Simulación de la distribución de tiempo de residencia en un tanque agitado empleando CFD
dc.contributor.advisor | Martínez Riascos, Carlos Arturo | |
dc.contributor.author | Ramírez Hermosa, Pavel Ernubis | |
dc.contributor.researchgroup | Ingeniería de Sistemas de Procesos | spa |
dc.date.accessioned | 2025-03-20T14:56:07Z | |
dc.date.available | 2025-03-20T14:56:07Z | |
dc.date.issued | 2024 | |
dc.description | fotografías, graficas, tablas | spa |
dc.description.abstract | En este estudio se analizó la distribución del tiempo de residencia (RTD) en tanques agitados mediante el uso de simulación por dinámica de fluidos computacional (CFD). Se emplearon tanques de 1, 5 y 100 litros, bajo diferentes condiciones operativas y geométricas, evaluando el impacto de variables como la velocidad de agitación, la posición del agitador y el tiempo de retención, con el objetivo de estudiar el comportamiento fluidodinámico en estos sistemas. Las velocidades de agitación fueron 144, 246 y 399 rpm para el tanque de 1 L, de 59, 89 y 142 rpm para el tanque de 5L, y de 9, 14 y 22 rpm para el tanque de 100 L, obteniendo números de Reynolds aproximados a 8000, 12000 y 20000 respectivamente. Los resultados experimentales de RTD se obtuvieron usando pigmento rojo como trazador y un sistema de captura económico, los cuales fueron comparados con los resultados de las simulaciones CFD. La validación de los modelos numéricos mostró una alta concordancia entre los resultados simulados y experimentales, especialmente al utilizar el modelo de turbulencia k-ε estándar, con ajustes de malla que optimizaron la precisión de las simulaciones. En particular, se observó que la configuración geométrica del tanque y la velocidad de agitación influyen directamente en la eficiencia de la mezcla y en la RTD, con valores de desviación estándar menores al 5% entre los datos simulados y experimentales. Estos resultados subrayan la capacidad de CFD como herramienta precisa y eficaz para predecir el comportamiento fluidodinámico en tanques agitados, y su utilidad en el diseño y la optimización de estos sistemas en aplicaciones industriales (Texto tomado de la fuente). | spa |
dc.description.abstract | In this study, the residence time distribution (RTD) in stirred tanks was analyzed using computational fluid dynamics (CFD) simulation. Tanks of 1, 5 and 100 liters were used under different operating and geometric conditions, evaluating the impact of variables such as stirring speed, stirrer position and retention time, in order to study the fluid dynamic behavior in these systems. Stirring speeds were 144, 246 and 399 rpm for the 1 L tank, 59, 89 and 142 rpm for the 5 L tank, and 9, 14 and 22 rpm for the 100 L tank, obtaining Reynolds numbers of approximately 8000, 12000 and 20000 respectively. RTD experimental results were obtained using red pigment as tracer and an inexpensive capture system, which were compared with the results of CFD simulations. The validation of the numerical models showed a high agreement between simulated and experimental results, especially when using the standard k-ε turbulence model, with mesh adjustments that optimized the accuracy of the simulations. In particular, it was observed that the geometric configuration of the tank and the stirring speed directly influence the mixing efficiency and the RTD, with standard deviation values less than 5% between the simulated and experimental data. These results underline the capacity of CFD as an accurate and effective tool to predict the fluid dynamic behavior in stirred tanks, and its utility in the design and optimization of these systems in industrial applications. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Ingeniería Química | spa |
dc.description.researcharea | Simulación de Procesos | spa |
dc.description.sponsorship | proyecto “Estrategia para escalamiento de biorreactores usando análisis de Fluido Dinámica Computacional”, parte de la “Convocatoria para el Apoyo a Proyectos de Investigación, Creación Artística e Innovación de la Sede Bogotá de la Universidad Nacional de Colombia – 2020”, con código QUIPU 202010032347 | spa |
dc.format.extent | xvi, 125 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87701 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química | spa |
dc.relation.references | Abdulmouti, H. (2013). Particle imaging velocimetry (PIV) technique: principles and applications, review. Yanbu Journal of Engineering and Science, 6, 35-65. | spa |
dc.relation.references | Abdulwahab, M.R., Ali, Y.H., Habeeb, F.J., Borhana, A.A., Abdelrhman, A.M. & Al-Obaidi, S.M.A. (2020). A Review in Particle Image Velocimetry Techniques. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 65(2), 213-229. | spa |
dc.relation.references | Adamczyk, W. P., Klimanek, A., Białecki, R. A., Węcel, G., Kozołub, P., & Czakiert, T. (2014). Comparison of the standard Euler–Euler and hybrid Euler–Lagrange approaches for modeling particle transport in a pilot-scale circulating fluidized bed.Particuology,15, 129–137. https://doi.org/10.1016/j.partic.2013.06.008 | spa |
dc.relation.references | Adrian, R.J. & Westerweel, J. (2011) Particle Image Velocimetry. Cambridge University Press, Cambridge. | spa |
dc.relation.references | Aubin, J., Fletcher, D. F., & Xuereb, C. (2004). Modeling turbulent flow in stirred tanks with CFD: the influence of the modeling approach, turbulence model and numerical scheme.Experimental Thermal and Fluid Science,28(5), 431–445. https://doi.org/10.1016/j.expthermflusci.2003.04.001 | spa |
dc.relation.references | Bakker, R. J. (2003). Package FLUIDS 1. Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties. Chemical Geology, 194(1-3), 3–23. https://doi.org/10.1016/s0009-2541(02)00268-1 | spa |
dc.relation.references | Böhm, L., Hohl, L., Bliatsiou, C., & Kraume, M. (2019). Multiphase Stirred Tank Bioreactors – New Geometrical Concepts and Scale‐up Approaches. Chemie Ingenieur Technik, 91(12), 1724–1746. https://doi.org/10.1002/cite.201900165 | spa |
dc.relation.references | Brouyère, S., Dassargues, A., Therrien, R., & Sudicky, E. (2024). Modelling of dual porosity media: comparisons of different techniques and evaluation of the impact on plume transport simulations. ModelCARE’99: Calibration and Reliability in Groundwater Modelling. https://hdl.handle.net/2268/2803 | spa |
dc.relation.references | Wen, C.Y. & Fan, L.T. (1975). Models for Flow System and Chemical Reactors. Dekker, New York. | spa |
dc.relation.references | Cameron, S. (2011). PIV algorithms for open-channel turbulence research: Accuracy, resolution and limitations. Journal of Hydro-Environment Research, 5(4), 247–262. https://doi.org/10.1016/j.jher.2010.12.006 | spa |
dc.relation.references | Chen, S., & Gu, H. (2019). CFD simulation and analysis of reactor integral hydraulic tests. Annals of Nuclear Energy, 135, 106962–106962. https://doi.org/10.1016/j.anucene.2019.106962 | spa |
dc.relation.references | Chitale, S.K., Jadhav, P.N., Dhoble, S.S., Dhokpande, S. & Ingole, P. (2022). Study of Residence Time Distribution in Chemical Industry A Review. International Journal of Scientific Research in Science and Technology, 9(1), 47-55. | spa |
dc.relation.references | Dagadu, C.P.K., Stegowski, Z., Sogbey, B.J.A.Y., & Adzaklo, S.Y. (2015). Mixing Analysis in a Stirred Tank Using Computational Fluid Dynamics. Journal of Applied Mathematics and Physics, 03(06), 637–642. https://doi.org/10.4236/jamp.2015.36076 | spa |
dc.relation.references | Dantec Dynamics. (n.d.). Precision Measurement Systems & Sensors. https://www.dantecdynamics.com/components/synchronizers/ | spa |
dc.relation.references | Danckwerts. P.V. (1981). The definition and measurement of some characteristics of mixtures.Elsevier EBooks, 268–287. https://doi.org/10.1016/b978-0-08-026250-5.50050-2 | spa |
dc.relation.references | Ding, J., Wang, X., Zhou, X.F., Ren, N.Q., & Guo, W.Q. (2010). CFD optimization of continuous stirred-tank (CSTR) reactor for biohydrogen production. Bioresource Technology, 101(18), 7005–7013. https://doi.org/10.1016/j.biortech.2010.03.14 | spa |
dc.relation.references | Marshall, E.M. & Bakker, A. (2002). Computational Fluid Mixing. Fluent Inc., 10 Cavendish Court, USA | spa |
dc.relation.references | Fletcher, D.F. (2022) The future of computational fluid dynamics (CFD) simulation in the chemical process industries. Chemical Engineering Research and Design, 187. doi.org/10.1016/j.cherd.2022.09.021 | spa |
dc.relation.references | Fogler, H.S. (1999) Elements of Chemical Reaction Engineering. Prentice Hall of India, New Delhi. | spa |
dc.relation.references | Papageorgakis, G.C. & Assanis, D.N. (1999). Comparison of linear and nonlinear rng-based k- epsilon models for incompressible turbulent flows. Numerical Heat Transfer, Part B: Fundamentals, 35(1), 1–22. https://doi.org/10.1080/104077999275983 | spa |
dc.relation.references | Gillissen, J.J.J. & Van den Akker, H.E.A. (2012). Direct numerical simulation of the turbulent flow in a baffled tank driven by a Rushton turbine. AIChE Journal, 58(12), 3878–3890. https://doi.org/10.1002/aic.13762 | spa |
dc.relation.references | Gnatowska, R., Sosnowski, M. & Václav Uruba. (2017). CFD modelling and PIV experimental validation of flow fields in urban environments. E3S Web of Conferences, 14, 01034–01034. https://doi.org/10.1051/e3sconf/20171401034 | spa |
dc.relation.references | Hadad, T. & Gurka, R. (2013). Effects of particle size, concentration and surface coating on turbulent flow properties obtained using PIV/PTV. Experimental Thermal and Fluid Science, 45, 203–212. https://doi.org/10.1016/j.expthermflusci.2012.11.006 | spa |
dc.relation.references | Hand, D.P., Entwistle, J.D., Maier, R.R.J., Kuhn, A., Greated, C.A., & Jones, J.D.C. (1999). Fibre optic beam delivery system for high peak power laser PIV illumination. Measurement Science and Technology, 10(3), 239–245. https://doi.org/10.1088/0957-0233/10/3/021 | spa |
dc.relation.references | Hossain, S., Hossain, I., Pramanik, S. & Ahamed, J. U. (2017). Analyzing the Turbulent Flow Characteristics by Utilizing k-? Turbulence Model. European Journal of Engineering and Technology Research, 2(11), 28–34. https://doi.org/10.24018/ejeng.2017.2.11.510 | spa |
dc.relation.references | Jiang, J., Wu, J., Poncin, S. & Li, H.Z. (2016). Effect of hydrodynamic shear on biogas production and granule characteristics in a continuous stirred tank reactor. Process Biochemistry, 51(3), 345–351. doi: 10.1016/j.procbio.2015.12.014 | spa |
dc.relation.references | Jordan, W. K., & March, R. P. (1953). Studies on Overholding in High-Temperature Short-Time Pasteurizers Operated on Water.Journal of Dairy Science,36(6), 614–619. https://doi.org/10.3168/jds.s0022-0302(53)91537-9 | spa |
dc.relation.references | Jordan, W. K., & Holland, R. F. (1953). STUDIES ON THERMAL METHODS OF MEASURING THE HOLDING TIME IN HIGH-TEMPERATURE SHORT-TIME PASTEURIZERS.Journal of Milk and Food Technology,16(1), 15–25. https://doi.org/10.4315/0022-2747-16.1.15 | spa |
dc.relation.references | Jordan, W. K., Holland, R. F., & White, J. C. (1949). THE DETERMINATION OF THE HOLDING TIME IN HIGH-TEMPERATURE, SHORT-TIME PASTEURIZING UNITS.Journal of Milk and Food Technology,12(2), 87–92. https://doi.org/10.4315/0022-2747-12.2.87 | spa |
dc.relation.references | Khapre, A., Rajavathsavia, D. & Munshi, B. (2016). Study on residence time distribution of CSTR using CFD. Indian Journal of Chemical Technology, 23, 114-120 | spa |
dc.relation.references | Kamla, Y., Ameur, H., Karas, A. & Arab, M.I. (2019). Performance of new designed anchor impellers in stirred tanks. Chemical Papers, 74(3), 779–785. https://doi.org/10.1007/s11696- 019-00902-x | spa |
dc.relation.references | Keane, R.D. (1994). Correlation Methods of PIV Analysis. Springer EBooks, 271–289. https://doi.org/10.1007/978-1-4899-1271-8_13 | spa |
dc.relation.references | Kumaresan, T., & Joshi, J. B. (2006). Effect of impeller design on the flow pattern and mixing in stirred tanks.Chemical Engineering Journal,115(3), 173–193. https://doi.org/10.1016/j.cej.2005.10.002 | spa |
dc.relation.references | Lane, G.L. (2017). Improving the accuracy of CFD predictions of turbulence in a tank stirred by a hydrofoil impeller. Chemical Engineering Science, 169, 188–211. https://doi.org/10.1016/j.ces.2017.03.061 | spa |
dc.relation.references | Levenspiel, O. (1999) Chemical Reaction Engineering. 3rd Edition. John Wiley & Sons, New York, 54. http://dx.doi.org/10.1021/ie990488g | spa |
dc.relation.references | Li, L. & Xu, B. (2022). CFD simulation of hydrodynamics characteristics in a tank with forward- reverse rotating impeller. Journal of the Taiwan Institute of Chemical Engineers, 131, 104174. https://doi.org/10.1016/j.jtice.2021.104174 | spa |
dc.relation.references | Lintz, H. & Weber, W. (1980). The study of mixing in a continuous stirred tank reactor using an autocatalytic reaction. Chemical Engineering Science, 35, 203-208 DOI:10.1016/0009- 2509(80)80088-1. | spa |
dc.relation.references | Lu, W.M., Wu, H.Z. & Ju, M.Y. (1997). Effects of baffle design on the liquid mixing in an aerated stirred tank with standard Rushton turbine impellers. Chemical Engineering Science, 52(21- 22), 3843–3851. https://doi.org/10.1016/s0009-2509(97)88929-4 | spa |
dc.relation.references | Maji, S. & Sahu, A.K. (2021). Stirred tank simulation using Partially-Averaged Navier-Stokes turbulence model. SN Applied Sciences, 3(5). https://doi.org/10.1007/s42452-021-04488-6 | spa |
dc.relation.references | Matzke, M., Behrens, C., Niklas Jongebloed, Steins, D., Ulbricht, M. & Schultz, H. J. (2022). Investigation and Visualization of Flow Fields in Stirred Tank Reactors Using a Fluorescence Tracer Method. Chemie Ingenieur Technik, 94(8), 1131–1140. https://doi.org/10.1002/cite.202200006 | spa |
dc.relation.references | Mavros, P. (2001). Flow Visualization in Stirred Vessels. Chemical Engineering Research and Design, 79(2), 113–127. https://doi.org/10.1205/02638760151095926 | spa |
dc.relation.references | Meier, W., Boxx, I., Stöhr, M. & Carter, C.D. (2010). Laser-based investigations in gas turbine model combustors. 49(4), 865–882. https://doi.org/10.1007/s00348-010-0889-x | spa |
dc.relation.references | Mittal, G. & Kikugawa, R.I. (2021). Computational fluid dynamics simulation of a stirred tank reactor. Materials Today: Proceedings, 46(20), 11015-11019. | spa |
dc.relation.references | Moin, P. & Mahesh, K. (1998). Direct numerical simulation: A Tool in Turbulence Research. Annual Review of Fluid Mechanics, 30(1), 539–578. https://doi.org/10.1146/annurev.fluid.30.1.539 | spa |
dc.relation.references | Monaldi, A.C., Romero, G.G., Cabrera, C.M., Blanc, A.V. & Alanís, E.E. (2016). Rolling Shutter Effect aberration compensation in Digital Holographic Microscopy. Optic Communications, 366, 94–98. https://doi.org/10.1016/j.optcom.2015.12.048 | spa |
dc.relation.references | Nadal-Rey, G., McClure, D.D., Kavanagh, J.M., Cassells, B. Cornelissen, S., Fletcher, D.F. & Gernaey, K.V. (2022). Computational fluid dynamics modelling of hydrodynamics, mixing and oxygen transfer in industrial bioreactors with Newtonian broths. Biochemical Engineering Journal, 177. | spa |
dc.relation.references | Nassauer, J., & Kessler, H. G. (1980). Physikalische Beschreibung der Verweilzeit‐Verteilung in einemLeitungs‐system. Chemie-Ingenieur-Technik, 52(5), 450. https://doi.org/10.1002/cite.330520524 | spa |
dc.relation.references | Nechita, M.T., Suditu, G.D., Puițel, A.C. & Drăgoi, E.N. (2023). Residence Time Distribution: Literature Survey, Functions, Mathematical Modeling, and Case Study—Diagnosis for a Photochemical Reactor. Processes, 11(12), 3420. https://doi.org/10.3390/pr11123420 | spa |
dc.relation.references | Ochieng, A., Onyango & Kiriamiti, K. (2010). Experimental measurement and computational fluid dynamics simulation of mixing in a stirred tank: a review. South African Journal of Science, 105(11/12). https://doi.org/10.4102/sajs.v105i11/12.139 | spa |
dc.relation.references | Orszag, S.A. (1969). Representation of Isotropic Turbulence by Scalar Functions. Studies in Applied Mathematics, 48(3), 275–279. https://doi.org/10.1002/sapm1969483275 | spa |
dc.relation.references | Patel, V.C., Rodi, W. & Scheuerer, G. (1985). Turbulence models for near-wall and low Reynolds number flows - A review. AIAA Journal, 23(9), 1308–1319. https://doi.org/10.2514/3.9086 | spa |
dc.relation.references | Paul, E.L., Atiemo-Obeng, V.A. & Kresta, S.M. (Eds.). (2003). Handbook of Industrial Mixing. John Wiley & Sons, Inc. https://doi.org/10.1002/0471451452 | spa |
dc.relation.references | Pieralisi, I., Montante, G. & Paglianti, A. (2016). Prediction of fluid dynamic instabilities of low liquid height-to-tank diameter ratio stirred tanks. Chemical Engineering Journal, 295, 336–346. https://doi.org/10.1016/j.cej.2016.03.026 | spa |
dc.relation.references | Pinheiro Torres, A., Oliveira, F.A.R., Baptista, P. N. & Oliveira, J. C. (1993). Evaluation of conventional and new residence time distribution models for the description of tubular aseptic processing systems. In 3rd Conference of Food Engineering (CoFE’93), postTerc No. 13.11, Chicago, Illinois, 21-24 February 1993 | spa |
dc.relation.references | PinheiroTorres, A. Oliveira, F.A.R. &Fortuna, S.P. (1993). Residence time distribution of liquids in a continuous tubular thermal processing system part I: Relating RTD to processing conditions. Journal of Food Engineering, 35(2), 147-163. https://doi.org/10.1016/S0260-8774(98)00007- 7 | spa |
dc.relation.references | Plasari, E., David, R. & Villermaux, J. (1977). Phenomena in residence time distributions of mechanically and jet-stirred reactors in the liquid phase. Chemical Engineering Science, 32(9), 1121–1124. https://doi.org/10.1016/0009-2509(77)80155-3 | spa |
dc.relation.references | Poynton, C. A. (2012).Digital video and HD : algorithms and interfaces. Morgan Kaufmann | spa |
dc.relation.references | Priyadi, K., Lu, C.T. & Sutanto, H. (2019). Optimization of impeller design for stirred tank using computational fluid dynamics. IOP Conference Series: Materials Science and Engineering, 567, 012032. https://doi.org/10.1088/1757-899x/567/1/012032 | spa |
dc.relation.references | Raffel, M., Willert, C., Scarano, F., Kähler, C.J., Wereley, S. & Kompenhans, J. (2018). Particle Image Velocimetry. https://doi.org/10.1007/978-3-319-68852-7 | spa |
dc.relation.references | Rajavathsavai, D., Khapre, A. & Munshi, B. (2014). Study of mixing behavior of cstr using CFD. Brazilian Journal of Chemical Engineering, 31(1), 119–129. https://doi.org/10.1590/s0104- 66322014000100012 | spa |
dc.relation.references | Ramírez-Gómez, R., García-Cortés, D., Martínez-de Jesús, G., González-Brambila, M.M., Alonso, A., Martínez-Delgadillo, S.A. & Ramírez-Muñoz, J. (2015). Performance Evaluation of Two High-Shear Impellers in an Unbaffled Stirred Tank. Chemical Engineering & Technology, 38(9), 1519–1529. https://doi.org/10.1002/ceat.201400792 | spa |
dc.relation.references | Raschi, M., Mut, F., Byrne, G., Putman, C.M., Tateshima, S., Viñuela, F., Tanoue, T., Tanishita, K. & Cebral, J.R. (2011). CFD and PIV analysis of hemodynamics in a growing intracranial aneurysm. International Journal for Numerical Methods in Biomedical Engineering, 28(2), 214–228. https://doi.org/10.1002/cnm.1459 | spa |
dc.relation.references | Razavi, S. M., Román-Ospino, A. D., Bhalode, P., Scicolone, J., Callegari, G., Dubey, A., Koolivand, A., Krull, S., Tian, G., Xu, X., O’Connor, T., Ierapetritou, M., & Muzzio, F. (2023). Selection of an appropriate tracer to measure the residence time distribution (RTD) of continuous powder blending operations.Powder Technology,429, 118864. https://doi.org/10.1016/j.powtec.2023.118864 | spa |
dc.relation.references | Rieger, F. & Ditl, P. (1994). Suspension of solid particles. Chemical Engineering Science, 49(14), 2219–2227. https://doi.org/10.1016/0009-2509(94)e0029-p | spa |
dc.relation.references | Rodrigues, A.E. (2021). Residence time distribution (RTD) revisited. Chemical Engineering Science, 230, 116188. https://doi.org/10.1016/j.ces.2020.116188 | spa |
dc.relation.references | Rudniak, L., Machniewski, P.M., Milewska, A. & Molga, E. (2004). CFD modelling of stirred tank chemical reactors: homogeneous and heterogeneous reaction systems. Chemical Engineering Science, 59(22-23), 5233–5239. https://doi.org/10.1016/j.ces.2004.09.014 | spa |
dc.relation.references | Scarano, F. (2013). Tomographic PIV: principles and practice. Measurement Science and Technology, 24(1), 012001–012001. https://doi.org/10.1088/0957-0233/24/1/012001 | spa |
dc.relation.references | Soloff, S.M., Adrian, R.J. & Liu, Z.C. (1997). Distortion compensation for generalized stereoscopic particle image velocimetry. 8(12), 1441–1454. https://doi.org/10.1088/0957-0233/8/12/008 | spa |
dc.relation.references | Sommer, A.E., Rox, H., Shi, P., Eckert, K. & Rzehak, R. (2021). Solid-liquid flow in stirred tanks: “CFD-grade” experimental investigation. Chemical Engineering Science, 245, 116743. https://doi.org/10.1016/j.ces.2021.116743 | spa |
dc.relation.references | Tahry, S.H. E. (1983). k-epsilon equation for compressible reciprocating engine flows. Journal of Energy, 7(4), 345–353. https://doi.org/10.2514/3.48086 | spa |
dc.relation.references | Tamburini, A., Cipollina, A., Micale, G., Brucato, A. & Ciofalo, M. (2011). CFD simulations of dense solid–liquid suspensions in baffled stirred tanks: Prediction of suspension curves. Chemical Engineering Journal, 178, 324–341. https://doi.org/10.1016/j.cej.2011.10.016 | spa |
dc.relation.references | Tawk, R., Ghannam, B. & Nemer, M. (2019). Topology optimization of heat and mass transfer problems in two fluids—one solid domains. Numerical Heat Transfer, Part B: Fundamentals,76(3), 130–151. https://doi.org/10.1080/10407790.2019.1644919 | spa |
dc.relation.references | Tchobanoglous, G., Stensel, H., Tsuchihashi, R. & Burton, F. (2013). Wastewater Engineering Treatment and Resource Recovery. McGraw-Hill Education, New York. Research Publishing. https://www.scirp.org/reference/referencespapers?referenceid=2800902 | spa |
dc.relation.references | Thipdech, A., Prasertsit, K. & Photaworn, S. (2024). Enhancing biodiesel production in stirred tank reactors through the implementation of a baffle array: Creating a reactor with unique characteristics. Bioresource Technology Reports, 25, 101748. https://doi.org/10.1016/j.biteb.2023.101748 | spa |
dc.relation.references | Tibbitt, M. (2002). Practical training on Residence Time Distribution. Institute of Process Engineering | spa |
dc.relation.references | van Overbrüggen, T., Klaas, M., Soria, J. & Wolfgang S. (2016). Experimental analysis of particle sizes for PIV measurements. Measurement Science and Technology, 27(9), 094009–094009. https://doi.org/10.1088/0957-0233/27/9/094009 | spa |
dc.relation.references | Torotwa, I. & Ji, C. (2018). A Study of the Mixing Performance of Different Impeller Designs in Stirred Vessels Using Computational Fluid Dynamics. Designs 2. 1:10. https://doi.org/10.3390/designs2010010 | spa |
dc.relation.references | Toson, P., Doshi, P. & Jajcevic, D. (2019). Explicit Residence Time Distribution of a Generalised Cascade of Continuous Stirred Tank Reactors for a Description of Short Recirculation Time (Bypassing). Processes, 7(9), 615. https://doi.org/10.3390/pr7090615 | spa |
dc.relation.references | Zalc, J.M., Szalai, E.S., Alvarez, M.M. & Muzzio, F.J. (2002). Using CFD to understand chaotic mixing in laminar stirred tanks. AIChE Journal, 48(10), 2124–2134. https://doi.org/10.1002/aic.690481004 | spa |
dc.relation.references | Zhang, Z., Li, T., Chen, R., Wang, N., Wei, Y., & Wu, D. (2021). Injection characteristics and fuel- air mixing process of ammonia jets in a constant volume vessel.Fuel,304, 121408–121408. https://doi.org/10.1016/j.fuel.2021.121408 | spa |
dc.relation.references | Zhu, H. & Jing, R. (2019). CFD Simulation Study on Mixing Experiment of Anaerobic Digestion Tank. E3S Web of Conferences, 118, 02047. https://doi.org/10.1051/e3sconf/201911802047 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 660 - Ingeniería química::661 - Tecnología de químicos industriales | spa |
dc.subject.proposal | Dinámica de Fluidos Computacional | spa |
dc.subject.proposal | Velocimetría por Imágenes de Partículas | spa |
dc.subject.proposal | Distribución de Tiempo de Residencia | spa |
dc.subject.proposal | Computational Fluid Dynamics | eng |
dc.subject.proposal | Particle Image Velocimetry | eng |
dc.subject.proposal | Residence Time Distribution | eng |
dc.subject.unesco | Análisis numérico | |
dc.subject.unesco | Numerical analysis | |
dc.subject.unesco | Dinámica de fluidos | |
dc.subject.unesco | Fluid dynamics | |
dc.title | Simulación de la distribución de tiempo de residencia en un tanque agitado empleando CFD | spa |
dc.title.translated | Simulation of residence time distribution in a stirred tank using CFD | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.fundername | Universidad Nacional de Colombia | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1075281160.pdf
- Tamaño:
- 69.25 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Ingeniería Química
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: