Gait characterizations in Parkinson's disease

dc.contributor.advisorRomero Castro, Edgar Eduardo
dc.contributor.authorRicaurte, David Leonardo
dc.contributor.researchgroupCim@Labspa
dc.date.accessioned2023-01-24T13:11:55Z
dc.date.available2023-01-24T13:11:55Z
dc.date.issued2022
dc.descriptionilustraciones, graficasspa
dc.description.abstractLa enfermedad de Parkinson (EP) es una enfermedad neurodegenerativa que afecta el sistema de control motor encargado de los movimientos voluntarios del cuerpo humano y las funciones cognitivas. EP es la segunda enfermedad neurodegenerativa m mas común después de la enfermedad de Alzhaimer con una población mundial aproximada de 6 millones y con un estimado de 18 millones de personas para el año 2040. Se caracteriza por la muerte de las neuronas dopaminérgicas en un área conocida como substancia nigra pars compacta, que afecta directamente la función de los ganglios basales, afectando el sistema de control motor. Las principales manifestaciones motoras que se presentan debido a EP son bradicinesia, hipocinesia, alteración del equilibrio y de la marcha. Además, la EP afecta la capacidad de aprendizaje movimientos y de tareas repetitivas. Debido a las limitaciones funcionales de los movimientos que se presentan durante la progresión de la enfermedad, se han diseñado tratamientos invasivos (quirúrgicos) y no invasivos (medicamentos) para mejorar la calidad de vida de los pacientes. Los trastornos motores en la EP muestran una alta variabilidad interindividual que desafía las estrategias actuales basadas en la observación en el entorno clínico para determinar la evolución real de la enfermedad y monitorear la respuesta a la terapia. Diferentes investigaciones han intentado analizar cuantitativamente los patrones de marcha por métodos lineales enfrentando varias limitaciones debido a la naturaleza no estacionaria de los patrones de marcha. Sin embargo, esa variabilidad contiene patrones ocultos que no son fácilmente cuantificables en una rutina clínica por su alta complejidad. Debido a que el patrón de marcha podría abordarse como un sistema caótico determinista, es posible asociar a individuos sanos con un alto comportamiento caótico (complejidad) y las anormalidades de la marcha presentes en pacientes con EP, se puede asociar con uno menor (menor complejidad). En el presente trabajo se desarrolló en dos partes. La primera parte consistió en la caracterización no lineal de la marcha de la EP mediante un análisis caótico determinista que representa la dinámica temporal de la marcha con un conjunto mínimo de parámetros. Específicamente, se obtuvieron parámetros retardo (delay) y dimensión embebida para reconstruir el espacio de fase y sus coeficientes característicos, a saber, exponente de Lyapunov, dimensión de correlacion y entropía aproximada. Se encontraron diferencias estadísticas (p < 0.05, prueba de Mann-Whitney) para el exponente de Lyapunov y la entropía aproximada al describir los patrones de marcha de los grupos control y EP. La segunda parte de este trabajo tuvo como objetivo representar de forma no lineal la cinemateca de las extremidades inferiores, destacando las diferencias entre los estadios de la EP. Para ello, se incluyó pose estimation basado en aprendizaje profundo para obtener los puntos de referencia del cuerpo y sus series temporales y, posteriormente, construir el espacio de fase basado en sus derivadas. Luego se calculó el mayor exponente de Lyapunov, la dimensión de correlación y la entropía aproximada, dando como resultado diferencias estadísticamente significativas (Prueba de rango Kruskal-Wallis, p < 0.05), particularmente entre los controles sanos y las etapas 3, la etapa más avanzada, y al comparar el estadio 1 frente al estadio 3. Estos hallazgos brindan información sobre como los patrones complejos pueden estar relacionados con la progresión de la enfermedad en la EP y pueden implementarse fácilmente utilizando dispositivos de video RGB asequibles (Texto tomado de la fuente)spa
dc.description.abstractParkinson’s disease (PD) is a neurodegenerative disease that affects the motor control system responsible for the voluntary movements of the human body and cognitive functions. PD is the second most common neurodegenerative disease after Alzheimer’s disease with a world population of approximately 6 million and an estimated 18 million people by 2040. It is characterized by the death of dopaminergic neurons in an area known as substantia nigra pars compacta, which directly affects the function of the basal ganglia, affecting the motor control system. Motor manifestations include bradykinesia, hypokinesia, balance and gait disturbance. In addition, PD affects the ability to learn movements and repetitive tasks. Due to the functional limitations of movements that occur during the progression of the disease, invasive (surgical) and non-invasive (medication) treatments have been designed to improve the quality of life of patients. Motor disorders in PD show high inter-individual variability that challenges current observation-based strategies in the clinical setting to determine the current course of the disease and monitor response to therapy. Several researchers have attempted to quantitatively analyze gait patterns by linear methods, facing several limitations due to the non-stationary nature of gait patterns. However, this variability contains hidden patterns that are not easily quantifiable in a clinical routine and are highly complex. Because of the gait pattern could be approached as a deterministic chaotic system, it is possible to associate healthy individuals with high chaotic behavior and the gait abnormalities present in PD patients can be associated with decreased chaotic behavior. This work is developed in two parts. The first part consisted in making a non-linear characterization of the PD gait by means of a deterministic chaotic analysis that represents the temporal gait dynamics with a minimum set of parameters. Specifically, embedding and delay dimension parameters were obtained to reconstruct the phase space and its characteristic coefficients, namely Lyapunov exponent, correlation dimension, and approximate entropy. Statistical differences (p < 0,05, Mann-Whitney test) were found for the Lyapunov exponent and the approximate entropy when describing two gait patterns, that is, the control and PD groups. The second part of this work aimed to represent the kinematics of the lower extremities in a non-linear way, highlighting the differences between the stages of PD. For this, a widely used deep learning framework was implemented to obtain the reference points of the body and its time series and subsequently build the phase space based on the first-order derivatives. The largest Lyapunov exponent, correlation dimension, and approximate entropy were then calculated, resulting in statistically significant differences (Kruskal-Wallis rank test, p < 0,05), particularly between the healthy controls and stage 3, the most advanced stage, and compare stage 1 versus stage 3. These findings provide insight into how complex patterns may be related to disease progression in PD and can be easily implemented using imaging devices like RGB video capture.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería Biomédicaspa
dc.description.researchareaMotion and Biosignal Analysisspa
dc.format.extentxiv, 48 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83080
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Medicina - Maestría en Ingeniería Biomédicaspa
dc.relation.references[1] G. DeMaagd and A. Philip, “Parkinson’s disease and its management: part 1: disease entity, risk factors, pathophysiology, clinical presentation, and diagnosis,” Pharmacy and therapeutics, vol. 40, no. 8, p. 504, 2015spa
dc.relation.references[2] K. McFarthing, G. Rafaloff, M. A. Baptista, R. K. Wyse, and S. R. Stott, “Parkinson’s disease drug therapies in the clinical trial pipeline: 2021 update,” Journal of Parkinson’s Disease, vol. 11, no. 3, p. 891, 2021spa
dc.relation.references[3] E. Dorsey, T. Sherer, M. S. Okun, and B. R. Bloem, “The emerging evidence of the parkinson pandemic,” Journal of Parkinson’s disease, vol. 8, no. s1, pp. S3–S8, 2018.spa
dc.relation.references[4] C. Váradi, “Clinical features of parkinson’s disease: the evolution of critical symptoms,” Biology, vol. 9, no. 5, p. 103, 2020.spa
dc.relation.references[5] C. G. Goetz, “The history of parkinson’s disease: early clinical descriptions and neurolo- gical therapies,” Cold Spring Harbor perspectives in medicine, vol. 1, no. 1, p. a008862, 2011.spa
dc.relation.references[6] P. C. Poortvliet, A. Gluch, P. A. Silburn, and G. D. Mellick, “The queensland parkin- son’s project: an overview of 20 years of mortality from parkinson’s disease,” Journal of Movement Disorders, vol. 14, no. 1, p. 34, 2021.spa
dc.relation.references[7] S. Rong, G. Xu, B. Liu, Y. Sun, L. G. Snetselaar, R. B. Wallace, B. Li, J. Liao, and W. Bao, “Trends in mortality from parkinson disease in the united states, 1999–2019,” Neurology, vol. 97, no. 20, pp. e1986–e1993, 2021.spa
dc.relation.references[8] F. Yang, A. L. Johansson, N. L. Pedersen, F. Fang, M. Gatz, and K. Wirdefeldt, “Socio- economic status in relation to parkinson’s disease risk and mortality: A population-based prospective study,” Medicine, vol. 95, no. 30, 2016spa
dc.relation.references[9] J. Jankovic and E. K. Tan, “Parkinson’s disease: Etiopathogenesis and treatment,” Journal of Neurology, Neurosurgery & Psychiatry, vol. 91, no. 8, pp. 795–808, 2020.spa
dc.relation.references[10] P. Martinez-Martin, M. Skorvanek, J. M. Rojo-Abuin, Z. Gregova, G. T. Stebbins, C. G. Goetz, and Q. S. Group, “Validation study of the hoehn and yahr scale included in the mds-updrs,” Movement Disorders, vol. 33, no. 4, pp. 651–652, 2018.spa
dc.relation.references[11] N. I. of Health et al., “Parkinson’s disease: challenges, progress, and promise,” 2009.spa
dc.relation.references[12] K. A. Al Mamun, M. Alhussein, K. Sailunaz, and M. S. Islam, “Cloud based frame- work for parkinson’s disease diagnosis and monitoring system for remote healthcare applications,” Future Generation Computer Systems, vol. 66, pp. 36–47, 2017.spa
dc.relation.references[13] A. Tekriwal, D. S. Kern, J. Tsai, N. F. Ince, J. Wu, J. A. Thompson, and A. Abosch, “Rem sleep behaviour disorder: prodromal and mechanistic insights for parkinson’s di- sease,” Journal of Neurology, Neurosurgery & Psychiatry, vol. 88, no. 5, pp. 445–451, 2017.spa
dc.relation.references[14] M. Gerlach, W. Maetzler, K. Broich, H. Hampel, L. Rems, T. Reum, P. Riederer, A. St ̈offler, J. Streffer, and D. Berg, “Biomarker candidates of neurodegeneration in parkinson’s disease for the evaluation of disease-modifying therapeutics,” Journal of neural transmission, vol. 119, no. 1, pp. 39–52, 2012.spa
dc.relation.references[15] P. P. Michel, E. C. Hirsch, and S. Hunot, “Understanding dopaminergic cell death pathways in parkinson disease,” Neuron, vol. 90, no. 4, pp. 675–691, 2016.spa
dc.relation.references[16] A. Iarkov, G. Barreto, J. Grizzell, and V. Echeverria, “Strategies for the treatment of parkinson’s disease: beyond dopamine. front. aging neurosci. 2020; 12: 4,” 2020.spa
dc.relation.references[17] D. A. Winter, Biomechanics and motor control of human movement. John Wiley & Sons, 2009.spa
dc.relation.references[18] D. Grabli, C. Karachi, M.-L. Welter, B. Lau, E. C. Hirsch, M. Vidailhet, and C. Fran ̧cois, “Normal and pathological gait: what we learn from parkinson’s disease,” Journal of Neurology, Neurosurgery & Psychiatry, vol. 83, no. 10, pp. 979–985, 2012.spa
dc.relation.references[19] A. Alamdari and V. N. Krovi, “A review of computational musculoskeletal analysis of human lower extremities,” Human Modelling for Bio-Inspired Robotics, pp. 37–73, 2017.spa
dc.relation.references[20] L. M. Silva and N. Stergiou, “The basics of gait analysis,” Biomechanics and Gait Analysis, vol. 164, p. 231, 2020.spa
dc.relation.references[21] J. Kawalec, “Mechanical testing of foot and ankle implants,” in Mechanical Testing of Orthopaedic Implants, pp. 231–253, Elsevier, 2017.spa
dc.relation.references[22] C. Price, T. Schmeltzpfenning, C. J. Nester, and T. Brauner, “Foot and footwear bio- mechanics and gait,” in Handbook of Footwear Design and Manufacture, pp. 79–103, Elsevier, 2021.spa
dc.relation.references[23] C. W. Hess and M. Hallett, “The phenomenology of parkinson’s disease,” in Seminars in neurology, vol. 37, pp. 109–117, Thieme Medical Publishers, 2017.spa
dc.relation.references[24] L. di Biase, A. Di Santo, M. L. Caminiti, A. De Liso, S. A. Shah, L. Ricci, and V. Di Laz- zaro, “Gait analysis in parkinson’s disease: An overview of the most accurate markers for diagnosis and symptoms monitoring,” Sensors, vol. 20, no. 12, p. 3529, 2020.spa
dc.relation.references[25] S. Iqbal, X. Zang, Y. Zhu, H. M. A. A. Saad, and J. Zhao, “Nonlinear time-series analysis of different human walking gaits,” in 2015 IEEE International Conference on Electro/Information Technology (EIT), pp. 025–030, IEEE, 2015.spa
dc.relation.references[26] R. T. Lazaro, S. G. Reina-Guerra, and M. Quiben, Umphred’s Neurological Rehabilitation-E-Book. Elsevier Health Sciences, 2019.spa
dc.relation.references[27] D. Umphred and C. Carlson, Neurorehabilitation for the physical therapist assistant. Slack Incorporated, 2006.spa
dc.relation.references[28] D. F. Dale Purves, George J. Augustine, Neuroscience. Oxford University Press, 2018.spa
dc.relation.references[29] N. Stergiou, Nonlinear analysis for human movement variability. CRC press, 2018.spa
dc.relation.references[30] H. Kantz and T. Schreiber, Nonlinear time series analysis, vol. 7. Cambridge university press, 2004.spa
dc.relation.references[31] R. E. van Emmerik, S. W. Ducharme, A. C. Amado, and J. Hamill, “Comparing dy- namical systems concepts and techniques for biomechanical analysis,” Journal of Sport and Health Science, vol. 5, no. 1, pp. 3–13, 2016.spa
dc.relation.references[32] Y. Sarbaz, F. Towhidkhah, A. Jafari, and S. Gharibzadeh, “Do the chaotic features of gait change in parkinson’s disease?,” Journal of theoretical biology, vol. 307, pp. 160–167, 2012.spa
dc.relation.references[33] L. M. Decker, F. Cignetti, and N. Stergiou, “Complexity and human gait,” Revista Andaluza de Medicina del Deporte, vol. 3, no. 1, pp. 2–12, 2010.spa
dc.relation.references[34] M. Galatzer-Levy, Robert, “Understanding nonlinear dynamics.: D. kaplan and l. glass. new york: Springer-verlag, 1995,” Psychoanalytic Quarterly, vol. 66, pp. 737–737, 1997.spa
dc.relation.references[35] R. C. Hilborn et al., Chaos and nonlinear dynamics: an introduction for scientists and engineers. Oxford University Press on Demand, 2000.spa
dc.relation.references[36] P. Berge, Y. Pomeau, and C. Vidal, “Order within chaos: towards a deterministic ap- proach to turbulence,” 1986.spa
dc.relation.references[37] N. Stergiou, U. Buzzi, M. Kurz, and J. Heidel, “Nonlinear tools in human movement,” Innovative analyses of human movement, pp. 63–90, 2004.spa
dc.relation.references[38] F. Takens, “Detecting strange attractors in turbulence,” in Dynamical systems and turbulence, Warwick 1980, pp. 366–381, Springer, 1981.spa
dc.relation.references[39] D. Ricaurte, G. Pineda, and E. Romero, “Characterizing the gait dynamic by estima- ting lyapunov exponents on gait kinematic trajectories in parkinson’s disease,” in 15th International Symposium on Medical Information Processing and Analysis, vol. 11330, p. 1133010, International Society for Optics and Photonics, 2020.spa
dc.relation.references[40] M. T. Rosenstein, J. J. Collins, and C. J. De Luca, “A practical method for calculating largest lyapunov exponents from small data sets,” Physica D: Nonlinear Phenomena, vol. 65, no. 1-2, pp. 117–134, 1993.spa
dc.relation.references[41] S. Wallot and D. Mønster, “Calculation of average mutual information (ami) and false- nearest neighbors (fnn) for the estimation of embedding parameters of multidimensional time series in matlab,” Frontiers in psychology, p. 1679, 2018.spa
dc.relation.references[42] P. Xu, “Differential phase space reconstructed for chaotic time series,” Applied Mathe- matical Modelling, vol. 33, no. 2, pp. 999–1013, 2009.spa
dc.relation.references[43] J. Lekscha and R. V. Donner, “Phase space reconstruction for non-uniformly sampled noisy time series,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 28, no. 8, p. 085702, 2018.spa
dc.relation.references[44] A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, “Determining lyapunov expo- nents from a time series,” Physica D: Nonlinear Phenomena, vol. 16, no. 3, pp. 285–317, 1985.spa
dc.relation.references[45] L. S. McCue and A. W. Troesch, “Use of lyapunov exponents to predict chaotic vessel motions,” in Contemporary Ideas on Ship Stability and Capsizing in Waves, pp. 415– 432, Springer, 2011.spa
dc.relation.references[46] J. M. Hausdorff, C. Peng, Z. Ladin, J. Y. Wei, and A. L. Goldberger, “Is walking a random walk? evidence for long-range correlations in stride interval of human gait,” Journal of Applied Physiology, vol. 78, no. 1, pp. 349–358, 1995.spa
dc.relation.references[47] S. M. Pincus, “Approximate entropy as a measure of system complexity.,” Proceedings of the National Academy of Sciences, vol. 88, no. 6, pp. 2297–2301, 1991.spa
dc.relation.references[48] L. M. De Lau and M. M. Breteler, “Epidemiology of parkinson’s disease,” The Lancet Neurology, vol. 5, no. 6, pp. 525–535, 2006.spa
dc.relation.references[49] R. Mart ́ınez-Fern ́andez, C. Gasca-Salas, ́A. S ́anchez-Ferro, and J. ́A. Obeso, “Actua- lizaci ́on en la enfermedad de parkinson,” Revista M ́edica Cl ́ınica Las Condes, vol. 27, no. 3, pp. 363–379, 2016.spa
dc.relation.references[50] M. Ferrarin, L. Lopiano, M. Rizzone, M. Lanotte, B. Bergamasco, M. Recalcati, and A. Pedotti, “Quantitative analysis of gait in parkinson’s disease: a pilot study on effects of bilateral sub-thalamic stimulation,” Gait & posture, vol. 16, no. 2, pp. 135–148, 2002.spa
dc.relation.references[51] J. M. Hausdorff, “Gait dynamics in parkinson’s disease: common and distinct behavior among stride length, gait variability, and fractal-like scaling,” Chaos: An Interdiscipli- nary Journal of Nonlinear Science, vol. 19, no. 2, p. 026113, 2009.spa
dc.relation.references[52] J. Jankovic, “Parkinson’s disease: clinical features and diagnosis,” Journal of neurology, neurosurgery & psychiatry, vol. 79, no. 4, pp. 368–376, 2008.spa
dc.relation.references[53] J. B. Dingwell and L. C. Marin, “Kinematic variability and local dynamic stability of upper body motions when walking at different speeds,” Journal of biomechanics, vol. 39, no. 3, pp. 444–452, 2006.spa
dc.relation.references[54] V. S. Anishchenko, T. Vadivasova, and G. Strelkova, “Deterministic nonlinear systems,” A Short Course. Switzerland: Springer International Publishing, vol. 294, 2014.spa
dc.relation.references[55] L. Tang, H. Lv, F. Yang, and L. Yu, “Complexity testing techniques for time series data: A comprehensive literature review,” Chaos, Solitons & Fractals, vol. 81, pp. 117–135, 2015.spa
dc.relation.references[56] D. Lasagna, “Sensitivity analysis of chaotic systems using unstable periodic orbits,” SIAM Journal on Applied Dynamical Systems, vol. 17, no. 1, pp. 547–580, 2018.spa
dc.relation.references[57] S. Mehdizadeh, “The largest lyapunov exponent of gait in young and elderly individuals: a systematic review,” Gait & posture, vol. 60, pp. 241–250, 2018.spa
dc.relation.references[58] C. A ̧stef ̆anoaei, E. Pretegiani, L. Optican, D. Creang ̆a, and A. Rufa, “Eye movement recording and nonlinear dynamics analysis–the case of saccades,” Romanian journal of biophysics, vol. 23, no. 1-2, p. 81, 2013.spa
dc.relation.references[59] B. Galna, G. Barry, D. Jackson, D. Mhiripiri, P. Olivier, and L. Rochester, “Accuracy of the microsoft kinect sensor for measuring movement in people with parkinson’s disease,” Gait & posture, vol. 39, no. 4, pp. 1062–1068, 2014.spa
dc.relation.references[60] E. D. ̈Ubeyli, “Lyapunov exponents/probabilistic neural networks for analysis of eeg signals,” Expert Systems with Applications, vol. 37, no. 2, pp. 985 – 992, 2010.spa
dc.relation.references[61] D. Yılmaz and N. F. G ̈uler, “Analysis of the doppler signals using largest lyapunov exponent and correlation dimension in healthy and stenosed internal carotid artery patients,” Digital Signal Processing, vol. 20, no. 2, pp. 401 – 409, 2010.spa
dc.relation.references[62] K. Harezlak and P. Kasprowski, “Searching for chaos evidence in eye movement signals,” Entropy, vol. 20, no. 1, p. 32, 2018.spa
dc.relation.references[63] S. Bruijn, O. Meijer, P. Beek, and J. Van Die ̈en, “Assessing the stability of human loco- motion: a review of current measures,” Journal of the Royal Society Interface, vol. 10, no. 83, p. 20120999, 2013.spa
dc.relation.references[64] S. M. Bruijn, D. J. Bregman, O. G. Meijer, P. J. Beek, and J. H. van Die ̈en, “Maximum lyapunov exponents as predictors of global gait stability: a modelling approach,” Medical engineering and physics, vol. 34, no. 4, pp. 428–436, 2012.spa
dc.relation.references[65] C. Rhodes and M. Morari, “The false nearest neighbors algorithm: An overview,” Com- puters & Chemical Engineering, vol. 21, pp. S1149–S1154, 1997.spa
dc.relation.references[66] Y. Sarbaz and H. Pourakbari, “A review of presented mathematical models in parkin- son’s disease: Black-and gray-box models,” Medical & biological engineering & compu- ting, vol. 54, no. 6, pp. 855–868, 2016.spa
dc.relation.references[67] W. Caesarendra, B. Kosasih, K. Tieu, and C. A. Moodie, “An application of nonli- near feature extraction-a case study for low speed slewing bearing condition monitoring and prognosis,” in 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 1713–1718, IEEE, 2013.spa
dc.relation.references[68] J. Theiler, “Efficient algorithm for estimating the correlation dimension from a set of discrete points,” Physical review A, vol. 36, no. 9, p. 4456, 1987.spa
dc.relation.references[69] F. Magrinelli, A. Picelli, P. Tocco, A. Federico, L. Roncari, N. Smania, G. Zanette, and S. Tamburin, “Pathophysiology of motor dysfunction in parkinson’s disease as the rationale for drug treatment and rehabilitation. parkinsons dis. 2016,” 2016.spa
dc.relation.references[70] T. R. Mhyre, J. T. Boyd, and R. W. Hamill, “and kathleen a. maguire-zeiss,” Pro- tein Aggregation and Fibrillogenesis in Cerebral and Systemic Amyloid Disease, vol. 65, p. 389, 2012.spa
dc.relation.references[71] P. Chand and I. Litvan, “Parkinson’s disease,” in Encyclopedia of Gerontology (Second Edition) (J. E. Birren, ed.), pp. 322–333, New York: Elsevier, second edition ed., 2007.spa
dc.relation.references[72] J. Perry and J. Burnfield, “Gait analysis: normal and pathological function. slack,” Inc., Thorofare, NJ, 1992.spa
dc.relation.references[73] M. Pistacchi, M. Gioulis, F. Sanson, E. De Giovannini, G. Filippi, F. Rossetto, and S. Z. Marsala, “Gait analysis and clinical correlations in early parkinson’s disease,” Functional neurology, vol. 32, no. 1, p. 28, 2017.spa
dc.relation.references[74] P. P ́erez-Toro, J. V ́asquez-Correa, T. Arias-Vergara, E. N ̈oth, and J. Orozco-Arroyave, “Nonlinear dynamics and poincar ́e sections to model gait impairments in different stages of parkinson’s disease,” Nonlinear Dynamics, vol. 100, pp. 3253–3276, 2020.spa
dc.relation.references[75] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh, “Realtime multi-person 2d pose estimation using part affinity fields,” in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7291–7299, 2017.spa
dc.relation.references[76] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Doll ́ar, and C. L. Zitnick, “Microsoft coco: Common objects in context,” in European conference on computer vision, pp. 740–755, Springer, 2014.spa
dc.relation.references[77] M. Andriluka, L. Pishchulin, P. Gehler, and B. Schiele, “2d human pose estimation: New benchmark and state of the art analysis,” in Proceedings of the IEEE Conference on computer Vision and Pattern Recognition, pp. 3686–3693, 2014.spa
dc.relation.references[78] J. Stenum, C. Rossi, and R. T. Roemmich, “Two-dimensional video-based analysis of hu- man gait using pose estimation,” PLoS computational biology, vol. 17, no. 4, p. e1008935, 2021.spa
dc.relation.references[79] D. H. Wolaver and D. H. Wolaver, Phase-locked loop circuit design, vol. 1. Prentice Hall USA, 1991.spa
dc.relation.references[80] R. W. Schafer, “What is a savitzky-golay filter?[lecture notes],” IEEE Signal processing magazine, vol. 28, no. 4, pp. 111–117, 2011.spa
dc.relation.references[81] J. M. Yentes, N. Hunt, K. K. Schmid, J. P. Kaipust, D. McGrath, and N. Stergiou, “The appropriate use of approximate entropy and sample entropy with short data sets,” Annals of biomedical engineering, vol. 41, no. 2, pp. 349–365, 2013.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasspa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computaciónspa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.otherAprendizaje Profundospa
dc.subject.otherGanglios Basalesspa
dc.subject.otherTrastornos Motoresspa
dc.subject.otherDeep Learningeng
dc.subject.otherBasal Gangliaeng
dc.subject.otherMotor Disorderseng
dc.subject.proposalParkinson's diseaseeng
dc.subject.proposalChaoseng
dc.subject.proposalLyapunov exponenteng
dc.subject.proposalDynamical systemeng
dc.subject.proposalGaiteng
dc.subject.proposalMotor controleng
dc.subject.proposalEnfermedad de Parkinsonspa
dc.subject.proposalCaosspa
dc.subject.proposalExponente de Lyapunovspa
dc.subject.proposalSistema dinámicospa
dc.subject.proposalMarchaspa
dc.subject.proposalControl Motorspa
dc.titleGait characterizations in Parkinson's diseaseeng
dc.title.translatedCaracterizaciones de la marcha en la enfermedad de Parkinsonspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentDataPaperspa
dc.type.contentImagespa
dc.type.contentModelspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
80927859.2022.pdf
Tamaño:
2.74 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Biomédica

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: