A machine learning framework for EEG-based BCI-MI skill prediction with preserved explainability

dc.contributor.advisorCastellanos Dominguez, Cesar German
dc.contributor.advisorAlvarez Meza, Andres Marino
dc.contributor.authorCaicedo Acosta, Julian Camilo
dc.contributor.researchgroupGrupo de Control y Procesamiento Digital de Señalesspa
dc.date.accessioned2024-10-07T14:07:48Z
dc.date.available2024-10-07T14:07:48Z
dc.date.issued2024
dc.descriptiongraficas, tablasspa
dc.description.abstractThe understanding of brain functioning, including its structure and the dynamic networks generated under different situations, has been one of the most challenging research topics in recent years. In this sense, brain- computer interfaces (BCI) have become the main systems to acquire and process brain signals, allowing the development of increasingly specialized techniques like machine learning and artificial intelligence methods in order to replace, restore, enhance, supply, and improve brain functionality. Thus, BCI systems may be a promissory tool for several fields, including health, rehabilitation, education, marketing, and gaming, among others. Besides, BCI development is a continuously growing field of study not only in research but also in the business context, with a market that projects more than four hundred million USD by 2029. However, despite advances in building BCI systems, around 30% of BCI users are unable to effectively manage the device due to multiple factors such as intra- and inter-subject variability, overfitting, and small datasets. This issue is known as the ‘BCI illiteracy phenomenon’. Since electroencephalography (EEG) is the most used acquisition method due to its high temporal resolution, portability, and low cost compared with the other techniques, in this work we study the causes of the illiteracy phenomenon by predicting the user performance during motor imagery (MI) tasks. In this sense, we developed a machine learning framework to improve the illiterate subject’s performance under a skill prediction scheme. First, we develop a data- driven deep learning model, termed DRN, based on extracting time-frequency neurophysiological indicators that allow coding the inter-subject variability by predicting MI-BCI performance. Besides, to address the overfitting issues in the presence of small datasets and high-dimensional representations, we also developed a functional connectivity-based Monte-Carlo dropout regularized approach by modifying the proposed DRN to extract relevant patterns from channel relationships. Last, to improve illiterate subjects’ performance, we develop a general-purpose end-to-end multi-task deep learning approach founded on an autoencoder- based regularization scheme that transfers learned knowledge from performance prediction tasks to MI classification tasks. The results obtained in this work are promising and outperform the baseline methods in both BCI-performance prediction and MI classification. Furthermore, the proposed prediction methods are able to find behavioral group patterns between subjects with similar degrees of variability, while the transfer learning techniques allow to improve the performance of illiterate subjects with information from other subjects, contributing to the generalization of BCI systems (Texto tomado de la fuente)eng
dc.description.abstractLa comprensión del funcionamiento del cerebro, incluida su estructura y las redes dinámicas generadas en diferentes situaciones, ha sido uno de los temas de investigación más difíciles de los últimos años. En este sentido, las interfaces cerebro-computador (BCI) se han convertido en los principales sistemas para adquirir y procesar señales cerebrales, permitiendo el desarrollo de técnicas cada vez más especializadas como el aprendizaje automático y los métodos de inteligencia artificial que permiten reemplazar, restaurar, mejorar, suministrar y mejorar la funcionalidad cerebral. Por lo tanto, los sistemas BCI pueden ser una herramienta prometedora para varios campos, incluyendo la salud, la rehabilitación, la educación, el marketing y el juego, entre otros. Además, el desarrollo de BCI es un campo de estudio en continuo crecimiento no sólo en investigación sino también en el contexto empresarial, con un mercado que proyecta más de cuatrocientos millones de dólares para 2029. Sin embargo, a pesar de los avances en la construcción de sistemas BCI, alrededor del 30% de los usuarios de BCI no son capaces de administrar eficazmente el dispositivo debido a múltiples factores como la variabilidad intra- e inter-sujeto, el sobreajuste y la presencia de pequeños conjuntos de datos para el entrenamiento. Este problema es conocido como el fenómeno del ‘analfabetismo del BCI’. Dado que la electroencefalografía (EEG) es el método de adquisición más utilizado debido a su alta resolución temporal, portabilidad y bajo costo en comparación con las otras técnicas, en este trabajo estudiamos las causas del fenómeno del analfabetismo previniendo el rendimiento del usuario durante las tareas de imagen motor (MI). En este sentido, hemos desarrollado un marco de aprendizaje automático para mejorar el rendimiento del sujeto analfabeto bajo un esquema de predicción de sus habilidades. En primer lugar, desarrollamos un modelo de aprendizaje profundo basado en los datos, llamado DRN, sobre la base de la extracción de indicadores neurofisiológicos de frecuencia temporal que permiten codificar la variabilidad intersubjetiva prediciendo el rendimiento del MI-BCI. Además, para abordar los problemas de sobreajuste en la presencia de pequeños conjuntos de datos y representaciones de alta dimensión, también desarrol- lamos un enfoque regularizado de Monte-Carlo dropout basado en la conectividad funcional modificando el DRN propuesto para extraer patrones relevantes de las relaciones de canales. Por último, para mejorar el rendimiento de los sujetos analfabetos, desarrollamos un enfoque de aprendizaje profundo multi-tareas de propósito general basado en un esquema de regularización usando una arquitectura de autoencoder, que transfiere los conocimientos aprendidos de las tareas de predicción de rendimiento a las tasas de clasificación de imaginación motora. Los resultados obtenidos en este trabajo son prometedores y superan los méto- dos base tanto en la predicción del desempeño del BCI como en la clasificación de la imaginación motora. Además, los métodos de predicción propuestos son capaces de encontrar patrones de comportamiento grupal entre sujetos con grados similares de variabilidad, mientras que las técnicas de transferencia de aprendizaje permiten mejorar el rendimiento de sujetos analfabetos con información de otros sujetos, contribuyendo a la generalización de los sistemas BCI.spa
dc.description.curricularareaEléctrica, Electrónica, Automatización Y Telecomunicaciones.Sede Manizalesspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.researchareaApplied machine learningspa
dc.description.sponsorship(Code 111091991908 , Hermes Code 56118 ) funded by MINCIENCIASspa
dc.description.sponsorship(Hermes Code 57414 ), funded by Universidad Nacional de Colombiaspa
dc.format.extentxv, 101 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86900
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.facultyFacultad de Ingeniería y Arquitecturaspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Automáticaspa
dc.relation.referencesAbdulkader, S. N.; Atia, A. & Mostafa, M.-S. M.: , 2015; Brain computer interfacing: Applications and challenges; Egyptian Informatics Journal; 16 (2): 213–230.spa
dc.relation.referencesAbdulkarim, H.& Al-Faiz, M. Z.: , 2021; Online multiclass EEG feature extraction and recognition using modified convolutional neural network method; International Journal of Electrical and Computer Engineering (IJECE); 11 (5): 4016–4026.spa
dc.relation.referencesAbhang, P. A.; Gawali, B. W. & Mehrotra, S. C.: , 2016; Chapter 3 - technical aspects of brain rhythms and speech parameters; en Introduction to EEG- and Speech-Based Emotion Recognition (Editado por Abhang, P. A.; Gawali, B. W. & Mehrotra, S. C.); Academic Press; ISBN 978-0-12-804490-2; págs. 51–79; doi:https://doi.org/10.1016/ B978-0-12-804490-2.00003-8; URL https://www.sciencedirect.com/science/article/pii/B9780128044902000038.spa
dc.relation.referencesAbiri, R.; Borhani, S.; Sellers, E. W.; Jiang, Y. & Zhao, X.: , 2019; A comprehensive review of eeg-based brain–computer interface paradigms; Journal of neural engineering; 16 (1): 011001.spa
dc.relation.referencesAcqualagna, L.; Botrel, L.; Vidaurre, C.; Kübler, A.& Blankertz, B.: , 2016; Large-scale assessment of a fully automatic co-adaptive motor imagery-based brain computer interface; PloS one; 11 (2): e0148886.spa
dc.relation.referencesAggarwal, S. & Chugh, N.: , 2019; Signal processing techniques for motor imagery brain computer interface: A review; Array; 1: 100003.spa
dc.relation.referencesAhani, A.; Wahbeh, H.; Nezamfar, H.; Miller, M.; Erdogmus, D. & Oken, B.: , 2014; Quantitative change of EEG and respiration signals during mindfulness meditation; Journal of neuroengineering and rehabilitation; 11 (1): 1–11.spa
dc.relation.referencesAhirwal, M. K.; Kumar, A. & Singh, G. K.: , 2014; Adaptive filtering of EEG/ERP through bounded range artificial bee colony (BR-ABC) algorithm; Digital Signal Processing; 25: 164–172.spa
dc.relation.referencesAhn, M. & Jun, S. C.: , 2015; Performance variation in motor imagery brain–computer interface: a brief review; Journal of neuroscience methods; 243: 103–110.spa
dc.relation.referencesAhn, M.; Cho, H.; Ahn, S. & Jun, S. C.: , 2013; High theta and low alpha powers may be indicative of bci-illiteracy in motor imagery; PloS one; 8 (11): e80886.spa
dc.relation.referencesAhn, M.; Lee, M.; Choi, J. & Jun, S. C.: , 2014; A review of brain-computer interface games and an opinion survey from researchers, developers and users; Sensors; 14 (8): 14601–14633.spa
dc.relation.referencesAi, Q.; Chen, A.; Chen, K.; Liu, Q.; Zhou, T.; Xin, S. & Ji, Z.: , 2019; Feature extraction of four-class motor imagery EEG signals based on functional brain network; Journal of Neural Engineering; 16 (2): 026032.spa
dc.relation.referencesAkella, A.; Singh, A. K.; Leong, D.; Lal, S.; Newton, P.; Clifton-Bligh, R.; Mclachlan, C. S.; Gustin, S. M.; Maharaj, S.; Lees, T. et al.: , 2021; Classifying multi-level stress responses from brain cortical EEG in nurses and non-health professionals using machine learning auto encoder; IEEE Journal of Translational Engineering in Health and Medicine; 9: 1–9.spa
dc.relation.referencesAl-Fahad, R.; Yeasin, M. & Bidelman, G. M.: , 2020; Decoding of single-trial EEG reveals unique states of functional brain connectivity that drive rapid speech categorization decisions; Journal of Neural Engineering; 17(1): 016045.spa
dc.relation.referencesAl-Nafjan, A.; Hosny, M.; Al-Ohali, Y. & Al-Wabil, A.: , 2017; Review and classification of emotion recognition based on EEG brain-computer interface system research: a systematic review; Applied Sciences; 7 (12): 1239.spa
dc.relation.referencesAl Nazi, Z.; Hossain, A. A. & Islam, M. M.: , 2021; Motor imagery EEG classification using random subspace ensemble network with variable length features; International Journal Bioautomation; 25 (1): 13.spa
dc.relation.referencesAl-Saegh, A.; Dawwd, S. A.& Abdul-Jabbar, J. M.: , 2021; Deep learning for motor imagery EEG-based classification: A review; Biomedical Signal Processing and Control; 63: 102172.spa
dc.relation.referencesAl-Shargie, F. M.; Hassanin, O.; Tariq, U. & Al-Nashash, H.: , 2020; EEG-based semantic vigilance level classification using directed connectivity patterns and graph theory analysis; IEEE Access; 8: 115941–115956.spa
dc.relation.referencesAldayel, M.; Ykhlef, M. & Al-Nafjan, A.: , 2020; Deep learning for EEG-based preference classification in neuromarketing; Applied Sciences; 10 (4): 1525.spa
dc.relation.referencesAli, H. T.; Kammoun, A.& Couillet, R.: , 2018; Random matrix-improved kernels for large dimensional spectral clustering; en 2018 IEEE Statistical Signal Processing Workshop (SSP); IEEE; págs. 453–457.spa
dc.relation.referencesAllison, B.; Luth, T.; Valbuena, D.; Teymourian, A.; Volosyak, I. & Graser, A.: , 2010; Bci demographics: How many (and what kinds of) people can use an ssvep bci?; IEEE transactions on neural systems and rehabilitation engineering; 18 (2): 107–116.spa
dc.relation.referencesAllison, B. Z. & Neuper, C.: , 2010; Could anyone use a bci?; Brain-computer interfaces: Applying our minds to human-computer interaction: 35–54.spa
dc.relation.referencesAltaheri, H.; Muhammad, G.; Alsulaiman, M.; Amin, S. U.; Altuwaijri, G. A.; Abdul, W.; Bencherif, M. A. & Faisal, M.: , 2023; Deep learning techniques for classification of electroencephalogram (eeg) motor imagery (mi) signals: A review; Neural Computing and Applications; 35 (20): 14681–14722.spa
dc.relation.referencesÁlvarez-Meza, A.; Cárdenas-Peña, D. & Castellanos-Dominguez, G.: , 2014a; Unsupervised kernel function building using maximization of information potential variability; en Iberoamerican Congress on Pattern Recognition; Springer; págs. 335–342.spa
dc.relation.referencesAlvarez-Meza, A.; Orozco-Gutierrez, A. & Castellanos-Dominguez, G.: , 2017; Kernel-based relevance analysis with enhanced interpretability for detection of brain activity patterns; Frontiers in neuroscience; 11: 550.spa
dc.relation.referencesÁlvarez-Meza, A. M.; Cárdenas-Pena, D. & Castellanos-Dominguez, G.: , 2014b; Unsupervised kernel function building using maximization of information potential variability; en Iberoamerican Congress on Pattern Recognition; Springer; págs. 335–342.spa
dc.relation.referencesAlvi, A. M.; Siuly, S. & Wang, H.: , 2022; A long short-term memory based framework for early detection of mild cognitive impairment from eeg signals; IEEE Transactions on Emerging Topics in Computational Intelligence; 7 (2): 375–388.spa
dc.relation.referencesAlzahab, N. A.; Apollonio, L.; Di Iorio, A.; Alshalak, M.; Iarlori, S.; Ferracuti, F.; Monteriù, A. & Porcaro, C.: , 2021; Hybrid deep learning (hdl)-based brain-computer interface (bci) systems: a systematic review; Brain sciences; 11 (1): 75.spa
dc.relation.referencesAmir, J.; Amir, R.; Ednaldo Birgante, P. & Md Kafiul, I.: , 2020; Classification of emotions induced by horror and relaxing movies using single-channel EEG recordings.spa
dc.relation.referencesAng, K. K.; Chin, Z. Y.; Zhang, H. & Guan, C.: , 2008; Filter bank common spatial pattern (fbcsp) in brain- computer interface; en 2008 IEEE international joint conference on neural networks (IEEE world congress on computational intelligence); IEEE; págs. 2390–2397.spa
dc.relation.referencesAng, K. K.; Chin, Z. Y.; Wang, C.; Guan, C. & Zhang, H.: , 2012; Filter bank common spatial pattern algorithm on bci competition iv datasets 2a and 2b; Frontiers in neuroscience; 6: 39.spa
dc.relation.referencesAnowar, F.; Sadaoui, S. & Selim, B.: , 2021; Conceptual and empirical comparison of dimensionality reduction algorithms (PCA, KPCA, LDA, MDS, SVD, LLE, ISOMAP, LE, ICA, t-SNE); Computer Science Review; 40: 100378.spa
dc.relation.referencesAnupallavi, S. & MohanBabu, G.: , 2020; A novel approach based on BSPCI for quantifying functional connectivity pattern of the brain’s region for the classification of epileptic seizure; Journal of Ambient Intelligence and Humanized Computing: 1–11.spa
dc.relation.referencesApicella, A.; Arpaia, P.; Frosolone, M. & Moccaldi, N.: , 2021; High-wearable EEG-based distraction detection in motor rehabilitation; Scientific Reports; 11 (1): 1–9.spa
dc.relation.referencesArrieta, A. B.; Díaz-Rodríguez, N.; Del Ser, J.; Bennetot, A.; Tabik, S.; Barbado, A.; García, S.; Gil-López, S.; Molina, D.; Benjamins, R. et al.: , 2020; Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities and challenges toward responsible ai; Information fusion; 58: 82–115.spa
dc.relation.referencesArvaneh, M.; Guan, C.; Ang, K.K.&Quek, C.: , 2011; Optimizingthechannelselectionandclassification accuracy in EEG-based BCI; IEEE Transactions on Biomedical Engineering; 58 (6): 1865–1873.spa
dc.relation.referencesAutthasan, P.; Chaisaen, R.; Sudhawiyangkul, T.; Rangpong, P.; Kiatthaveephong, S.; Dilok- thanakul, N.; Bhakdisongkhram, G.; Phan, H.; Guan, C. & Wilaiprasitporn, T.: , 2021; Min2net: End-to-end multi- task learning for subject-independent motor imagery eeg classification; IEEE Transactions on Biomedical Engineering; 69 (6): 2105–2118.spa
dc.relation.referencesBaig, M. Z.; Aslam, N. & Shum, H. P.: , 2020; Filtering techniques for channel selection in motor imagery eeg applications: a survey; Artificial intelligence review; 53: 1207–1232.spa
dc.relation.referencesBakhshali, M.; Khademi, M.; Ebrahimi, A.& Moghimi, S.: , 2020; Eeg signal classification of imagined speech based on riemannian distance of correntropy spectral density; Biomedical Signal Processing and Control; 59: 101899.spa
dc.relation.referencesBamdad, M.; Zarshenas, H. & Auais, M. A.: , 2015; Application of bci systems in neurorehabilitation: a scoping review; Disability and Rehabilitation: Assistive Technology; 10 (5): 355–364.spa
dc.relation.referencesBamdadian, A.; Guan, C.; Ang, K. K. & Xu, J.: , 2014; The predictive role of pre-cue eeg rhythms on mi-based bci classification performance; Journal of neuroscience methods; 235: 138–144.spa
dc.relation.referencesBang, J.-S. & Lee, S.-W.: , 2022; Interpretable convolutional neural networks for subject-independent motor imagery classification; en 2022 10th International Winter Conference on Brain-Computer Interface (BCI); IEEE; págs. 1–5.spa
dc.relation.referencesBaniqued, P.D.E.; Stanyer, E.C.; Awais, M.; Alazmani, A.; Jackson, A.E.; Mon-Williams, M.A.; Mushtaq, F.& Holt, R. J.: , 2021; Brain–computer interface robotics for hand rehabilitation after stroke: a systematic review; Journal of NeuroEngineering and Rehabilitation; 18 (1): 1–25.spa
dc.relation.referencesBao, G.; Zhuang, N.; Tong, L.; Yan, B.; Shu, J.; Wang, L.; Zeng, Y. & Shen, Z.: , 2021; Two-level domain adaptation neural network for eeg-based emotion recognition; Frontiers in Human Neuroscience; 14: 605246.spa
dc.relation.referencesBarabási, D. L.; Bianconi, G.; Bullmore, E.; Burgess, M.; Chung, S.; Eliassi-Rad, T.; George, D.; Kovács, I. A.; Makse, H.; Nichols, T. E. et al.: , 2023; Neuroscience needs network science; Journal of Neuroscience; 43 (34): 5989–5995.spa
dc.relation.referencesBarachant, A.; Bonnet, S.; Congedo, M. & Jutten, C.: , 2013; Classification of covariance matrices using a riemannian-based kernel for BCI applications; Neurocomputing; 112: 172–178.spa
dc.relation.referencesBastos, A. M. & Schoffelen, J.-M.: , 2016; A tutorial review of functional connectivity analysis methods and their interpretational pitfalls; Frontiers in systems neuroscience; 9: 175.spa
dc.relation.referencesBattaglia, D. & Brovelli, A.: , 2020; Functional connectivity and neuronal dynamics: insights from computational methods; The Cognitive Neurosciences.spa
dc.relation.referencesBenzy, V.; Vinod, A.; Subasree, R.; Alladi, S.& Raghavendra, K.: , 2020; Motor imagery hand movement direction decoding using brain computer interface to aid stroke recovery and rehabilitation; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 28 (12): 3051–3062.spa
dc.relation.referencesBetzel, R. F.; Bertolero, M. A.; Gordon, E. M.; Gratton, C.; Dosenbach, N. U. & Bassett, D. S.: , 2019; The community structure of functional brain networks exhibits scale-specific patterns of inter-and intra-subject variability; Neuroimage; 202: 115990.spa
dc.relation.referencesBhadra, K.; Giraud, A. L. & Marchesotti, S.: , 2023; Learning to operate an imagined speech brain- computer interface involves the spatial and frequency tuning of neural activity; bioRxiv: 2023–09.spa
dc.relation.referencesBishop, C. M.: , 2006; Pattern recognition and machine learning; springer.spa
dc.relation.referencesBlankertz, B.; Sanelli, C.; Halder, S.; Hammer, E.; Kübler, A.; Müller, K.-R.; Curio, G. & Dickhaus, T.: , 2009; Predicting bci performance to study bci illiteracy; BMC Neurosci; 10 (Suppl 1): P84.spa
dc.relation.referencesBlankertz, B.; Sannelli, C.; Halder, S.; Hammer, E. M.; Kübler, A.; Müller, K.-R.; Curio, G. & Dickhaus, T.: , 2010; Neurophysiological predictor of smr-based bci performance; Neuroimage; 51 (4): 1303–1309.spa
dc.relation.referencesBochner, S.: , 2020; Harmonic analysis and the theory of probability; University of California press.spa
dc.relation.referencesBonci, A.; Fiori, S.; Higashi, H.; Tanaka, T. & Verdini, F.: , 2021; An introductory tutorial on brain– computer interfaces and their applications; Electronics; 10 (5): 560.spa
dc.relation.referencesBorgheai, S. B.; Zisk, A. H.; McLinden, J.; Mcintyre, J.; Sadjadi, R. & Shahriari, Y.: , 2024; Multimodal pre-screening can predict bci performance variability: A novel subject-specific experimental scheme; Computers in Biology and Medicine; 168: 107658.spa
dc.relation.referencesBorra, D.; Fantozzi, S. & Magosso, E.: , 2020; Interpretable and lightweight convolutional neural network for EEG decoding: application to movement execution and imagination; Neural Networks; 129: 55–74.spa
dc.relation.referencesBraga-Neto, U. M. & Dougherty, E. R.: , 2004; Is cross-validation valid for small-sample microarray classification?; Bioinformatics; 20 (3): 374–380.spa
dc.relation.referencesBrigato, L. & Iocchi, L.: , 2021; A close look at deep learning with small data; en 2020 25th International Conference on Pattern Recognition (ICPR); IEEE; págs. 2490–2497.spa
dc.relation.referencesBrockmeier, A.; Choi, J.; Kriminger, E.; Francis, J. & Principe, J.: , 2014; Neural decoding with kernel-based metric learning; Neural computation; 26 (6): 1080–1107.spa
dc.relation.referencesBromiley, P.; Thacker, N. & Bouhova-Thacker, E.: , 2004; Shannon entropy, renyi entropy, and infor- mation; statistics and inf; Series (2004-004).spa
dc.relation.referencesBrunner, C.; Birbaumer, N.; Blankertz, B.; Guger, C.; Kübler, A.; Mattia, D.; Millán, J. d. R.; Miralles, F.; Nijholt, A.; Opisso, E. et al.: , 2015; Bnci horizon 2020: towards a roadmap for the bci community; Brain- computer interfaces; 2 (1): 1–10.spa
dc.relation.referencesBruns, A.: , 2004; Fourier-, hilbert-and wavelet-based signal analysis: are they really different approaches?; Journal of neuroscience methods; 137 (2): 321–332.spa
dc.relation.referencesBuchanan, D. M.; Ros, T. & Nahas, R.: , 2021; Elevated and slowed EEG oscillations in patients with post-concussive syndrome and chronic pain following a motor vehicle collision; Brain Sciences; 11 (5): 537.spa
dc.relation.referencesBurde, W.& Blankertz, B.: , 2006; Is the locus of control of reinforcement a predictor of brain-computer interface performance?spa
dc.relation.referencesCai, Q.; Gong, W.; Deng, Y. & Wang, H.: , 2021; Single-trial EEG classification via common spatial patterns with mixed lp-and lq-norms; Mathematical Problems in Engineering; 2021.spa
dc.relation.referencesCai, Y.; She, Q.; Ji, J.; Ma, Y.; Zhang, J. & Zhang, Y.: , 2022; Motor imagery eeg decoding using manifold embedded transfer learning; Journal of Neuroscience Methods; 370: 109489.spa
dc.relation.referencesCaicedo-Acosta, J.; Castaño, G. A.; Acosta-Medina, C.; Alvarez-Meza, A. & Castellanos- Dominguez, G.: , 2021; Deep neural regression prediction of motor imagery skills using eeg functional connectivity indicators; Sensors; 21 (6): 1932.spa
dc.relation.referencesCalesella, F.; Testolin, A.; De Filippo De Grazia, M. & Zorzi, M.: , 2020; A systematic assessment of feature extraction methods for robust prediction of neuropsychological scores from functional connectivity data; en International conference on brain informatics; Springer; págs. 29–40.spa
dc.relation.referencesCárdenas-Peña, D.; Collazos-Huertas, D.& Castellanos-Dominguez, G.: , 2017; Enhanced data representation by kernel metric learning for dementia diagnosis; Frontiers in neuroscience; 11: 413.spa
dc.relation.referencesChaddad, A.; Peng, J.; Xu, J. & Bouridane, A.: , 2023a; Survey of explainable ai techniques in health- care; Sensors; 23 (2): 634.spa
dc.relation.referencesChaddad, A.; Wu, Y.; Kateb, R. & Bouridane, A.: , 2023b; Electroencephalography signal processing: A comprehensive review and analysis of methods and techniques; Sensors; 23 (14): 6434.spa
dc.relation.referencesChakraborty, S.; Tomsett, R.; Raghavendra, R.; Harborne, D.; Alzantot, M.; Cerutti, F.; Sri- vastava, M.; Preece, A.; Julier, S.; Rao, R. M.et al.: , 2017; Interpretability of deep learning models: A survey of results; en 2017 IEEE smartworld, ubiquitous intelligence & computing, advanced & trusted computed, scalable computing & communi- cations, cloud & big data computing, Internet of people and smart city innovation (smartworld/SCALCOM/UIC/ATC/CB- Dcom/IOP/SCI); IEEE; págs. 1–6.spa
dc.relation.referencesChamola, V.; Vineet, A.; Nayyar, A. & Hossain, E.: , 2020; Brain-computer interface-based humanoid control: A review; Sensors; 20 (13): 3620.spa
dc.relation.referencesChao, H. & Liu, Y.: , 2020; Emotion recognition from multi-channel EEG signals by exploiting the deep belief-conditional random field framework; IEEE Access; 8: 33002–33012.spa
dc.relation.referencesChen, X.; Li, C.; Liu, A.; McKeown, M. J.; Qian, R. & Wang, Z. J.: , 2022; Toward open-world electroen- cephalogram decoding via deep learning: A comprehensive survey; IEEE Signal Processing Magazine; 39 (2): 117–134.spa
dc.relation.referencesChen, Y.; Meng, L. & Zhang, J.: , 2019a; Graph neural lasso for dynamic network regression; arXiv preprint arXiv:1907.11114.spa
dc.relation.referencesChen, Y.; Hang, W.; Liang, S.; Liu, X.; Li, G.; Wang, Q.; Qin, J. & Choi, K.-S.: , 2020; A novel transfer support matrix machine for motor imagery-based brain computer interface; Frontiers in Neuroscience; 14.spa
dc.relation.referencesChen, Z.; Ji, J. & Liang, Y.: , 2019b; Convolutional neural network with an element-wise filter to classify dynamic functional connectivity; en 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM); IEEE; págs. 643–646.spa
dc.relation.referencesCheng, H.-T.; Koc, L.; Harmsen, J.; Shaked, T.; Chandra, T.; Aradhye, H.; Anderson, G.; Corrado, G.; Chai, W.; Ispir, M. et al.: , 2016; Wide & deep learning for recommender systems; en Proceedings of the 1st workshop on deep learning for recommender systems; págs. 7–10.spa
dc.relation.referencesChiarion, G.; Sparacino, L.; Antonacci, Y.; Faes, L. & Mesin, L.: , 2023; Connectivity analysis in eeg data: A tutorial review of the state of the art and emerging trends; Bioengineering; 10 (3): 372.spa
dc.relation.referencesCho, H.; Ahn, M.; Ahn, S.; Kwon, M. & Jun, S. C.: , 2017; Eeg datasets for motor imagery brain–computer interface; GigaScience; 6 (7): gix034.spa
dc.relation.referencesCinel, C.; Valeriani, D. & Poli, R.: , 2019; Neurotechnologies for human cognitive augmentation: current state of the art and future prospects; Frontiers in human neuroscience; 13: 13.spa
dc.relation.referencesClark, S. V.; King, T. Z.& Turner, J. A.: , 2020; Cerebellar contributions to proactive and reactive control in the stop signal task: A systematic review and meta-analysis of functional magnetic resonance imaging studies; Neuropsychology review: 1–24.spa
dc.relation.referencesCoelho, G. P.; Barbante, C. C.; Boccato, L.; Attux, R. R.; Oliveira, J. R. & Von Zuben, F. J.: , 2012; Automatic feature selection for BCI: an analysis using the davies-bouldin index and extreme learning machines; en The 2012 International Joint Conference on Neural Networks (IJCNN); IEEE; págs. 1–8.spa
dc.relation.referencesCohen, L.: , 1998; The generalization of the wiener-khinchin theorem; en Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP’98 (Cat. No. 98CH36181), tomo 3; IEEE; págs. 1577–1580.spa
dc.relation.referencesCollazos-Huertas, D.; Álvarez-Meza, A.; Acosta-Medina, C.; Castaño-Duque, G. & Castellanos-Dominguez, G.: , 2020; CNN-based framework using spatial dropping for enhanced interpretation of neural activity in motor imagery classification; Brain Informatics; 7 (1): 1–13.spa
dc.relation.referencesCollazos-Huertas, D. F.; Velasquez-Martinez, L. F.; Perez-Nastar, H. D.; Alvarez-Meza, A. M. & Castellanos-Dominguez, G.: , 2021; Deep and wide transfer learning with kernel matching for pooling data from electroencephalography and psychological questionnaires; Sensors; 21 (15): 5105.spa
dc.relation.referencesCollazos-Huertas, D. F.; Álvarez-Meza, A. M.; Cárdenas-Peña, D. A.; Castaño-Duque, G. A. & Castellanos-Domínguez, C. G.: , 2023; Posthoc interpretability of neural responses by grouping subject motor imagery skills using cnn-based connectivity; Sensors; 23 (5): 2750.spa
dc.relation.referencesCongedo, M.; Barachant, A.& Bhatia, R.: , 2017a; Riemannian geometry for EEG-based brain-computer interfaces; a primer and a review; Brain-Computer Interfaces; 4 (3): 155–174.spa
dc.relation.referencesCongedo, M.; Barachant, A. & Koopaei, E. K.: , 2017b; Fixed point algorithms for estimating power means of positive definite matrices; IEEE Transactions on Signal Processing; 65 (9): 2211–2220.spa
dc.relation.referencesCongedo, M.; Rodrigues, P. L. C.; Bouchard, F.; Barachant, A. & Jutten, C.: , 2017c; A closed- form unsupervised geometry-aware dimensionality reduction method in the riemannian manifold of SPD matrices; en 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); IEEE; págs. 3198–3201.spa
dc.relation.referencesCraik, A.; He, Y. & Contreras-Vidal, J. L.: , 2019; Deep learning for electroencephalogram (EEG) classifi- cation tasks: a review; Journal of Neural Engineering; 16 (3): 031001.spa
dc.relation.referencesCui, Y.; Xie, S.; Fu, Y. & Xie, X.: , 2023; Predicting motor imagery bci performance based on eeg microstate analysis; Brain Sciences; 13 (9): 1288.spa
dc.relation.referencesDai, H.; Su, S.; Zhang, Y. & Jian, W.: , 2020; Effect of spatial filtering and channel selection on motor imagery BCI; en Proceedings of the 2020 Conference on Artificial Intelligence and Healthcare; págs. 270–274.spa
dc.relation.referencesDaly, I.; Nasuto, S. J. & Warwick, K.: , 2012; Brain computer interface control via functional connectivity dynamics; Pattern recognition; 45 (6): 2123–2136.spa
dc.relation.referencesDe La Pava Panche, I.; Alvarez-Meza, A. & Orozco-Gutierrez, A.: , 2019; A data-driven measure of effective connectivity based on renyi’s α-entropy; Frontiers in neuroscience; 13: 1277.spa
dc.relation.referencesDeng, Y.; Li, Z.; Wang, H.; Lu, X.& Fan, H.: , 2020; Local temporal joint recurrence common spatial patterns for MI-based BCI; en 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), tomo 1; IEEE; págs. 813–816.spa
dc.relation.referencesDornhege, G.; Millán, J. d. R.; Hinterberger, T.; McFarland, D. J. & Müller, K.-R.: , 2007; An introduction to brain-computer interfacing.spa
dc.relation.referencesdos Santos, E. M.; Cassani, R.; Falk, T. H. & Fraga, F. J.: , 2020; Improved motor imagery brain- computer interface performance via adaptive modulation filtering and two-stage classification; Biomedical Signal Processing and Control; 57: 101812.spa
dc.relation.referencesDoshi-Velez, F. & Kim, B.: , 2017; Towards a rigorous science of interpretable machine learning; arXiv preprint arXiv:1702.08608.spa
dc.relation.referencesDouibi, K.; Le Bars, S.; Lemontey, A.; Nag, L.; Balp, R. & Breda, G.: , 2021; Toward eeg-based bci applications for industry 4.0: challenges and possible applications; Frontiers in Human Neuroscience; 15: 705064.spa
dc.relation.referencesDuan, L.; Zhong, H.; Miao, J.; Yang, Z.; Ma, W. & Zhang, X.: , 2014; A voting optimized strategy based on ELM for improving classification of motor imagery BCI data; Cognitive Computation; 6 (3): 477–483.spa
dc.relation.referencesDuan, L.; Duan, H.; Qiao, Y.; Sha, S.; Qi, S.; Zhang, X.; Huang, J.; Huang, X. & Wang, C.: , 2020; Machine learning approaches for MDD detection and emotion decoding using EEG signals; Frontiers in Human Neuroscience; 14.spa
dc.relation.referencesDuan, S.; Yu, S. & Príncipe, J. C.: , 2021; Modularizing deep learning via pairwise learning with kernels; IEEE Transactions on Neural Networks and Learning Systems.spa
dc.relation.referencesDuclos, C.; Maschke, C.; Mahdid, Y.; Berkun, K.; da Silva Castanheira, J.; Tarnal, V.; Picton, P.; Vanini, G.; Golmirzaie, G.; Janke, E. et al.: , 2021; Differential classification of states of consciousness using envelope-and phase-based functional connectivity; NeuroImage; 237: 118171.spa
dc.relation.referencesEPMoghaddam, D.; Sheth, S. A.; Haneef, Z.; Gavvala, J. & Aazhang, B.: , 2022; Epileptic seizure prediction using spectral width of the covariance matrix; Journal of Neural Engineering; 19 (2): 026029.spa
dc.relation.referencesFahimi, F.; Zhang, Z.; Goh, W. B.; Lee, T.-S.; Ang, K. K. & Guan, C.: , 2019; Inter-subject transfer learning with an end-to-end deep convolutional neural network for eeg-based bci; Journal of neural engineering; 16(2): 026007.spa
dc.relation.referencesFan, F.-L.; Xiong, J.; Li, M. & Wang, G.: , 2021; On interpretability of artificial neural networks: A survey; IEEE Transactions on Radiation and Plasma Medical Sciences; 5 (6): 741–760.spa
dc.relation.referencesFauzi, H.; Azzam, M. A.; Shapiai, M. I.; Kyoso, M.; Khairuddin, U. & Komura, T.: , 2019; Energy extraction method for EEG channel selection; Telkomnika; 17 (5): 2561–2571.spa
dc.relation.referencesFeng, Z.; Qian, L.; Hu, H. & Sun, Y.: , 2020; Functional connectivity for motor imaginary recognition in brain-computer interface; en 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC); IEEE; págs. 3678–3682.spa
dc.relation.referencesFine, S.& Scheinberg, K.: , 2001; Efficient SVM training using low-rank kernel representations; Journal of Machine Learning Research; 2 (Dec): 243–264.spa
dc.relation.referencesFischer, M. H. F.; Zibrandtsen, I. C.; Høgh, P. & Musaeus, C. S.: , 2023; Systematic review of eeg coherence in alzheimer’s disease; Journal of Alzheimer’s Disease; (Preprint): 1–12.spa
dc.relation.referencesFleury, M.; Figueiredo, P.; Vourvopoulos, A. & Lécuyer, A.: , 2023; Two is better? combining eeg and fmri for bci and neurofeedback: A systematic review.spa
dc.relation.referencesFong, R. C. & Vedaldi, A.: , 2017; Interpretable explanations of black boxes by meaningful perturbation; en Proceedings of the IEEE international conference on computer vision; págs. 3429–3437.spa
dc.relation.referencesFriston, K. J.: , 2011; Functional and effective connectivity: a review; Brain connectivity; 1 (1): 13–36.spa
dc.relation.referencesFrolov, N.; Maksimenko, V.; Lüttjohann, A.; Koronovskii, A. & Hramov, A.: , 2019; Feed-forward artificial neural network provides data-driven inference of functional connectivity; Chaos: An Interdisciplinary Journal of Nonlinear Science; 29 (9): 091101.spa
dc.relation.referencesFu, R.; Han, M.; Tian, Y. & Shi, P.: , 2020; Improvement motor imagery EEG classification based on sparse common spatial pattern and regularized discriminant analysis; Journal of Neuroscience Methods; 343: 108833.spa
dc.relation.referencesGao, Z.; Dang, W.; Wang, X.; Hong, X.; Hou, L.; Ma, K. & Perc, M.: , 2021; Complex networks and deep learning for EEG signal analysis; Cognitive Neurodynamics; 15 (3): 369–388.spa
dc.relation.referencesGarcía-Murillo, D. G.; Alvarez-Meza, A. & Castellanos-Dominguez, G.: , 2021; Single-trial kernel-based functional connectivity for enhanced feature extraction in motor-related tasks; Sensors; 21 (8): 2750.spa
dc.relation.referencesGarcía-Murillo, D. G.; Álvarez-Meza, A. M. & Castellanos-Dominguez, C. G.: , 2023; Kcs-fcnet: Kernel cross-spectral functional connectivity network for eeg-based motor imagery classification; Diagnostics; 13 (6): 1122.spa
dc.relation.referencesGarcía-Prieto, J.; Bajo, R. & Pereda, E.: , 2017; Efficient computation of functional brain networks: Toward real-time functional connectivity; Frontiers in neuroinformatics; 11: 8.spa
dc.relation.referencesGarg, D.; Verma, G. K. & Singh, A. K.: , 2023; A review of deep learning based methods for affect analysis using physiological signals; Multimedia Tools and Applications: 1–46.spa
dc.relation.referencesGaur, P.; Gupta, H.; Chowdhury, A.; McCreadie, K.; Pachori, R. & Wang, H.: , 2021a; A sliding window common spatial pattern for enhancing motor imagery classification in eeg-bci; IEEE Transactions on Instrumentation and Measurement; 70: 1–9.spa
dc.relation.referencesGaur, P.; McCreadie, K.; Pachori, R. B.; Wang, H. & Prasad, G.: , 2021b; An automatic subject specific channelselectionmethodforenhancingmotorimageryclassificationinEEG-BCIusingcorrelation; Biomedical Signal Processing and Control; 68: 102574.spa
dc.relation.referencesGaxiola-Tirado, J. A.; Salazar-Varas, R. & Gutiérrez, D.: , 2017; Using the partial directed coherence to assess functional connectivity in electroencephalography data for brain–computer interfaces; IEEE Transactions on Cognitive and Developmental Systems; 10 (3): 776–783.spa
dc.relation.referencesGeorgiadis, K.; Laskaris, N.; Nikolopoulos, S. & Kompatsiaris, I.: , 2019; Connectivity steered graph fourier transform for motor imagery bci decoding; Journal of neural engineering; 16 (5): 056021.spa
dc.relation.referencesGéron, A.: , 2022; Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow; " O’Reilly Media, Inc.".spa
dc.relation.referencesGhane, P.& Hossain, G.: , 2020; Learning patterns in imaginary vowels for an intelligent brain computer interface (bci) design; arXiv preprint arXiv:2010.12066.spa
dc.relation.referencesGhane, P.; Zarnaghinaghsh, N. & Braga-Neto, U.: , 2021; Comparison of classification algorithms towards subject-specific and subject-independent bci; en 2021 9th International Winter Conference on Brain-Computer Interface (BCI); IEEE; págs. 1–6.spa
dc.relation.referencesGoldberger, A. L.; Amaral, L. A.; Glass, L.; Hausdorff, J. M.; Ivanov, P. C.; Mark, R. G.; Mietus, J. E.; Moody, G. B.; Peng, C.-K. & Stanley, H. E.: , 2000; Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals; circulation; 101 (23): e215–e220.spa
dc.relation.referencesGolugula, A.; Lee, G. & Madabhushi, A.: , 2011; Evaluating feature selection strategies for high dimen- sional, small sample size datasets; en 2011 Annual International conference of the IEEE engineering in medicine and biology society; IEEE; págs. 949–952.spa
dc.relation.referencesGonuguntla, V.; Wang, Y. & Veluvolu, K. C.: , 2016; Event-related functional network identification: application to EEG classification; IEEE journal of selected topics in signal processing; 10 (7): 1284–1294.spa
dc.relation.referencesGonzalez-Astudillo, J.; Cattai, T.; Bassignana, G.; Corsi, M.-C. & Fallani, F. D. V.: , 2020; Network-based brain computer interfaces: principles and applications; Journal of Neural Engineeringspa
dc.relation.referencesGonzalez-Astudillo, J.; Cattai, T.; Bassignana, G.; Corsi, M.-C. & Fallani, F. D. V.: , 2021; Network-based brain–computer interfaces: principles and applications; Journal of neural engineering; 18 (1): 011001.spa
dc.relation.referencesGramfort, A. & Clerc, M.: , 2007; Low dimensional representations of MEG/EEG data using laplacian eigenmaps; en 2007 Joint Meeting of the 6th International Symposium on Noninvasive Functional Source Imaging of the Brain and Heart and the International Conference on Functional Biomedical Imaging; IEEE; págs. 169–172.spa
dc.relation.referencesGrigorev, N. A.; Savosenkov, A. O.; Lukoyanov, M. V.; Udoratina, A.; Shusharina, N. N.; Kaplan, A. Y.; Hramov, A. E.; Kazantsev, V. B.& Gordleeva, S.: , 2021; A bci-based vibrotactile neurofeedback training improves motor cortical excitability during motor imagery; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 29: 1583–1592.spa
dc.relation.referencesGrilo, M.; Ribeiro, L.; Moraes, C.; Melo, C.; Fantinato, D.; Sampaio, L.; Neves, A.&Ramos, R.: , 2019; Artifact removal in EEG based emotional signals through linear and nonlinear methods; en 2019 E-Health and Bioengineering Conference (EHB); IEEE; págs. 1–4.spa
dc.relation.referencesGu, J.; Wei, M.; Guo, Y. & Wang, H.: , 2021; Common spatial pattern with l21-norm; Neural Processing Letters: 1–20.spa
dc.relation.referencesGu, L.; Yu, Z.; Ma, T.; Wang, H.; Li, Z. & Fan, H.: , 2020a; EEG-based classification of lower limb motor imagery with brain network analysis; Neuroscience; 436: 93–109.spa
dc.relation.referencesGu, L.; Yu, Z.; Ma, T.; Wang, H.; Li, Z. & Fan, H.: , 2020b; Random matrix theory for analysing the brain functional network in lower limb motor imagery; en 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC); IEEE; págs. 506–509.spa
dc.relation.referencesGuger, C.; Allison, B. Z.; Großwindhager, B.; Prückl, R.; Hintermüller, C.; Kapeller, C.; Bruckner, M.; Krausz, G. & Edlinger, G.: , 2012; How many people could use an ssvep bci?; Frontiers in neuroscience; 6: 169.spa
dc.relation.referencesGuillot, A. & Debarnot, U.: , 2019; Benefits of motor imagery for human space flight: a brief review of current knowledge and future applications; Frontiers in Physiology; 10: 396.spa
dc.relation.referencesGupta, A.; Agrawal, R. & Kaur, B.: , 2015; Performance enhancement of mental task classification using EEG signal: a study of multivariate feature selection methods; Soft Computing; 19 (10): 2799–2812.spa
dc.relation.referencesHaddad, A.; Shamsi, F.; Ghovanloo, M. & Najafizadeh, L.: , 2019; Early decoding of tongue-hand move- ment from EEG recordings using dynamic functional connectivity graphs; en 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER); IEEE; págs. 373–376.spa
dc.relation.referencesHagedorn, L. J.; Leeuwis, N. & Alimardani, M.: , 2021; Prediction of inefficient bci users based on cognitive skills and personality traits; en International Conference on Neural Information Processing; Springer; págs. 81–89.spa
dc.relation.referencesHalder, S.; Agorastos, D.; Veit, R.; Hammer, E. M.; Lee, S.; Varkuti, B.; Bogdan, M.; Rosenstiel, W.; Birbaumer, N. & Kübler, A.: , 2011; Neural mechanisms of brain–computer interface control; Neuroimage; 55 (4): 1779–1790.spa
dc.relation.referencesHalder, S.; Varkuti, B.; Bogdan, M.; Kübler, A.; Rosenstiel, W.; Sitaram, R. & Birbaumer, N.: , 2013; Prediction of brain-computer interface aptitude from individual brain structure; Frontiers in human neuroscience; 7: 105.spa
dc.relation.referencesHamedi, M.; Salleh, S.-H. & Noor, A. M.: , 2016; Electroencephalographic motor imagery brain connec- tivity analysis for BCI: a review; Neural computation; 28 (6): 999–1041.spa
dc.relation.referencesHammer, E. M.; Halder, S.; Blankertz, B.; Sannelli, C.; Dickhaus, T.; Kleih, S.; Müller, K.-R. & Kübler, A.: , 2012; Psychological predictors of smr-bci performance; Biological psychology; 89 (1): 80–86.spa
dc.relation.referencesHang, W.; Feng, W.; Liang, S.; Wang, Q.; Liu, X. & Choi, K.-S.: , 2020; Deep stacked support matrix machine based representation learning for motor imagery EEG classification; Computer methods and programs in biomedicine; 193: 105466.spa
dc.relation.referencesHe, B.; Astolfi, L.; Valdés-Sosa, P. A.; Marinazzo, D.; Palva, S. O.; Bénar, C.-G.; Michel, C. M. & Koenig, T.: , 2019; Electrophysiological brain connectivity: theory and implementation; IEEE Transactions on Biomedical Engineering; 66 (7): 2115–2137.spa
dc.relation.referencesHe, H. & Wu, D.: , 2019; Transfer learning for brain–computer interfaces: A euclidean space data alignment approach; IEEE Transactions on Biomedical Engineering; 67 (2): 399–410.spa
dc.relation.referencesHe, L.; Hu, Y.; Li, Y. & Li, D.: , 2013; Channel selection by rayleigh coefficient maximization based genetic algorithm for classifying single-trial motor imagery EEG; Neurocomputing; 121: 423–433.spa
dc.relation.referencesHe, Y.; Lu, Z.; Wang, J.& Shi, J.: , 2022; A channel attention based mlp-mixer network for motor imagery decod- ing with eeg; en ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP); IEEE; págs. 1291–1295.spa
dc.relation.referencesHerranz-Gómez, A.; Gaudiosi, C.; Angulo-Díaz-Parreño, S.; Suso-Martí, L.; La Touche, R. & Cuenca-Martínez, F.: , 2020; Effectiveness of motor imagery and action observation on functional variables: An umbrella and mapping review with meta-meta-analysis; Neuroscience & Biobehavioral Reviews.spa
dc.relation.referencesHerszage, J.; Dayan, E.; Sharon, H. & Censor, N.: , 2020; Explaining individual differences in motor behavior by intrinsic functional connectivity and corticospinal excitability; Frontiers in neuroscience; 14: 76.spa
dc.relation.referencesHo, R. & Hung, K.: , 2020; A comparative investigation of mode mixing in eeg decomposition using emd, eemd and m-emd; en 2020 IEEE 10th Symposium on Computer Applications & Industrial Electronics (ISCAIE); IEEE; págs. 203–210.spa
dc.relation.referencesHochberg, L. R.; Bacher, D.; Jarosiewicz, B.; Masse, N. Y.; Simeral, J. D.; Vogel, J.; Haddadin, S.; Liu, J.; Cash, S. S.; Van Der Smagt, P. et al.: , 2012; Reach and grasp by people with tetraplegia using a neurally controlled robotic arm; Nature; 485 (7398): 372–375.spa
dc.relation.referencesHosseini, M.; Powell, M.; Collins, J.; Callahan-Flintoft, C.; Jones, W.; Bowman, H. & Wyble, B.: , 2020a; I tried a bunch of things: The dangers of unexpected overfitting in classification of brain data; Neuroscience & Biobehavioral Reviews.spa
dc.relation.referencesHosseini, M.-P.; Hosseini, A.& Ahi, K.: , 2020b; A review on machine learning for EEG signal processing in bioengineering; IEEE reviews in biomedical engineering.spa
dc.relation.referencesHrisca-Eva, O.-D. & Lazar, A. M.: , 2021; Multi-sessions outcome for EEG feature extraction and classification methods in a motor imagery task.; Traitement du Signal; 38 (2).spa
dc.relation.referencesHsu, L. & Chen, Y.-J.: , 2020; Neuromarketing, subliminal advertising, and hotel selection: An EEG study; Australasian Marketing Journal (AMJ); 28 (4): 200–208.spa
dc.relation.referencesHuang, G.; Hu, Z.; Chen, W.; Zhang, S.; Liang, Z.; Li, L.; Zhang, L. & Zhang, Z.: , 2022; M3cv: A multi-subject, multi-session, and multi-task database for eeg-based biometrics challenge; NeuroImage; 264: 119666.spa
dc.relation.referencesHurtado-Rincón, J. V.; Martínez-Vargas, J. D.; Rojas-Jaramillo, S.; Giraldo, E. & Castellanos-Dominguez, G.: , 2016; Identification of relevant inter-channel EEG connectivity patterns: a kernel-based super- vised approach; en International Conference on Brain Informatics; Springer; págs. 14–23.spa
dc.relation.referencesIdowu, O. P.; Ilesanmi, A. E.; Li, X.; Samuel, O. W.; Fang, P. & Li, G.: , 2021; An integrated deep learning model for motor intention recognition of multi-class EEG signals in upper limb amputees; Computer Methods and Programs in Biomedicine; 206: 106121.spa
dc.relation.referencesIngolfsson, T. M.; Hersche, M.; Wang, X.; Kobayashi, N.; Cavigelli, L. & Benini, L.: , 2020; Eeg-tcnet: An accurate temporal convolutional network for embedded motor-imagery brain–machine interfaces; en 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC); IEEE; págs. 2958–2965.spa
dc.relation.referencesIoffe, S. & Szegedy, C.: , 2015; Batch normalization: Accelerating deep network training by reducing internal covariate shift; en International conference on machine learning; pmlr; págs. 448–456.spa
dc.relation.referencesIslam, M. K.& Rastegarnia, A.: , 2023; Recent advances in eeg (non-invasive) based bci applications; Frontiers in Computational Neuroscience; 17: 1151852.spa
dc.relation.referencesIslam, M. K.; Rastegarnia, A. & Yang, Z.: , 2016; Methods for artifact detection and removal from scalp eeg: A review; Neurophysiologie Clinique/Clinical Neurophysiology; 46 (4-5): 287–305.spa
dc.relation.referencesIsmail, L. E. & Karwowski, W.: , 2020; A graph theory-based modeling of functional brain connec- tivity based on EEG: A systematic review in the context of neuroergonomics; IEEE Access; 8: 155103–155135.spa
dc.relation.referencesIturralde, P. A.; Patrone, M.; Lecumberry, F. & Fernández, A.: , 2012; Motor intention recognition in EEG: In pursuit of a relevant feature set; en Iberoamerican Congress on Pattern Recognition; Springer; págs. 551–558.spa
dc.relation.referencesJahromy, F. Z.; Bajoulvand, A. & Daliri, M. R.: , 2019; Statistical algorithms for emo- tion classification via functional connectivity.; Journal of Integrative Neuroscience; 18 (3): 293–297; doi:10.31083/j. jin.2019.03.601; URL https://app.dimensions.ai/details/publication/pub.1121421951andhttps://jin.imrpress.com/EN/article/ downloadArticleFile.do?attachType=PDF&id=1604.spa
dc.relation.referencesJain, A. & Zongker, D.: , 1997; Feature selection: Evaluation, application, and small sample performance; IEEE transactions on pattern analysis and machine intelligence; 19 (2): 153–158.spa
dc.relation.referencesJaipriya, D. & Sriharipriya, K.: , 2023; Brain computer interface-based signal processing tech- niques for feature extraction and classification of motor imagery using eeg: A literature review; Biomedical Materials & Devices: 1–13.spa
dc.relation.referencesJamil, N.; Belkacem, A. N. & Lakas, A.: , 2023; On enhancing students’ cognitive abilities in online learning using brain activity and eye movements; Education and Information Technologies; 28 (4): 4363–4397.spa
dc.relation.referencesJanapati, R.; Dalal, V. & Sengupta, R.: , 2023; Advances in modern eeg-bci signal processing: A review; Materials Today: Proceedings; 80: 2563–2566.spa
dc.relation.referencesJayaram, V.; Alamgir, M.; Altun, Y.; Scholkopf, B. & Grosse-Wentrup, M.: , 2016; Transfer learning in brain-computer interfaces; IEEE Computational Intelligence Magazine; 11 (1): 20–31.spa
dc.relation.referencesJiang, Y.; Chen, W.; Li, M.; Zhang, T. & You, Y.: , 2021; Synchroextracting chirplet transform-based epileptic seizures detection using EEG; Biomedical Signal Processing and Control; 68: 102699.spa
dc.relation.referencesJin, J.; Liu, C.; Daly, I.; Miao, Y.; Li, S.; Wang, X.&Cichocki, A.: , 2020; Bispectrum-basedchannelselection for motor imagery based brain-computer interfacing; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 28 (10): 2153–2163.spa
dc.relation.referencesJorajuría, T.; Nikulin, V. V.; Kapralov, N.; Gómez, M. & Vidaurre, C.: , 2023; Mean sp: How many channels are needed to predict the performance of a smr-based bci?; IEEE Transactions on Neural Systems and Rehabilitation Engineering.spa
dc.relation.referencesKang, J.-H.; Kim, S.-H.; Youn, J. & Kim, J.: , 2020; Prediction of the following bci performance by means of spectral eeg characteristics in the prior resting state; KIPS Transactions on Computer and Communication Systems; 9 (11): 265–272.spa
dc.relation.referencesKaper, M.; Meinicke, P.; Grossekathoefer, U.; Lingner, T. & Ritter, H.: , 2004; BCI competition 2003- data set IIb: support vector machines for the p300 speller paradigm; IEEE Transactions on biomedical Engineering; 51 (6): 1073–1076.spa
dc.relation.referencesKawanabe, M.; Krauledat, M. & Blankertz, B.: , 2006; A bayesian approach for adaptive BCI classi- fication; Citeseer.spa
dc.relation.referencesKhan, D. M.; Yahya, N.; Kamel, N. & Faye, I.: , 2021; Effective connectivity in default mode network for alcoholism diagnosis; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 29: 796–808.spa
dc.relation.referencesKhan, M. A.; Das, R.; Iversen, H. K. & Puthusserypady, S.: , 2020; Review on motor imagery based BCI systems for upper limb post-stroke neurorehabilitation: From designing to application; Computers in Biology and Medicine: 103843.spa
dc.relation.referencesKhosla, A.; Khandnor, P.& Chand, T.: , 2020; A comparative analysis of signal processing and classification methods for different applications based on EEG signals; Biocybernetics and Biomedical Engineering; 40 (2): 649–690.spa
dc.relation.referencesKim, S.-J.; Lee, D.-H. & Lee, S.-W.: , 2022; Rethinking cnn architecture for enhancing decoding performance of motor imagery-based eeg signals; IEEE Access; 10: 96984–96996.spa
dc.relation.referencesKim, Y.; Lee, S.; Kim, H.; Lee, S.; Lee, S. & Kim, D.: , 2019; Reduced burden of individual calibration process in brain-computer interface by clustering the subjects based on brain activation; en 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC); IEEE; págs. 2139–2143.spa
dc.relation.referencesKingma, D. P. & Ba, J.: , 2014; Adam: A method for stochastic optimization; arXiv preprint arXiv:1412.6980.spa
dc.relation.referencesKingma, D. P.; Welling, M. et al.: , 2019; An introduction to variational autoencoders; Foundations and Trends® in Machine Learning; 12 (4): 307–392.spa
dc.relation.referencesKnapen, T.: , 2021; Topographic connectivity reveals task-dependent retinotopic processing throughout the human brain; Proceedings of the National Academy of Sciences; 118 (2).spa
dc.relation.referencesKondratyev, A.; Schwarz, C. & Horvath, B.: , 2020; Data anonymisation, outlier detection and fight- ing overfitting with restricted boltzmann machines; Outlier Detection and Fighting Overfitting with Restricted Boltzmann Machines (January 27, 2020).spa
dc.relation.referencesKong, Q.; Wu, Y.; Yuan, C. & Wang, Y.: , 2021; Ct-cad: Context-aware transformers for end-to-end chest abnormality detection on x-rays; en 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM); IEEE; págs. 1385–1388.spa
dc.relation.referencesKosmyna, N. & Lécuyer, A.: , 2019; A conceptual space for eeg-based brain-computer interfaces; PloS one; 14 (1): e0210145.spa
dc.relation.referencesKübler, A.: , 2020; The history of BCI: From a vision for the future to real support for personhood in people with locked-in syndrome; Neuroethics; 13 (2): 163–180.spa
dc.relation.referencesKübler, A.; Neumann, N.; Kaiser, J.; Kotchoubey, B.; Hinterberger, T. & Birbaumer, N. P.: , 2001; Brain-computer communication: self-regulation of slow cortical potentials for verbal communication; Archives of physical medicine and rehabilitation; 82 (11): 1533–1539.spa
dc.relation.referencesKübler, A.; Neumann, N.; Wilhelm, B.; Hinterberger, T. &spa
dc.relation.referencesKulkarni, P. M.; Xiao, Z.; Robinson, E. J.; Jami, A. S.; Zhang, J.; Zhou, H.; Henin, S. E.; Liu, A. A.; Osorio, R. S.; Wang, J. et al.: , 2019; A deep learning approach for real-time detection of sleep spindles; Journal of neural engineering; 16 (3): 036004.spa
dc.relation.referencesKulkarni, V. V.: , 2023; Brain computer interface using eeg signal.spa
dc.relation.referencesKumar, S.; Reddy, T. & Behera, L.: , 2018; Eeg based motor imagery classification using instantaneous phase difference sequence; en 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC); IEEE; págs. 499–504.spa
dc.relation.referencesKumar, S.; Sharma, A. & Tsunoda, T.: , 2019; Brain wave classification using long short-term memory network based OPTICAL predictor; Scientific reports; 9 (1): 1–13.spa
dc.relation.referencesKwon, B.-H.; Jeong, J.-H. & Lee, S.-W.: , 2021; Visual motion imagery classification with deep neural network based on functional connectivity; arXiv preprint arXiv:2103.02851.spa
dc.relation.referencesKwon, M.; Cho, H.; Won, K.; Ahn, M. & Jun, S. C.: , 2020; Use of both eyes-open and eyes-closed resting states may yield a more robust predictor of motor imagery bci performance; Electronics; 9 (4): 690.spa
dc.relation.referencesKwon, O.-Y.; Lee, M.-H.; Guan, C. & Lee, S.-W.: , 2019; Subject-independent brain–computer interfaces based on deep convolutional neural networks; IEEE transactions on neural networks and learning systems; 31(10): 3839–3852.spa
dc.relation.referencesLadda, A.M.; Lebon, F.&Lotze, M.: , 2021; Usingmotorimagerypracticeforimprovingmotorperformance– a review; Brain and cognition; 150: 105705.spa
dc.relation.referencesLakshmi, M. R.; Prasad, T. & Prakash, D. V. C.: , 2014; Survey on EEG signal processing methods; International Journal of Advanced Research in Computer Science and Software Engineering; 4 (1).spa
dc.relation.referencesLashley, K. S.: , 1929; Brain mechanisms and intelligence: A quantitative study of injuries to the brain.spa
dc.relation.referencesLawhern, V. J.; Solon, A. J.; Waytowich, N. R.; Gordon, S. M.; Hung, C. P. & Lance, B. J.: , 2018; Eegnet: a compact convolutional neural network for eeg-based brain–computer interfaces; Journal of neural engineering; 15 (5): 056013.spa
dc.relation.referencesLebedev, M. A. & Nicolelis, M. A.: , 2006; Brain–machine interfaces: past, present and future; TRENDS in Neurosciences; 29 (9): 536–546.spa
dc.relation.referencesLedoit, O. & Wolf, M.: , 2004; A well-conditioned estimator for large-dimensional covariance matrices; Journal of multivariate analysis; 88 (2): 365–411.spa
dc.relation.referencesLee, F.; Scherer, R.; Leeb, R.; Schlögl, A.; Bischof, H. & Pfurtscheller, G.: , 2004; Feature mapping using PCA, locally linear embedding and isometric feature mapping for EEG-based brain computer interface; Citeseer.spa
dc.relation.referencesLee, M.; Yoon, J.-G. & Lee, S.-W.: , 2020; Predicting motor imagery performance from resting-state eeg using dynamic causal modeling; Frontiers in human neuroscience; 14: 321.spa
dc.relation.referencesLee, M.-H.; Kwon, O.-Y.; Kim, Y.-J.; Kim, H.-K.; Lee, Y.-E.; Williamson, J.; Fazli, S. & Lee, S.-W.: , 2019; Eeg dataset and openbmi toolbox for three bci paradigms: An investigation into bci illiteracy; GigaScience; 8 (5): giz002.spa
dc.relation.referencesLeeuwis, N.; Yoon, S. & Alimardani, M.: , 2021; Functional connectivity analysis in motor-imagery brain computer interfaces; Frontiers in Human Neuroscience; 15: 732946.spa
dc.relation.referencesLi, H.; Chen, H.; Jia, Z.; Zhang, R. & Yin, F.: , 2023; A parallel multi-scale time-frequency block convolutional neural network based on channel attention module for motor imagery classification; Biomedical Signal Processing and Control; 79: 104066.spa
dc.relation.referencesLi, M. & Chen, W.: , 2021; FFT-based deep feature learning method for EEG classification; Biomedical Signal Processing and Control; 66: 102492.spa
dc.relation.referencesLi, M.; Luo, X.; Yang, J. & Sun, Y.: , 2016; Applying a locally linear embedding algorithm for feature extraction and visualization of MI-EEG; Journal of Sensors; 2016.spa
dc.relation.referencesLi, M.; Wang, J.et al.: , 2019a; An empirical comparison of multiple linear regression and artificial neural network for concrete dam deformation modelling; Mathematical Problems in Engineering; 2019.spa
dc.relation.referencesLi, S.; Xie, X.; Gu, Z.; Yu, Z. L. & Li, Y.: , 2019b; Motor imagery classification based on local isometric embedding of riemannian manifold; en 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA); IEEE; págs. 2368–2372.spa
dc.relation.referencesLi, Y.; Kambara, H.; Koike, Y. & Sugiyama, M.: , 2010; Application of covariate shift adaptation techniques in brain–computer interfaces; IEEE Transactions on Biomedical Engineering; 57 (6): 1318–1324.spa
dc.relation.referencesLi, Y.; Zhang, X.-R.; Zhang, B.; Lei, M.-Y.; Cui, W.-G. & Guo, Y.-Z.: , 2019c; A channel-projection mixed- scale convolutional neural network for motor imagery EEG decoding; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 27 (6): 1170–1180.spa
dc.relation.referencesLi, Y.; Liu, Y.; Cui, W.-G.; Guo, Y.-Z.; Huang, H. & Hu, Z.-Y.: , 2020; Epileptic seizure detection in EEG signals using a unified temporal-spectral squeeze-and-excitation network; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 28 (4): 782–794.spa
dc.relation.referencesLi, Y.; Fu, B.; Li, F.; Shi, G. & Zheng, W.: , 2021; A novel transferability attention neural network model for EEG emotion recognition; Neurocomputing; 447: 92–101.spa
dc.relation.referencesLinderman, G. & Steinerberger, S.: , 2019; Clustering with t-sne, provably; SIAM Journal on Mathematics of Data Science; 1 (2): 313–332.spa
dc.relation.referencesLiu, R. & Gillies, D. F.: , 2016; Overfitting in linear feature extraction for classification of high-dimensional image data; Pattern Recognition; 53: 73–86.spa
dc.relation.referencesLiu, S.; Zhang, J.; Wang, A.; Wu, H.; Zhao, Q. & Long, J.: , 2022; Subject adaptation convolutional neural network for eeg-based motor imagery classification; Journal of Neural Engineering; 19 (6): 066003.spa
dc.relation.referencesLiu, W.; Guo, C. & Gao, C.: , 2024; A cross-session motor imagery classification method based on riemannian geometry and deep domain adaptation; Expert Systems with Applications; 237: 121612.spa
dc.relation.referencesLopez, C. A. F.; Li, G. & Zhang, D.: , 2020; Beyond technologies of electroencephalography-based brain- computer interfaces: A systematic review from commercial and ethical aspects; Frontiers in Neuroscience; 14.spa
dc.relation.referencesLotte, F.; Bougrain, L.; Cichocki, A.; Clerc, M.; Congedo, M.; Rakotomamonjy, A. & Yger, F.: , 2018; A review of classification algorithms for eeg-based brain–computer interfaces: a 10 year update; Journal of neural engineering; 15 (3): 031005.spa
dc.relation.referencesLu, C.-F.; Teng, S.; Hung, C.-I.; Tseng, P.-J.; Lin, L.-T.; Lee, P.-L. & Wu, Y.-T.: , 2011; Reorganiza- tion of functional connectivity during the motor task using EEG time–frequency cross mutual information analysis; Clinical Neurophysiology; 122 (8): 1569–1579.spa
dc.relation.referencesLuo, Z.; Jin, R.; Shi, H. & Lu, X.: , 2021; Research on recognition of motor imagination based on connectivity features of brain functional network; Neural plasticity; 2021.spa
dc.relation.referencesMa, B.-Q.; Li, H.; Zheng, W.-L. & Lu, B.-L.: , 2019; Reducing the subject variability of eeg signals with adversarial domain generalization; en Neural Information Processing: 26th International Conference, ICONIP 2019, Sydney, NSW, Australia, December 12–15, 2019, Proceedings, Part I 26; Springer; págs. 30–42.spa
dc.relation.referencesMa, X.; Qiu, S.; Zhang, Y.; Lian, X. & He, H.: , 2018; Predicting epileptic seizures from intracranial eeg using lstm-based multi-task learning; en Chinese Conference on Pattern Recognition and Computer Vision (PRCV); Springer; págs. 157–167.spa
dc.relation.referencesMaiseli, B.; Abdalla, A. T.; Massawe, L. V.; Mbise, M.; Mkocha, K.; Nassor, N. A.; Ismail, M.; Michael, J. & Kimambo, S.: , 2023; Brain–computer interface: trend, challenges, and threats; Brain Informatics; 10 (1): 20.spa
dc.relation.referencesMaksimenko, V. A.; Lüttjohann, A.; Makarov, V. V.; Goremyko, M. V.; Koronovskii, A. A.; Nedaivozov, V.; Runnova, A. E.; van Luijtelaar, G.; Hramov, A. E. & Boccaletti, S.: , 2017; Macroscopic and microscopic spectral properties of brain networks during local and global synchronization; Physical Review E; 96 (1): 012316.spa
dc.relation.referencesMatemba, E. D.; Li, G.; Gogan, I. C. W. & Maiseli, B. J.: , 2020; Technology acceptance model: recent developments, future directions, and proposal for hypothetical extensions; International Journal of Technology Intelligence and Planning; 12 (4): 315–348.spa
dc.relation.referencesMcClelland, V. M.; Fischer, P.; Foddai, E.; Dall’Orso, S.; Burdet, E.; Brown, P. & Lin, J.-P.: , 2021; Eeg measures of sensorimotor processing and their development are abnormal in children with isolated dystonia and dystonic cerebral palsy; NeuroImage: Clinical; 30: 102569.spa
dc.relation.referencesMcFarland, D. J. & Wolpaw, J. R.: , 2011; Brain-computer interfaces for communication and control; Communications of the ACM; 54 (5): 60–66.spa
dc.relation.referencesMeanti, G.; Carratino, L.; Rosasco, L. & Rudi, A.: , 2020; Kernel methods through the roof: handling billions of points efficiently; arXiv preprint arXiv:2006.10350.spa
dc.relation.referencesMeng, J. & He, B.: , 2019; Exploring training effect in 42 human subjects using a non-invasive sensorimotor rhythm based online bci; Frontiers in human neuroscience; 13: 128.spa
dc.relation.referencesMiao, M.; Wang, A. & Liu, F.: , 2017a; A spatial-frequency-temporal optimized feature sparse representation- based classification method for motor imagery eeg pattern recognition; Medical & biological engineering & computing; 55: 1589–1603.spa
dc.relation.referencesMiao, M.; Zeng, H.; Wang, A.; Zhao, C. & Liu, F.: , 2017b; Discriminative spatial-frequency-temporal feature extraction and classification of motor imagery eeg: An sparse regression and weighted naïve bayesian classifier-based approach; Journal of neuroscience methods; 278: 13–24.spa
dc.relation.referencesMiao, Z. & Zhao, M.: , 2024; Time–space–frequency feature fusion for 3-channel motor imagery classification; Biomedical Signal Processing and Control; 90: 105867.spa
dc.relation.referencesMidha, S.; Maior, H. A.; Wilson, M. L. & Sharples, S.: , 2021; Measuring mental workload variations in office work tasks using fnirs; International Journal of Human-Computer Studies; 147: 102580.spa
dc.relation.referencesMiladinović, A.; Barbaro, A.; Valvason, E.; Ajčević, M.; Accardo, A.; Battaglini, P. P. & Jar- molowska, J.: , 2020; Combined and singular effects of action observation and motor imagery paradigms on resting-state sensorimotor rhythms; en XV Mediterranean Conference on Medical and Biological Engineering and Computing–MEDICON 2019: Proceedings of MEDICON 2019, September 26-28, 2019, Coimbra, Portugal; Springer; págs. 1129–1137.spa
dc.relation.referencesMiladinović, A.; Ajčević, M.; Jarmolowska, J.; Marusic, U.; Colussi, M.; Silveri, G.; Battaglini, P. P. & Accardo, A.: , 2021; Effect of power feature covariance shift on BCI spatial-filtering techniques: A comparative study; Computer Methods and Programs in Biomedicine; 198: 105808.spa
dc.relation.referencesMiljevic, A.; Bailey, N. W.; Vila-Rodriguez, F.; Herring, S. E. & Fitzgerald, P. B.: , 2022; Electroen- cephalographic connectivity: a fundamental guide and checklist for optimal study design and evaluation; Biological Psychiatry: Cognitive Neuroscience and Neuroimaging; 7 (6): 546–554.spa
dc.relation.referencesMillan, J. R. & Mouriño, J.: , 2003; Asynchronous BCI and local neural classifiers: an overview of the adaptive brain interface project; IEEE transactions on neural systems and rehabilitation engineering; 11 (2): 159–161.spa
dc.relation.referencesMiotto, R.; Wang, F.; Wang, S.; Jiang, X. & Dudley, J. T.: , 2018; Deep learning for healthcare: review, opportunities and challenges; Briefings in bioinformatics; 19 (6): 1236–1246.spa
dc.relation.referencesMirzaei, S. & Ghasemi, P.: , 2021; EEG motor imagery classification using dynamic connectivity patterns and convolutional autoencoder; Biomedical Signal Processing and Control; 68: 102584.spa
dc.relation.referencesModares-Haghighi, P.; Boostani, R.; Nami, M. & Sanei, S.: , 2021; Quantification of pain severity using EEG-based functional connectivity; Biomedical Signal Processing and Control; 69: 102840.spa
dc.relation.referencesMohammadi, L.; Einalou, Z.; Hosseinzadeh, H. & Dadgostar, M.: , 2021; Cursor movement detec- tion in brain-computer-interface systems using the k-means clustering method and LSVM; Journal of Big Data; 8 (1): 1–15.spa
dc.relation.referencesMolina-Giraldo, S.; Carvajal-González, J.; Álvarez-Meza, A. M. & Castellanos-Domínguez, G.: , 2015; Video segmentation framework based on multi-kernel representations and feature relevance analysis for object classification; en Pattern recognition applications and methods; Springer; págs. 273–283.spa
dc.relation.referencesMorioka, H.; Kanemura, A.; Hirayama, J.-i.; Shikauchi, M.; Ogawa, T.; Ikeda, S.; Kawanabe, M. & Ishii, S.: , 2015; Learning a common dictionary for subject-transfer decoding with resting calibration; NeuroImage; 111: 167–178.spa
dc.relation.referencesMormann, F.; Lehnertz, K.; David, P. & Elger, C. E.: , 2000; Mean phase coherence as a measure for phase synchronization and its application to the eeg of epilepsy patients; Physica D: Nonlinear Phenomena; 144 (3-4): 358–369.spa
dc.relation.referencesMridha, M. F.; Das, S. C.; Kabir, M. M.; Lima, A. A.; Islam, M. R. & Watanobe, Y.: , 2021; Brain-computer interface: Advancement and challenges; Sensors; 21 (17): 5746.spa
dc.relation.referencesMulert, C. & Lemieux, L.: , 2023; EEG-fMRI: physiological basis, technique, and applications; Springer Nature.spa
dc.relation.referencesMüller-Putz, G.; Scherer, R.; Brunner, C.; Leeb, R. & Pfurtscheller, G.: , 2008; Better than random: a closer look on bci results; International journal of bioelectromagnetism; 10 (ARTICLE): 52–55.spa
dc.relation.referencesMumtaz, W.; Kamel, N.; Ali, S. S. A.; Malik, A. S. et al.: , 2018; An EEG-based functional connectivity measure for automatic detection of alcohol use disorder; Artificial intelligence in medicine; 84: 79–89.spa
dc.relation.referencesMusallam, Y. K.; AlFassam, N. I.; Muhammad, G.; Amin, S. U.; Alsulaiman, M.; Abdul, W.; Altaheri, H.; Bencherif, M. A. & Algabri, M.: , 2021; Electroencephalography-based motor imagery classification using temporal convolutional network fusion; Biomedical Signal Processing and Control; 69: 102826.spa
dc.relation.referencesNagabushanam, P.; Thomas George, S. & Radha, S.: , 2020; Eeg signal classification using lstm and improved neural network algorithms; Soft Computing; 24: 9981–10003.spa
dc.relation.referencesNakra, A. & Duhan, M.: , 2020; Feature extraction and dimensionality reduction techniques with their advantages and disadvantages for eeg-based bci system: A review.; IUP Journal of Computer Sciences; 14 (1).spa
dc.relation.referencesNicolini, C.; Forcellini, G.; Minati, L. & Bifone, A.: , 2020; Scale-resolved analysis of brain functional connectivity networks with spectral entropy; NeuroImage; 211: 116603.spa
dc.relation.referencesNijboer, F.; Birbaumer, N. & Kübler, A.: , 2010; The influence of psychological state and motivation on brain–computer interface performance in patients with amyotrophic lateral sclerosis–a longitudinal study; Frontiers in Neu- ropharmacology; 4: 55.spa
dc.relation.referencesNisar, H.; Thee, K. W.; Lim, S. H.; Yap, V. V.; Teh, P. C.; Nor, N. M. & Chow, C. M.: , 2018; Brain functional connectivity analysis using single trial EEG for understanding individual mechanisms; en 2018 IEEE 14th International Colloquium on Signal Processing & Its Applications (CSPA); IEEE; págs. 209–214.spa
dc.relation.referencesNkengfack, L. C. D.; Tchiotsop, D.; Atangana, R.; Louis-Door, V. & Wolf, D.: , 2020; EEG signals analysis for epileptic seizures detection using polynomial transforms, linear discriminant analysis and support vector machines; Biomedical Signal Processing and Control; 62: 102141.spa
dc.relation.referencesNoshadi, S.; Abootalebi, V.; Sadeghi, M. T. & Shahvazian, M. S.: , 2014; Selection of an efficient feature space for EEG-based mental task discrimination; Biocybernetics and Biomedical Engineering; 34 (3): 159–168.spa
dc.relation.referencesOmeiza, D.; Speakman, S.; Cintas, C.& Weldermariam, K.: , 2019; Smooth grad-CAM++: An enhanced inference level visualization technique for deep convolutional neural network models; arXiv preprint arXiv:1908.01224.spa
dc.relation.referencesO’Reilly, J. A. & Chanmittakul, W.: , 2021; L1 regularization-based selection of EEG spec- tral power and ECG features for classification of cognitive state; en 2021 9th International Electrical Engineering Congress (iEECON); IEEE; págs. 365–368.spa
dc.relation.referencesÖzdenizci, O.; Wang, Y.; Koike-Akino, T. & Erdoğmuş, D.: , 2019a; Adversarial deep learning in EEG biometrics; IEEE signal processing letters; 26 (5): 710–714.spa
dc.relation.referencesÖzdenizci, O.; Wang, Y.; Koike-Akino, T. & Erdoğmuş, D.: , 2019b; Transfer learning in brain- computer interfaces with adversarial variational autoencoders; en 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER); IEEE; págs. 207–210.spa
dc.relation.referencesÖzdenizci, O.; Wang, Y.; Koike-Akino, T. & Erdoğmuş, D.: , 2020; Learning invariant representations from eeg via adversarial inference; IEEE access; 8: 27074–27085.spa
dc.relation.referencesPadilla-Buritica, J. I.; Hurtado, J. V. & Castellanos-Dominguez, G.: , 2019; Supervised piece- wise network connectivity analysis for enhanced confidence of auditory oddball tasks; Biomedical Signal Processing and Control; 52: 341–346.spa
dc.relation.referencesPahuja, S.; Veer, K. et al.: , 2022; Recent approaches on classification and feature extraction of eeg signal: A review; Robotica; 40 (1): 77–101.spa
dc.relation.referencesPandey, P.& Miyapuram, K. P.: , 2021; BRAIN2DEPTH: Lightweight CNN model for classification of cognitive states from EEG recordings; arXiv preprint arXiv:2106.06688.spa
dc.relation.referencesParhi, M. & Tewfik, A. H.: , 2021; Classifying imaginary vowels from frontal lobe EEG via deep learning; en 2020 28th European Signal Processing Conference (EUSIPCO); IEEE; págs. 1195–1199.spa
dc.relation.referencesPark, H. & Jun, S. C.: , 2023; Exploring connectivity of resting-state eeg between bci-literate and-illiterate groups; bioRxiv: 2023–11.spa
dc.relation.referencesPark, S.-H.; Lee, D. & Lee, S.-G.: , 2017; Filter bank regularized common spatial pattern ensemble for small sample motor imagery classification; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 26 (2): 498–505.spa
dc.relation.referencesPawar, D. & Dhage, S.: , 2020; Feature extraction methods for electroencephalography based brain- computer interface: A review.; IAENG International Journal of Computer Science; 47 (3).spa
dc.relation.referencesPaz-Linares, D.; Vega-Hernandez, M.; Rojas-Lopez, P. A.; Valdes-Hernandez, P. A.; Martinez- Montes, E. & Valdes-Sosa, P. A.: , 2017; Spatio temporal EEG source imaging with the hierarchical bayesian elastic net and elitist lasso models; Frontiers in neuroscience; 11: 635.spa
dc.relation.referencesPeksa, J. & Mamchur, D.: , 2023; State-of-the-art on brain-computer interface technology; Sensors; 23 (13): 6001.spa
dc.relation.referencesPeterson, V.; Wyser, D.; Lambercy, O.; Spies, R. & Gassert, R.: , 2019; A penalized time-frequency band feature selection and classification procedure for improved motor intention decoding in multichannel EEG; Journal of Neural Engineering; 16 (1): 016019.spa
dc.relation.referencesPfurtscheller, G. & Da Silva, F. L.: , 1999; Event-related eeg/meg synchronization and desyn- chronization: basic principles; Clinical neurophysiology; 110 (11): 1842–1857.spa
dc.relation.referencesPope, P. E.; Kolouri, S.; Rostami, M.; Martin, C. E. & Hoffmann, H.: , 2019; Explainability methods for graph convolutional neural networks; en Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; págs. 10772–10781.spa
dc.relation.referencesPower, L.; Neyedli, H. F.; Boe, S. G. & Bardouille, T.: , 2020; Efficacy of low-cost wireless neurofeedback to modulate brain activity during motor imagery; Biomedical Physics & Engineering Express; 6 (3): 035024.spa
dc.relation.referencesProakis, J. G.: , 2007; Digital signal processing: principles, algorithms, and applications, 4/E; Pearson Education India.spa
dc.relation.referencesPulgarin-Giraldo, J.D.; Ruales-Torres, A.; Álvarez-Meza, A.M.&Castellanos-Dominguez, G.: , 2017; Relevant kinematic feature selection to support human action recognition in MoCap data; en International Work- Conference on the Interplay Between Natural and Artificial Computation; Springer; págs. 501–509.spa
dc.relation.referencesQian, X.; Loo, B. R. Y.; Castellanos, F. X.; Liu, S.; Koh, H. L.; Poh, X. W. W.; Krishnan, R.; Fung, D.; Chee, M. W.; Guan, C.et al.: , 2018; Brain-computer-interface-based intervention re-normalizes brain functional network topology in children with attention deficit/hyperactivity disorder; Translational psychiatry; 8 (1): 149.spa
dc.relation.referencesQiao, R.; Zhang, H. & Tian, Y.: , 2023; Eeg cortical network reveals the temporo-spatial mechanism of visual search; Brain Research Bulletin; 203: 110758.spa
dc.relation.referencesRaeisi, K.; Mohebbi, M.; Khazaei, M.; Seraji, M. & Yoonessi, A.: , 2020; Phase-synchrony evaluation of EEG signals for multiple sclerosis diagnosis based on bivariate empirical mode decomposition during a visual task; Computers in biology and medicine; 117: 103596.spa
dc.relation.referencesRaghu, S.; Sriraam, N.; Temel, Y.; Rao, S. V. & Kubben, P. L.: , 2020; Eeg based multi-class seizure type classification using convolutional neural network and transfer learning; Neural Networks; 124: 202–212.spa
dc.relation.referencesRahimi, A.; Recht, B. et al.: , 2007; Random features for large-scale kernel machines.; en NIPS, tomo 3; Citeseer; pág. 5.spa
dc.relation.referencesRajabioun, M.: , 2020; Motor imagery classification by active source dynamics; Biomedical Signal Processing and Control; 61: 102028.spa
dc.relation.referencesRajpura, P.; Cecotti, H. & Meena, Y. K.: , 2023; Explainable artificial intelligence approaches for brain- computer interfaces: a review and design space; arXiv preprint arXiv:2312.13033.spa
dc.relation.referencesRamadan, R. A.; Refat, S.; Elshahed, M. A. & Ali, R. A.: , 2015; Basics of brain computer interface; en Brain-Computer Interfaces; Springer; págs. 31–50.spa
dc.relation.referencesRas, G.; van Gerven, M.& Haselager, P.: , 2018; Explanation methods in deep learning: Users, values, concerns and challenges; Explainable and interpretable models in computer vision and machine learning: 19–36.spa
dc.relation.referencesRasheed, M. A.; Chand, P.; Ahmed, S.; Sharif, H.; Hoodbhoy, Z.; Siddiqui, A. & Hasan, B. S.: , 2021; Use of artificial intelligence on electroencephalogram (EEG) waveforms to predict failure in early school grades in children from a rural cohort in pakistan; Plos one; 16 (2): e0246236.spa
dc.relation.referencesRashid, M.; Sulaiman, N.; PP Abdul Majeed, A.; Musa, R. M.; Ab Nasir, A. F.; Bari, B. S. & Khatun, S.: , 2020; Current status, challenges, and possible solutions of eeg-based brain-computer interface: a comprehensive review; Frontiers in neurorobotics: 25.spa
dc.relation.referencesRathee, D.; Cecotti, H. & Prasad, G.: , 2017; Single-trial effective brain connectivity patterns enhance discriminability of mental imagery tasks; Journal of neural engineering; 14 (5): 056005.spa
dc.relation.referencesRaza, H.; Prasad, G. & Li, Y.: , 2013; Ewma based two-stage dataset shift-detection in non-stationary envi- ronments; en Artificial Intelligence Applications and Innovations: 9th IFIP WG 12.5 International Conference, AIAI 2013, Paphos, Cyprus, September 30–October 2, 2013, Proceedings 9; Springer; págs. 625–635.spa
dc.relation.referencesRaza, H.; Cecotti, H.; Li, Y. & Prasad, G.: , 2015; Learning with covariate shift-detection and adaptation in non-stationary environments: Application to brain-computer interface; en 2015 International Joint Conference on Neural Networks (IJCNN); IEEE; págs. 1–8.spa
dc.relation.referencesRaza, H.; Rathee, D.; Zhou, S.-M.; Cecotti, H. & Prasad, G.: , 2019; Covariate shift estimation based adaptive ensemble learning for handling non-stationarity in motor imagery related eeg-based brain-computer interface; Neuro- computing; 343: 154–166.spa
dc.relation.referencesRejer, I. & Lorenz, K.: , 2013; Genetic algorithm and forward method for feature selection in EEG feature space; Journal of Theoretical and Applied Computer Science; 7 (2): 72–82.spa
dc.relation.referencesRiahi, N.; Vakorin, V. A. & Menon, C.: , 2020; Estimating fugl-meyer upper extremity motor score from functional-connectivity measures; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 28 (4): 860–868.spa
dc.relation.referencesRimbert, S.; Gayraud, N.; Bougrain, L.; Clerc, M. & Fleck, S.: , 2019; Can a subjective questionnaire be used as brain-computer interface performance predictor?; Frontiers in human neuroscience; 12: 529.spa
dc.relation.referencesRodrigues, P.; Stefano, C.; Attux, R.; Castellano, G. & Soriano, D.: , 2019a; Space-time recurrences for functional connectivity evaluation and feature extraction in motor imagery brain-computer interfaces; Medical & biological engineering & computing; 57 (8): 1709–1725.spa
dc.relation.referencesRodrigues, P. G.; Stefano Filho, C. A.; Attux, R.; Castellano, G. & Soriano, D. C.: , 2019b; Space-time recurrences for functional connectivity evaluation and feature extraction in motor imagery brain-computer interfaces; Medical & biological engineering & computing; 57 (8): 1709–1725.spa
dc.relation.referencesRodriguez-Larios, J.; Faber, P.; Achermann, P.; Tei, S.&Alaerts, K.: , 2020; Fromthoughtless awareness to effortful cognition: alpha-theta cross-frequency dynamics in experienced meditators during meditation, rest and arithmetic; Scientific Reports; 10 (1): 5419.spa
dc.relation.referencesRongrong, F.; Mengmeng, H.; Yongsheng, T. & Peiming, S.: , 2020; Improvement motor imagery eeg classification based on sparse common spatial pattern and regularized discriminant analysis; Journal of Neuroscience Methods; 343: 108833.spa
dc.relation.referencesRoweis, S. & Ghahramani, Z.: , 1999; A unifying review of linear gaussian models; Neural computation; 11 (2): 305–345.spa
dc.relation.referencesRubinov, M. & Sporns, O.: , 2010; Complex network measures of brain connectivity: uses and interpre- tations; Neuroimage; 52 (3): 1059–1069.spa
dc.relation.referencesRuiz-Gómez, S.J.; Gómez, C.; Poza, J.; Revilla-Vallejo, M.; Gutiérrez-dePablo, V.; Rodríguez- González, V.; Maturana-Candelas, A. & Hornero, R.: , 2020; Volume conduction effects on connectivity metrics: Appli- cation of network parameters to characterize alzheimer’s disease continuum; en 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC); IEEE; págs. 30–33.spa
dc.relation.referencesSadiq, M. T.; Yu, X.; Yuan, Z.; Fan, Z.; Rehman, A. U.; Li, G. & Xiao, G.: , 2019; Motor imagery eeg signals classification based on mode amplitude and frequency components using empirical wavelet transform; IEEE access; 7: 127678–127692.spa
dc.relation.referencesSaha, S. & Baumert, M.: , 2020; Intra-and inter-subject variability in EEG-based sensorimotor brain computer interface: a review; Frontiers in computational neuroscience; 13: 87.spa
dc.relation.referencesSaha, S.; Ahmed, K. I. U.; Mostafa, R.; Hadjileontiadis, L. & Khandoker, A.: , 2017; Evidence of variabilities in eeg dynamics during motor imagery-based multiclass brain–computer interface; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 26 (2): 371–382.spa
dc.relation.referencesSaha, S.; Mamun, K. A.; Ahmed, K. I. U.; Mostafa, R.; Naik, G. R.; Darvishi, S.; Khandoker, A. H. & Baumert, M.: , 2021; Progress in brain computer interface: Challenges and potentials; Frontiers in Systems Neuroscience; 15: 4.spa
dc.relation.referencesSaha, S.; Baumert, M. & McEwan, A.: , 2023; Can inter-subject associativity predict data-driven bci perfor- mance?; en 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC); IEEE; págs. 1–4.spa
dc.relation.referencesSaibene, A.; Caglioni, M.; Corchs, S. & Gasparini, F.: , 2023; Eeg-based bcis on motor imagery paradigm using wearable technologies: A systematic review; Sensors; 23 (5): 2798.spa
dc.relation.referencesSaid, S.; Bombrun, L.; Berthoumieu, Y. & Manton, J. H.: , 2017; Riemannian gaussian distributions on the space of symmetric positive definite matrices; IEEE Transactions on Information Theory; 63 (4): 2153–2170.spa
dc.relation.referencesSakhavi, S.; Guan, C. & Yan, S.: , 2015; Parallel convolutional-linear neural network for motor imagery classification; en 2015 23rd European Signal Processing Conference (EUSIPCO); IEEE; págs. 2736–2740.spa
dc.relation.referencesSakkalis, V.: , 2011; Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG; Computers in biology and medicine; 41 (12): 1110–1117.spa
dc.relation.referencesSannelli, C.; Braun, M.; Tangermann, M. & Müller, K.-R.: , 2008; Estimating noise and dimensionality in bci data sets: towards illiteracy comprehension.spa
dc.relation.referencesSannelli, C.; Vidaurre, C.; Müller, K. & Blankertz, B.: , 2019a; A large scale screening study with a smr-based bci: Categorization of bci users and differences in their smr activity; PLoS One; 14 (1): e0207351.spa
dc.relation.referencesSannelli, C.; Vidaurre, C.; Müller, K.-R. & Blankertz, B.: , 2019b; A large scale screening study with a smr-based bci: Categorization of bci users and differences in their smr activity; PloS one; 14 (1): e0207351.spa
dc.relation.referencesSarin, M.; Verma, A.; Mehta, D. H.; Shukla, P. K. & Verma, S.: , 2020; Automated ocular artifacts identification and removal from EEG data using hybrid machine learning methods; en 2020 7th International Conference on Signal Processing and Integrated Networks (SPIN); IEEE; págs. 1054–1059.spa
dc.relation.referencesSchalk, G.; McFarland, D. J.; Hinterberger, T.; Birbaumer, N. & Wolpaw, J. R.: , 2004; Bci2000: a general-purpose brain-computer interface (bci) system; IEEE Transactions on biomedical engineering; 51 (6): 1034–1043.spa
dc.relation.referencesScherer, R. & Vidaurre, C.: , 2018; Motor imagery based brain–computer interfaces; en Smart wheelchairs and brain-computer interfaces; Elsevier; págs. 171–195.spa
dc.relation.referencesSchirrmeister, R. T.; Springenberg, J. T.; Fiederer, L. D. J.; Glasstetter, M.; Eggensperger, K.; Tangermann, M.; Hutter, F.; Burgard, W. & Ball, T.: , 2017; Deep learning with convolutional neural networks for eeg decoding and visualization; Human brain mapping; 38 (11): 5391–5420.spa
dc.relation.referencesSchlögl, A.; Lee, F.; Bischof, H. & Pfurtscheller, G.: , 2005; Characterization of four-class motor imagery eeg data for the bci-competition 2005; Journal of neural engineering; 2 (4): L14.spa
dc.relation.referencesSeghier, M. L. & Price, C. J.: , 2018; Interpreting and utilising intersubject variability in brain function; Trends in cognitive sciences; 22 (6): 517–530.spa
dc.relation.referencesSelvaraju, R. R.; Das, A.; Vedantam, R.; Cogswell, M.; Parikh, D. & Batra, D.: , 2016; Grad-CAM: Why did you say that?; arXiv preprint arXiv:1611.07450.spa
dc.relation.referencesShali, R. K. & Setarehdan, S. K.: , 2020; The impact of electrode reduction in the diagnosis of dyslexia; en 2020 27th National and 5th International Iranian Conference on Biomedical Engineering (ICBME); IEEE; págs. 118–125.spa
dc.relation.referencesShamsi, F.; Haddad, A. & Najafizadeh, L.: , 2020a; Early classification of motor tasks using dynamic functional connectivity graphs from eeg; Journal of Neural Engineering.spa
dc.relation.referencesShamsi, F.; Haddad, A. et al.: , 2020b; Recognizing pain in motor imagery EEG recordings using dynamic functionalconnectivitygraphs; en2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC); IEEE; págs. 2869–2872.spa
dc.relation.referencesShamsi, F.; Haddad, A. & Najafizadeh, L.: , 2021; Early classification of motor tasks using dynamic functional connectivity graphs from EEG; Journal of Neural Engineering; 18 (1): 016015.spa
dc.relation.referencesShao, L.; Zhang, L.; Belkacem, A. N.; Zhang, Y.; Chen, X.; Li, J. & Liu, H.: , 2020; EEG-controlled wall-crawling cleaning robot using SSVEP-based brain-computer interface; Journal of healthcare engineering; 2020.spa
dc.relation.referencesSharma, N.; Sharma, M.; Singhal, A.; Vyas, R.; Malik, H.; Afthanorhan, A. & Hossaini, M. A.: , 2023; Recent trends in eeg based motor imagery signal analysis and recognition: A comprehensive review.; IEEE Access.spa
dc.relation.referencesShir, D.; Lazar, E. B.; Graff-Radford, J.; Aksamit, A. J.; Cutsforth-Gregory, J. K.; Jones, D. T.; Botha, H.; Ramanan, V. K.; Prusinski, C.; Porter, A. et al.: , 2022; Analysis of clinical features, diagnostic tests, and biomarkers in patients with suspected creutzfeldt-jakob disease, 2014-2021; JAMA Network Open; 5 (8): e2225098–e2225098.spa
dc.relation.referencesShu, X.; Chen, S.; Yao, L.; Sheng, X.; Zhang, D.; Jiang, N.; Jia, J. & Zhu, X.: , 2018; Fast recognition of bci-inefficient users using physiological features from eeg signals: A screening study of stroke patients; Frontiers in neuroscience; 12: 93.spa
dc.relation.referencesSimon, N.; Friedman, J.; Hastie, T. & Tibshirani, R.: , 2013; A sparse-group lasso; Journal of computa- tional and graphical statistics; 22 (2): 231–245.spa
dc.relation.referencesSingh, A.; Hussain, A. A.; Lal, S. & Guesgen, H. W.: , 2021; A comprehensive review on critical issues and possible solutions of motor imagery based electroencephalography brain-computer interface; Sensors; 21 (6): 2173.spa
dc.relation.referencesSitaram, R.; Ros, T.; Stoeckel, L.; Haller, S.; Scharnowski, F.; Lewis-Peacock, J.; Weiskopf, N.; Blefari, M. L.; Rana, M.; Oblak, E. et al.: , 2017; Closed-loop brain training: the science of neurofeedback; Nature Reviews Neuroscience; 18 (2): 86–100.spa
dc.relation.referencesSmith, S.; Duff, E.; Groves, A.; Nichols, T. E.; Jbabdi, S.; Westlye, L. T.; Tamnes, C. K.; Engvig, A.; Walhovd, K. B.; Fjell, A. M. et al.: , 2019; Structural variability in the human brain reflects fine-grained functional architecture at the population level; Journal of Neuroscience; 39 (31): 6136–6149.spa
dc.relation.referencesSmith, S. M.; Miller, K. L.; Salimi-Khorshidi, G.; Webster, M.; Beckmann, C. F.; Nichols, T. E.; Ramsey, J. D. & Woolrich, M. W.: , 2011; Network modelling methods for fmri; Neuroimage; 54 (2): 875–891.spa
dc.relation.referencesSmola, A. J. & Schölkopf, B.: , 2000; Sparse greedy matrix approximation for machine learning.spa
dc.relation.referencesSmuha, N. A.: , 2019; The eu approach to ethics guidelines for trustworthy artificial intelligence; Computer Law Review International; 20 (4): 97–106.spa
dc.relation.referencesSong, Y.; Wang, D.; Yue, K.; Zheng, N. & Shen, Z.-J. M.: , 2019; Eeg-based motor imagery classification with deep multi-task learning; en 2019 International Joint Conference on Neural Networks (IJCNN); IEEE; págs. 1–8.spa
dc.relation.referencesSouto, D. O.; Cruz, T. K. F.; Coutinho, K.; Julio-Costa, A.; Fontes, P. L. B. & Haase, V. G.: , 2020; Effect of motor imagery combined with physical practice on upper limb rehabilitation in children with hemiplegic cerebral palsy; NeuroRehabilitation; 46 (1): 53–63.spa
dc.relation.referencesStefano Filho, C. A.; Attux, R. & Castellano, G.: , 2018; Can graph metrics be used for EEG-BCIs based on hand motor imagery?; Biomedical Signal Processing and Control; 40: 359–365.spa
dc.relation.referencesStefano Filho, C. A.; Ignacio Serrano, J.; Attux, R.; Castellano, G.; Rocon, E. & del Castillo, M. D.: , 2021; Reorganization of resting-state EEG functional connectivity patterns in children with cerebral palsy following a motor imagery virtual-reality intervention; Applied Sciences; 11 (5): 2372.spa
dc.relation.referencesStephan, K.; Friston, K. & Squire, L.: , 2009; Functional connectivity.spa
dc.relation.referencesSturm, I.; Lapuschkin, S.; Samek, W. & Müller, K.-R.: , 2016; Interpretable deep neural networks for single-trial EEG classification; Journal of neuroscience methods; 274: 141–145.spa
dc.relation.referencesSubasi, A. & Gursoy, M. I.: , 2010; EEG signal classification using PCA, ICA, LDA and support vector machines; Expert systems with applications; 37 (12): 8659–8666.spa
dc.relation.referencesSubasi, A.; Tuncer, T.; Dogan, S.; Tanko, D. & Sakoglu, U.: , 2021; EEG-based emotion recognition using tunable Q wavelet transform and rotation forest ensemble classifier; Biomedical Signal Processing and Control; 68: 102648.spa
dc.relation.referencesSun, C.; Lin, K.; Huang, Y.-T.; Ching, E. S.; Lai, P.-Y.& Chan, C.: , 2020a; Directed effective connectivity and synaptic weights of in vitro neuronal cultures revealed from high-density multielectrode array recordings; bioRxiv.spa
dc.relation.referencesSun, J.; Xie, J. & Zhou, H.: , 2021; Eeg classification with transformer-based models; en 2021 ieee 3rd global conference on life sciences and technologies (lifetech); IEEE; págs. 92–93.spa
dc.relation.referencesSun, X.; Hu, B.; Zheng, X.; Yin, Y. & Ji, C.: , 2020b; Emotion classification based on brain functional connectivity network; en 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM); IEEE; págs. 2082–2089.spa
dc.relation.referencesSun, Y.; Zhang, H. L.; Lu, Y. & Xue, Y.: , 2022; Eeg signal classification using shallow fbcsp convnet with a new cropping strategy; en International Conference on Brain Informatics; Springer; págs. 359–368.spa
dc.relation.referencesSuto, J. & Oniga, S.: , 2018; Music stimuli recognition in electroencephalogram signal; Elektronika ir Elek- trotechnika; 24 (4): 68–71.spa
dc.relation.referencesŠverko, Z.; Vrankić, M.; Vlahinić, S. & Rogelj, P.: , 2022; Complex pearson correlation coefficient for eeg connectivity analysis; Sensors; 22 (4): 1477.spa
dc.relation.referencesTang, Q.; Wang, J. & Wang, H.: , 2014; L1-norm based discriminative spatial pattern for single-trial EEG classification; Biomedical Signal Processing and Control; 10: 313–321.spa
dc.relation.referencesTang, X.; Li, W.; Li, X.; Ma, W. & Dang, X.: , 2020; Motor imagery eeg recognition based on conditional optimization empirical mode decomposition and multi-scale convolutional neural network; Expert Systems with Applications; 149: 113285.spa
dc.relation.referencesTang, X.; Shen, H.; Zhao, S.; Li, N.& Liu, J.: , 2023; Flexible brain–computer interfaces; Nature Electronics; 6 (2): 109–118.spa
dc.relation.referencesTao, L.; Cao, T.; Wang, Q.; Liu, D.; Bai, O. & Sun, J.: , 2023; Application of self-adaptive multiple-kernel extreme learning machine to improve mi-bci performance of subjects with bci illiteracy; Biomedical Signal Processing and Control; 79: 104183.spa
dc.relation.referencesTaran, S. & Bajaj, V.: , 2019; Motor imagery tasks-based eeg signals classification using tunable-q wavelet transform; Neural Computing and Applications; 31: 6925–6932.spa
dc.relation.referencesTeo, W.-P. & Chew, E.: , 2014; Is motor-imagery brain-computer interface feasible in stroke rehabilitation?; PM&R; 6 (8): 723–728.spa
dc.relation.referencesThakur, K. T.; Albanese, E.; Giannakopoulos, P.; Jette, N.; Linde, M.; Prince, M. J.; Steiner, T. J. & Dua, T.: , 2016; Neurological disorders.spa
dc.relation.referencesTibrewal, N.; Leeuwis, N. & Alimardani, M.: , 2022; Classification of motor imagery eeg using deep learning increases performance in inefficient bci users; Plos one; 17 (7): e0268880.spa
dc.relation.referencesTibshirani, R.: , 1996; Regression shrinkage and selection via the lasso; Journal of the Royal Statistical Society: Series B (Methodological); 58 (1): 267–288.spa
dc.relation.referencesTjoa, E. & Guan, C.: , 2020; A survey on explainable artificial intelligence (xai): Toward medical xai; IEEE transactions on neural networks and learning systems; 32 (11): 4793–4813.spa
dc.relation.referencesTortora, S.; Ghidoni, S.; Chisari, C.; Micera, S. & Artoni, F.: , 2020; Deep learning-based BCI for gait decoding from EEG with LSTM recurrent neural network; Journal of Neural Engineering; 17 (4): 046011.spa
dc.relation.referencesTuncer, T.; Dogan, S. & Acharya, U. R.: , 2021; Automated EEG signal classification using chaotic local binary pattern; Expert Systems with Applications; 182: 115175.spa
dc.relation.referencesUribe, L.; Stefano, C.; deOliveira, V.; daSilva, T.; Rodrigues, P.; Soriano, D.; Boccato, L.; Castellano, G. & Attux, R.: , 2019; A correntropy-based classifier for motor imagery brain-computer interfaces; Biomedical Physics & Engineering Express; 5 (6): 065026spa
dc.relation.referencesVallabhaneni, R. B.; Sharma, P.; Kumar, V.; Kulshreshtha, V.; Reddy, K. J.; Kumar, S. S.; Kumar, V. S. & Bitra, S. K.: , 2021; Deep learning algorithms in eeg signal decoding application: a review; IEEE Access; 9: 125778–125786.spa
dc.relation.referencesVan der Maaten, L. & Hinton, G.: , 2008; Visualizing data using t-sne.; Journal of machine learning research; 9 (11).spa
dc.relation.referencesVan Der Maaten, L.; Postma, E. & Van den Herik, J.: , 2009; Dimensionality reduction: a comparative; J Mach Learn Res; 10 (66-71): 13.spa
dc.relation.referencesVärbu, K.; Muhammad, N. & Muhammad, Y.: , 2022; Past, present, and future of eeg-based bci applica- tions; Sensors; 22 (9): 3331.spa
dc.relation.referencesVaroquaux, G.: , 2018; Cross-validation failure: Small sample sizes lead to large error bars; Neuroimage; 180: 68–77.spa
dc.relation.referencesVarsehi, H. & Firoozabadi, S. M. P.: , 2021; An EEG channel selection method for motor imagery based brain–computer interface and neurofeedback using granger causality; Neural Networks; 133: 193–206.spa
dc.relation.referencesVasilyev, A.; Liburkina, S.; Yakovlev, L.; Perepelkina, O. & Kaplan, A.: , 2017; Assessing motor imagery in brain-computer interface training: psychological and neurophysiological correlates; Neuropsychologia; 97: 56–65.spa
dc.relation.referencesVelasquez-Martinez, L.; Caicedo-Acosta, J. & Castellanos-Dominguez, G.: , 2020a; Entropy-basedestimationofevent-relatedde/synchronizationinmotorimageryusingvector-quantizedpatterns; Entropy; 22(6): 703.spa
dc.relation.referencesVelasquez-Martinez, L.; Zapata-Castano, F. & Castellanos-Dominguez, G.: , 2020b; Dy- namic modeling of common brain neural activity in motor imagery tasks; Frontiers in Neuroscience; 14: 714.spa
dc.relation.referencesVelásquez-Martínez, L. F.; Álvarez-Meza, A. M. & Castellanos-Domínguez, C. G.: , 2013; Motor imagery classification for BCI using common spatial patterns and feature relevance analysis; en International Work-Conference on the Interplay Between Natural and Artificial Computation; Springer; págs. 365–374.spa
dc.relation.referencesVelasquez-Martinez, L. F.; Zapata-Castaño, F.; Padilla-Buritica, J. I.; Ferrández Vi- cente, J. M. & Castellanos-Dominguez, G.: , 2019; Group differences in time-frequency relevant patterns for user- independent bci applications; en Understanding the Brain Function and Emotions: 8th International Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2019, Almería, Spain, June 3–7, 2019, Proceedings, Part I 8; Springer; págs. 138–145.spa
dc.relation.referencesVelasquez-Martinez, L. F.; Zapata-Castano, F. & Castellanos-Dominguez, G.: , 2020c; Dynamic modeling of common brain neural activity in motor imagery tasks; Frontiers in Neuroscience; 14.spa
dc.relation.referencesVerleysen, M. & François, D.: , 2005; The curse of dimensionality in data mining and time series prediction; en International work-conference on artificial neural networks; Springer; págs. 758–770.spa
dc.relation.referencesVidaurre, C. & Blankertz, B.: , 2010; Towards a cure for bci illiteracy; Brain topography; 23: 194–198.spa
dc.relation.referencesVidaurre, C.; Sander, T. H.; Schlögl, A. et al.: , 2011a; Biosig: the free and open source software library for biomedical signal processing; Computational intelligence and neuroscience; 2011.spa
dc.relation.referencesVidaurre, C.; Sannelli, C.; Müller, K.-R. & Blankertz, B.: , 2011b; Machine-learning-based coadaptive calibration for brain-computer interfaces; Neural computation; 23 (3): 791–816.spa
dc.relation.referencesVidaurre, C.; Murguialday, A. R.; Haufe, S.; Gómez, M.; Müller, K.-R. & Nikulin, V. V.: , 2019; Enhancing sensorimotor bci performance with assistive afferent activity: An online evaluation; NeuroImage; 199: 375–386.spa
dc.relation.referencesVidaurre, C.; Haufe, S.; Jorajuría, T.; Müller, K.-R.& Nikulin, V. V.: , 2020; Sensorimotor functional connectivity: a neurophysiological factor related to BCI performance; Frontiers in Neuroscience; 14: 1278.spa
dc.relation.referencesVilela, M.& Hochberg, L. R.: , 2020; Applications of brain-computer interfaces to the control of robotic and prosthetic arms; en Handbook of clinical neurology, tomo 168; Elsevier; págs. 87–99.spa
dc.relation.referencesVinck, M.; Oostenveld, R.; Van Wingerden, M.; Battaglia, F. & Pennartz, C. M.: , 2011; An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias; Neuroimage; 55 (4): 1548–1565.spa
dc.relation.referencesVolosyak, I.; Rezeika, A.; Benda, M.; Gembler, F. & Stawicki, P.: , 2020; Towards solving of the illiteracy phenomenon for vep-based brain-computer interfaces; Biomedical Physics & Engineering Express; 6 (3): 035034.spa
dc.relation.referencesVuckovic, A. & Osuagwu, B. A.: , 2013; Using a motor imagery questionnaire to estimate the performance of a brain–computer interface based on object oriented motor imagery; Clinical Neurophysiology; 124 (8): 1586– 1595.spa
dc.relation.referencesWackernagel, H.: , 2003; Multivariate geostatistics: an introduction with applications; Springer Science & Business Media.spa
dc.relation.referencesWackernagel, H.: , 2013; Multivariate geostatistics: an introduction with applications; Springer Science & Business Media.spa
dc.relation.referencesWaldert, S.: , 2016; Invasive vs. non-invasive neuronal signals for brain-machine interfaces: will one prevail?; Frontiers in neuroscience; 10: 295.spa
dc.relation.referencesWan, Z.; Yang, R.; Huang, M.; Zeng, N. & Liu, X.: , 2021; A review on transfer learning in eeg signal analysis; Neurocomputing; 421: 1–14.spa
dc.relation.referencesWang, H.; Wang, Z.; Du, M.; Yang, F.; Zhang, Z.; Ding, S.; Mardziel, P. & Hu, X.: , 2020a; Score- CAM: Score-weighted visual explanations for convolutional neural networks; en Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops; págs. 24–25.spa
dc.relation.referencesWang, H.; Xu, T.; Tang, C.; Yue, H.; Chen, C.; Xu, L.; Pei, Z.; Dong, J.; Bezerianos, A. & Li, J.: , 2020b; Diverse feature blend based on filter-bank common spatial pattern and brain functional connectivity for multiple motor imagery detection; IEEE Access; 8: 155590–155601.spa
dc.relation.referencesWang, J.; Feng, Z.; Ren, X.; Lu, N.; Luo, J. & Sun, L.: , 2020c; Feature subset and time segment selection for the classification of eeg data based motor imagery; Biomedical Signal Processing and Control; 61: 102026.spa
dc.relation.referencesWang, J.-G.; Shao, H.-M.; Yao, Y.; Liu, J.-L. & Ma, S.-W.: , 2021a; A personalized feature extraction and classification method for motor imagery recognition; Mobile Networks and Applications: 1–13.spa
dc.relation.referencesWang, K.; Xu, M.; Wang, Y.; Zhang, S.; Chen, L.&Ming, D.: , 2020d; Enhancedecodingofpre-movement EEG patterns for brain–computer interfaces; Journal of Neural Engineering; 17 (1): 016033.spa
dc.relation.referencesWang, K.; Tian, F.; Xu, M.; Zhang, S.; Xu, L. & Ming, D.: , 2022; Resting-state eeg in alpha rhythm may be indicative of the performance of motor imagery-based brain–computer interface; Entropy; 24 (11): 1556.spa
dc.relation.referencesWang, X.; Wang, A.; Zheng, S.; Lin, Y. & Yu, M.: , 2014; A multiple autocorrelation analysis method for motor imagery EEG feature extraction; en The 26th Chinese Control and Decision Conference (2014 CCDC); IEEE; págs. 3000–3004.spa
dc.relation.referencesWang, Z.; Wang, F.; Liang, C. & Zhang, J.: , 2021b; A time-varying method for brain effective connectivity analysis of emotional EEG data; en 2021 IEEE 6th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA); IEEE; págs. 131–139.spa
dc.relation.referencesWarrens, M. J.: , 2015; Five ways to look at cohen’s kappa; Journal of Psychology & Psychotherapy; 5 (4): 1.spa
dc.relation.referencesWei, C.-S.; Lin, Y.-P.; Wang, Y.-T.; Lin, C.-T. & Jung, T.-P.: , 2018; A subject-transfer framework for obviating inter-and intra-subject variability in eeg-based drowsiness detection; NeuroImage; 174: 407–419.spa
dc.relation.referencesWillett, F. R.; Avansino, D. T.; Hochberg, L. R.; Henderson, J. M. & Shenoy, K. V.: , 2021; High- performance brain-to-text communication via handwriting; Nature; 593 (7858): 249–254.spa
dc.relation.referencesWilliams, C. & Seeger, M.: , 2001; Using the nyström method to speed up kernel machines; en Pro- ceedings of the 14th annual conference on neural information processing systems; CONF; págs. 682–688.spa
dc.relation.referencesWolpaw, J. R.: , 2013; Brain–computer interfaces; en Handbook of clinical neurology, tomo 110; Elsevier; págs. 67–74.spa
dc.relation.referencesWolpaw, J. R. & Wolpaw, E. W.: , 2012; Brain-computer interfaces: something new under the sun; Brain-computer interfaces: principles and practice; 14.spa
dc.relation.referencesWriessnegger, S. C.; Müller-Putz, G. R.; Brunner, C. & Sburlea, A. I.: , 2020; Inter-and intra- individual variability in brain oscillations during sports motor imagery; Frontiers in human neuroscience; 14: 576241.spa
dc.relation.referencesWu, H. G.; Miyamoto, Y. R.; Castro, L. N. G.; Ölveczky, B. P.& Smith, M. A.: , 2014; Temporal structure of motor variability is dynamically regulated and predicts motor learning ability; Nature neuroscience; 17 (2): 312–321.spa
dc.relation.referencesWu, J.; Zhou, T. & Li, T.: , 2020a; Detecting epileptic seizures in EEG signals with complementary ensemble empirical mode decomposition and extreme gradient boosting; Entropy; 22 (2): 140.spa
dc.relation.referencesWu, X.; Zheng, W.-L. & Lu, B.-L.: , 2019; Identifying functional brain connectivity patterns for EEG-based emotion recognition; en 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER); IEEE; págs. 235–238.spa
dc.relation.referencesWu, X.; Zheng, W.-L. & Lu, B.-L.: , 2020b; Investigating EEG-based functional connectivity patterns for multimodal emotion recognition; arXiv preprint arXiv:2004.01973.spa
dc.relation.referencesXiao, C.; Choi, E. & Sun, J.: , 2018; Opportunities and challenges in developing deep learning models using electronic health records data: a systematic review; Journal of the American Medical Informatics Association; 25 (10): 1419– 1428.spa
dc.relation.referencesXie, J.; Liu, F.; Wang, K.& Huang, X.: , 2019; Deep kernel learning via random fourier features; arXiv preprint arXiv:1910.02660.spa
dc.relation.referencesXie, X.; Yu, Z. L.; Gu, Z.; Zhang, J.; Cen, L. & Li, Y.: , 2018; Bilinear regularized locality preserving learning on riemannian graph for motor imagery BCI; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 26 (3): 698–708.spa
dc.relation.referencesXie, Y. & Oniga, S.: , 2020; A review of processing methods and classification algorithm for EEG signal.; Carpathian Journal of Electronic & Computer Engineering; 12 (3).spa
dc.relation.referencesXiong, X.; Yu, Z.; Ma, T.; Luo, N.; Wang, H.; Lu, X. & Fan, H.: , 2020; Weighted brain network metrics for decoding action intention understanding based on EEG; Frontiers in Human Neuroscience; 14: 232.spa
dc.relation.referencesXu, X.; Nie, X.; Zhang, J. & Xu, T.: , 2023; Multi-level attention recognition of eeg based on feature selection; International Journal of Environmental Research and Public Health; 20 (4): 3487.spa
dc.relation.referencesYao, L.; Jiang, N.; Mrachacz-Kersting, N.; Zhu, X.; Farina, D. & Wang, Y.: , 2022; Performance variation of a somatosensory bci based on imagined sensation: a large population study; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 30: 2486–2493.spa
dc.relation.referencesYao, Y.; Ding, Y.; Zhong, S. & Cui, Z.: , 2020; EEG-based epilepsy recognition via multiple kernel learning; Computational and Mathematical Methods in Medicine; 2020.spa
dc.relation.referencesYeh, C.-H.; Jones, D.K.; Liang, X.; Descoteaux, M.& Connelly, A.: , 2021; Mapping structural connectivity using diffusion MRI: Challenges and opportunities; Journal of Magnetic Resonance Imaging; 53 (6): 1666–1682.spa
dc.relation.referencesYeh, Y.-R.; Lin, T.-C.; Chung, Y.-Y. & Wang, Y.-C. F.: , 2012; A novel multiple kernel learning framework for heterogeneous feature fusion and variable selection; IEEE Transactions on multimedia; 14 (3): 563–574.spa
dc.relation.referencesYin, K.; Lim, E. Y. & Lee, S.-W.: , 2024; Gitgan: Generative inter-subject transfer for eeg motor imagery analysis; Pattern Recognition; 146: 110015.spa
dc.relation.referencesYoganathan, K.; Malek, N.; Torzillo, E.; Paranathala, M. & Greene, J.: , 2023; Neurological update: structural and functional imaging in epilepsy surgery; Journal of Neurology; 270 (5): 2798–2808.spa
dc.relation.referencesYoon, J.-G. & Lee, M.: , 2020; Effective correlates of motor imagery performance based on default mode network in resting-state; en 2020 8th International Winter Conference on Brain-Computer Interface (BCI); IEEE; págs. 1–5.spa
dc.relation.referencesYu, J. & Yu, Z. L.: , 2021; Cross-correlation based discriminant criterion for channel selection in motor imagery BCI systems; Journal of Neural Engineering.spa
dc.relation.referencesYu, Z.; Ma, T.; Fang, N.; Wang, H.; Li, Z. & Fan, H.: , 2020; Local temporal common spatial patterns modulated with phase locking value; Biomedical Signal Processing and Control; 59: 101882.spa
dc.relation.referencesYuksel, A. & Olmez, T.: , 2015; A neural network-based optimal spatial filter design method for motor imagery classification; PloS one; 10 (5): e0125039.spa
dc.relation.referencesZeiler, M. D. & Fergus, R.: , 2014; Visualizing and understanding convolutional networks; en Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part I 13; Springer; págs. 818–833.spa
dc.relation.referencesZhang, A.; Lipton, Z. C.; Li, M. & Smola, A. J.: , 2021a; Dive into deep learning; arXiv preprint arXiv:2106.11342.spa
dc.relation.referencesZhang, B.; Yan, G.; Yang, Z.; Su, Y.; Wang, J. & Lei, T.: , 2020a; Brain functional networks based on resting-state EEG data for major depressive disorder analysis and classification; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 29: 215–229.spa
dc.relation.referencesZhang, L.; Chen, Y.; Tan, X.; He, C.& Zhang, L.: , 2017; An improved self-training algorithm for classifying motor imagery electroencephalography in brain-computer interface; Journal of Medical Imaging and Health Informatics; 7 (2): 330–337.spa
dc.relation.referencesZhang, R.; Xu, P.; Chen, R.; Li, F.; Guo, L.; Li, P.; Zhang, T. & Yao, D.: , 2015a; Predicting inter- session performance of smr-based brain–computer interface using the spectral entropy of resting-state eeg; Brain topography; 28 (5): 680–690.spa
dc.relation.referencesZhang, R.; Yao, D.; Valdés-Sosa, P. A.; Li, F.; Li, P.; Zhang, T.; Ma, T.; Li, Y. & Xu, P.: , 2015b; Efficient resting-state eeg network facilitates motor imagery performance; Journal of neural engineering; 12 (6): 066024.spa
dc.relation.referencesZhang, R.; Xiao, X.; Liu, Z.; Jiang, W.; Li, J.; Cao, Y.; Ren, J.; Jiang, D. & Cui, L.: , 2018a; A new motor imagery EEG classification method FB-TRCSP+ RF based on CSP and random forest; IEEE Access; 6: 44944–44950.spa
dc.relation.referencesZhang, R.; Li, X.; Wang, Y.; Liu, B.; Shi, L.; Chen, M.; Zhang, L. & Hu, Y.: , 2019a; Using brain network features to increase the classification accuracy of MI-BCI inefficiency subject; IEEE Access; 7: 74490–74499.spa
dc.relation.referencesZhang, R.; Li, F.; Zhang, T.; Yao, D. & Xu, P.: , 2020b; Subject inefficiency phenomenon of motor imagery brain-computer interface: Influence factors and potential solutions; Brain Science Advances; 6 (3): 224–241.spa
dc.relation.referencesZhang, T.; Han, Z.; Chen, X. & Chen, W.: , 2021b; Subbands and cumulative sum of subbands based nonlinear features enhance the performance of epileptic seizure detection; Biomedical Signal Processing and Control; 69: 102827.spa
dc.relation.referencesZhang, W.; Tan, C.; Sun, F.; Wu, H. & Zhang, B.: , 2018b; A review of EEG-based brain-computer interface systems design; Brain Science Advances; 4 (2): 156–167.spa
dc.relation.referencesZhang, W.; Wang, F.; Jiang, Y.; Xu, Z.; Wu, S. & Zhang, Y.: , 2019b; Cross-subject eeg-based emotion recognition with deep domain confusion; en Intelligent Robotics and Applications: 12th International Conference, ICIRA 2019, Shenyang, China, August 8–11, 2019, Proceedings, Part I 12; Springer; págs. 558–570.spa
dc.relation.referencesZhang, X.; Yao, L.; Sheng, Q. Z.; Kanhere, S. S.; Gu, T.& Zhang, D.: , 2018c; Converting your thoughts to texts: Enabling brain typing via deep feature learning of eeg signals; en 2018 IEEE international conference on pervasive computing and communications (PerCom); IEEE; págs. 1–10.spa
dc.relation.referencesZhang, X.; Yao, L.; Wang, X.; Monaghan, J.; Mcalpine, D. & Zhang, Y.: , 2019c; A survey on deep learning based brain computer interface: Recent advances and new frontiers; arXiv preprint arXiv:1905.04149; 66.spa
dc.relation.referencesZhang, X.; Lu, D.; Shen, J.; Gao, J.; Huang, X. & Wu, M.: , 2020c; Spatial-temporal joint optimization network on covariance manifolds of electroencephalography for fatigue detection; en 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM); IEEE; págs. 893–900.spa
dc.relation.referencesZhang, Y. & Yang, Q.: , 2018; An overview of multi-task learning; National Science Review; 5 (1): 30–43.spa
dc.relation.referencesZhang, Y.; Xu, P.; Guo, D. & Yao, D.: , 2013; Prediction of ssvep-based bci performance by the resting-state eeg network; Journal of neural engineering; 10 (6): 066017.spa
dc.relation.referencesZhang, Y.; Nam, C.; Zhou, G.; Jin, J.; Wang, X. & Cichocki, A.: , 2018d; Temporally constrained sparse group spatial patterns for motor imagery BCI; IEEE transactions on cybernetics; 49 (9): 3322–3332.spa
dc.relation.referencesZhang, Y.; Li, P.; Cheng, L.; Li, M. & Li, H.: , 2023; Attention-based multiscale spatial-temporal convolu- tional network for motor imagery eeg decoding; IEEE Transactions on Consumer Electronics.spa
dc.relation.referencesZhao, N.; Zhang, H.; Liu, T.; Liu, J.; Xiang, Y.; Shu, G.; Li, C.; Xie, J. & Chen, L.: , 2021a; Neuro- modulatory effect of sensorimotor network functional connectivity of temporal three-needle therapy for ischemic stroke patients with motor dysfunction: Study protocol for a randomized, patient-assessor blind, controlled, neuroimaging trial; Evidence-Based Complementary and Alternative Medicine; 2021.spa
dc.relation.referencesZhao, Y.; Zhao, Y.; Durongbhan, P.; Chen, L.; Liu, J.; Billings, S.; Zis, P.; Unwin, Z. C.; De Marco, M.; Venneri, A. et al.: , 2019; Imaging of nonlinear and dynamic functional brain connectivity based on EEG recordings with the application on the diagnosis of alzheimer’s disease; IEEE transactions on medical imaging; 39 (5): 1571–1581.spa
dc.relation.referencesZhao, Z.; Zhao, P.& Zhou, Q.: , 2020; A hierarchical stacking extreme learning machine for multi-classification; en 2020 Chinese Automation Congress (CAC); IEEE; págs. 4176–4181.spa
dc.relation.referencesZhao, Z.; Li, J.; Niu, Y.; Wang, C.; Zhao, J.; Yuan, Q.; Ren, Q.; Xu, Y.& Yu, Y.: , 2021b; Classification of schizophrenia by combination of brain effective and functional connectivity; Frontiers in Neuroscience; 15: 552.spa
dc.relation.referencesZhu, L.; Su, C.; Zhang, J.; Cui, G.; Cichocki, A.; Zhou, C. & Li, J.: , 2020; EEG-based approach for recognizing human social emotion perception; Advanced Engineering Informatics; 46: 101191.spa
dc.relation.referencesZhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H. & He, Q.: , 2020; A comprehensive survey on transfer learning; Proceedings of the IEEE; 109 (1): 43–76.spa
dc.relation.referencesZuk, N. J.; Teoh, E. S. & Lalor, E. C.: , 2020; Eeg-based classification of natural sounds reveals specialized responses to speech and music; NeuroImage; 210: 116558.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computaciónspa
dc.subject.proposalBCI-illiteracyeng
dc.subject.proposalEEGeng
dc.subject.proposalBrain computer interfaceeng
dc.subject.proposalMotor imageryeng
dc.subject.proposalNeurophysiological indicatorseng
dc.subject.proposalMI performance predictioneng
dc.subject.proposalMI classificationeng
dc.subject.proposalImprovement BCI-illiterate subjectseng
dc.subject.proposalInterfaz Cerebro-Computadoraspa
dc.subject.proposalImaginación motoraspa
dc.subject.proposalIndicadores neurofisiológicosspa
dc.subject.proposalPredicción de rendimiento en MIspa
dc.subject.proposalClasificación en MIspa
dc.subject.proposalMejoramiento de los sujetos BCIilliteratespa
dc.subject.unescoNeurociencia computacional
dc.subject.unescoInterfaces cerebro-computadora
dc.titleA machine learning framework for EEG-based BCI-MI skill prediction with preserved explainabilityeng
dc.title.translatedUn marco de aprendizaje automático para la predicción de habilidades BCI-MI basadas en EEG con interpretabilidad preservadaspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleAlianzacientíficaconenfoquecomunitarioparamitigarbrechasdeatenciónymanejodetrastornos mentales y epilepsia en Colombia (ACEMATE).spa
oaire.awardtitleSistema de integración de EEG, ECG y SpO2 para seguimiento de neonatos en unidad de cuidados intensivos del Hospital Universitario de Caldas - SES HUC.spa
oaire.fundernameMINCIENCIASspa
oaire.fundernameUniversidad Nacional de Colombiaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1053847443.2024.pdf
Tamaño:
11.6 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Automática

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: