Efectividad del ejercicio físico en pacientes con prediabetes sobre el control glucémico: Protocolo para una revisión sistemática

dc.contributor.advisorAina Maria, Yañez Juan
dc.contributor.advisorMancera Soto, Erica Mabel
dc.contributor.authorHernández Bermúdez, Ivonne Carolina
dc.date.accessioned2021-06-25T18:40:31Z
dc.date.available2021-06-25T18:40:31Z
dc.date.issued2021
dc.description.abstractIntroducción. La prediabetes es un estado prepatológico de la diabetes mellitus tipo 2 (DM2), patología que se ha convertido en uno de los principales problemas de salud mundial, lo que la convierte en uno de los temas de interés para los profesionales sanitarios y las entidades estatales. Adyacente al padecimiento de este proceso patológico aparecen complicaciones crónicas tanto a nivel microvascular como macrovascular, que inciden en una mayor morbimortalidad, en una alteración en la calidad de vida de esta población. El uso de estrategias enfocadas en los estilos de vida puede disminuir la incidencia de esta enfermedad mediante la adopción de una alimentación saludable y una práctica de ejercicio físico regular. Objetivo. Evaluar la efectividad del ejercicio físico en pacientes con prediabetes sobre el control glucémico mediante una revisión sistemática. Diseño. La metodología del diseño de este estudio es investigación secundaria tipo revisión sistemática. Participantes. Se incluirán ensayos clínicos controlados aleatorios (ECA), en los cuales la principal estrategia de intervención esté basada en programas de entrenamiento físico con un mínimo de 8 a 12 semanas. Intervenciones. Estrategias basadas en las diferentes modalidades de entrenamiento físico, como la capacidad aeróbica en sus diferentes modalidades tanto en intensidad moderada, como entrenamiento interválico de alta intensidad, entrenamiento de resistencia, flexibilidad y/o la combinación entre cada una de estas modalidades. Se evaluó la calidad, riesgo de sesgo y heterogeneidad de los resultados. Resultados. Incluimos para nuestro análisis 20 artículos que fueron analizados cuantitativamente, todos ensayos clínicos que cumplieron con los criterios PICOT. Las principales modalidades de ejercicio físico que se utilizaron en los estudios fue el entrenamiento aeróbico (continuo como interválico con sus variantes en intensidad), entrenamiento de resistencia y/o la combinación entre estas modalidades de ejercicio físico. De acuerdo con la evaluación realizada, en el análisis de riesgo de sesgo se encontró un riesgo incierto en 10 de los artículos analizado que determinan la falta de rigor metodológico, a cambio de 4 artículos de investigación que cumplen con los criterios de minimización de riesgo de sesgo. La extracción de datos arrojó principalmente 3 variables glucocéntricas y 2 variables secundarias antropométricas adicionales que fueron objeto del análisis cuantitativo: FBG (Glucosa plasmática en ayunas), 2hGB (Glucosa plasmática en 2 horas, HbA1c (Hemoglobina glucosilada), IMC (Índice de masa corporal), % Masa grasa. Los datos obtenidos se dividieron según el grado de heterogeneidad, encontrando que tres de las variables de medición presentaron una heterogeneidad baja en los grupos principalmente de entrenamiento de resistencia y entrenamiento interválico de alta intensidad, que permitió la realización de un análisis metaanalítico del efecto de la intervención en relación con el protocolo de entrenamiento físico utilizado en cada estudio. Conclusiones. La aplicación de programas de entrenamiento físico es eficaz en personas con prediabetes para reducir el riesgo de diabetes mellitus tipo 2, mejorando el estado general de la salud, la tolerancia a la glucosa, la composición corporal y la tolerancia al ejercicio.spa
dc.description.abstractIntroduction. Prediabetes is a prepathological state of type 2 diabetes mellitus (DM2), a pathology that has become one of the world's leading health problems, making it one of the topics of interest for healthcare professionals and state entities. Adjacent to the condition of this pathological process are chronic complications both at the microvascular and macrovascular level, which affect a greater morbidity, an alteration in the quality of life of this population. The use of lifestyle-focused strategies can decrease the incidence of lifestyles by adopting healthy eating and regular physical exercise practice. Objective. Evaluate the effectiveness of physical exercise in patients with prediabetes on glycaemic control through systematic review. Design. The design methodology of this study is secondary research type systematic review. Participants. Randomized controlled clinical trials (ECA) will be included, in which the main intervention strategy is based on physical training programs with a minimum of 8 to 12 weeks. Interventions. Strategies based on the different modalities of physical training, such as aerobic capacity in their different modalities in both moderate intensity, high intensity intervalic training, resistance training, flexibility and / or the combination between each of these modalities. The quality, risk of bias and heterogeneity of the results were assessed. Results. We included for our analysis 20 articles that were quantitatively analyzed, all clinical trials that met the PICOT criteria. The main modalities of physical exercise that were used in the studies were aerobic training (continuous as an intercom with its variants in intensity), resistance training and/or the combination between these types of physical exercise. According to the assessment carried out, the bias risk analysis found an uncertain risk in 10 of the analyzed articles that determine the lack of methodological rigor, in exchange for 4 research articles that meet the bias risk minimisation criteria. The extraction of data mainly yielded 3 glucocenetric variables and 2 additional anthropometric secondary variables that were subject to quantitative analysis: FBG (Fasting Plasma Glucose), 2hGB (Plasma Glucose in 2 hours, HbA1c (Glucosylated Hemoglobin), BMI (Body Mass Index), % Fat Mass. The data obtained were divided according to the degree of heterogeneity, finding that three of the measurement variables had low heterogeneity in the mainly high intensity resistance training and intervalic training groups, which allowed a metaanalytic analysis of the effect of intervention in relation to the physical training protocol used in each study. Conclusions. The application of physical training programs is effective in people with prediabetes to reduce the risk of type 2 diabetes mellitus, improving overall health, glucose tolerance, body composition and exercise tolerance.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Fisioterapia del deporte y la actividad físicaspa
dc.description.methodsRevisión Sistemática - Metaanálisisspa
dc.description.researchareaKinesiologíaspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79729
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Movimiento Corporal Humanospa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Medicina - Maestría en Fisioterapia del Deporte y la Actividad Físicaspa
dc.relation.referencesAbdul-Ghani, M. A., Jenkinson, C. P., Richardson, D. K., Tripathy, D., & DeFronzo, R. A. (2006). Insulin secretion and action in subjects with impaired fasting glucose and impaired glucose tolerance: Results from the veterans administration genetic epidemiology study. Diabetes, 55(5), 1430–1435. https://doi.org/10.2337/db05-1200spa
dc.relation.referencesADA. (2020). 1. Improving care and promoting health in populations: Standards of medical care in diabetes-2020. Diabetes Care, 43(January), S7–S13. https://doi.org/10.2337/dc20-S001spa
dc.relation.referencesAdeniyi, A. F., Uloko, A. E., Ogwumike, O. O., Sanya, A. O., & Fasanmade, A. A. (2013). Time course of improvement of metabolic parameters after a 12 week physical exercise programme in patients with type 2 diabetes: the influence of gender in a nigerian population. BioMed Research International, 2013, 310574. https://doi.org/2013/310574spa
dc.relation.referencesAguiar, E. J., Morgan, P. J., Collins, C. E., Plotnikoff, R. C., & Callister, R. (2014). Efficacy of interventions that include diet, aerobic and resistance training components for type 2 diabetes prevention: a systematic review with meta-analysis. International Journal of Behavioral Nutrition and Physical Activity, 11(1), 2. https://doi.org/10.1186/1479-5868-11-2spa
dc.relation.referencesAlvarez, C., Ramírez, R., Flores, M., Zúñiga, C., & Celis-Morales, C. A. (2012). Efectos del ejercicio físico de alta intensidad y sobrecarga en parámetros de salud metabólica en mujeres sedentarias, pre-diabéticas con sobrepeso u obesidad. Rev Med Chil, 140(10), 1289–1296. http://www.scielo.cl/scielo.php?script=sci_arttext&nrm=iso&lng=pt&tlng=pt&pid=S0034-98872012001000008spa
dc.relation.referencesAndonian, B. J., Bartlett, D. B., Huebner, J. L., Willis, L., Hoselton, A., Kraus, V. B., Kraus, W. E., & Huffman, K. M. (2018). Effect of high-intensity interval training on muscle remodeling in rheumatoid arthritis compared to prediabetes. Arthritis Research and Therapy, 20(1), 1–9. https://doi.org/10.1186/s13075-018-1786-6spa
dc.relation.referencesAroda, V. R., & Ratner, R. (2008). Approach to the patient with prediabetes. Journal of Clinical Endocrinology and Metabolism, 93(9), 3259–3265. https://doi.org/10.1210/jc.2008-1091spa
dc.relation.referencesBailey, K. J., Little, J. P., & Jung, M. E. (2016). Self-Monitoring Using Continuous Glucose Monitors with Real-Time Feedback Improves Exercise Adherence in Individuals with Impaired Blood Glucose: A Pilot Study. Diabetes Technology & Therapeutics, 18(3), 185–193. https://doi.org/10.1089/dia.2015.0285spa
dc.relation.referencesBartholomae, E., Johnson, Z., Moore, J., Ward, K., & Kressler, J. (2018). Reducing Glycemic Indicators with Moderate Intensity Stepping of Varied, Short Durations in People with Pre-Diabetes. Journal of Sports Science & Medicine, 17(4), 680‐685. https://www.cochranelibrary.com/central/doi/10.1002/central/CN-01667004/fullspa
dc.relation.referencesBartlett, D. B., Slentz, C. A., Connelly, M. A., Piner, L. W., Willis, L. H., Bateman, L. A., Granville, E. O., Bales, C. W., Huffman, K. M., & Kraus, W. E. (2017). Association of the Composite Inflammatory Biomarker GlycA, with Exercise-Induced Changes in Body Habitus in Men and Women with Prediabetes. Oxid Med Cell Longev, 2017, 5608287. https://dx.doi.org/10.1155/2017/5608287spa
dc.relation.referencesBittel, A., Bittel, D., Patterson, B. W., Mittendorfer, B., & Cade, W. T. (2018). Acute resistance exercise improves postprandial lipid metabolism in men with obesity and prediabetes. Diabetes, 67, A192‐. https://www.cochranelibrary.com/central/doi/10.1002/central/CN-01631410/fullspa
dc.relation.referencesBourne, J. E., Little, J. P., Beauchamp, M. R., Barry, J., Singer, J., & Jung, M. E. (2019). Brief Exercise Counseling and High-Intensity Interval Training on Physical Activity Adherence and Cardiometabolic Health in Individuals at Risk of Type 2 Diabetes: Protocol for a Randomized Controlled Trial. JMIR Res Protoc, 8(3), e11226–e11226. https://dx.doi.org/10.2196/11226spa
dc.relation.referencesBurtscher, M., Gatterer, H., Dünnwald, T., Pesta, D., Faulhaber, M., Netzer, N., Koch, R., König, K., & Ulmer, H. (2012). Effects of supervised exercise on gamma-glutamyl transferase levels in patients with isolated impaired fasting glucose and those with impaired fasting glucose plus impaired glucose tolerance. Experimental and Clinical Endocrinology and Diabetes, 120(8), 445–450. https://doi.org/10.1055/s-0032-1311642spa
dc.relation.referencesBurtscher, Martin, Gatterer, H., Kunczicky, H., Brandstätter, E., & Ulmer, H. (2009). Supervised exercise in patients with impaired fasting glucose: Impact on exercise capacity. Clinical Journal of Sport Medicine, 19(5), 394–398. https://doi.org/10.1097/JSM.0b013e3181b8b6dcspa
dc.relation.referencesCheng, S., Ge, J., Zhao, C., Le, S., Yang, Y., Ke, D., Wu, N., Tan, X., Zhang, X., Du, X., & et al. (2017). Effect of aerobic exercise and diet on liver fat in pre-diabetic patients with non-alcoholic-fatty-liver-disease: a randomized controlled trial. Scientific Reports, 7(1), 15952. https://doi.org/10.1038/s41598-017-16159-xspa
dc.relation.referencesCheng, S., Ge, J., Zhao, C., Wiklund, P., Le, S., Yang, Y., Ke, D., Wu, N., Tan, X., Sun, J., & et al. (2016). Effects of aerobic exercise and diet intervention on glycaemic control and liver fat content in men and women aged 50-65 years with prediabetes and nonalcoholic fatty liver disease: a multicentre, randomised controlled trial. The Lancet Diabetes and Endocrinology, 4(SPEC. ISSUE 3), S7‐. https://doi.org/10.1016/S2213-8587(16)30362-Xspa
dc.relation.referencesCobos-Carbó, A., & Augustovski, F. (2011). Declaración CONSORT 2010: actualización de la lista de comprobación para informar ensayos clínicos aleatorizados de grupos paralelos. Medicina Clinica, 137(5), 213–215. https://doi.org/10.1016/j.medcli.2010.09.034spa
dc.relation.referencesColberg, S. (2010). Exercise and type 2 diabetes: American College of Sports Medicine and the American Diabetes Association: Joint Position Statement. Medicine and Science in Sports and Exercise, 42(12), 2282–2303. https://doi.org/10.1249/MSS.0b013e3181eeb61cspa
dc.relation.referencesColberg, S. R., Sigal, R. J., Fernhall, B., Regensteiner, J. G., Blissmer, B. J., Rubin, R. R., Chasan-Taber, L., Albright, A. L., & Braun, B. (2010). Exercise and Type 2 Diabetes. Diabetes Care, 33(12), 2692 LP – 2696. https://doi.org/10.2337/dc10-1548spa
dc.relation.referencesDai, X., Zhai, L., Chen, Q., Miller, J. D., Lu, L., Hsue, C., Liu, L., Yuan, X., Wei, W., Ma, X., Fang, Z., Zhao, W., Liu, Y., Huang, F., & Lou, Q. (2019). Two-year-supervised resistance training prevented diabetes incidence in people with prediabetes: A randomised control trial. Diabetes/Metabolism Research and Reviews, 35(5), e3143. https://doi.org/https://doi.org/10.1002/dmrr.3143spa
dc.relation.referencesDavy, B. M., Winett, R. A., Savla, J., Marinik, E. L., Baugh, M. E., Flack, K. D., Halliday, T. M., Kelleher, S. A., Winett, S. G., Williams, D. M., & Boshra, S. (2017). Resist diabetes: A randomized clinical trial for resistance training maintenance in adults with prediabetes. PLoS One, 12(2), e0172610. https://doi.org/10.1371/journal.pone.0172610spa
dc.relation.referencesDesch, S., Sonnabend, M., Niebauer, J., Sixt, S., Sareban, M., Eitel, I., de Waha, S., Thiele, H., Bluher, M., & Schuler, G. (2010). Effects of physical exercise versus rosiglitazone on endothelial function in coronary artery disease patients with prediabetes. Diabetes, Obesity & Metabolism 2010 Sep;12(9):825-828.spa
dc.relation.referencesDunstan, D. W., De Courten, M., Shaw, J., Zimmet, P., Daly, R. M., Jolley, D., & Owen, N. (2002). High-intensity resistance training improves glycemic control in older patients with type 2 diabetes. Diabetes Care, 25(10), 1729–1736. https://doi.org/10.2337/diacare.25.10.1729spa
dc.relation.referencesEichner, N Z M, Gilbertson, N. M., Heiston, E. M., Musante, L., la Salvia, S., Weltman, A., Erdbrugger, U., & Malin, S. K. (2020). Interval exercise lowers circulating CD105 extracellular vesicles in prediabetes. Medicine and Science in Sports and Exercise 2020 Mar;52(3):729-735spa
dc.relation.referencesEichner, Natalie Z M, Gaitán, J. M., Gilbertson, N. M., Khurshid, M., Weltman, A., & Malin, S. K. (2019). Postprandial augmentation index is reduced in adults with prediabetes following continuous and interval exercise training. Exp Physiol, 104(2), 264–271. https://dx.doi.org/10.1113/EP087305spa
dc.relation.referencesEikenberg, J D, Savla, J., Marinik, E. L., Davy, K. P., Pownall, J., Baugh, M. E., Flack, K. D., Boshra, S., Winett, R. A., & Davy, B. M. (2016). Prediabetes Phenotype Influences Improvements in Glucose Homeostasis with Resistance Training. PLoS One, 11(2), e0148009. https://doi.org/10.1371/journal.pone.0148009spa
dc.relation.referencesEikenberg, Joshua D., & Davy, B. M. (2013). Prediabetes: A Prevalent and Treatable, but Often Unrecognized, Clinical Condition. Journal of the Academy of Nutrition and Dietetics, 113(2), 213–218. https://doi.org/10.1016/j.jand.2012.10.018spa
dc.relation.referencesFærch, K., Amadid, H., Nielsen, L. B., Ried-Larsen, M., Karstoft, K., Persson, F., & Jørgensen, M. E. (2017). Protocol for a randomised controlled trial of the effect of dapagliflozin, metformin and exercise on glycaemic variability, body composition and cardiovascular risk in prediabetes (the PRE-D Trial). BMJ Open, 7(5), e013802. https://doi.org/10.1136/bmjopen-2016-013802spa
dc.relation.referencesFaerch, K., Blond, M. B., Bruhn, L., Amadid, H., Vistisen, D., Clemmensen, K. K. B., Vaino, C. T. R., Pedersen, C., Tvermosegaard, M., Dejgaard, T. F., Karstoft, K., Ried-Larsen, M., Persson, F., & Jorgensen, M. E. (2021). The effects of dapagliflozin, metformin or exercise on glycaemic variability in overweight or obese individuals with prediabetes (the PRE-D Trial): a multi-arm, randomised, controlled trial. Diabetologia, 64(1), 42–55. https://doi.org/10.1007/s00125-020-05306-1spa
dc.relation.referencesFerrer-García, J. C., Sánchez López, P., Pablos-Abella, C., Albalat-Galera, R., ElviraMacagno, L., Sánchez-Juan, C., & Pablos-Monzó, A. (2011). Beneficios de un programa ambulatorio de ejercicio físico en sujetos mayores con diabetes mellitus tipo 2. Endocrinología y Nutrición, 58(8), 387–394. https://doi.org/https://doi.org/10.1016/j.endonu.2011.05.010spa
dc.relation.referencesFrank, P., Andersson, E., Pontén, M., Ekblom, B., Ekblom, M., & Sahlin, K. (2016). Strength training improves muscle aerobic capacity and glucose tolerance in elderly. Scandinavian Journal of Medicine & Science in Sports, 26(7), 764–773. https://doi.org/10.1111/sms.12537spa
dc.relation.referencesFritz, T., Caidahl, K., Krook, A., Lundström, P., Mashili, F., Osler, M., Szekeres, F. L., Östenson, C. G., Wändell, P., & Zierath, J. R. (2013). Effects of Nordic walking on cardiovascular risk factors in overweight individuals with type 2 diabetes, impaired or normal glucose tolerance. Diabetes Metab Res Rev, 29(1), 25–32. https://doi.org/10.1002/dmrr.2321spa
dc.relation.referencesGaitán, J. M., Eichner, N. Z. M., Gilbertson, N. M., Heiston, E. M., Weltman, A., & Malin, S. K. (2019). Two Weeks of Interval Training Enhances Fat Oxidation during Exercise in Obese Adults with Prediabetes. Journal of Sports Science & Medicine, 18(4), 636–644. https://pubmed.ncbi.nlm.nih.gov/31827347spa
dc.relation.referencesGalassetti, P., & Riddell, M. C. (2013). Exercise and type 1 diabetes (T1DM). Comprehensive Physiology, 3(3), 1309–1336. https://doi.org/10.1002/cphy.c110040spa
dc.relation.referencesGarcía De La Torre, N., Durán, A., Del Valle, L., Fuentes, M., Barca, I., Martín, P., Montañez, C., Perez-Ferre, N., Abad, R., Sanz, F., Galindo, M., Rubio, M. A., & CallePascual, A. L. (2013). Early management of type 2 diabetes based on a SMBG strategy: The way to diabetes regression - The St Carlos study: A 3-year, prospective, randomized, clinic-based, interventional study with parallel groups. Acta Diabetologica, 50(4), 607–614. https://doi.org/10.1007/s00592-013-0467-9spa
dc.relation.referencesGay, J. L., Buchner, D. M., Erickson, M. L., & Lauture, A. (2018). Effect of short bouts of high intensity activity on glucose among adults with prediabetes: A pilot randomized crossover study. Diabetes Res Clin Pract, 141, 168–174. https://dx.doi.org/10.1016/j.diabres.2018.04.045spa
dc.relation.referencesGeirsdottir, O. G., Arnarson, A., Briem, K., Ramel, A., Jonsson, P. V, & Thorsdottir, I. (2012). Effect of 12-week resistance exercise program on body composition, muscle strength, physical function, and glucose metabolism in healthy, insulin-resistant, and diabetic elderly icelanders. Journals of Gerontology Series A: Biological Sciences & Medical Sciences, 67(11), 1259–1265. https://doi.org/10.1093/gerona/gls096spa
dc.relation.referencesGidlund, E. K., von Walden, F., Venojärvi, M., Risérus, U., Heinonen, O. J., Norrbom, J., & Sundberg, C. J. (2016). Humanin skeletal muscle protein levels increase after resistance training in men with impaired glucose metabolism. Physiol Rep, 4(23). https://doi.org/10.14814/phy2.13063spa
dc.relation.referencesGilbertson, N M, Mandelson, J. A., Hilovsky, K., Akers, J. D., Hargens, T. A., Wenos, D. L., & Edwards, E. S. (2019). Combining supervised run interval training or moderateintensity continuous training with the diabetes prevention program on clinical outcomes. Eur J Appl Physiol, 119(7), 1503–1512. https://doi.org/10.1007/s00421-019-04137-2spa
dc.relation.referencesGilbertson, Nicole M, Eichner, N. Z. M., Francois, M., Gaitán, J. M., Heiston, E. M., Weltman, A., & Malin, S. K. (2018). Glucose Tolerance is Linked to Postprandial Fuel Use Independent of Exercise Dose. Med Sci Sports Exerc, 50(10), 2058–2066. https://dx.doi.org/10.1249/MSS.0000000000001667spa
dc.relation.referencesGlechner, A., Keuchel, L., Affengruber, L., Titscher, V., Sommer, I., Matyas, N., Wagner, G., Kien, C., Klerings, I., & Gartlehner, G. (2018). Effects of lifestyle changes on adults with prediabetes: A systematic review and meta-analysis. Primary Care Diabetes, 12(5), 393–408. https://doi.org/10.1016/j.pcd.2018.07.003spa
dc.relation.referencesGram, B., Christensen, R., Christiansen, C., & Gram, J. (2010). Effects of Nordic Walking and Exercise in Type 2 Diabetes Mellitus: A Randomized Controlled Trial. Clinical Journal of Sport Medicine, 20(5), 355–361. http://search.ebscohost.com/login.aspx?direct=true&db=c8h&AN=53776691&lang=es&site=ehost-livespa
dc.relation.referencesGray, A., Turner, R., Raikou, M., McGuire, A., Fenn, P., Stevens, R., Cull, C., Stratton, I., Adler, A., & Holman, R. (2000). Cost effectiveness of an intensive blood glucose control policy in patients with type 2 diabetes: Economic analysis alongside randomised controlled trial (UKPDS 41). British Medical Journal, 320(7246), 1373–1378. https://doi.org/10.1136/bmj.320.7246.1373spa
dc.relation.referencesHalliday, T M, Davy, B. M., Clark, A. G., Baugh, M. E., Hedrick, V. E., Marinik, E. L., Flack, K. D., Savla, J., Winett, S., & Winett, R. A. (2014). Dietary intake modification in response to a participation in a resistance training program for sedentary older adults with prediabetes: Findings from the Resist Diabetes study. Eat Behav, 15(3), 379–382. https://doi.org/10.1016/j.eatbeh.2014.04.004spa
dc.relation.referencesHalliday, Tanya M., Savla, J., Marinik, E. L., Hedrick, V. E., Winett, R. A., & Davy, B. M. (2017). Resistance training is associated with spontaneous changes in aerobic physical activity but not overall diet quality in adults with prediabetes. Physiology and Behavior, 177, 49–56. https://doi.org/10.1016/j.physbeh.2017.04.013spa
dc.relation.referencesHalter, J. B. (2011). Aging and insulin secretion. Handbook of the Biology of Aging, 4, 373–384. https://doi.org/10.1016/B978-0-12-378638-8.00017-8spa
dc.relation.referencesHansen, E., Landstad, B. J., Gundersen, K. T., Torjesen, P. A., & Svebak, S. (2012). Insulin sensitivity after maximal and endurance resistance training. J Strength Cond Res, 26(2), 327–334. https://doi.org/10.1519/JSC.0b013e318220e70fspa
dc.relation.referencesHare, J. L., Hordern, M. D., Leano, R., Stanton, T., Prins, J. B., & Marwick, T. H. (2011). Application of an exercise intervention on the evolution of diastolic dysfunction in patients with diabetes mellitus: efficacy and effectiveness. Circulation. Heart Failure, 4(4), 441–449. https://doi.org/10.1161/CIRCHEARTFAILURE.110.959312spa
dc.relation.referencesHari, A., Fealy, C., Solomon, T. P. J., Haus, J. M., Kelly, K. R., Barkoukis, H., & Kirwan, J. P. (2019). Exercise-induced improvements in glucose effectiveness are blunted by a high glycemic diet in adults with prediabetes. Acta Diabetol, 56(2), 211–217. https://doi.org/10.1007/s00592-018-1272-2spa
dc.relation.referencesHeiskanen, M. A., Motiani, K. K., Mari, A., Saunavaara, V., Eskelinen, J. J., Virtanen, K. A., Koivumäki, M., Löyttyniemi, E., Nuutila, P., Kalliokoski, K. K., & Hannukainen, J. C. (2018). Exercise training decreases pancreatic fat content and improves beta cell function regardless of baseline glucose tolerance: a randomised controlled trial. Diabetologia, 61(8), 1817–1828. https://doi.org/10.1007/s00125-018-4627-xspa
dc.relation.referencesHeiskanen, M. A., Sjöros, T. J., Heinonen, I. H. A., Löyttyniemi, E., Koivumäki, M., Motiani, K. K., Eskelinen, J. J., Virtanen, K. A., Knuuti, J., Hannukainen, J. C., & Kalliokoski, K. K. (2017). Sprint interval training decreases left-ventricular glucose uptake compared to moderate-intensity continuous training in subjects with type 2 diabetes or prediabetes. Scientific Reports, 7(1), 1–11. https://doi.org/10.1038/s41598-017-10931-9spa
dc.relation.referencesHeiston, E. M., Eichner, N. Z., Gilbertson, N. M., & Malin, S. K. (2020). Exercise improves adiposopathy, insulin sensitivity and metabolic syndrome severity independent of intensity. Experimental Physiology, 105(4), 632–640. https://doi.org/10.1113/ep088158spa
dc.relation.referencesHesselink, A. E., Bilo, H. J., Jonkers, R., Martens, M., de Weerdt, I., & Rutten, G. E. (2013). cluster-randomized controlled trial to study the effectiveness of a protocol-based lifestyle program to prevent type 2 diabetes in people with impaired fasting glucose. BMC Fam Pract, 14, 184. https://doi.org/10.1186/1471-2296-14-184spa
dc.relation.referencesHollekim-Strand, S. M., Bjørgaas, M. R., Albrektsen, G., Tjønna, A. E., Wisløff, U., & Ingul, C. B. (2014). High-Intensity Interval Exercise Effectively Improves Cardiac Function in Patients With Type 2 Diabetes Mellitus and Diastolic Dysfunction. Journal of the American College of Cardiology, 64(16), 1758–1760. https://doi.org/doi:10.1016/j.jacc.2014.07.971spa
dc.relation.referencesHonkala, S. M., Johansson, J., Motiani, K. K., Eskelinen, J. J., Virtanen, K. A., Loyttyniemi, E., Nuutila, P., Knuuti, J., Kalliokoski, K. K., & Hannukainen, J. C. (2016). Highintensity interval training changes insulin stimulated cerebral glucose uptake of in subjects with impaired glucose tolerance. Diabetologia, 59(1), S91‐S92. https://doi.org/10.1007/s00125-016-4046-9spa
dc.relation.referencesInzucchi, S. E., Bergenstal, R. M., Buse, J. B., Diamant, M., Ferrannini, E., Nauck, M., Peters, A. L., Tsapas, A., Wender, R., & Matthews, D. R. (2012). Management of hyperglycemia in type 2 diabetes: A patient-centered approach. Diabetes Care, 35(6), 1364–1379. https://doi.org/10.2337/dc12-0413spa
dc.relation.referencesJadhav, R. A., Hazari, A., Monterio, A., Kumar, S., & Maiya, A. G. (2017). Effect of Physical Activity Intervention in Prediabetes: A Systematic Review With Meta-analysis. Journal of Physical Activity & Health, 14(9), 745–755. https://doi.org/10.1123/jpah.2016-0632spa
dc.relation.referencesJanna Lindstr et al. (2003). The Finnish Diabetes Prevention Study (DPS). Diabetes Care, 26(12).spa
dc.relation.referencesJennings, A. E., Alberga, A., Sigal, R. J., Jay, O., Boulé, N. G., & Kenny, G. P. (2009). The effect of exercise training on resting metabolic rate in type 2 diabetes mellitus. Medicine & Science in Sports & Exercise, 41(8), 1558–1565. https://doi.org/10.1249/MSS.0b013e31819d6a6fspa
dc.relation.referencesJung, M. E., Bourne, J. E., Beauchamp, M. R., Robinson, E., & Little, J. P. (2015). Highintensity interval training as an efficacious alternative to moderate-intensity continuous training for adults with prediabetes. J Diabetes Res, 2015, 191595. https://dx.doi.org/10.1155/2015/191595spa
dc.relation.referencesKarstoft, K., Winding, K., Knudsen, S. H., Nielsen, J. S., Thomsen, C., Pedersen, B. K., & Solomon, T. P. J. (2013). The effects of free-living interval-walking training on glycemic control, body composition, and physical fitness in type 2 diabetic patients: a randomized, controlled trial. Diabetes Care, 36(2), 228–236. https://doi.org/10.2337/dc12-0658spa
dc.relation.referencesKawamori, R. (2010). Voglibose for the prevention of type 2 diabetes mellitus: a randomised, double-blind trial in Japanese subjects with impaired glucose tolerance. Nihon Rinsho [Japanese Journal of Clinical Medicine], 68(5), 873‐881. https://www.cochranelibrary.com/central/doi/10.1002/central/CN-00752103/fullspa
dc.relation.referencesKluding, P. M., Pasnoor, M., Singh, R., D’Silva, L. J., Min, Y., Billinger, S. A., LeMaster, J. W., Dimachkie, M. M., Herbelin, L., & Wright, D. E. (2015). Safety of Aerobic Exercise in People With Diabetic Peripheral Neuropathy: Single-Group Clinical Trial. Physical Therapy, 95(2), 223–234. https://doi.org/10.2522/ptj.20140108spa
dc.relation.referencesKnowler, W. C., Barrett-Connor, E., Fowler, S. E., Hamman, R. F., Lachin, J. M., Walker, E. A., & Nathan, D. M. (2002). Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. New England Journal of Medicine, 346(6), 393–403. https://doi.org/10.1056/NEJMoa012512spa
dc.relation.referencesKorhonen, M., Halmesmäki, K., Lepäntalo, M., & Venermo, M. (2012). Predictors of failure of endovascular revascularization for critical limb ischemia Background and Aims : To characterize predictors of failure when treating critical limb regression model was used in the multivariate analysis . as well as endovascular re-. 118(4), 170–176. https://doi.org/10.1161/CIRCULATIONAHA.108.772822.Aerobicspa
dc.relation.referencesKundu, N., Domingues, C. C., Nylen, E. S., Paal, E., Kokkinos, P., & Sen, S. (2019). Endothelium-Derived Factors Influence Differentiation of Fat-Derived Stromal Cells Post-Exercise in Subjects with Prediabetes. Metab Syndr Relat Disord, 17(6), 314–322. https://doi.org/10.1089/met.2018.0121spa
dc.relation.referencesLambers, S., Van Laethem, C., Van Acker, K., & Calders, P. (2008). Influence of combined exercise training on indices of obesity, diabetes and cardiovascular risk in type 2 diabetes patients. Clinical Rehabilitation, 22(6), 483–492. https://doi.org/10.1177/0269215508084582spa
dc.relation.referencesLarose, J., Sigal, R. J., Boulé, N. G., Wells, G. A., Prud’homme, D., Fortier, M. S., Reid, R. D., Tulloch, H., Coyle, D., Phillips, P., Jennings, A., Khandwala, F., & Kenny, G. P. (2010). Effect of exercise training on physical fitness in type II diabetes mellitus. Medicine & Science in Sports & Exercise, 42(8), 1439–1447. https://doi.org/10.1249/MSS.0b013e3181d322ddspa
dc.relation.referencesLee, S., Olsen, T., Vinknes, K. J., Refsum, H., Gulseth, H. L., Birkeland, K. I., & Drevon, C. A. (2018). Plasma Sulphur-Containing Amino Acids, Physical Exercise and Insulin Sensitivity in Overweight Dysglycemic and Normal Weight Normoglycemic Men. Nutrients, 11(1). https://doi.org/10.3390/nu11010010spa
dc.relation.referencesLeemrijse, C. J., van Dijk, L., Jørstad, H. T., Peters, R. J. G., & Veenhof, C. (2012). The effects of Hartcoach, a life style intervention provided by telephone on the reduction of coronary risk factors: a randomised trial. BMC Cardiovascular Disorders, 12, 1–7. https://doi.org/10.1186/1471-2261-12-47spa
dc.relation.referencesLi, G., Zhang, P., Wang, J., An, Y., Gong, Q., Gregg, E. W., Yang, W., Zhang, B., Shuai, Y., Hong, J., Engelgau, M. M., Li, H., Roglic, G., Hu, Y., & Bennett, P. H. (2014). Cardiovascular mortality, all-cause mortality, and diabetes incidence after lifestyle intervention for people with impaired glucose tolerance in the Da Qing Diabetes Prevention Study: A 23-year follow-up study. The Lancet Diabetes and Endocrinology, 2(6), 474–480. https://doi.org/10.1016/S2213-8587(14)70057-9spa
dc.relation.referencesLiao, H. C., Zhong, S. G., Li, P., Chen, W. B., Cheng, C., Wang, Y. G., Wu, P. S., & Xiao, C. (2015). Effects and mechanism of moderate aerobic exercise on impaired fasting glucose improvement. Lipids in Health and Disease, 14, 157. https://doi.org/10.1186/s12944-015-0117-zspa
dc.relation.referencesLindahl, B., Nilssön, T. K., Borch-Johnsen, K., Røder, M. E., Söderberg, S., Widman, L., Johnson, O., Hallmans, G., & Jansson, J.-H. (2009). A randomized lifestyle intervention with 5-year follow-up in subjects with impaired glucose tolerance: pronounced short-term impact but long-term adherence problems. Scandinavian Journal of Public Health, 37(4), 434–442. https://doi.org/10.1177/1403494808101373spa
dc.relation.referencesLiu, W. Y., Lu, D. J., Du, X. M., Sun, J. Q., Ge, J., Wang, R. W., Wang, R., Zou, J., Xu, C., Ren, J., Wen, X. F., Liu, Y., Cheng, S. M., Tan, X., Pekkala, S., Munukka, E., Wiklund, P., Chen, Y. Q., Gu, Q., … Cheng, S. (2014). Effect of aerobic exercise and low carbohydrate diet on pre-diabetic non-alcoholic fatty liver disease in postmenopausal women and middle aged men--the role of gut microbiota composition: study protocol for the AELC rand. BMC Public Health, 14, 48. https://dx.doi.org/10.1186/1471-2458-14-48spa
dc.relation.referencesLiu, X., & Wang, G. (2020). The effect of high-intensity interval training on physical parameters, metabolomic indexes and serum ficolin-3 levels in patients with prediabetes and type 2 diabetes. Exspa
dc.relation.referencesLocke, S. R., Bourne, J. E., Beauchamp, M. R., Little, J. P., Barry, J., Singer, J., & Jung, M. E. (2018). High-Intensity Interval or Continuous Moderate Exercise: A 24-Week Pilot Trial. Med Sci Sports Exerc, 50(10), 2067–2075. https://dx.doi.org/10.1249/MSS.0000000000001668spa
dc.relation.referencesLoimaala, A., Huikuri, H. V, Kööbi, T., Rinne, M., Nenonen, A., Vuori, I., & Kööbi, T. (2003). Exercise training improves baroreflex sensitivity in type 2 diabetes. Diabetes, 52(7), 1837–1842. https://doi.org/10.2337/diabetes.52.7.1837spa
dc.relation.referencesLópez-Jaramillo, P., Calderón, C., Castillo, J., Escobar, I. D., Melgarejo, E., & Parra, G. A. (2017). Prediabetes in Colombia: Expert Consensus. Colombia Médica, 48(4), 191–203. https://doi.org/10.25100/cm.v48i4.3662spa
dc.relation.referencesLou, Q. (2016). β-cell function protection and metabolic effects of 6-month resistance training and aerobic training in prediabetic subjects: a randomized, multicenter controlled trial. Diabetes, 65, A192‐. https://doi.org/10.2337/db16-652-860spa
dc.relation.referencesMackenzie, R., Maxwell, N., Castle, P., Elliott, B., Brickley, G., Watt, P., Mackenzie, R., Maxwell, N., Castle, P., Elliott, B., Brickley, G., & Watt, P. (2012). Intermittent exercise with and without hypoxia improves insulin sensitivity in individuals with type 2 diabetes. Journal of Clinical Endocrinology & Metabolism, 97(4), E546-55. https://doi.org/10.1210/jc.2011-2829spa
dc.relation.referencesMaillard, F., Rousset, S., Pereira, B., Traore, A., de Pradel Del Amaze, P., Boirie, Y., Duclos, M., & Boisseau, N. (2016). High-intensity interval training reduces abdominal fat mass in postmenopausal women with type 2 diabetes. Diabetes & Metabolism, 42(6), 433–441. https://doi.org/10.1016/j.diabet.2016.07.031spa
dc.relation.referencesMalin, S K, Francois, M. E., Eichner, N. Z. M., Gilbertson, N. M., Heiston, E. M., Fabris, C., & Breton, M. (2018). Impact of short-term exercise training intensity on beta-cell function in older obese adults with prediabetes [with consumer summary]. Journal of Applied Physiology 2018 Dec;125(6):1979-1986.spa
dc.relation.referencesMalin, Steven K, Gerber, R., Chipkin, S. R., & Braun, B. (2012). Independent and combined effects of exercise training and metformin on insulin sensitivity in individuals with prediabetes. Diabetes Care, 35(1), 131–136. https://dx.doi.org/10.2337/dc11-0925spa
dc.relation.referencesMalin, Steven K, Gilbertson, N. M., Eichner, N. Z. M., Heiston, E., Miller, S., & Weltman, A. (2019). Impact of Short-Term Continuous and Interval Exercise Training on Endothelial Function and Glucose Metabolism in Prediabetes. J Diabetes Res, 2019, 4912174. https://dx.doi.org/10.1155/2019/4912174spa
dc.relation.referencesMalin, Steven K, Haus, J. M., Solomon, T. P. J., Blaszczak, A., Kashyap, S. R., & Kirwan, J. P. (2013). Insulin sensitivity and metabolic flexibility following exercise training among different obese insulin-resistant phenotypes. Am J Physiol Endocrinol Metab, 305(10), E1292-8. https://dx.doi.org/10.1152/ajpendo.00441.2013spa
dc.relation.referencesMarinik, E. L., Kelleher, S., Savla, J., Winett, R. A., & Davy, B. M. (2014). The resist diabetes trial: rationale, design, and methods of a hybrid efficacy/effectiveness intervention trial for resistance training maintenance to improve glucose homeostasis in older prediabetic adults. Contemporary Clinical Trials, 37(1), 19‐32. https://doi.org/10.1016/j.cct.2013.11.006spa
dc.relation.referencesMcBrien, K. A., Ivers, N., Barnieh, L., Bailey, J. J., Lorenzetti, D. L., Nicholas, D., Tonelli, M., Hemmelgarn, B., Lewanczuk, R., Edwards, A., Braun, T., & Manns, B. (2018). Patient navigators for people with chronic disease: A systematic review. In PLoS ONE (Vol. 13, Issue 2). https://doi.org/10.1371/journal.pone.0191980spa
dc.relation.referencesMcCarthy, M., Edwardson, C. L., Davies, M. J., Henson, J., Rowlands, A., King, J. A., Bodicoat, D. H., Khunti, K., & Yates, T. (2017). Breaking up sedentary time with seated upper body activity can regulate metabolic health in obese high-risk adults: A randomized crossover trial. Diabetes, Obesity & Metabolism, 19(12), 1732–1739. https://doi.org/10.1111/dom.13016spa
dc.relation.referencesMcCormick, J. J., King, K. E., Dokladny, K., & Mermier, C. M. (2019). Effect of Acute Aerobic Exercise and Rapamycin Treatment on Autophagy in Peripheral Blood Mononuclear Cells of Adults With Prediabetes. Canadian Journal of Diabetes, 43(7), 457–463. https://doi.org/10.1016/j.jcjd.2019.04.005spa
dc.relation.referencesMcDermott, K. A., Rao, M. R., Nagarathna, R., Murphy, E. J., Burke, A., Nagendra, R. H., & Hecht, F. M. (2014). A yoga intervention for type 2 diabetes risk reduction: a pilot randomized controlled trial. BMC Complement Altern Med, 14, 212. https://doi.org/10.1186/1472-6882-14-212spa
dc.relation.referencesMelton, C. E., Tucker, P. S., Fisher-Wellman, K. H., Schilling, B. K., & Bloomer, R. J. (2009). Acute exercise does not attenuate postprandial oxidative stress in prediabetic women. Phys Sportsmed, 37(1), 27–36. https://dx.doi.org/10.3810/psm.2009.04.1680spa
dc.relation.referencesMichishita, R., Shono, N., Kasahara, T., & Tsuruta, T. (2008). Effects of low intensity exercise therapy on early phase insulin secretion in overweight subjects with impaired glucose tolerance and type 2 diabetes mellitus. Diabetes Res Clin Pract, 82(3), 291–297. https://doi.org/10.1016/j.diabres.2008.08.013spa
dc.relation.referencesMikus, C. R., Fairfax, S. T., Libla, J. L., Boyle, L. J., Vianna, L. C., Oberlin, D. J., Uptergrove, G. M., Deo, S. H., Kim, A., Kanaley, J. A., Fadel, P. J., & Thyfault, J. P. (2011). Seven days of aerobic exercise training improves conduit artery blood flow following glucose ingestion in patients with type 2 diabetes. J Appl Physiol (1985), 111(3), 657–664. https://doi.org/10.1152/japplphysiol.00489.2011spa
dc.relation.referencesMitranun, W., Deerochanawong, C., Tanaka, H., & Suksom, D. (2014). Continuous vs interval training on glycemic control and macro- and microvascular reactivity in type 2 diabetic patients. Scandinavian Journal of Medicine & Science in Sports, 24(2), e69-76. https://doi.org/10.1111/sms.12112spa
dc.relation.referencesMoelands, S. V. L., Lucassen, P. L. B. J., Akkermans, R. P., De Grauw, W. J. C., & Van de Laar, F. A. (2018). Alpha-glucosidase inhibitors for prevention or delay of type 2 diabetes mellitus and its associated complications in people at increased risk of developing type 2 diabetes mellitus. Cochrane Database of Systematic Reviews, 2018(12). https://doi.org/10.1002/14651858.CD005061.pub3spa
dc.relation.referencesMshunqane, N., Cohen, D., & Kalk, J. K. (2004). POBLACIÓN DX DM2 Effects of an exercise programme on non-insulin dependant diabetes mellitus. South African Journal of Physiotherapy, 60(4), 26–35. http://search.ebscohost.com/login.aspx?direct=true&db=c8h&AN=106643391&lang=es&site=ehost-livespa
dc.relation.referencesNaufahu, J., Elliott, B., Markiv, A., Dunning-Foreman, P., McGrady, M., Howard, D., Watt, P., & Mackenzie, R. W. A. (2018). High-Intensity Exercise Decreases IP6K1 Muscle Content and Improves Insulin Sensitivity (SI2*) in Glucose-Intolerant Individuals. J Clin Endocrinol Metab, 103(4), 1479–1490. https://dx.doi.org/10.1210/jc.2017-02019spa
dc.relation.referencesNuño-Solinís, R., Alonso-Morán, E., Arteagoitia Axpe, J. M., Ezkurra Loiola, P., Orueta, J. F., & Gaztambide, S. (2016). Costes sanitarios de la población con diabetes mellitus tipo 2 en el País Vasco (España). Endocrinologia y Nutricion, 63(10), 543–550. https://doi.org/10.1016/j.endonu.2016.08.003spa
dc.relation.referencesNygaard, H., Grindaker, E., Rønnestad, B. R., Holmboe-Ottesen, G., & Høstmark, A. T. (2017). Long-term effects of daily postprandial physical activity on blood glucose: a randomized controlled trial. Appl Physiol Nutr Metab, 42(4), 430–437. https://dx.doi.org/10.1139/apnm-2016-0467spa
dc.relation.referencesOrtega, J., Morales-Palomo, F., Ramirez-Jimenez, M., Moreno-Cabañas, A., & MoraRodriguez, R. (2020). Exercise improves metformin 72-h glucose control by reducing the frequency of hyperglycemic peaks. Acta Diabetologica, 57. https://doi.org/10.1007/s00592-020-01488-7spa
dc.relation.referencesOsler, M. E., Fritz, T., Caidahl, K., Krook, A., Zierath, J. R., & Wallberg-Henriksson, H. (2015). Changes in Gene Expression in Responders and Nonresponders to a LowIntensity Walking Intervention. Diabetes Care, 38(6), 1154–1160. https://doi.org/10.2337/dc14-2606spa
dc.relation.referencesÖzdirenç, M., Koçak, G., & Güntekin, R. (2004). The acute effects of in-patient physiotherapy program on functional capacity in type II diabetes mellitus. Diabetes Research & Clinical Practice, 64(3), 167–172. https://doi.org/10.1016/j.diabres.2003.11.001spa
dc.relation.referencesPan, B., Ge, L., Xun, Y. qin, Chen, Y. jing, Gao, C. yun, Han, X., Zuo, L. qian, Shan, H. qian, Yang, K. hu, Ding, G. wu, & Tian, J. hui. (2018). Exercise training modalities in patients with type 2 diabetes mellitus: A systematic review and network meta-analysis. In International Journal of Behavioral Nutrition and Physical Activity (Vol. 15, Issue 1, pp. 1–14). International Journal of Behavioral Nutrition and Physical Activity. https://doi.org/10.1186/s12966-018-0703-3spa
dc.relation.referencesPan, X. R., Li, G. W., Hu, Y. H., Wang, J. X., Yang, W. Y., An, Z. X., Hu, Z. X., Lin, J., Xiao, J. Z., Cao, H. B., Liu, P. A., Jiang, X. G., Jiang, Y. Y., Wang, J. P., Zheng, H., Zhang, H., Bennett, P. H., & Howard, B. V. (1997). Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study. Diabetes Care, 20(4), 537–544. https://doi.org/10.2337/diacare.20.4.537spa
dc.relation.referencesPan, X, Li, G., & Hu, Y. (1995). Effect of dietary and/or exercise intervention on incidence of diabetes in 530 subjects with impaired glucose tolerance from 1986-1992]. Zhonghua Nei Ke Za Zhi, 34(2), 108–112.spa
dc.relation.referencesPan, Xiao-ren, MD, GUANG-WEI Li, M., YlNG-HUA HU, M., JI-XING WANG, M., WENYING YANG, M., ZUO-XIN AN, M., ZE-XI HU, M., JUAN-LIN, M., JIAN-ZHONG XIAO, M., HUI-BI CAO, M., PING-AN LIU, M., XI-GUI JIANG, M., YA-YAN JIANG, M., JINPING WANG, M., HUI ZHENG, M., HUI ZHANG, M., PETER H. BENNETT, MB, F., & BARBARA V. HOWARD, P. (1997). Effects of Diet and Exercise in Preventing NIDDM in People With Impaired Glucose Tolerance. EpidemioIogy/Hea11hServices/PsychosociaIResearc H, 22(1), 77–83. https://doi.org/10.1007/BF01899717spa
dc.relation.referencesParra-Sánchez, J., Moreno-Jiménez, M., Nicola, C. M., Nocua-Rodríguez, I. I., AmeglóParejo, M. R., Del Carmen-Peña, M., Cordero-Prieto, C., & Gajardo-Barrena, M. J. (2015). Evaluation of a supervised physical exercise program in sedentary patients over 65 years with type 2 diabetes mellitus TT - Evaluación de un programa de ejercicio físico supervisado en pacientes sedentarios mayores de 65 años con diabetes mellitus tipo 2. Atencion primaria, 47(9), 555–562. https://doi.org/10.1016/j.aprim.2015.01.006spa
dc.relation.referencesPayne, W. R., Walsh, K. J., Harvey, J. T., Livy, M. F., McKenzie, K. J., Donaldson, A., Atkinson, M. G., Keogh, J. B., Moss, R. S., Dunstan, D. W., & Hubbard, W. A. (2008). Effect of a low-resource-intensive lifestyle modification program incorporating gymnasium-based and home-based resistance training on type 2 diabetes risk in Australian adults. Diabetes Care, 31(12), 2244–2250. https://doi.org/10.2337/dc08-0152spa
dc.relation.referencesPeinado, A. B., Rojo-tirado, M. A., & Benito, P. J. (2013). El azúcar y el ejercicio físico : su importancia en los deportistas. 28, 48–56.spa
dc.relation.referencesPengpid, S., Peltzer, K., Puckpinyo, A., & Chantarasongsuk, I. J. (2019). Effectiveness of a cluster-randomized controlled trial community-based lifestyle intervention program to control prehypertension and/or prediabetes in Thailand. International Journal of Diabetes in Developing Countries 2019 Jan;39(1):123-131.spa
dc.relation.referencesPrior, S. J., Blumenthal, J. B., Katzel, L. I., Goldberg, A. P., & Ryan, A. S. (2014). Increased skeletal muscle capillarization after aerobic exercise training and weight loss improves insulin sensitivity in adults with IGT. Diabetes Care, 37(5), 1469–1475. https://doi.org/10.2337/dc13-2358spa
dc.relation.referencesPrior, S. J., Joseph, L. J., Brandauer, J., Katzel, L. I., Hagberg, J. M., & Ryan, A. S. (2007). Reduction in midthigh low-density muscle with aerobic exercise training and weight loss impacts glucose tolerance in older men. J Clin Endocrinol Metab, 92(3), 880–886. https://doi.org/10.1210/jc.2006-2113spa
dc.relation.referencesRezkAllah, S S, & Takla, M. K. (2019). Effects of different dosages of interval training on glycemic control in people with prediabetes: a randomized controlled trial. Diabetes Spectrum 2019 May;32(2):125-131.spa
dc.relation.referencesRezkAllah, Soheir S, & Takla, M. K. (2019). Effects of Different Dosages of Interval Training on Glycemic Control in People With Prediabetes: A Randomized Controlled Trial. Diabetes Spectrum : A Publication of the American Diabetes Association, 32(2), 125–131. https://doi.org/10.2337/ds18-0024spa
dc.relation.referencesRoberts, C. K., Hevener, A., & Barnard, R. (2014). and Modification by Exercise Training. Compr Physiol, 3(1), 1–58. https://doi.org/10.1002/cphy.c110062.Metabolicspa
dc.relation.referencesRobinson, E., Durrer, C., Simtchouk, S., Jung, M. E., Bourne, J. E., Voth, E., & Little, J. P. (2015). Short-term high-intensity interval and moderate-intensity continuous training reduce leukocyte TLR4 in inactive adults at elevated risk of type 2 diabetes. J Appl Physiol (1985), 119(5), 508–516. https://dx.doi.org/10.1152/japplphysiol.00334.2015spa
dc.relation.referencesRossen, J., Yngve, A., Hagströmer, M., Brismar, K., Ainsworth, B. E., Iskull, C., Möller, P., & Johansson, U.-B. (2015). Physical activity promotion in the primary care setting in pre- and type 2 diabetes - the Sophia step study, an RCT. BMC Public Health, 15, 647. https://dx.doi.org/10.1186/s12889-015-1941-9spa
dc.relation.referencesRowan, C. P., Riddell, M. C., Gledhill, N., & Jamnik, V. K. (2017a). Aerobic Exercise Training Modalities and Prediabetes Risk Reduction. Medicine and Science in Sports and Exercise, 49(3), 403–412. https://doi.org/10.1249/MSS.0000000000001135spa
dc.relation.referencesRowan, C. P., Riddell, M. C., Gledhill, N., & Jamnik, V. K. (2017b). Aerobic Exercise Training Modalities and Prediabetes Risk Reduction. Med Sci Sports Exerc, 49(3), 403–412. https://dx.doi.org/10.1249/MSS.0000000000001135spa
dc.relation.referencesRyan, A. S., Ortmeyer, H. K., & Sorkin, J. D. (2012). Exercise with calorie restriction improves insulin sensitivity and glycogen synthase activity in obese postmenopausal women with impaired glucose tolerance. American Journal of Physiology. Endocrinology and Metabolism, 302(1), E145-52. https://doi.org/10.1152/ajpendo.00618.2010spa
dc.relation.referencesRynders, C. A., Weltman, J. Y., Jiang, B., Breton, M., Patrie, J., Barrett, E. J., & Weltman, A. (2014). Effects of exercise intensity on postprandial improvement in glucose disposal and insulin sensitivity in prediabetic adults. J Clin Endocrinol Metab, 99(1), 220–228. https://dx.doi.org/10.1210/jc.2013-2687spa
dc.relation.referencesSanz, C., Gautier, J. F., & Hanaire, H. (2010). Physical exercise for the prevention and treatment of type 2 diabetes. Diabetes & Metabolism, 36(5), 346‐351. https://doi.org/10.1016/j.diabet.2010.06.001spa
dc.relation.referencesSattin, R. W., Williams, L. B., Dias, J., Garvin, J. T., Marion, L., Joshua, T. V, Kriska, A., Kramer, M. K., & Narayan, K. M. V. (2016). Community Trial of a Faith-Based Lifestyle Intervention to Prevent Diabetes Among African-Americans. J Community Health, 41(1), 87–96. https://dx.doi.org/10.1007/s10900-015-0071-8spa
dc.relation.referencesSeferović, P. M., Petrie, M. C., Filippatos, G. S., Anker, S. D., Rosano, G., Bauersachs, J., Paulus, W. J., Komajda, M., Cosentino, F., de Boer, R. A., Farmakis, D., Doehner, W., Lambrinou, E., Lopatin, Y., Piepoli, M. F., Theodorakis, M. J., Wiggers, H., Lekakis, J., Mebazaa, A., … McMurray, J. J. V. (2018). Type 2 diabetes mellitus and heart failure: a position statement from the Heart Failure Association of the European Society of Cardiology. European Journal of Heart Failure, 20(5), 853–872. https://doi.org/https://doi.org/10.1002/ejhf.1170spa
dc.relation.referencesSen, S., & Islam, A. (2015). Use of CD34+ cells as a cellular biomarker in prediabetes subjects, post aerobic exercise. Circulation, 131. https://www.cochranelibrary.com/central/doi/10.1002/central/CN-01088005/fullspa
dc.relation.referencesSepah, S. C., Jiang, L., & Peters, A. L. (2015). Long-term outcomes of a web-based diabetes prevention program: 2-Year results of a single-arm longitudinal study. Journal of Medical Internet Research, 17(4), e92. https://doi.org/10.2196/jmir.4052spa
dc.relation.referencesSerrano-Ferrer, J., Walther, G., Crendal, E., Vinet, A., Dutheil, F., Naughton, G., Lesourd, B., Chapier, R., Courteix, D., & Obert, P. (2014). Right ventricle free wall mechanics in metabolic syndrome without type-2 diabetes: effects of a 3-month lifestyle intervention program. Cardiovasc Diabetol, 13, 116. https://doi.org/10.1186/s12933-014-0116-9spa
dc.relation.referencesShamseer, L., Moher, D., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., Shekelle, P., Stewart, L. A., Altman, D. G., Booth, A., Chan, A. W., Chang, S., Clifford, T., Dickersin, K., Egger, M., Gøtzsche, P. C., Grimshaw, J. M., Groves, T., Helfand, M., … Whitlock, E. (2015). Preferred reporting items for systematic review and meta-analysis protocols (prisma-p) 2015: Elaboration and explanation. BMJ (Online), 349(January), 1–25. https://doi.org/10.1136/bmj.g7647spa
dc.relation.referencesShort, K. R., Vittone, J. L., Bigelow, M. L., Proctor, D. N., Rizza, R. A., Coenen-Schimke, J. M., & Nair, K. S. (2003). Impact of aerobic exercise training on age-related changes in insulin sensitivity and muscle oxidative capacity. Diabetes, 52(8), 1888–1896. https://doi.org/10.2337/diabetes.52.8.1888spa
dc.relation.referencesSigal, R. J., Armstrong, M. J., Bacon, S. L., Boulé, N. G., Dasgupta, K., Kenny, G. P., & Riddell, M. C. (2018). Physical Activity and Diabetes. Canadian Journal of Diabetes, 42, S54–S63. https://doi.org/10.1016/j.jcjd.2017.10.008spa
dc.relation.referencesSixt, S., Rastan, A., Desch, S., Sonnabend, M., Schmidt, A., Schuler, G., & Niebauer, J. (2008). Exercise training but not rosiglitazone improves endothelial function in prediabetic patients with coronary disease. European Journal of Cardiovascular Prevention and Rehabilitation, 15(4), 473‐478. https://doi.org/10.1097/HJR.0b013e3283002733spa
dc.relation.referencesSjöros, T. J., Heiskanen, M. A., Motiani, K. K., Löyttyniemi, E., Eskelinen, J. J., Virtanen, K. A., Savisto, N. J., Solin, O., Hannukainen, J. C., & Kalliokoski, K. K. (2018). Increased insulin-stimulated glucose uptake in both leg and arm muscles after sprint interval and moderate-intensity training in subjects with type 2 diabetes or prediabetes. Scand J Med Sci Sports, 28(1), 77–87. https://dx.doi.org/10.1111/sms.12875spa
dc.relation.referencesSlentz, C. A., Bateman, L. A., Willis, L. H., Granville, E. O., Piner, L. W., Samsa, G. P., Setji, T. L., Muehlbauer, M. J., Huffman, K. M., Bales, C. W., & Kraus, W. E. (2016). Effects of exercise training alone vs a combined exercise and nutritional lifestyle intervention on glucose homeostasis in prediabetic individuals: a randomised controlled trial. Diabetologia, 59(10), 2088–2098. https://dx.doi.org/10.1007/s00125-016-4051-zspa
dc.relation.referencesSmutok, M. A., Reece, C., Kokkinos, P. F., Farmer, C. M., Dawson, P. K., DeVane, J., Patterson, J., Goldberg, A. P., & Hurley, B. F. (1994). Effects of exercise training modality on glucose tolerance in men with abnormal glucose regulation. Int J Sports Med, 15(6), 283–289. https://doi.org/10.1055/s-2007-1021061spa
dc.relation.referencesSolomon, T. P., Malin, S. K., Karstoft, K., Kashyap, S. R., Haus, J. M., & Kirwan, J. P. (2013). Pancreatic β-cell function is a stronger predictor of changes in glycemic control after an aerobic exercise intervention than insulin sensitivity. J Clin Endocrinol Metab, 98(10), 4176–4186. https://doi.org/10.1210/jc.2013-2232spa
dc.relation.referencesStevens, A. L. M., Hansen, D., Herbots, L., Wens, I., Creemers, A., Dendale, P., & Eijnde, B. O. (2015). Exercise training improves insulin release during glucose tolerance testing in stable chronic heart failure patients. Journal of Cardiopulmonary Rehabilitation and Prevention, 35(1), 37–46. https://doi.org/10.1097/HCR.0000000000000092spa
dc.relation.referencesTaniguchi, A., Fukushima, M., Sakai, M., Nagasaka, S., Doi, K., Nagata, I., Matsushita, K., Ooyama, Y., Kawamoto, A., Nakasone, M., Tokuyama, K., & Nakai, Y. (2000). Effect of physical training on insulin sensitivity in Japanese type 2 diabetic patients: role of serum triglyceride levels (Vol. 23, pp. 857–858). American Diabetes Association. https://doi.org/10.2337/diacare.23.6.857spa
dc.relation.referencesTemple, K. A., Tjaden, A. H., Atkinson, K. M., Barengolts, E., Hannon, T. S., Mather, K. J., Utzschneider, K. M., Edelstein, S. L., Ehrmann, D. A., & Mokhlesi, B. (2019). Association of Habitual Daily Physical Activity With Glucose Tolerance and β-Cell Function in Adults With Impaired Glucose Tolerance or Recently Diagnosed Type 2 Diabetes From the Restoring Insulin Secretion (RISE). Diabetes Care, 42(8), 1521‐1529. https://doi.org/10.2337/dc19-0538spa
dc.relation.referencesTerada, T., Friesen, A., Chahal, B. S., Bell, G. J., McCargar, L. J., & Boulé, N. G. (2013). Feasibility and preliminary efficacy of high intensity interval training in type 2 diabetes. Diabetes Research and Clinical Practice, 99(2), 120–129. https://doi.org/10.1016/j.diabres.2012.10.019spa
dc.relation.referencesTurner, R. M., Davey, J., Clarke, M. J., Thompson, S. G., & Higgins, J. P. (2012). Predicting the extent of heterogeneity in meta-analysis, using empirical data from the Cochrane Database of Systematic Reviews. International Journal of Epidemiology, 41(3), 818–827. https://doi.org/10.1093/ije/dys041spa
dc.relation.referencesVan Rooijen, A. J., Rheeder, P., Eales, C. J., & Becker, P. J. (2005). Effect of exercise versus relaxation on health-related quality of life in black females with type 2 diabetes mellitus. South African Journal of Physiotherapy, 61(3), 7-[33]. http://search.ebscohost.com/login.aspx?direct=true&db=c8h&AN=106392720&lang=es&site=ehost-livespa
dc.relation.referencesVandenberghe, C., Castellano, C. A., Maltais, M., Fortier, M., St-Pierre, V., Dionne, I. J., & Cunnane, S. C. (2019). A short-term intervention combining aerobic exercise with medium-chain triglycerides (MCT) is more ketogenic than either MCT or aerobic exercise alone: a comparison of normoglycemic and prediabetic older women. Appl Physiol Nutr Metab, 44(1), 66–73. https://doi.org/10.1139/apnm-2018-0367spa
dc.relation.referencesVanroy, J., Seghers, J., Bogaerts, A., Devloo, K., De Cock, S., & Boen, F. (2017). Shortand long-term effects of a need-supportive physical activity intervention among patients with type 2 diabetes mellitus: A randomized controlled pilot trial. PloS One, 12(4), e0174805. https://doi.org/10.1371/journal.pone.0174805spa
dc.relation.referencesVergès, B., Patois-Vergès, B., Cohen, M., Lucas, B., Galland-Jos, C., & Casillas, J. M. (2004). Effects of cardiac rehabilitation on exercise capacity in Type 2 diabetic patients with coronary artery disease. Diabetic Medicine : A Journal of the British Diabetic Association, 21(8), 889–895. https://doi.org/10.1111/j.1464-5491.2004.01262.xspa
dc.relation.referencesViskochil, R., Malin, S. K., Blankenship, J. M., & Braun, B. (2017). Exercise training and metformin, but not exercise training alone, decreases insulin production and increases insulin clearance in adults with prediabetes. J Appl Physiol (1985), 123(1), 243–248. https://dx.doi.org/10.1152/japplphysiol.00790.2016spa
dc.relation.referencesWatson, G. S., Reger, M. A., Baker, L. D., McNeely, M. J., Fujimoto, W. Y., Kahn, S. E., Boyko, E. J., Leonetti, D. L., Craft, S., Watson, G. S., Reger, M. A., Baker, L. D., McNeely, M. J., Fujimoto, W. Y., Kahn, S. E., Boyko, E. J., Leonetti, D. L., & Craft, S. (2006). Effects of exercise and nutrition on memory in Japanese Americans with impaired glucose tolerance. Diabetes Care, 29(1), 135–136. https://doi.org/10.2337/diacare.29.01.06.dc05-1889spa
dc.relation.referencesWhyte, L. J., Gill, J. M. R., & Cathcart, A. J. (2010). Effect of 2 weeks of sprint interval training on health-related outcomes in sedentary overweight/obese men. Metabolism: Clinical and Experimental, 59(10), 1421–1428. https://doi.org/10.1016/j.metabol.2010.01.002spa
dc.relation.referencesWinett, R. A., Davy, B. M., Savla, J., Marinik, E. L., Kelleher, S. A., Winett, S. G., Halliday, T. M., & Williams, D. M. (2015). Theory-based approach for maintaining resistance training in older adults with prediabetes: adherence, barriers, self-regulation strategies, treatment fidelity, costs. Translational Behavioral Medicine, 5(2), 149‐159. https://doi.org/10.1007/s13142-015-0304-5spa
dc.relation.referencesWisse, W., Rookhuizen, M. B., de Kruif, M. D., van Rossum, J., Jordans, I., ten Cate, H., van Loon, L. J., & Meesters, E. W. (2010). Prescription of physical activity is not sufficient to change sedentary behavior and improve glycemic control in type 2 diabetes patients. Diabetes Research & Clinical Practice, 88(2), e10-3. https://doi.org/10.1016/j.diabres.2010.01.015spa
dc.relation.referencesWolfenden, L., Jones, J., Williams, C. M., Finch, M., Wyse, R. J., Kingsland, M., Tzelepis, F., Wiggers, J., Williams, A. J., Seward, K., Small, T., Welch, V., Booth, D., & Yoong, S. L. (2011). Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Database of Systematic Reviews, 10, 1–639. https://doi.org/10.1002/14651858.CD011779.pub2spa
dc.relation.referencesYan, J., Dai, X., Feng, J., Yuan, X., Li, J., Yang, L., Zuo, P., Fang, Z., Liu, C., Hsue, C., & et al. (2019). Effect of 12-Month Resistance Training on Changes in Abdominal Adipose Tissue and Metabolic Variables in Patients with Prediabetes: a Randomized Controlled Trial. Journal of Diabetes Research, 2019, 8469739. https://doi.org/10.1155/2019/8469739spa
dc.relation.referencesYates, T, Edwardson, C. L., Henson, J., Gray, L. J., Ashra, N. B., Troughton, J., Khunti, K., & Davies, M. J. (2017). Walking Away from Type 2 diabetes: a cluster randomized controlled trial. Diabet Med, 34(5), 698–707. https://dx.doi.org/10.1111/dme.13254spa
dc.relation.referencesYates, Thomas, Davies, M., Gorely, T., Bull, F., & Khunti, K. (2008). Rationale, design and baseline data from the Pre-diabetes Risk Education and Physical Activity Recommendation and Encouragement (PREPARE) programme study: a randomized controlled trial. Patient Educ Couns, 73(2), 264–271. https://dx.doi.org/10.1016/j.pec.2008.06.010spa
dc.relation.referencesYoshida, Y., Hashimoto, N., Tokuyama, Y., Kitagawa, H., Takahashi, K., Yagui, K., Kanatsuka, A., Bujo, H., Higurashi, M., Miyazawa, S., Yoshida, S., & Saito, Y. (2004). Effects of weight loss in obese subjects with normal fasting plasma glucose or impaired glucose tolerance on insulin release and insulin resistance according to a minimal model analysis. Metabolism, 53(9), 1095–1100. https://doi.org/10.1016/j.metabol.2004.04.002spa
dc.relation.referencesYuan, X., Dai, X., Liu, L., Hsue, C., Miller, J. D., Fang, Z., Li, J., Feng, J., Huang, Y., Liu, C., & et al. (2020). Effects of weight loss in obese subjects with normal fasting plasma glucose or impaired glucose tolerance on insulin release and insulin resistance according to a minimal model analysis. Journal of Diabetes, 12(1), 25‐37. https://doi.org/10.1111/1753-0407.12955spa
dc.relation.referencesZheng, Y., Ley, S. H., & Hu, F. B. (2018). Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nature Reviews Endocrinology, 14(2), 88–98. https://doi.org/10.1038/nrendo.2017.151spa
dc.relation.references(2002). The Diabetes Prevention Program (DPP). Diabetes Care, 25(12), 2165 LP – 2171. https://doi.org/10.2337/diacare.25.12.2165spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc610 - Medicina y salud::616 - Enfermedadesspa
dc.subject.lembEjercicio-aspectos fisiológicos
dc.subject.lembSalud Pública
dc.subject.proposalPrediabetesspa
dc.subject.proposalEjercicio físicospa
dc.subject.proposalControl glucémicospa
dc.subject.proposalPrediabeteseng
dc.subject.proposalPhysical exerciseeng
dc.subject.proposalGlycemic controleng
dc.subject.unescoMedicina deportiva
dc.subject.unescoSports medicine
dc.subject.unescoHealth policy
dc.titleEfectividad del ejercicio físico en pacientes con prediabetes sobre el control glucémico: Protocolo para una revisión sistemáticaspa
dc.title.translatedEffectiveness of physical exercise in patients with prediabetes on glucemic control: protocol for a systematic revieweng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Efectividad del ejercicio físico en pacientes con prediabetes sobre el control glucémico. Protocolo para una revisión sistemática.pdf
Tamaño:
1.52 MB
Formato:
Adobe Portable Document Format
Descripción:
TESIS DE MAESTRÍA EN FISIOTERAPIA DEL DEPORTE Y LA ACTIVIDAD FISICA

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: