Detección y clasificación de fallas eléctricas en sistemas de distribución de energía eléctrica mediante el uso de la transformada wavelet continua y funciones madre de soporte infinito

dc.contributor.advisorBolaños Martinez, Freddy (Thesis advisor)
dc.contributor.advisorPérez Gonzales, Ernesto
dc.contributor.authorCardona Posada, Juan Camilo
dc.contributor.researchgroupGrupo de Automática de la Universidad Nacional Gaunalspa
dc.date.accessioned2022-06-29T14:09:03Z
dc.date.available2022-06-29T14:09:03Z
dc.date.issued2022-06-27
dc.descriptionIlustraciones, diagramas, tablasspa
dc.description.abstractEl análisis de fallas eléctricas en Sistemas Eléctricos de Potencia ha visto un avance significativo en la implementación de metodologías fundamentadas en el Procesamiento Digital de Señales, como el análisis en tiempo y frecuencia. En este trabajo se propone una metodología para utilizar filtros con Respuesta Infinita al Impulso como Funciones Madre para computar la Transformada Wavelet Continua mediante la evaluación del concepto del remuestreo digital de señales. Esta metodología es evaluada al compararla con la metodología más comúnmente reportada en la literatura (Transformada Wavelet Discreta con Función Madre tipo Daubechies 4) y se investigan los efectos de los parámetros más relevantes inherentes al método y a las señales. La implementación del código se realiza en el software de MATLAB y los resultados se validan comparando la energía espectral asociada a los coeficientes Wavelet obtenidos. Por otro lado, se propone evaluar las etapas de detección y clasificación de fallas eléctricas en sistemas de distribución de energía eléctrica utilizando una serie de señales simuladas en el Software ATP/EMTP y redes neuronales artificiales. Los resultados obtenidos validan la metodología propuesta además de presentar una mejora notoria en cuanto a la tasa de detección y clasificación de eventos al compararla con el método tradicional. Finalmente, se resumen las limitaciones de la investigación y se propone una serie de recomendaciones a modo de trabajo futuro con el objetivo de continuar la evaluación de la metodología propuesta. (Texto tomado de la fuente)spa
dc.description.abstractElectric fault analysis in Power Systems has seen significant progress in the adoption of methodologies based on Digital Signal Processing, such as time and frequency analysis. In this work, a novel method is proposed to use filters with Infinite Impulse Response as Mother Functions to compute the Continuous Wavelet Transform by evaluating the concept of digital signal resampling. This methodology is evaluated by comparing it with the most common method in the literature (Discrete Wavelet Transform with Daubechies 4-type Mother Function) and the effects of the most relevant parameters inherent to the method and to the signals are investigated. The implementation of the code is carried out in the MATLAB software and the results are validated by comparing the spectral energy associated with the Wavelet Coefficients obtained. On the other hand, an evaluation of the stages of detection and classification of electrical faults in electrical power distribution systems is proposed by using a series of simulated signals in the ATP/EMTP Software and artificial neural networks. The results obtained validate the proposed methodology in addition to presenting a notable improvement in the rate of detection and classification of events when compared to the traditional method. Finally, the limitations of the research are summarized, and a series of recommendations are proposed for future work with the aim of continuing the evaluation of the proposed method.eng
dc.description.curricularareaÁrea Curricular de Ingeniería Eléctrica e Ingeniería de Controlspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Eléctricaspa
dc.description.researchareaProtección de Sistemas Eléctricos de Potenciaspa
dc.format.extentxxi, 136 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81652
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Ingeniería Eléctrica y Automáticaspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Ingeniería Eléctricaspa
dc.relation.referencesC. Zapata, Confiabilidad de Sistemas Eléctricos de Potencia. Pereira: Universidad Tecnológica de Pereira, 2011. doi: 10.2307/j.ctt1zk0m77.5.spa
dc.relation.referencesP. Kundur et al., “Definition and classification of power system stability,” IEEE Transactions on Power Systems, 2004, doi: 10.1109/TPWRS.2004.825981.spa
dc.relation.referencesM. Ventosa, P. Linares, and I. J. Pérez-Arriaga, “Power System Economics,” Power Systems, vol. 61, no. October 1982, pp. 47–123, 2013, doi: 10.1007/978-1-4471-5034-3_2.spa
dc.relation.referencesS. Silva, P. Costa, M. Santana, and D. Leite, “Evolving neuro-fuzzy network for real-time high impedance fault detection and classification,” Neural Computing and Applications, vol. 32, no. 12, pp. 7597–7610, 2020, doi: 10.1007/s00521-018-3789-2.spa
dc.relation.referencesP. Jafarian and M. Sanaye-Pasand, “A traveling-wave-based protection technique using wavelet/pca analysis,” IEEE Transactions on Power Delivery, vol. 25, no. 2, pp. 588–599, 2010, doi: 10.1109/TPWRD.2009.2037819.spa
dc.relation.referencesD. Spoor and J. G. Zhu, “Improved single-ended traveling-wave fault- location algorithm based on experience with conventional substation transducers,” IEEE Transactions on Power Delivery, 2006, doi: 10.1109/TPWRD.2006.878091.spa
dc.relation.referencesM. Parsi, P. Crossley, P. L. Dragotti, and D. Cole, “Wavelet based fault location on power transmission lines using real-world travelling wave data,” Electric Power Systems Research, vol. 186, no. February, p. 106261, 2020, doi: 10.1016/j.epsr.2020.106261.spa
dc.relation.referencesL. Y. Bewley, “Traveling Waves on Transmission Systems,” Transactions of the American Institute of Electrical Engineers, 1931, doi: 10.1109/T-AIEE.1931.5055827.spa
dc.relation.referencesM. Pourahmadi-Nakhli and A. A. Safavi, “Path characteristic frequency-based fault locating in radial distribution systems using wavelets and neural networks,” IEEE Transactions on Power Delivery, 2011, doi: 10.1109/TPWRD.2010.2050218.spa
dc.relation.referencesS. M. Korobeynikov, N. Y. Ilyushov, Y. A. Lavrov, S. S. Shevchenko, and V. A. Loman, “High-Frequency Transients Suppression at Substation,” 2019. doi: 10.1109/ICHVE.2018.8641972.spa
dc.relation.referencesY. Gu and M. H. J. Bollen, “Time-frequency and time-scale domain analysis of voltage disturbances,” IEEE Transactions on Power Delivery, vol. 15, no. 4, pp. 1279–1284, 2000, doi: 10.1109/61.891515.spa
dc.relation.referencesF. H. Magnago and A. Abur, “A new fault location technique for radial distribution systems based on high frequency signals,” 1999. doi: 10.1109/PESS.1999.784386.spa
dc.relation.referencesT. M. Lai, L. A. Snider, E. Lo, and D. Sutanto, “High-impedance fault detection using discrete wavelet transform and frequency range and RMS conversion,” IEEE Transactions on Power Delivery, vol. 20, no. 1, pp. 397–407, 2005, doi: 10.1109/TPWRD.2004.837836.spa
dc.relation.referencesM. Goudarzi, B. Vahidi, R. A. Naghizadeh, and S. H. Hosseinian, “Improved fault location algorithm for radial distribution systems with discrete and continuous wavelet analysis,” International Journal of Electrical Power and Energy Systems, vol. 67, no. May, pp. 423–430, 2015, doi: 10.1016/j.ijepes.2014.12.014.spa
dc.relation.referencesS. Khokhar, A. A. B. Mohd Zin, A. S. B. Mokhtar, and M. Pesaran, “A comprehensive overview on signal processing and artificial intelligence techniques applications in classification of power quality disturbances,” Renewable and Sustainable Energy Reviews. 2015. doi: 10.1016/j.rser.2015.07.068.spa
dc.relation.referencesA. M. Gaouda, M. M. A. Salama, M. R. Sultan, and A. Y. Chikhani, “Power quality detection and classification using wavelet-multiresolution signal decomposition,” IEEE Transactions on Power Delivery, vol. 14, no. 4, pp. 1469–1476, 1999, doi: 10.1109/61.796242.spa
dc.relation.referencesA. R. Sedighi, M. R. Haghifam, O. P. Malik, and M. H. Ghassemian, “High impedance fault detection based on wavelet transform and statistical pattern recognition,” IEEE Transactions on Power Delivery, vol. 20, no. 4, pp. 2414–2421, 2005, doi: 10.1109/TPWRD.2005.852367.spa
dc.relation.referencesZ. Moravej, S. H. Mortazavi, and S. M. Shahrtash, “DT-CWT based event feature extraction for high impedance faults detection in distribution system,” International Transactions on Electrical Energy Systems, 2015, doi: 10.1002/etep.2035.spa
dc.relation.referencesC. L. Tu, W. L. Hwang, and J. Ho, “Analysis of singularities from modulus maxima of complex wavelets,” IEEE Transactions on Information Theory, vol. 51, no. 3, pp. 1049–1062, 2005, doi: 10.1109/TIT.2004.842706.spa
dc.relation.referencesK. M. Silva, B. A. Souza, and N. S. D. Brito, “Fault detection and classification in transmission lines based on wavelet transform and ANN,” IEEE Transactions on Power Delivery, vol. 21, no. 4, pp. 2058–2063, 2006, doi: 10.1109/TPWRD.2006.876659.spa
dc.relation.referencesL. O. Barthold and G. K. Carter, “Digital Traveling-Wave Solutions: I—Single-Phase Equivalents,” Transactions of the American Institute of Electrical Engineers. Part III: Power Apparatus and Systems, 1961, doi: 10.1109/AIEEPAS.1961.4501145.spa
dc.relation.referencesF. Namdari and M. Salehi, “Fault classification and location in transmission lines using traveling waves modal components and continuous wavelet transform (CWT),” Journal of Electrical Systems, vol. 12, no. 2, pp. 373–386, 2016.spa
dc.relation.referencesM. Vrhel, C. Lee, and M. Unser, “THE CONTINUOUS WAVELET TRANSFORM: A TOOL FOR SIGNAL INVESTIGATION AND UNDERSTANDING,” ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 1995.spa
dc.relation.referencesL. U. Iurinic, A. S. Bretas, and E. S. Guimaraes, “Continuous-wavelet transform fault location algorithm inferred from faulty signal,” 2012. doi: 10.1109/PESGM.2012.6344853.spa
dc.relation.referencesA. Borghetti, M. Bosetti, C. A. Nucci, M. Paolone, and A. Abur, “Integrated use of time-frequency wavelet decompositions for fault location in distribution networks: Theory and experimental validation,” IEEE Transactions on Power Delivery, vol. 25, no. 4, pp. 3139–3146, 2010, doi: 10.1109/TPWRD.2010.2046655.spa
dc.relation.referencesH. w. Dommel and J. M. Michels, “HIGH SPEED RELAYING USING TRAVELING WAVE TRANSIENT ANALYSIS.,” 1978.spa
dc.relation.referencesM. T. Hagh, K. Razi, and H. Taghizadeh, “Fault classification and location of power transmission lines using artificial neural network,” 2007.spa
dc.relation.referencesA. Abdollahi and S. Seyedtabaii, “Comparison of fourier & wavelet transform methods for transmission line fault classification,” PEOCO 2010 - 4th International Power Engineering and Optimization Conference, Program and Abstracts, no. June, pp. 579–584, 2010, doi: 10.1109/PEOCO.2010.5559232.spa
dc.relation.referencesL. J. Collazo and E. O’Neill-Carrillo, “Comparison of windowed Fourier transform and dynamic phasors for power quality analysis,” 2009 IEEE/PES Power Systems Conference and Exposition, PSCE 2009, pp. 1–5, 2009, doi: 10.1109/PSCE.2009.4840147.spa
dc.relation.referencesD. Donnelly, “The Fast Fourier and Hilbert-Huang Transforms: A Comparison,” in IMACS Multiconference on “Computational Engineering in Systems Applications” (CESA), 2006, vol. 12, no. 3, pp. 84–88.spa
dc.relation.referencesS. Vandeput, Heart rate variability : linear and nonlinear analysis with applications in human physiology. 2010.spa
dc.relation.referencesJ. B. Allen and L. R. Rabiner, “A Unified Approach to Short-Time Fourier Analysis and Synthesis,” Proceedings of the IEEE, 1977, doi: 10.1109/PROC.1977.10770.spa
dc.relation.referencesR. Subhashree, C. S. Preethi, and P. Supriya, “Fault distance identification in transmission line using STFT algorithm,” 2016. doi: 10.1109/ICCCI.2016.7480036.spa
dc.relation.referencesR. Bhattacharjee and A. De, “A robust STFT based algorithm for detection of symmetrical fault during power swing,” 2017. doi: 10.1109/POWERI.2016.8077364.spa
dc.relation.referencesS. Mallat, A Wavelet Tour of Signal Processing The Sparse Way. 2009.spa
dc.relation.referencesJ. O. Strömberg, “A modified franklin system and higher-order spline systems on Rn as unconditional bases for hardy spaces,” in Fundamental Papers in Wavelet Theory, 2009. doi: 10.1515/9781400827268.197.spa
dc.relation.referencesJ. D. Kropotov, Functional Neuromarkers for Psychiatry: Applications for Diagnosis and Treatment. 2016. doi: 10.1016/C2012-0-07144-X.spa
dc.relation.referencesA. Grossmann and J. Morlet, “Decomposition of Hardy Functions Into Square Integrable Wavelets of Constant Shape,” SIAM Journal on Mathematical Analysis, vol. 15, no. 4, 1984.spa
dc.relation.referencesY. Meyer, Wavelets and Operators. 1993. doi: 10.1017/cbo9780511623820.spa
dc.relation.referencesA. Cohen, I. Daubechies, and J. ‐C Feauveau, “Biorthogonal bases of compactly supported wavelets,” Communications on Pure and Applied Mathematics, 1992, doi: 10.1002/cpa.3160450502.spa
dc.relation.referencesI. Daubechies, “Orthonormal bases of compactly supported wavelets,” Communications on Pure and Applied Mathematics, 1988, doi: 10.1002/cpa.3160410705.spa
dc.relation.referencesI. Daubechies, “2. The Continuous Wavelet Transform,” in Ten Lectures on Wavelets, 1992. doi: 10.1137/1.9781611970104.ch2.spa
dc.relation.referencesI. Daubechies, Ten Lectures on Wavelets. 1992. doi: 10.1137/1.9781611970104.spa
dc.relation.referencesP. Qi, S. Jovanovic, J. Lezama, and P. Schweitzer, “Discrete wavelet transform optimal parameters estimation for arc fault detection in low-voltage residential power networks,” Electric Power Systems Research, vol. 143, no. June 2018, pp. 130–139, 2017, doi: 10.1016/j.epsr.2016.10.008.spa
dc.relation.referencesD. Spoor and J. G. Zhu, “Improved single-ended traveling-wave fault- location algorithm based on experience with conventional substation transducers,” IEEE Transactions on Power Delivery, 2006, doi: 10.1109/TPWRD.2006.878091.spa
dc.relation.referencesF. H. Magnago and A. Abur, “Fault location using wavelets,” IEEE Transactions on Power Delivery, 1998, doi: 10.1109/61.714808.spa
dc.relation.referencesF. B. Costa, B. A. Souza, N. S. D. Brito, J. A. C. B. Silva, and W. C. Santos, “Real-time detection of transients induced by high-impedance faults based on the boundary wavelet transform,” IEEE Transactions on Industry Applications, 2015, doi: 10.1109/TIA.2015.2434993.spa
dc.relation.referencesM. F. Guo, X. D. Zeng, D. Y. Chen, and N. C. Yang, “Deep-Learning-Based Earth Fault Detection Using Continuous Wavelet Transform and Convolutional Neural Network in Resonant Grounding Distribution Systems,” IEEE Sensors Journal, 2018, doi: 10.1109/JSEN.2017.2776238.spa
dc.relation.referencesA. Borghetti, S. Corsi, C. A. Nucci, M. Paolone, L. Peretto, and R. Tinarelli, “On the use of continuous-wavelet transform for fault location in distribution power systems,” International Journal of Electrical Power and Energy Systems, 2006, doi: 10.1016/j.ijepes.2006.03.001.spa
dc.relation.referencesA. Borghetti, M. Bosetti, M. Di Silvestro, C. A. Nucci, and M. Paolone, “Continuous-wavelet transform for fault location in distribution power networks: Definition of mother wavelets inferred from fault originated transients,” IEEE Transactions on Power Systems, 2008, doi: 10.1109/TPWRS.2008.919249.spa
dc.relation.referencesK. Nanayakkara, A. D. Rajapakse, and R. Wachal, “Fault Location in Extra Long HVDC Transmission Lines using Continuous Wavelet Transform,” 2011.spa
dc.relation.referencesMATHWORKS, “Continuous Wavelet Analysis,” https://la.mathworks.com/help/wavelet/gs/continuous-wavelet-analysis.html, 2021.spa
dc.relation.referencesJ. Lilly, “A data analysis package for Matlab,” 2016.spa
dc.relation.referencesA. R. Adly, S. H. E. Abdel Aleem, M. A. Elsadd, and Z. M. Ali, “Wavelet packet transform applied to a series-compensated line: A novel scheme for fault identification,” Measurement: Journal of the International Measurement Confederation, vol. 151, p. 107156, 2020, doi: 10.1016/j.measurement.2019.107156.spa
dc.relation.referencesG. Jing and L. Ru, “A new wavelet packet method of single-phase earth fault line selection in distribution network based on the maximum difference comparison,” 2009. doi: 10.1109/ICEMS.2009.5382649.spa
dc.relation.referencesE. Y. Hamid and Z. I. Kawasaki, “Wavelet-based data compression of power system disturbances using the minimum description length criterion,” IEEE Transactions on Power Delivery, vol. 17, no. 2, pp. 460–466, 2002, doi: 10.1109/61.997918.spa
dc.relation.referencesL. Jin, M. Jiang, and G. Yang, “Fault analysis of microgrid and adaptive distance protection based on complex wavelet transform,” 2014. doi: 10.1109/PEAC.2014.7037882.spa
dc.relation.referencesZ. Moravej, S. H. Mortazavi, and S. M. Shahrtash, “DT-CWT based event feature extraction for high impedance faults detection in distribution system,” International Transactions on Electrical Energy Systems, 2015, doi: 10.1002/etep.2035.spa
dc.relation.referencesJ. G. Proakis and D. G. Monolakis, Digital signal processing: principles, algorithms, and applications. 1996.spa
dc.relation.referencesJ. Klomjit, A. Ngaopitakkul, and B. Sreewirote, “Comparison of mother wavelet for classification fault on hybrid transmission line systems,” 2017. doi: 10.1109/ICAwST.2017.8256514.spa
dc.relation.referencesC. Pothisarn, J. Klomjit, A. Ngaopitakkul, C. Jettanasen, D. A. Asfani, and I. M. Y. Negara, “Comparison of various mother wavelets for fault classification in electrical systems,” Applied Sciences (Switzerland), vol. 10, no. 4, pp. 1–16, 2020, doi: 10.3390/app10041203.spa
dc.relation.referencesW. Fluty and Y. Liao, “Electric Transmission Fault Location Techniques Using Traveling Wave Method and Discrete Wavelet Transform,” Clemson University Power Systems Conference, PSC 2020, 2020, doi: 10.1109/PSC50246.2020.9131271.spa
dc.relation.referencesB. Rathore and A. G. Shaik, “Wavelet-Alienation Based Transmission Line Protection Scheme,” pp. 1–15.spa
dc.relation.referencesH. R. Karimi, W. Pawlus, and K. G. Robbersmyr, “Signal reconstruction, modeling and simulation of a vehicle full-scale crash test based on Morlet wavelets,” Neurocomputing, 2012, doi: 10.1016/j.neucom.2012.04.010.spa
dc.relation.referencesA. Borghetti, M. Bosetti, M. Di Silvestro, C. A. Nucci, and M. Paolone, “Continuous-wavelet transform for fault location in distribution power networks: Definition of mother wavelets inferred from fault originated transients,” IEEE Transactions on Power Systems, 2008, doi: 10.1109/TPWRS.2008.919249.spa
dc.relation.referencesA. Calderón, “Intermediate spaces and interpolation, the complex method,” Studia Mathematica, 1964, doi: 10.4064/sm-24-2-113-190.spa
dc.relation.referencesP. E. Argyropoulos and H. Lev-Ari, “Wavelet Customization for Improved Fault-Location Quality in Power Networks,” IEEE Transactions on Power Delivery, 2015, doi: 10.1109/TPWRD.2015.2429590.spa
dc.relation.referencesU. B. Parikh, B. Das, and R. P. Maheshwari, “Combined wavelet-SVM technique for fault zone detection in a series compensated transmission line,” IEEE Transactions on Power Delivery, vol. 23, no. 4, pp. 1789–1794, 2008, doi: 10.1109/TPWRD.2008.919395.spa
dc.relation.referencesR. Kumar, B. Singh, D. T. Shahani, A. Chandra, and K. Al-Haddad, “Recognition of Power-Quality Disturbances Using S-Transform-Based ANN Classifier and Rule-Based Decision Tree,” IEEE Transactions on Industry Applications, vol. 51, no. 2, pp. 1249–1258, 2015, doi: 10.1109/TIA.2014.2356639.spa
dc.relation.referencesN. Zhang and M. Kezunovic, “Transmission line boundary protection using wavelet transform and neural network,” IEEE Transactions on Power Delivery, vol. 22, no. 2, pp. 859–869, 2007, doi: 10.1109/TPWRD.2007.893596.spa
dc.relation.referencesN. Tailor, S. Joshi, and O. P. Mahela, “Transmission line protection schemes based on wigner distribution function and discrete wavelet transform,” PIICON 2020 - 9th IEEE Power India International Conference, 2020, doi: 10.1109/PIICON49524.2020.9113011.spa
dc.relation.referencesA. K. Pradhan, A. Routray, S. Pati, and D. K. Pradhan, “Wavelet fuzzy combined approach for fault classification of a series-compensated transmission line,” IEEE Transactions on Power Delivery, 2004, doi: 10.1109/TPWRD.2003.822535.spa
dc.relation.referencesZ. L. Gaing, “Wavelet-based neural network for power disturbance recognition and classification,” IEEE Transactions on Power Delivery, vol. 19, no. 4, pp. 1560–1568, 2004, doi: 10.1109/TPWRD.2004.835281.spa
dc.relation.referencesD. P. Mishra, S. R. Samantaray, and G. Joos, “A combined wavelet and data-mining based intelligent protection scheme for microgrid,” IEEE Transactions on Smart Grid, vol. 7, no. 5, pp. 2295–2304, 2016, doi: 10.1109/TSG.2015.2487501.spa
dc.relation.referencesM. Dashtdar, M. Esmaeilbeig, M. Najafi, and M. E. N. Bushehri, “Fault Location in the Transmission Network Using Artificial Neural Network,” Automatic Control and Computer Sciences, vol. 54, no. 1, pp. 39–51, 2020, doi: 10.3103/S0146411620010022.spa
dc.relation.referencesA. A. P. Bíscaro, R. A. F. Pereira, M. Kezunovic, and J. R. S. Mantovani, “Integrated Fault Location and Power-Quality Analysis in Electric Power Distribution Systems,” IEEE Transactions on Power Delivery, 2016, doi: 10.1109/TPWRD.2015.2464098.spa
dc.relation.referencesA. H. Osman and O. P. Malik, “Transmission line distance protection based on wavelet transform,” IEEE Transactions on Power Delivery, vol. 19, no. 2, pp. 515–523, 2004, doi: 10.1109/TPWRD.2003.822531.spa
dc.relation.referencesA. Bermúdez, E. Spinelli, and C. Muravch, “Detección de eventos en señales de EEG mediante Entropía,” 2011. Accessed: Oct. 20, 2021. [Online]. Available: http://www.sabi2011.fi.mdp.edu.ar/proceedings/SABI/Pdf/SABI2011_75.pdfspa
dc.relation.referencesH. Zheng-you, C. Xiaoqing, and L. Guoming, “Wavelet Entropy Measure Definition and Its Application for Transmission Line Fault Detection and Identification; (Part I: Definition and Methodology),” 2007. doi: 10.1109/icpst.2006.321939.spa
dc.relation.referencesZ. He, L. Fu, S. Lin, and Z. Bo, “Fault detection and classification in EHV transmission line based on wavelet singular entropy,” IEEE Transactions on Power Delivery, vol. 25, no. 4, pp. 2156–2163, 2010, doi: 10.1109/TPWRD.2010.2042624.spa
dc.relation.referencesS. Khokhar, A. A. Mohd Zin, A. P. Memon, and A. S. Mokhtar, “A new optimal feature selection algorithm for classification of power quality disturbances using discrete wavelet transform and probabilistic neural network,” Measurement: Journal of the International Measurement Confederation, vol. 95, pp. 246–259, 2017, doi: 10.1016/j.measurement.2016.10.013.spa
dc.relation.referencesH. H. Chang and N. V. Linh, “Statistical feature extraction for fault locations in nonintrusive fault detection of low voltage distribution systems,” Energies (Basel), vol. 10, no. 5, pp. 1–19, 2017, doi: 10.3390/en10050611.spa
dc.relation.referencesH. Lala and S. Karmakar, “Continuous wavelet transform and artificial neural network based fault diagnosis in 52 bus hybrid distributed generation system,” 4th Students Conference on Engineering and Systems, SCES 2015, 2016, doi: 10.1109/SCES.2015.7506463.spa
dc.relation.referencesY. Y. Hong and M. T. A. M. Cabatac, “Fault Detection, Classification, and Location by Static Switch in Microgrids Using Wavelet Transform and Taguchi-Based Artificial Neural Network,” IEEE Systems Journal, vol. 14, no. 2, pp. 2725–2735, 2020, doi: 10.1109/JSYST.2019.2925594.spa
dc.relation.referencesB. Rathore and A. G. Shaik, “Wavelet-alienation based transmission line protection scheme,” IET Generation, Transmission and Distribution, vol. 11, no. 4, pp. 995–1003, Mar. 2017, doi: 10.1049/iet-gtd.2016.1022.spa
dc.relation.referencesP. E. Argyropoulos and H. Lev-Ari, “Wavelet Customization for Improved Fault-Location Quality in Power Networks,” IEEE Transactions on Power Delivery, 2015, doi: 10.1109/TPWRD.2015.2429590.spa
dc.relation.referencesF. Namdari and M. Salehi, “Fault classification and location in transmission lines using traveling waves modal components and continuous wavelet transform (CWT),” Journal of Electrical Systems, vol. 12, no. 2, pp. 373–386, 2016.spa
dc.relation.referencesG. Jing and L. Ru, “A new wavelet packet method of single-phase earth fault line selection in distribution network based on the maximum difference comparison,” 2009. doi: 10.1109/ICEMS.2009.5382649.spa
dc.relation.referencesM. Hirn, “Lecture 16: Wavelet Modulus Maxima,” 2020. Accessed: Sep. 14, 2021. [Online]. Available: https://matthewhirn.files.wordpress.com/2020/03/math994_spring2020_lecture16-1.pdfspa
dc.relation.referencesD. Guillen, M. R. A. Paternina, A. Zamora, J. M. Ramirez, and G. Idarraga, “Detection and classification of faults in transmission lines using the maximum wavelet singular value and Euclidean norm,” IET Generation, Transmission and Distribution, 2015, doi: 10.1049/iet-gtd.2014.1064.spa
dc.relation.referencesC. Pothisarn, J. Klomjit, A. Ngaopitakkul, C. Jettanasen, D. A. Asfani, and I. M. Y. Negara, “Comparison of various mother wavelets for fault classification in electrical systems,” Applied Sciences (Switzerland), 2020, doi: 10.3390/app10041203.spa
dc.relation.referencesP. Lertwanitrot and A. Ngaopitakkul, “Discriminating between Capacitor Bank Faults and External Faults for an Unbalanced Current Protection Relay Using DWT,” IEEE Access, vol. 8, pp. 180022–180044, 2020, doi: 10.1109/ACCESS.2020.3026744.spa
dc.relation.referencesD. P. Mishra, S. R. Samantaray, and G. Joos, “A combined wavelet and data-mining based intelligent protection scheme for microgrid,” IEEE Transactions on Smart Grid, 2016, doi: 10.1109/TSG.2015.2487501.spa
dc.relation.referencesL. Breiman, “Random Forests,” Berkeley, CA: University of California, 2001.spa
dc.relation.referencesH. Ampadu, “Random Forests Understanding,” https://ai-pool.com/a/s/random-forests-understanding, May 01, 2021.spa
dc.relation.referencesM. Awad and R. Khanna, “Support Vector Machines for Classification,” in Efficient Learning Machines, 2015. doi: 10.1007/978-1-4302-5990-9_3.spa
dc.relation.referencesA. A. P. Bíscaro, R. A. F. Pereira, M. Kezunovic, and J. R. S. Mantovani, “Integrated Fault Location and Power-Quality Analysis in Electric Power Distribution Systems,” IEEE Transactions on Power Delivery, vol. 31, no. 2, pp. 428–436, 2016, doi: 10.1109/TPWRD.2015.2464098.spa
dc.relation.referencesS. Kaewarsa, K. Attakitmongcol, and T. Kulworawanichpong, “Recognition of power quality events by using multiwavelet-based neural network,” Proceedings - 6th IEEE/ACIS International Conference on Computer and Information Science, ICIS 2007; 1st IEEE/ACIS International Workshop on e-Activity, IWEA 2007, no. Icis, pp. 993–998, 2007, doi: 10.1109/ICIS.2007.153.spa
dc.relation.referencesM. F. Guo, X. D. Zeng, D. Y. Chen, and N. C. Yang, “Deep-Learning-Based Earth Fault Detection Using Continuous Wavelet Transform and Convolutional Neural Network in Resonant Grounding Distribution Systems,” IEEE Sensors Journal, 2018, doi: 10.1109/JSEN.2017.2776238.spa
dc.relation.referencesO. A. S. Youssef, “Combined fuzzy-logic wavelet-based fault classification technique for power system relaying,” IEEE Transactions on Power Delivery, vol. 19, no. 2, pp. 582–589, 2004, doi: 10.1109/TPWRD.2004.826386.spa
dc.relation.referencesJ. Jan, Digital Signal Filtering, Analysis and Restoration. 2000. doi: 10.1049/pbte044e.spa
dc.relation.referencesR. B. Blackman and J. W. Tukey, “The Measurement of Power Spectra from the Point of View of Communications Engineering — Part II,” Bell System Technical Journal, vol. 37, no. 2, 1958, doi: 10.1002/j.1538-7305.1958.tb01530.x.spa
dc.relation.referencesF. J. Harris, “On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform,” Proceedings of the IEEE, vol. 66, no. 1, 1978, doi: 10.1109/PROC.1978.10837.spa
dc.relation.referencesChegg, “Problem 8 (Window Functions),” https://www.chegg.com/homework-help/questions-and-answers/problem-8-window-functions-figure-71-shows-three-window-functions-corresponding-amplitude--q51974895.spa
dc.relation.referencesS. W. Smith, Properties of Convolution:The Scientist and Engineer’s Guide to Digital Signal Processing. 1999.spa
dc.relation.referencesS. Bon, M. Vigny, and J. Massoulie, “Order A Journal On The Theory Of Ordered Sets And Its Applications,” Biochemistry, vol. 76, no. 6, 1979.spa
dc.relation.referencesW. K. Chen, Passive, active, and digital filters. 2009. doi: 10.1201/9781315219141.spa
dc.relation.referencesR. B. Randall, J. Antoni, and P. Borghesani, “Applied Digital Signal Processing,” in Handbook of Experimental Structural Dynamics, 2020. doi: 10.1007/978-1-4939-6503-8_6-1.spa
dc.relation.referencesR. Holmes, “Applied Underwater Acoustics,” Physics Bulletin, vol. 18, no. 1, 1967, doi: 10.1088/0031-9112/18/1/021.spa
dc.relation.referencesA. Borghetti, M. Bosetti, M. di Silvestro, C. A. Nucci, and M. Paolone, “Continuous-wavelet transform for fault location in distribution power networks: Definition of mother wavelets inferred from fault originated transients,” IEEE Transactions on Power Systems, 2008, doi: 10.1109/TPWRS.2008.919249.spa
dc.relation.referencesT. Carsey and J. Harden, Monte Carlo Simulation and Resampling Methods for Social Science. 2014. doi: 10.4135/9781483319605.spa
dc.relation.referencesMATHWORKS, “FILTER REFERENCE,” https://la.mathworks.com/help/matlab/ref/filter.html.spa
dc.relation.referencesK. P. Balanda and H. L. Macgillivray, “Kurtosis: A critical review,” American Statistician, vol. 42, no. 2, 1988, doi: 10.1080/00031305.1988.10475539.spa
dc.relation.referencesMATHWORKS, “KURTOSIS REFERENCE,” https://la.mathworks.com/help/stats/kurtosis.html.spa
dc.relation.referencesATRIA Innovation, “Qué son las redes neuronales y sus funciones,” https://www.atriainnovation.com/que-son-las-redes-neuronales-y-sus-funciones/, Oct. 19, 2019.spa
dc.relation.referencesB. Yegnanarayana, “Artificial neural networks for pattern recognition,” Sadhana, vol. 19, no. 2, 1994, doi: 10.1007/BF02811896.spa
dc.relation.referencesK. Mehrotra, C. Mohan, and S. Ranka, Elements of Artificial Neural Networks. 2019. doi: 10.7551/mitpress/2687.001.0001.spa
dc.relation.referencesI. N. da Silva, D. H. Spatti, R. A. Flauzino, L. H. B. Liboni, and S. F. dos Reis Alves, Artificial neural networks: A practical course. 2016. doi: 10.1007/978-3-319-43162-8.spa
dc.relation.referencesP. J. Braspenning, F. Thuijsman, and A. Weijters, Artificial neural networks: an introduction to ANN theory and practice, vol. 931. 1995.spa
dc.relation.referencesPICO, “https://www.pico.net/kb/the-role-of-bias-in-neural-networks/,” https://www.pico.net/kb/the-role-of-bias-in-neural-networks/.spa
dc.relation.referencesR. Tadeusiewicz, “Neural networks: A comprehensive foundation,” Control Engineering Practice, vol. 3, no. 5, 1995, doi: 10.1016/0967-0661(95)90080-2.spa
dc.relation.referencesI. S. Korovin and M. v. Khisamutdinov, “Hybrid method of dynamograms wavelet analysis for oil-production equipment state identification,” in Advanced Materials Research, 2014, vol. 909. doi: 10.4028/www.scientific.net/AMR.909.252.spa
dc.relation.referencesJ. Villanueva, “Redes neuronales desde cero (I) – Introducción,” https://www.iartificial.net/redes-neuronales-desde-cero-i-introduccion/.spa
dc.relation.referencesIEEE, “IEEE PES Test Feeder,” https://cmte.ieee.org/pes-testfeeders/resources/.spa
dc.relation.referencesDistribution System Analysis Subcommittee IEEE, “IEEE 13 Node Test Feeder.”spa
dc.relation.referencesD. A. Sánchez Muñoz, “Estrategia de detección y localización de fallas para el esquema de protección distancia en redes con alta penetración de energía renovable de tipo eólica,” Medellín, 2020.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresspa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.lembLocalización de fallas eléctricas
dc.subject.lembElectric fault location
dc.subject.lembElectric power distribution
dc.subject.lembDistribución de energía eléctrica
dc.subject.proposalTransformada Waveletspa
dc.subject.proposalAnálisis de Fallas Eléctricasspa
dc.subject.proposalSistemas de Distribución de Energía Eléctricaspa
dc.subject.proposalFunciones Madrespa
dc.subject.proposalRespuesta al Impulso de Filtros Digitalesspa
dc.subject.proposalWavelet Transformeng
dc.subject.proposalElectric Fault Analysiseng
dc.subject.proposalPower Distribution Systemseng
dc.subject.proposalMother Functionseng
dc.subject.proposalDigital Filter Impulse Responseeng
dc.titleDetección y clasificación de fallas eléctricas en sistemas de distribución de energía eléctrica mediante el uso de la transformada wavelet continua y funciones madre de soporte infinitospa
dc.title.translatedDetection and classification of electrical faults in electrical power distribution systems using the continuous wavelet transform and infinite support mother functionseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1037650152.2022.pdf
Tamaño:
4.17 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Eléctrica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: