doi: 10.1017/CBO9781107415324.004spa
dc.relation.referencesGobernación de Nariño. (2016b). Plan participativo de Desarrollo Departamental (Tech. Rep.). Gobernación de Nariño.spa
dc.relation.referencesGoodin, D. G., Hutchinson, J.M. S., Vanderlip, R. L., Knapp, M. C., & Goodin, D. G. (1999). Estimating Solar Irradiance for Crop Modeling Using Daily Air Temperature Data. AGROCLIMATOLOGY, 91, 845–851.spa
dc.relation.referencesGueymard, C. A. (2014). A review of validation methodologies and statistical performance indicators for modeled solar radiation data: Towards a better bankability of solar projects. Renewable and Sustainable Energy Reviews, 39, 1024–1034. Retrieved from http://dx.doi.org/10.1016/j.rser.2014.07 .117 doi: 10.1016/j.rser.2014.07.117spa
dc.relation.referencesHargreaves, G.H., & Samani, Z. A. (1982). Estimating Potential Evapotranspiration. Journal of the Irrigation and Drainage Division, 108(IR3), 225–230.spa
dc.relation.referencesHarrenll, F. E. (2015). Regression modeling strategies: with applications to linear models, logistic regression, and survival analysis (Vol. 13) (No. 5). Springer. doi: 10.1007/978-3-319-1925-7spa
dc.relation.referencesHerrera-Grimaldi, P., García-Marín, A. P., & Estévez, J. (2019). Multifractal analysis of diurnal temperature range over Southern Spain using validated datasets. Chaos, 29(6). doi: 10.1063/1.5089810spa
dc.relation.referencesHusein, M., & Chung, I. Y. (2019). Day-ahead solar irradiance forecasting for microgrids using a long short-term memory recurrent neural network: A deep learning approach. Energies, 12(10). doi: 10 .3390/en12101856spa
dc.relation.referencesInman, R. H., Pedro, H. T., & Coimbra, C. F. (2013). Solar forecasting methods for renewable energy integration. Progress in Energy and Combustion Science, 39(6), 535–576. Retrieved from http://dx .doi.org/10.1016/j.pecs.2013.06.002 doi: 10.1016/j.pecs.2013.06.002108 Referencesspa
dc.relation.referencesInstituto Departamental de Salud de Nariño. (2018). Informe de gestión programa de vigilancia de calidad del agua año 2017 (Tech. Rep.). Pasto.spa
dc.relation.referencesInstituto Geográfico Agustín Codazzi - IGAC. (2014). Nariño características geográficas. Bogotà: Imprenta Nacional de Colombia.spa
dc.relation.referencesInternational Energy Agency. (2017). International Energy Agency - Energy Access Outlook 2017: From poverty to prosperity. Energy Procedia, 94(March), 144. Retrieved from http:// www.iea.org/publications/freepublications/publication/WEO2017SpecialReport _EnergyAccessOutlook.pdf%0Ahttp://dx.doi.org/10.1016/j.enpol.2016. doi: 10.1787/9789264285569-enspa
dc.relation.referencesIntroduction to Spatial Analysis. (2009). Introduction to Spatial Analysis.spa
dc.relation.referencesJ. Pacheco, & Contreras, E. (2008). Manual metodológico de evaluación multicriterio para programas y proyectos. Santiago de Chile: Instituto Latioamericano y del Caribe de Planificación Económica y Social - ILPES. Retrieved from http://www.fundacionpobreza.cl/biblioteca-temas.php ?id_tema=14spa
dc.relation.referencesJamaly, M., & Kleissl, J. (2017). Spatiotemporal interpolation and forecast of irradiance data using Kriging. Solar Energy, 158(February), 407–423. Retrieved from http://dx.doi.org/10.1016/ j.solener.2017.09.057 doi: 10.1016/j.solener.2017.09.057spa
dc.relation.referencesJamil, B., & Akhtar, N. (2017). Comparison of empirical models to estimate monthly mean di ff use solar radiation from measured data : Case study for humid-subtropical climatic region of India. Renewable and Sustainable Energy Reviews, 77(February), 1326–1342. Retrieved from http://dx.doi.org/ 10.1016/j.rser.2017.02.057 doi: 10.1016/j.rser.2017.02.057spa
dc.relation.referencesJanjai, S., Laksanaboonsong, J., Nunez, M., & Thongsathitya, A. (2005). Development of a method for generating operational solar radiation maps from satellite data for a tropical environment. Solar Energy, 78, 739–751. doi: 10.1016/j.solener.2004.09.009spa
dc.relation.referencesJeffrey, S. J., Carter, J. O., Moodie, K. B., & Beswick, A. R. (2001). Using spatial interpolation to construct a comprehensive archive of Australian climate data. Environmental Modelling and Software, 16(4), 309– 330. doi: 10.1016/S1364-8152(01)00008-1spa
dc.relation.referencesKipp & Zonen. (2000). Instruction Manual Pyranometer/ Albedometer CM11 e CM14.spa
dc.relation.referencesKiš, I. M. (2016). Comparison of Ordinary and Universal Kriging interpolation techniques on a depth variable (a case of linear spatial trend), case study of the Šandrovac Field. The Mining-Geology-Petroleum Engineering Bulletin, 31(2), 41–58. doi: 10.17794/rgn.2016.2.4spa
dc.relation.referencesKleinbaum, D. G., & Klein, M. (2010). Logistic Regression: a self-learning text (No. 3). Springer. doi: 10.1007/978-1-4419-1742-3spa
dc.relation.referencesKonstantin, P., & Konstantin, M. (2018). Power and Energy Systems Engineering Economics. Gewerbestrasse: Springer. doi: https://doi.org/10.1007/978-3-319-72383-9References 109spa
dc.relation.referencesKwon, B. S., Park, R. J., & Song, K. B. (2020). Short-Term Load Forecasting Based on Deep Neural Networks Using LSTM Layer. Journal of Electrical Engineering and Technology, 15(4), 1501–1509. Retrieved from https://doi.org/10.1007/s42835-020-00424-7 doi: 10.1007/s42835-020-00424-7spa
dc.relation.referencesLayanun, V., Suksamosorn, S., & Songsiri, J. (2017). Missing-data Imputation for Solar Irradiance Forecasting in Thailand. In Sice annual conference (pp. 1234–1239). Kanazawa.spa
dc.relation.referencesLi, H., Cao, F., Wang, X., & Ma, W. (2014). A Temperature-Based Model for Estimating Monthly Average Daily Global Solar Radiation in China. The Scientific World Journal, 2014. doi: doi.org/10.1155/2014/ 128754spa
dc.relation.referencesLi, J., & Heap, A. D. (2008). A Review of Spatial Interpolation Methods for Environmental Scientists. Australian Geological Survey Organisation, 68(2008/23), 154. doi: http://www.ga.gov.au/image{\_}cache/ GA12526.pdfspa
dc.relation.referencesLi, J., & Heap, A. D. (2011). A review of comparative studies of spatial interpolation methods in environmental sciences: Performance and impact factors. Ecological Informatics, 6(3-4), 228–241. Retrieved from http://dx.doi.org/10.1016/j.ecoinf.2010.12.003 doi: 10.1016/j.ecoinf.2010.12 .003spa
dc.relation.referencesLi, J., & Heap, A. D. (2014). Environmental Modelling & Software Spatial interpolation methods applied in the environmental sciences : A review. Environmental Modelling and Software, 53, 173–189. Retrieved from http://dx.doi.org/10.1016/j.envsoft.2013.12.008 doi: 10.1016/j.envsoft.2013 .12.008spa
dc.relation.referencesLøken, E. (2007). Use ofmulticriteria decision analysismethods for energy planning problems. Renewable and Sustainable Energy Reviews, 11(7), 1584–1595. doi: 10.1016/j.rser.2005.11.005spa
dc.relation.referencesManning, R. L. (1996). Logit regressions with continuous dependent variables measured with error. Applied Economics Letters, 3(3), 183–184. doi: 10.1080/135048596356636spa
dc.relation.referencesMardani, A., Jusoh, A., Halicka, K., Ejdys, J., Magruk, A., & Ungku, U. N. (2018). Determining the utility in management by using multi-criteria decision support tools: a review. Economic ResearchEkonomska Istrazivanja, 31(1), 1666–1716. Retrieved from https://doi.org/10.1080/1331677X .2018.1488600 doi: 10.1080/1331677X.2018.1488600spa
dc.relation.referencesMarinakis, V., Papadopoulou, A. G., & Psarras, J. (2017). Local communities towards a sustainable energy future: needs and priorities. International Journal of Sustainable Energy, 36(3), 296–312. Retrieved from https://doi.org/10.1080/14786451.2015.1018264 doi: 10.1080/14786451.2015 .1018264spa
dc.relation.referencesMartín, A. M., & Dominguez, J. (2019). Solar Radiation Interpolation. In J. Polo, L. Martín-Pomares, & A. Sanfilipo (Eds.), Solar resources mapping (pp. 301–311). Springer. doi: 10.1007/978-3-319-97484 -2{\_}12110 Referencesspa
dc.relation.referencesMartínez, A. G. (2018). Nariño: Departamento de Nariño Colombia - Informacion detallada Nariño Colombia. Retrieved from https://www.todacolombia.com/departamentos-de-colombia/ narino.htmlspa
dc.relation.referencesMary, S. A. S. A., & Suganya, G. (2016). Multi-Criteria Decision Making Using ELECTRE. Circuits and Systems, 07(06), 1008–1020. doi: 10.4236/cs.2016.76085spa
dc.relation.referencesMayer, D. G., & Butler, D. G. (1993). Statistical validation. Ecological Modelling, 68(1-2), 21–32. doi: 10.1016/0304-3800(93)90105-2spa
dc.relation.referencesMazorra-Aguiar, L., & Díaz, F. (2018). Solar Radiation Forecasting with Statistical Models. In R. Perez (Ed.), Wind field and solar radiation characterization and forecasting. (pp. 171–198). Springer. doi: 10 .1007/978-3-319-76876-2{\_}6spa
dc.relation.referencesMeza F., & Varas E. (2000). Estimation of mean monthly solar global radiation as a function of temperature. Agricultural and Forest Meteorology 100 (2000) 231–241. , 100, 231–241.spa
dc.relation.referencesMinisterio de Cultura. (2020). Sistema Nacional de Información Cultural. Retrieved from http://www.sinic.gov.co/SINIC/ColombiaCultural/ColCulturalBusca.aspx ?AREID=3&COLTEM=216&IdDep=52&SECID=8spa
dc.relation.referencesMinisterio de Minas y Energía. (2018). Hidrocarburos - Ministerio de Minas y Energía. Retrieved from https://www.minminas.gov.co/cobertura-nacional1spa
dc.relation.referencesMontedonico, M., Herrera-Neira, F., Marconi, A., Urquiza, A., & Palma-Behnke, R. (2018). Coconstruction of energy solutions: Lessons learned from experiences in Chile. Energy Research and Social Science, 45(July), 173–183. Retrieved from https://doi.org/10.1016/j.erss.2018.08.004 doi: 10.1016/j.erss.2018.08.004spa
dc.relation.referencesMontgomery, D. C., Jennings, C. L., & Kulahci, M. (2008). Introduction to Time Series Analysis and Forecasting. New Jersey: John Wiley.spa
dc.relation.referencesMoon, S. H., & Kim, Y. H. (2020). An improved forecast of precipitation type using correlation-based feature selection and multinomial logistic regression. Atmospheric Research, 240(February), 104928. Retrieved from https://doi.org/10.1016/j.atmosres.2020.104928 doi: 10.1016/j.atmosres .2020.104928spa
dc.relation.referencesMoreno, A., Gilabert, M. A., & Martínez, B. (2011). Mapping daily global solar irradiation over Spain: A comparative study of selected approaches. Solar Energy, 85(9), 2072–2084. doi: 10.1016/j.solener .2011.05.017spa
dc.relation.referencesMoritz, S., & Bartz-Beielstein, T. (2017). imputeTS: Time Series Missing Value Imputation in R. The R Journal, 9(1), 207–218. Retrieved from https://cran.r-project.org/web/packages/ imputeTS/vignettes/imputeTS-Time-Series-Missing-Value-Imputation-in-R.pdfspa
dc.relation.referencesMossos, ff. A. (2019). Informe mensual de telemetría (Tech. Rep.). Centro Nacional de Monitoreo.References 111spa
dc.relation.referencesMunawar, U., & Wang, Z. (2020). A Framework of Using Machine Learning Approaches for Short-Term Solar Power Forecasting. Journal of Electrical Engineering and Technology, 15(2), 561–569. Retrieved from https://doi.org/10.1007/s42835-020-00346-4 doi: 10.1007/s42835-020-00346-4spa
dc.relation.referencesNational Oceanic and Atmospheric Administration. (2020). Climate Prediction Center. Retrieved from https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ ONI_v5.phpspa
dc.relation.referencesNwokolo, S. C., & Ogbulezie, J. C. (2017, 5). A quantitative review and classification of empirical models for predicting global solar radiation in West Africa. Beni-Suef University Journal of Basic and Applied Sciences. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/ S2314853517300458 doi: 10.1016/j.bjbas.2017.05.001spa
dc.relation.referencesOficina de planeación educativa. (2018). Secretaría Departamental De Nariño. , 169. Retrieved from http://www.sednarino.gov.co/SEDNARINO12/phocadownload/2018/Descargas/2 .BOLETINESTADISTICO2017.pdfspa
dc.relation.referencesOgunsola, O. T., & Song, L. (2014). Restoration of long-term missing gaps in solar radiation. Energy and Buildings, 82, 580–591. Retrieved from http://dx.doi.org/10.1016/j.enbuild.2014.07 .088 doi: 10.1016/j.enbuild.2014.07.088spa
dc.relation.referencesOkundamiya, M. S., & Nzeako, A. N. (2011, 5). Empirical Model for Estimating Global Solar Radiation on Horizontal Surfaces for Selected Cities in the Six Geopolitical Zones in Nigeria. Journal of Control Science and Engineering, 2011, 1–7. Retrieved from http://www.hindawi.com/journals/jcse/ 2011/356405/ doi: 10.1155/2011/356405spa
dc.relation.referencesOlea, R. A. (1999). Simple Kriging. In Geostatistics for engineers and earth scientists (pp. 7–30). Boston, MA: Springer US. Retrieved from http://link.springer.com/10.1007/978-1-4615-5001-3_2 doi: 10.1007/978-1-4615-5001-3{\_}2spa
dc.relation.referencesOliver, A. M., & Webster, R. (2015). Basic Steps in Geostatistics:The Variogram and Kriging. Springer. doi: 10.1007/978-3-319-15865-5ISSNspa
dc.relation.referencesOliver, M. A., & Webster, R. (1990). Kriging : a method of interpolation for geographical information systems. International journal of geographical information systems, 4(3), 313–332.spa
dc.relation.referencesOpoku, R., Adjei, E. A., Ahadzie, D. K., & Agyarko, K. A. (2020). Energy efficiency, solar energy and cost saving opportunities in public tertiary institutions in developing countries: The case of KNUST, Ghana. Alexandria Engineering Journal, 59(1), 417–428. Retrieved from https://doi.org/10.1016/ j.aej.2020.01.011 doi: 10.1016/j.aej.2020.01.011spa
dc.relation.referencesPalma-Behnke, R., Jiménez-Estévez, G., Sáez, D., Montedonico, M., Mendoza-Araya, P., Hernández, R., & Muñoz, C. (2019). Lowering electricity access barriers by means of participative processes applied to microgrid solutions : The Chilean case. Proceedings of the IEEE, 1–15. doi: 10.1109/JPROC.2019 .2922342112 Referencesspa
dc.relation.referencesPaulescu, M. (2008). Solar Irradiation via Air Temperature Data. In V. Badescu (Ed.), Modeling solar radiation at the earth surface (pp. 175–193). Springer.spa
dc.relation.referencesPaulescu, M., Paulescu, E., Gravila, P., & Badescu, V. (2013). Weather Modeling and Forecasting of PV Systems Operation. London: Springer London. Retrieved from http://link.springer.com/10.1007/ 978-1-4471-4649-0 doi: 10.1007/978-1-4471-4649-0spa
dc.relation.referencesPebesma, E. (2016). Fitting variogram models in gstat. Retrieved from https://www.r-spatial.org/ r/2016/02/14/gstat-variogram-fitting.htmlspa
dc.relation.referencesPebesma, E., & Graeler, B. (2020). Package ’gstat’ Title Spatial and Spatio-Temporal Geostatistical Modelling, Prediction and Simulation (Tech. Rep.). Retrieved from https://github.com/r-spatial/gstat/ issues/spa
dc.relation.referencesPremalatha, N., & Valan Arasu, A. (2016). Prediction of solar radiation for solar systems by using ANN models with different back propagation algorithms. Journal of Applied Research and Technology, 14(3), 206–214. Retrieved from http://dx.doi.org/10.1016/j.jart.2016.05.001 doi: 10.1016/j.jart.2016.05.001spa
dc.relation.referencesQuansah, E., Amekudzi, L. K., Preko, K., Aryee, J., Boakye, O. R., Boli, D., & Salifu, M. R. (2014, 1). Empirical Models for Estimating Global Solar Radiation over the Ashanti Region of Ghana. Journal of Solar Energy, 2014, 1–6. Retrieved from http://www.hindawi.com/journals/jse/2014/897970/ doi: 10.1155/2014/897970spa
dc.relation.referencesR Core Team. (2020). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.r-project.org/ Ramírez J., J. C., de Aguas P., J. M., & De Aguas, M. (2017). Escalafón de la competitividad de los departamentos de Colombia 2017 (Tech. Rep.). Bogotá. Retrieved from https://repositorio.cepal.org/ bitstream/handle/11362/43156/1/S1800010_es.pdfspa
dc.relation.referencesReikard, G. (2009). Predicting solar radiation at high resolutions: A comparison of time series forecasts. Solar Energy, 83(3), 342–349. Retrieved from http://dx.doi.org/10.1016/j.solener.2008 .08.007 doi: 10.1016/j.solener.2008.08.007spa
dc.relation.referencesRivero, M., Orozco, S., Sellschopp, F. S., & Loera-Palomo, R. (2017). A new methodology to extend the validity of the Hargreaves-Samani model to estimate global solar radiation in different climates: Case study Mexico. Renewable Energy. doi: 10.1016/j.renene.2017.08.003spa
dc.relation.referencesRodriguez, H. (2011). Observatorio de energías renovables en América Latina y el Caribe: Colombia. OLADE; ONUDI.spa
dc.relation.referencesRodríguez-Rivero, C., Pucheta, J., Laboret, S., Sauchelli, V., & Patiño, D. (2017). Short-Term Series Forecasting By Complete and Incomplete Datasets. Journal of Artificial Intelligence and Soft Computing Research, 7(1), 5–16.References 113spa
dc.relation.referencesSaaty, T. L. (1990). How tomake a decision: The analytic hierarchy process. European Journal of Operational Research, 48(1), 9–26. doi: 10.1016/0377-2217(90)90057-Ispa
dc.relation.referencesSaaty, T. L. (2008). Decision making with the analytic hierarchy process. Int. J. Servces Sciences, 1(1), 83. Retrieved from http://www.rafikulislam.com/uploads/resourses/ 197245512559a37aadea6d.pdf doi: 10.1504/IJSSCI.2008.017590spa
dc.relation.referencesSamani, Z. (2000). Estimating Solar Radiation and Evapotranspiration Using Minimum Climatological Data. Journal of Irrigation and Drainage Engineering, 126, 265–267. doi: 10.1061/(ASCE)0733 -9437(2000)126:4(265)spa
dc.relation.referencesSandia National Laboratories. (2021). Irradiance & Insolation. Retrieved from https://pvpmc.sandia .gov/modeling-steps/1-weather-design-inputs/irradiance-and-insolation-2/spa
dc.relation.referencesSankar, G., Kumar, P., & Maiti, R. (2018). Comparison of GIS-based interpolation methods for spatial distribution of soil organic carbon ( SOC ). Journal of the Saudi Society of Agricultural Sciences, 17(2), 114–126. Retrieved from https://doi.org/10.1016/j.jssas.2016.02.001 doi: 10.1016/ j.jssas.2016.02.001spa
dc.relation.referencesŞen, Z. (2008). Solar Energy Fundamentals and Modeling Techniques. Springer. doi: 10.1007/978-1-84800 -134-3spa
dc.relation.referencesSerrano, A., Sanchez, G., & Cancillo, M. L. (2015). Correcting daytime thermal offset in unventilated pyranometers. Journal of Atmospheric and Oceanic Technology, 32(11), 2088–2099. doi: 10.1175/JTECH -D-15-0058.1spa
dc.relation.referencesShumway, R. H., & Stoffer, D. S. (2011). Time Series Analysis and Its Applications With R Examples (Vol. 102; G. Casella, S. Fienberg, & I. Olkin, Eds.). Springer. Retrieved from http://books.google.com/ books?id=9tv0taI8l6YC doi: 10.1007*978-1-4419-7865-3spa
dc.relation.referencesSobri, S., Koohi-Kamali, S., & Rahim, N. A. (2018, 1). Solar photovoltaic generation forecasting methods: A review. Energy Conversion and Management, 156, 459–497. Retrieved from https://www.sciencedirect.com/science/article/pii/S0196890417310622 doi: 10 .1016/J.ENCONMAN.2017.11.019spa
dc.relation.referencesSuehrcke, H. (2000). On the relationship between duration of sunshine and solar radiation on the Earth’s surface: Angström’s equation revisited. Solar Energy, 68(5), 417–425.spa
dc.relation.referencesSuperintendencia de Servicios Públicos Domiciliarios SSPD. (2019). Zonas No Interconectadas – ZNI: Diagnóstico de la Prestación del Servicio de Energía Eléctrica 2019. Retrieved from https://www.superservicios.gov.co/sites/default/archivos/Publicaciones/ Publicaciones/2019/Nov/diagnostico_de_la_prestacion_del_servicio_zni_-_07 -11-2019-lo_1.pdfspa
dc.relation.referencesUbilla, K., Jiménez-Estévez, G. A., Hernádez, R., Reyes-Chamorro, L., Irigoyen, C. H., Severino, B., & PalmaBehnke, R. (2014). Smart microgrids as a solution for rural electrification: Ensuring long-term114 References sustainability through cadastre and business models. IEEE Transactions on Sustainable Energy, 5(4), 1310–1318. doi: 10.1109/TSTE.2014.2315651spa
dc.relation.referencesUnidad de Planeación Minero Energética. (2019). Índice de Cobertura de Energía Eléctrica - ICEE 2018 (Tech. Rep.). Bogotá: Unidad de Planeación Minero Energético. Retrieved from http://www.siel.gov.co/Inicio/CoberturadelSistemaIntercontecadoNacional/ ConsultasEstadisticas/tabid/81/Default.aspxspa
dc.relation.referencesUnited Nations. (2018). Calculating the human development indices-graphical presentation Inequality-adjusted Human Development Index (IHDI) Knowledge Human Development Index (HDI) Long and healthy life A decent standard of living Human Development Index (HDI) Knowledge Long and (Tech. Rep.). Retrieved from http://hdr.undp.org/sites/default/files/hdr2018_technical_notes.pdfspa
dc.relation.referencesUniversidad de Nariño, Unidad de Planeación Minero Energética-UPME, Usaid, U. S. A. f. I. D., & Ipse, I. D. P. Y. P. D. S. E. P. L. Z. N. I. (2014). Diagnóstico energético y social del departamento de Nariño. , 127.spa
dc.relation.referencesUniversidad de Nariño; Unidad de Planeación Minero Energética; USAID; IPSE. (2014a). Bombeo De Agua Para Riego Utilizando Energía Solar (Tech. Rep.). San Juan de Pasto. Retrieved from http:// www1.upme.gov.co/sgic/sites/default/files/BombeoSolarTaminango.pdfspa
dc.relation.referencesUniversidad de Nariño; Unidad de Planeación Minero Energética; USAID; IPSE. (2014b). Diseño De Red Inalámbrica Rural Para Acceso a Internet En Las Instituciones Educativas Pertenecientes a Las Comunidades Negras De Las Subregiones De Sanquianga , (Tech. Rep.).spa
dc.relation.referencesUniversidad de Nariño; Unidad de Planeación Minero Energética; USAID; IPSE. (2014c). Energía Solar Fotovoltaico Como Estrategia Alternativa y Sostenible de Energización en el Municipio de Santacruz (Tech. Rep.). San Juan de Pasto.spa
dc.relation.referencesUniversidad de Nariño; Unidad de Planeación Minero Energética; USAID; IPSE. (2014d). Estudio Para La Implementación De Un Sistema De Alumbrado Fotovoltaico En El Municipio (Tech. Rep.). San Juan de Pasto.spa
dc.relation.referencesVaidya, O. S., & Kumar, S. (2006). Analytic hierarchy process: An overview of applications. European Journal of Operational Research, 169(1), 1–29. doi: 10.1016/j.ejor.2004.04.028spa
dc.relation.referencesViera Díaz, M. A. (2002). Geoestadìsitica Aplicada. Instituto de Geofìsica UNAM; Instituto de Geofìsica y Astronomía CITMA.spa
dc.relation.referencesWang, J. J., Jing, Y. Y., Zhang, C. F., & Zhao, J. H. (2009). Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renewable and Sustainable Energy Reviews, 13(9), 2263–2278. doi: 10.1016/j.rser.2009.06.021spa
dc.relation.referencesWebster, R., & Oliver, A. M. (2007). Geoestatistics for Environmental Scientists (Second ed., Vol. 14; S. Senn, M. Scott, & V. Barnett, Eds.). John Wiley. doi: 10.1097/00005344-198900149-00008References 115spa
dc.relation.referencesYang, S., Zhu, X., & Guo, W. (2018). Cost-Benefit Analysis for the Concentrated Solar Power in China. Journal of Electrical and Computer Engineering, 2018. doi: 10.1155/2018/4063691spa
dc.relation.referencesŽižlavský, O. (2014). Net Present Value Approach: Method for Economic Assessment of Innovation Projects. Procedia - Social and Behavioral Sciences, 156(November 2014), 506–512. doi: 10.1016/ j.sbspro.2014.11.230spa
dc.relation.referencesZore, ff., Čuček, L., Širovnik, D., Novak Pintarič, Z., & Kravanja, Z. (2018). Maximizing the sustainability net present value of renewable energy supply networks. Chemical Engineering Research and Design, 131, 245–265. doi: 10.1016/j.cherd.2018.01.035spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computaciónspa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.ocdeElectrificación rural
dc.subject.ocdeEnergía solar
dc.subject.ocdeRadiación solar
dc.subject.ocdeRural electrification
dc.subject.ocdeSolar energy
dc.subject.ocdeSolar radiation
dc.subject.proposalCommunity participationeng
dc.subject.proposalRural electrificationeng
dc.subject.proposalAnalytic Hierarchy Processeng
dc.subject.proposalMulticriteria Approacheng
dc.subject.proposalEnergy projectseng
dc.subject.proposalHuman Development Indexeng
dc.subject.proposalSustainable Development Goal Indexeng
dc.subject.proposalTemperature based modelseng
dc.subject.proposalData imputationeng
dc.subject.proposalHargreaves and Samanieng
dc.subject.proposalSpatial interpolation techniqueseng
dc.subject.proposalsolar radiation mappingeng
dc.subject.proposalParticipación comunitariaspa
dc.subject.proposalElectrificación ruralspa
dc.subject.proposalProceso Analítico Jerárquicospa
dc.subject.proposalProyectos energéticoseng
dc.subject.proposalÍndice de Desarrollo Humanospa
dc.subject.proposalÍndice de Metas de Desarrollo Sosteniblespa
dc.subject.proposalModelos basados en temperaturaspa
dc.subject.proposalImputación de datosspa
dc.subject.proposalHargreaves y Samanispa
dc.subject.proposalTécnicas de interpolación espacialspa
dc.subject.proposalMapeo de radiación solarspa
dc.titleForecasting the global solar radiation in Nariño – Colombiaeng
dc.title.translatedPronóstico de la radiación solar global en Nariño - Colombiaspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameFundación CEIBAspa

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
1081594025.2021.pdf
Tamaño:
4.48 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Automática
Cargando...
Miniatura
Nombre:
1081594025.2021 V.ESPAÑOL.pdf
Tamaño:
5.72 MB
Formato:
Adobe Portable Document Format
Descripción:
Versión en español

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: