Algoritmo de agrupación y clasificación para la detección de clientes sospechosos en contribuir a pérdidas no técnicas de energía en una empresa comercializadora eléctrica en Colombia

dc.contributor.advisorPrias Caicedo, Omar Fredy
dc.contributor.advisorCruz Roa, Angel Alfonso
dc.contributor.authorCalentura Rojas, Yeison Ferney
dc.contributor.researchgroupGrisecspa
dc.date.accessioned2022-06-10T14:06:02Z
dc.date.available2022-06-10T14:06:02Z
dc.date.issued2022
dc.descriptionilustraciones, graficasspa
dc.description.abstractLas empresas comercializadoras de energía eléctrica contemplan dentro de su proceso de planeación estratégica el propósito de maximizar sus rendimientos y brindar servicios con altos estándares de calidad. Por lo tanto, continuamente están en búsqueda de una operación más eficiente y rentable. El reto fundamental para este objetivo es minimizar las pérdidas de energía que corresponden a la diferencia entre la energía eléctrica generada y la que se factura finalmente a los usuarios. Estas pérdidas son de dos tipos: i) técnicas, que se manifiestan como parte de los fenómenos físicos asociados a la transmisión, transformación y distribución de la energía; y ii) no técnicas, que están asociadas a las intervenciones del ser humano que afectan el funcionamiento normal del equipo de medida, o demás acciones que no permiten la correcta facturación del consumo de energía. La naturaleza de las pérdidas no técnicas hace que su rastreo sea un proceso difícil e ineficiente, las soluciones propuestas por diversos autores se han agrupado en tres categorías: la primera enfocada a implementación de redes inteligentes y sistemas de monitoreo constante; la segunda basada en analítica de datos y la aplicación de técnicas de aprendizaje computacional sobre información de los usuarios, redes y consumos de energía; y la tercera, un enfoque mixto que toma elementos de ambos para la construcción de una solución completa analizando datos recopilados por redes de distribución inteligente. Este trabajo se abordó desde la perspectiva de la segunda categoría, el comercializador en estudio dispuso de fuentes de información que contenía datos del cliente, registros de toma de lectura mensual, e inspecciones técnicas. Posterior a la construcción del conjunto de datos, se analizaron los diferentes atributos numéricos y categóricos principalmente y se crearon características adicionales denominadas meta-características. Se emplearon dos algoritmos para la selección de las características: Random Forest y mRMR (Máxima relevancia, mínima redundancia), finalmente se realizó la implementación de técnicas de aprendizaje computacional supervisadas (Random Forest y Gradient Boosting) y no supervisadas (Kmeans, Agglomerative y Spectral clustering). En este trabajo puede evidenciarse como la selección de características y la creación de las meta-características propuestas permitieron un mejor desempeño de los modelos aplicados contrarrestando el efecto del desbalance entre clases propio de la naturaleza del problema, la implementación de la búsqueda de parámetros óptimos usando el método de Grid Search y la aplicación de validación cruzada por K-Folds contribuye de manera significativa a encontrar la mejor configuración de desempeño de los clasificadores y minimizar los errores de entrenamiento pasando de precisiones iniciales del 0,6 al 0,8 de precisión promedio macro (Macro-average Precision). Para las técnicas no supervisadas la naturaleza de los datos no permite una diferenciación clara entre los grupos obtenidos, por lo que ese enfoque no se considera apropiado para la solución del problema, en este caso se obtuvieron grupos bastante heterogéneos cuyos resultados se mantuvieron inferiores a 0,06 de puntuación de homogeneidad. (Texto tomado de la fuente)spa
dc.description.abstractElectric energy trading companies consider within their strategic planning process the purpose of maximizing their yields and providing services with high quality standards. Therefore, they are continually searching for a more efficient and profitable operation. The fundamental challenge for this objective is to minimize energy losses, which correspond to the difference between the electrical energy generated and the one finally billed to users. These losses are of two types: i) technical, which are manifested as part of the physical phenomena associated with the transmission, transformation and distribution of energy; and ii) not technical, that are associated with human interventions that affect the normal operation of the media equipment or other actions that do not allow the correct billing of energy consumption. The nature of non-technical losses makes their tracking a difficult and inefficient process, the solutions proposed by several authors have been grouped into three categories: the first focused on the implementation of smart grids and constant monitoring systems, second based on data analytics and the application of computational learning techniques on information from users, networks and energy consumption, third, a mixed approach that takes elements of both to build a complete solution by analyzing data collected by intelligent distribution networks. This work was approached from the perspective of the second group, the marketer under study had information sources that contained customer data, monthly reading records, and technical inspections. After the construction of the data set, the different numerical and categorical attributes were analyzed and additional characteristics called meta-characteristics were created. Two algorithms are applied to select the most relevant characteristics: Random Forest and mRMR (maximum relevance, minimum redundancy), finally the implementation of supervised (random forest y gradient boosting) and unsupervised agglomerative y spectral clustering) computational learning techniques were carried out. In this work it can be evidenced how the selection of characteristics and the creation of the proposed meta-characteristics allowed a better performance of the applied models, counteracting the effect of the imbalance between classes typical of the nature of the problem, the implementation of the search for optimal parameters using the Grid Search method and the application of cross-validation by K-Folds contribute significantly to finding the best performance configuration of the classifiers and minimizing training errors, going from initial precision of 0.6 to 0.8 Macro-average Precision. For the unsupervised techniques, the nature of the data does not allow a clear differentiation between the groups obtained, so this approach is not considered appropriate for solving the problem. In this case, quite heterogeneous groups were obtained whose results remained below 0.06 homogeneity score.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería de Sistemas y Computaciónspa
dc.description.researchareaComputación aplicadaspa
dc.format.extent144 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81555
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería de Sistemas e Industrialspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computaciónspa
dc.relation.referencesAbdullateef, A. I., Salami, M. J. E., Musse, M. A., Onasanya, M. A., & Alebiosu, M. I. (2013). New consumer load prototype for electricity theft monitoring. IOP Conference Series: Materials Science and Engineering, 53(1). https://doi.org/10.1088/1757-899X/53/1/012061spa
dc.relation.referencesAhmad, T., & Ul Hasan, Q. (2016). Detection of Frauds and Other Non-technical Losses in Power Utilities using Smart Meters: A Review. International Journal of Emerging Electric Power Systems, 17(3), 217–234. https://doi.org/10.1515/ijeeps-2015-0206spa
dc.relation.referencesAlharbi, M., Alghumayjan, S., Alsaleh, M., Shah, D., & Alabdulkareem, A. (2020). Electricity Non-Technical Loss Detection: Enhanced Cost-Driven Approach Utilizing Synthetic Control. 2–6.spa
dc.relation.referencesArcos-vargas, A., & Cruz, P. (2016). Detection of Non-Technical Losses in Smart Distribution Networks: a Review. 473(February). https://doi.org/10.1007/978-3-319-40159-1spa
dc.relation.referencesASOCODIS. (2014). Evolución Sectorial de la Distribución y Comercialización de Energía Eléctrica en Colombia 2010-2013. 1–100.spa
dc.relation.referencesASOCODIS. (2018). Evolución Sectorial de la Distribución y Comercialización de Energía Eléctrica en Colombia 2010-2018.spa
dc.relation.referencesAthira, P. M., & Jeniba, D. J. (2015). Electricity Theft Control Using Smart Prepaid Energy Meter. 1(3), 16–20.spa
dc.relation.referencesBabu, T. V., Murthy, T. S., & Sivaiah, B. (2013). Detecting unusual customer consumption profiles in power distribution systems - APSPDCL. 2013 IEEE International Conference on Computational Intelligence and Computing Research, IEEE ICCIC 2013, 3. https://doi.org/10.1109/ICCIC.2013.6724264spa
dc.relation.referencesBiscarri, F., Monedero, I., García, A., Guerrero, J. I., & León, C. (2017). Electricity clustering framework for automatic classification of customer loads. Expert Systems with Applications, 86, 54–63. https://doi.org/10.1016/j.eswa.2017.05.049spa
dc.relation.referencesBoucetta, C., Flauzac, O., Nassour, A. N. M., & Nolot, F. (2020). Multi-level Hierarchical Clustering Algorithm for Energy-theft Detection in Smart Grid Networks. 2nd International Conference on Electrical, Communication and Computer Engineering, ICECCE 2020, June, 1–6. https://doi.org/10.1109/ICECCE49384.2020.9179334spa
dc.relation.referencesBuzau, M. M., Tejedor-Aguilera, J., Cruz-Romero, P., & Gomez-Exposito, A. (2018). Detection of Non-Technical Losses Using Smart Meter Data and Supervised Learning. IEEE Transactions on Smart Grid, 3053(c), 1–10. https://doi.org/10.1109/TSG.2018.2807925spa
dc.relation.referencesBuzau, M. M., Tejedor-Aguilera, J., Cruz-Romero, P., & Gómez-Expósito, A. (2020). Hybrid Deep Neural Networks for Detection of Non-Technical Losses in Electricity Smart Meters. IEEE Transactions on Power Systems, 35(2), 1254–1263. https://doi.org/10.1109/TPWRS.2019.2943115spa
dc.relation.referencesCespedes, R., Leon, R. A., Salazar, H., Ruiz, M. E., Hidalgo, R., & Mejia, D. (2012). An appraisal of the challenges and opportunities for the Colombia Inteligente Program implementation. IEEE Power and Energy Society General Meeting, 1–6. https://doi.org/10.1109/PESGM.2012.6345383spa
dc.relation.referencesChawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2020). SMOTE: Synthetic Minority Over-sampling Technique Nitesh. Ecological Applications, 30(2), 321–357. https://doi.org/10.1002/eap.2043spa
dc.relation.referencesDangar, B., & Joshi, S. K. (2015). Electricity theft detection techniques for metered power consumer in GUVNL, GUJARAT, INDIA. 2015 Clemson University Power Systems Conference, PSC 2015. https://doi.org/10.1109/PSC.2015.7101683spa
dc.relation.referencesGhori, K. M., Abbasi, R. A., Awais, M., Imran, M., Ullah, A., & Szathmary, L. (2019). Performance Analysis of Different Types of Machine Learning Classifiers for Non-Technical Loss Detection. IEEE Access, 8, 16033–16048. https://doi.org/10.1109/ACCESS.2019.2962510spa
dc.relation.referencesGlauner, P., Meira, J. A., Valtchev, P., State, R., & Bettinger, F. (2016). The Challenge of Non-Technical Loss Detection using Artificial Intelligence: A Survey. 10, 760–775. https://doi.org/10.2991/ijcis.2017.10.1.51spa
dc.relation.referencesGómez, J., Carvajal, S., & A. Arango. (2015). Programas de gestión de demanda de electricidad para el sector residencial en Colombia: Enfoque Sistémico. Energética, 46, 73–83.spa
dc.relation.referencesGomez, V. M., & Rengifo, C. F. (2016). A software tool for generating patterns of energy consumption in residential customers. Proceedings of the 2015 IEEE 35th Central American and Panama Convention, CONCAPAN 2015, Concapan Xxxv. https://doi.org/10.1109/CONCAPAN.2015.7428495spa
dc.relation.referencesGuerrero, J. I., Garc, A., & Personal, E. (2017). Heterogeneous data source integration for smart grid ecosystems based on metadata mining. https://doi.org/10.1016/j.eswa.2017.03.007spa
dc.relation.referencesGuerrero, J. I., Monedero, Í., Biscarri, F., Biscarri, J., Millán, R., & León, C. (2013). Detection of non-technical losses: The project MIDAS. Advances in Information Security, Privacy, and Ethics (AISPE), December, 140–164. https://doi.org/10.4018/978-1-4666-4940-8.ch008spa
dc.relation.referencesGuerrrero, J., Parejo, A., Personal, E., & Biscarri, F. (2017). Intelligent Information System as a Tool to Reach Unaproachable Goals for Inspectors. November 2016.spa
dc.relation.referencesHeling, L., & Acosta, M. (2020). Estimating Characteristic Sets for RDF Dataset Profiles Based on Sampling. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 12123 LNCS. Springer International Publishing. https://doi.org/10.1007/978-3-030-49461-2_10spa
dc.relation.referencesHo, T. K. (1995). Random decision forests. Proceedings of the International Conference on Document Analysis and Recognition, ICDAR, 1, 278–282. https://doi.org/10.1109/ICDAR.1995.598994spa
dc.relation.referencesJosé, J., Flórez, M., Andres, R., Martinez, E., & Ferreira, R. (2016). Parte I Smart Grids Colomnia VISIÓN 2030.spa
dc.relation.referencesLuxburg, U. Von. (2015). A turtorial on Spectral Clustering. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2(3), 1–8. http://dx.doi.org/10.1016/j.physrep.2013.08.002%0Ahttp://dx.doi.org/10.1016/j.physrep.2016.09.002%0Ahttp://digital-library.theiet.org/content/conferences/10.1049/cp.2012.2481%0Ahttp://portal.acm.org/citation.cfm?doid=1059981.1059984%0Ahttps://arxiv.org/pdspa
dc.relation.referencesMeffe, A., & de Oliveira, C. C. B. (2009). Technical loss calculation by distribution system segment with corrections from measurements. IET Conference Publications, 0752, 752–752. https://doi.org/10.1049/cp.2009.0962spa
dc.relation.referencesMessinis, G. M., & Hatziargyriou, N. D. (2018). Review of non-technical loss detection methods. Electric Power Systems Research, 158, 250–266. https://doi.org/10.1016/j.epsr.2018.01.005spa
dc.relation.referencesMessinis, G. M., Rigas, A. E., & Hatziargyriou, N. D. (2019). A Hybrid Method for Non-Technical Loss Detection in Smart Distribution Grids. IEEE Transactions on Smart Grid, 10(6), 6080–6091. https://doi.org/10.1109/TSG.2019.2896381spa
dc.relation.referencesMinisterio de minas y energía. (2013). RETIE resolución 9 0708 de agosto 30 de 2013 con sus ajustes. Resolucion 90708, 127.spa
dc.relation.referencesMinisterio de minas y energía, R. de C. (2017). Resolucion No. Creg 019-2017 Comision de Regulacion de Energía y Gas.pdf.spa
dc.relation.referencesMinisterio de Minas y Energia, Upme, U. D. P. M. E., & Asocodis. (2011). Informe sectorial sobre la evolución de la distribución y comercialización de energía eléctrica en Colombia. http://www.asocodis.org.co/cms/docs/asocodis-correcciones-marzo-6.pdfspa
dc.relation.referencesMonedero, I., Biscarri, F., León, C., Guerrero, J. I., Biscarri, J., & Millán, R. (2009). New methods to detect non-technical losses on power utilities. Proceedings of the IASTED International Conference on Artificial Intelligence and Soft Computing, ASC 2009, December 2014, 7–13. https://www.scopus.com/inward/record.uri?eid=2-s2.0-77954009188&partnerID=40&md5=cf4a90c142938cea48098922ee0bc111spa
dc.relation.referencesMonteiro, M. D., & Maciel, R. S. (2018). Detection of commercial losses in electric power distribution systems using data mining techniques. SBSE 2018 - 7th Brazilian Electrical Systems Symposium, 1–6. https://doi.org/10.1109/SBSE.2018.8395889spa
dc.relation.referencesMurthy, T. S., Gopalan, N. P., & Ramachandran, V. (2019). A Naive Bayes Classifier for Detecting Unusual Customer Consumption Profiles in Power Distribution Systems - APSPDCL. Proceedings of the 3rd International Conference on Inventive Systems and Control, ICISC 2019, Icisc, 673–678. https://doi.org/10.1109/ICISC44355.2019.9036460spa
dc.relation.referencesNatekin, A., & Knoll, A. (2013). Gradient boosting machines, a tutorial. Frontiers in Neurorobotics, 7(DEC). https://doi.org/10.3389/fnbot.2013.00021spa
dc.relation.referencesPapadimitriou, C., Messinis, G., Vranis, D., Politopoulou, S., & Hatziargyriou, N. (2017). Non-technical losses: detection methods and regulatory aspects overview. CIRED - Open Access Proceedings Journal, 2017(1), 2830–2832. https://doi.org/10.1049/oap-cired.2017.0825spa
dc.relation.referencesPeng, H., Long, F., & Ding, C. (2005). Feature selection based on mutual information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(8), 1226–1238. https://doi.org/10.1109/TPAMI.2005.159spa
dc.relation.referencesPuri, A. (2018). Application and Uses of Big Data Predictive Analysis in Public Sectors: A Systematic Review. Proceedings of the International Conference on Computational Techniques, Electronics and Mechanical Systems, CTEMS 2018, 539–543. https://doi.org/10.1109/CTEMS.2018.8769196spa
dc.relation.referencesRajabi, A., Li, L., Zhang, J., Zhu, J., Ghavidel, S., & Ghadi, M. J. (2017). A review on clustering of residential electricity customers and its applications. 2017 20th International Conference on Electrical Machines and Systems, ICEMS 2017. https://doi.org/10.1109/ICEMS.2017.8056062spa
dc.relation.referencesRamos, S., Duarte, J. M., Duarte, F. J., & Vale, Z. (2015). A data-mining-based methodology to support MV electricity customers’ characterization. Energy and Buildings, 91, 16–25. https://doi.org/10.1016/j.enbuild.2015.01.035spa
dc.relation.referencesRosenberg, A., & Hirschberg, J. (2007). V-Measure : A conditional entropy-based external cluster evaluation measure. June, 410–420.spa
dc.relation.referencesSethi, A. R., Amin, S., & Schwartz, G. (2017). Value of intrusion detection systems for countering energy fraud. Proceedings of the American Control Conference, 2739–2746. https://doi.org/10.23919/ACC.2017.7963366spa
dc.relation.referencesSharma, S., & Majumdar, A. (2020). Unsupervised Detection of Non-Technical Losses via Recursive Transform Learning. IEEE Transactions on Power Delivery, 36(2), 1241–1244. https://doi.org/10.1109/TPWRD.2020.3029439spa
dc.relation.referencesShraddha K.Popat, E. M. (2014). Review and Comparative Study of Clustering Techniques. International Journal of Computer Science and Information Technologies, 5(1), 7. www.ijcsit.comspa
dc.relation.referencesShukla, S. (2014). A Review ON K-means DATA Clustering APPROACH. International Journal of Information & Computation Technology, 4(17), 1847–1860. http://www.irphouse.comspa
dc.relation.referencesSpirić, J. V., Stanković, S. S., & Dočić, M. B. (2016). Determining a set of suspicious electricity customers using statistical ACL Tukey’s control charts method. International Journal of Electrical Power and Energy Systems, 83, 402–410. https://doi.org/10.1016/j.ijepes.2016.04.035spa
dc.relation.referencesSpirić, J. V., Stanković, S. S., & Dočić, M. B. (2018). Identification of suspicious electricity customers. International Journal of Electrical Power and Energy Systems, 95(June 2017), 635–643. https://doi.org/10.1016/j.ijepes.2017.09.019spa
dc.relation.referencesTeeraratkul, T., Daniel, O., & Lallz, S. (2016). Condensed Representation and Individual Prediction of Consumer Demand. 2016 IEEE Smart Energy Grid Engineering (SEGE), 11–16. https://doi.org/10.1109/SEGE.2016.7589192spa
dc.relation.referencesTrevizan, R. D., Bretas, A. S., & Rossoni, A. (2015). Nontechnical Losses detection: A Discrete Cosine Transform and Optimum-Path Forest based approach. 2015 North American Power Symposium, NAPS 2015. https://doi.org/10.1109/NAPS.2015.7335160spa
dc.relation.referencesViegas, J. L., Esteves, P. R., Melício, R., Mendes, V. M. F., & Vieira, S. M. (2017). Solutions for detection of non-technical losses in the electricity grid: A review. Renewable and Sustainable Energy Reviews, 80(August 2016), 1256–1268. https://doi.org/10.1016/j.rser.2017.05.193spa
dc.relation.referencesVillar-rodriguez, E., Del, J., & Oregi, I. (2017). Detection of Non-Technical Losses in Smart Meter Data based on Load Curve Profiling and Time Series Analysis.spa
dc.relation.referencesVolk, F., & Max, M. (2015). Efficient, Verifiable, Secure, and Privacy-Friendly Computations for the Smart Grid. 0–4. https://doi.org/10.1109/ISGT.2015.7131862spa
dc.relation.referencesWang, X., Tao, Y., & Zheng, K. (2018). Feature selection methods in the framework of mrmr. Proceedings - 8th International Conference on Instrumentation and Measurement, Computer, Communication and Control, IMCCC 2018, 2017, 1490–1495. https://doi.org/10.1109/IMCCC.2018.00307spa
dc.relation.referencesWang, Y., Li, L., & Yang, Q. (2015). Application of clustering technique to electricity customer classification for load forecasting. 2015 IEEE International Conference on Information and Automation, ICIA 2015 - In Conjunction with 2015 IEEE International Conference on Automation and Logistics, August, 1425–1430. https://doi.org/10.1109/ICInfA.2015.7279510spa
dc.relation.referencesWang, Z., Li, G., Wang, X., Chen, C., & Long, H. (2019). Analysis of 10kV Non-technical Loss Detection with Data-driven Approaches. 2019 IEEE PES Innovative Smart Grid Technologies Asia, ISGT 2019, 4154–4158. https://doi.org/10.1109/ISGT-Asia.2019.8881733spa
dc.relation.referencesWorld Bank. (2009). Reducing technical and non-technical losses in the power sector. World Bank Group Energy Sector Strategy, July 2009, 1–35. http://siteresources.worldbank.org/INTESC/Resources/ReducingTechnicalAndNonTechnicalLossesBackgroundPaper.pdfspa
dc.relation.referencesYadav, S., & Shukla, S. (2016). Analysis of k-Fold Cross-Validation over Hold-Out Validation on Colossal Datasets for Quality Classification. Proceedings - 6th International Advanced Computing Conference, IACC 2016, Cv, 78–83. https://doi.org/10.1109/IACC.2016.25spa
dc.relation.referencesYip, S. C., Tan, W. N., Tan, C. K., Gan, M. T., & Wong, K. S. (2018). An anomaly detection framework for identifying energy theft and defective meters in smart grids. International Journal of Electrical Power and Energy Systems, 101(February), 189–203. https://doi.org/10.1016/j.ijepes.2018.03.025spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::003 - Sistemasspa
dc.subject.lembAPRENDIZAJE AUTOMATICO (INTELIGENCIA ARTIFICIAL)spa
dc.subject.lembMachine learningeng
dc.subject.proposalAprendizaje computacionalspa
dc.subject.proposalInspecciones técnicas de instalaciones eléctricasspa
dc.subject.proposalPérdidas no técnicas de energíaspa
dc.subject.proposalConsumo de energíaspa
dc.subject.proposalFacturación mensualspa
dc.subject.proposalEmpresa comercializadora de energíaspa
dc.subject.proposalComputational learningeng
dc.subject.proposalTechnical inspectionseng
dc.subject.proposalNon-technical energy losseseng
dc.subject.proposalMonthly reading takeeng
dc.subject.proposalEnergy consumptioneng
dc.subject.proposalMonthly billingeng
dc.subject.proposalEnergy trading companyeng
dc.subject.proposalDetección de anomalíasspa
dc.subject.proposalComercializadorspa
dc.subject.proposalAnomaly detectioneng
dc.subject.proposalEnergy losseseng
dc.subject.unescoEnergía eléctricaspa
dc.subject.unescoElectric powereng
dc.titleAlgoritmo de agrupación y clasificación para la detección de clientes sospechosos en contribuir a pérdidas no técnicas de energía en una empresa comercializadora eléctrica en Colombiaspa
dc.title.translatedClustering and classification algorithm for detection of customers suspected of contributing to non-technical energy losses at energy trader companyeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1121860755.2022.pdf
Tamaño:
7.38 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Sistemas y Computación

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: