Dispositivo de asistencia a la rehabilitación musculo-esquelética de rodilla

dc.contributor.advisorDuque Méndez, Néstor Darío
dc.contributor.authorGarcía Arias, Luís Felipe
dc.contributor.researchgroupGaia Grupo de Ambientes Inteligentes Adaptativosspa
dc.date.accessioned2022-08-31T18:41:48Z
dc.date.available2022-08-31T18:41:48Z
dc.date.issued2022
dc.descriptiongráficos, tablasspa
dc.description.abstractLa respuesta de los músculos en el movimiento durante actividades de la vida diaria y algunas de sus características ---fuerza, agilidad y resistencia--- pueden verse afectadas luego de una lesión, enfermedad o cirugía. Esas alteraciones no tienen tratamiento médico y la rehabilitación es la única opción para devolver la funcionalidad en las extremidades. El profesional de la salud debe establecer un plan de rehabilitación teniendo en cuenta las dimensiones biológica, social y psicológica del paciente, de acuerdo con la ICF. Como parte del plan, debe ser cuantificado frecuentemente el impacto de la terapia en la funcionalidad, determinando progreso o retroceso. Aunque la APTA establece la necesidad de medir la evolución del paciente, la evolución se establece por observación directa del profesional de la salud usualmente, considerando rangos y velocidad de movimiento y dolor percibido. Sin embargo, algunas sesiones se realizan en casa, lo que dificulta el seguimiento del paciente y cuantificar el impacto del plan de rehabilitación. Esta situación se acentúa cuando el paciente no tiene acceso directo a profesionales de la salud debido al lugar donde vive. En este trabajo se desarrolla un dispositivo para asistir la rehabilitación de rodilla. Para tal fin, se desarrolla un sistema de medida inercial y un módulo para la medición de las señales de electromiografía. Aunque en la literatura especializada se pueden encontrar desarrollos que buscan asistir la terapia física, algunos requieren de equipos especializados y no pueden ser usados en casa. Por otro lado, los desarrollos propuestos para ser aplicados en ese entorno carecen de módulos para la evolución del desempeño muscular. Esta medida es valiosa para los terapeutas para establecer cambios en el plan de rehabilitación. Como resultados se presenta el desarrollo de un dispositivo con una baja relación costo-efectividad. Entre los resultados se encuentra el desarrollo de un soporte con el que se busca mejorar la repetibilidad en la ubicación de los electrodos. Entre los trabajos futuros se encuentra la incorporación del dispositivo en un sistema de asistencia y la optimización del firmware para aprovechar las características de los componentes electrónicos. En ese contexto, se incluye el desarrollo de estrategias para informar al paciente y al profesional de la salud sobre el desempeño en las sesiones de terapia. Otros trabajos podrían incluir algoritmos que permitan identificar si el paciente realiza algún tipo de compensación con otras estructuras corporales mientras realiza los ejercicios. (Texto tomado de la fuente)spa
dc.description.abstractThe reaction of muscles in movement during activities of daily living and some of their characteristics---strength, agility and endurance---can be affected after injury, disease or surgery. These alterations have no medical treatment, and rehabilitation is the only option to restore limb function. According to the ICF, healthcare practitioneers must establish a rehabilitation plan considering the patient's biological, social and psychological dimensions. As part of the plan, the impact of therapy on functionality should be quantified frequently, determining progress or regression. Although the APTA establishes the need to measure the patient's evolution, it is usually established by direct observation by the healthcare professional, considering ranges and speed of movement and perceived pain. However, some sessions are performed at home, which makes it difficult to follow the patient and quantify the impact of the rehabilitation plan. This situation is accentuated when the patient does not have direct access to health professionals due to the place where the patient lives. In this work is presented the develop of a to assist knee rehabilitation. For this purpose, an inertial measurement system and a module for measuring electromyography signals are developed. Although in the specialized literature can be found developments that seek to assist physical therapy, some of them require specialized equipment and cannot be used at home. On the other hand, the developments proposed to be applied in that environment lack modules for the evolution of muscle performance. This measure is valuable for therapists to establish changes in the rehabilitation plan. As results, the development of a device with a low cost-effectiveness ratio is presented. Among the results, the development of a support that seeks to improve the repeatability in the location of the electrodes is ilustrated. Future work includes the incorporation of the device in an assistance system and the optimization of the firmware to take advantage of the characteristics of the electronic components. The development of strategies to inform the patient and the healthcare professional about performance in therapy sessions is included. Further work could also consider algorithms to identify whether the patient performs any compensation with other body structures while performing the exercises.eng
dc.description.curricularareaEléctrica, Electrónica, Automatización Y Telecomunicacionesspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Automatización Industrialspa
dc.description.researchareaTecnologías asistivasspa
dc.format.extentxix, 46 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82223
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Nivel Nacionalspa
dc.publisher.departmentDepartamento de Ingeniería Eléctrica y Electrónicaspa
dc.publisher.facultyFacultad de Ingeniería y Arquitecturaspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Automatización Industrialspa
dc.relation.referencesY. Ma, S. Xie, and Y. Zhang, “A patient-specific EMG-driven neuromuscular model for the potential use of human-inspired gait rehabilitation robots,” Computers in Biology and Medicine, vol. 70, pp. 88–98, mar 2016. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0010482516000056spa
dc.relation.referencesAmerican Physical Therapy Organization, “Guide to physical therapist practice Measurement Concepts,” in Guide to Physical Therapist Practice, 2016, ch. Measurement.spa
dc.relation.referencesA. Rauch, A. Cieza, and G. Stucki, “How to apply the ICF for rehabilitation management in clinical practice.pdf,” vol. 44, no. 3, pp. 329–342, 2008. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/18762742/spa
dc.relation.referencesOrganización Mundial de la Salud, “Towards a common language for functioning, disability and health: ICF,” International Classification, vol. 1149, pp. 1–22, 2002. [Online]. Available: http://www.who.int/classifications/icf/training/icfbeginnersguide.pdfspa
dc.relation.referencesG. L. Engel, “The need for a new medical model: A challenge for biomedicine,” Science, vol. 196, no. 4286, pp. 129–136, apr 1977. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/847460/https://www.sciencemag.org/lookup/doi/10.1126/science.847460spa
dc.relation.referencesD. Wade, “Rehabilitation - A new approach. Part two: The underlying theories,” pp.1145–1154, dec 2015.spa
dc.relation.referencesD. T. Wade and P. W. Halligan, “The biopsychosocial model of illness: a model whose time has come,” Clinical Rehabilitation, vol. 31, no. 8, pp. 995–1004, aug 2017. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/28730890/http://journals.sagepub.com/doi/10.1177/0269215517709890spa
dc.relation.referencesL. M. Tapias, “Factores individuales que influyen en la adherencia al tratamiento fisioterapéutico,” vol. 2, no. 1, pp. 23–30, 2014.spa
dc.relation.referencesK. Jack, S. M. McLean, J. K. Moffett, and E. Gardiner, “Barriers to treatment adherence in physiotherapy outpatient clinics: A systematic review,” Manual Therapy, vol. 15, no. 3, pp. 220–228, jun 2010. [Online]. Available: http://dx.doi.org/10.1016/j.math.2009.12.004https://linkinghub.elsevier.com/retrieve/pii/S1356689X09002094spa
dc.relation.referencesWorld Health Organization, Adherence to long-term therapies: evidence for action, World Health Organization (WHO), Ed., 2003. [Online]. Available: https://apps.who.int/iris/bitstream/handle/10665/42682/9241545992.pdfspa
dc.relation.referencesG. S. Kolt, B. W. Brewer, T. Pizzari, A. M. Schoo, and N. Garrett, “The Sport Injury Rehabilitation Adherence Scale: a reliable scale for use in clinical physiotherapy,” Physiotherapy, vol. 93, no. 1, pp. 17–22, 2007.spa
dc.relation.referencesJ. A. Hayden, M. W. van Tulder, and G. Tomlinson, “Systematic Review: Strategies for Using Exercise Therapy To Improve Outcomes in Chronic Low Back Pain,” Annals of Internal Medicine, vol. 142, no. 9, p. 776, may 2005. [Online]. Available: http://annals.org/article.aspx?doi=10.7326/0003-4819-142-9-200505030-00014spa
dc.relation.referencesL. M. Vasey, “DNAs and DNCTs — Why Do Patients Fail to Begin or to Complete a Course of Physiotherapy Treatment?” Physiotherapy, vol. 76, no. 9, pp. 575–578, sep 1990. [Online]. Available: http://dx.doi.org/10.1016/S0031-9406(10)63052-0https://linkinghub.elsevier.com/retrieve/pii/S0031940610630520spa
dc.relation.referencesE. M. Sluijs, G. J. Kok, and J. van der Zee, “Correlates of Exercise Compliance in Physical Therapy,” Physical Therapy, vol. 73, no. 11, pp. 771–782, nov 1993. [Online]. Available: http://ptjournal.apta.org/content/ptjournal/73/11/771.full.pdfhttps://academic.oup.com/ptj/article/2729054/Correlatesspa
dc.relation.referencesA. D. Lopes, L. C. Hespanhol, S. S. Yeung, and L. O. P. Costa, “What are the Main Running-Related Musculoskeletal Injuries?” Sports Medicine, vol. 42, no. 10, pp. 891–905, oct 2012. [Online]. Available: /pmc/articles/PMC4269925/?report=abstracthttps://www.ncbi.nlm.nih.gov/pmc/ articles/PMC4269925/http://link.springer.com/10.1007/BF03262301spa
dc.relation.referencesC. M. Gosling, B. J. Gabbe, and A. B. Forbes, “Triathlon related musculoskeletal injuries: The status of injury prevention knowledge,” Journal of Science and Medicine in Sport, vol. 11, no. 4, pp. 396–406, jul 2008. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S1440244007001545spa
dc.relation.referencesO. Kilic, M. Maas, E. Verhagen, J. Zwerver, and V. Gouttebarge, “Incidence, aetiology and prevention of musculoskeletal injuries in volleyball: A systematic review of the literature,” European Journal of Sport Science, vol. 17, no. 6, pp. 765–793, jul 2017. [Online]. Available: ttps://www.tandfonline.com/doi/full/10.1080/17461391.2017.1306114spa
dc.relation.referencesR. Castillo-Lozano and M. J. Casuso-Holgado, “Incidence of musculoskeletal sport injuries in a sample of male and female recreational paddle-tennis players,” Journal of Sports Medicine and Physical Fitness, vol. 57, no. 6, pp. 816–821, jun 2017. [Online].Available: https://pubmed.ncbi.nlm.nih.gov/26954572/spa
dc.relation.referencesV. Moreno-Pérez, S. Hernández-Sánchez, J. Fernandez-Fernandez, J. Del Coso, and F. J. Vera-Garcia, “Incidence and conditions of musculoskeletal injuries in elite Spanish tennis academies: a prospective study,” The Journal of Sports Medicine and Physical Fitness, vol. 59, no. 4, pp. 655–665, mar 2019. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/29952177/https://www.minervamedica.it/index2.php?show=R40Y2019N04A0655spa
dc.relation.referencesB. D. Owens, C. Nacca, A. P. Harris, and R. J. Feller, “Comprehensive Review of Skiing and Snowboarding Injuries,” Journal of the American Academy of Orthopaedic Surgeons, vol. 26, no. 1, pp. e1–e10, jan 2018. [Online]. Available: http://journals.lww.com/00124635-201801010-00004spa
dc.relation.referencesM. Bulat, N. Korkmaz Can, Y. Z. Arslan, and W. Herzog, “Musculoskeletal Simulation Tools for Understanding Mechanisms of Lower-Limb Sports Injuries,” Current Sports Medicine Reports, vol. 18, no. 6, pp. 210–216, jun 2019. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/31385836/http://journals.lww.com/00149619-201906000-00006spa
dc.relation.referencesP. A. Renström, “Eight clinical conundrums relating to anterior cruciate ligament (ACL) injury in sport: recent evidence and a personal reflection: Table 1,” British Journal of Sports Medicine, vol. 47, no. 6, pp. 367–372, apr 2013. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/22942168/https://bjsm.bmj.com/lookup/doi/10.1136/bjsports-2012-091623spa
dc.relation.referencesN. A. Bates, G. D. Myer, J. T. Shearn, and T. E. Hewett, “Anterior cruciate ligament biomechanics during robotic and mechanical simulations of physiologic and clinical motion tasks: A systematic review and meta-analysis,” Clinical Biomechanics, vol. 30, no. 1, pp. 1–13, jan 2015. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/25547070/https://linkinghub.elsevier.com/retrieve/pii/S0268003314003015spa
dc.relation.referencesL. Peng, Z.-G. Hou, L. Peng, and W.-Q. Wang, “Experimental study of robot-assisted exercise training for knee rehabilitation based on a practical EMG-driven model,” in 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), vol. 2016-July. IEEE, jun 2016, pp. 810–814. [Online]. Available: http://ieeexplore.ieee.org/document/7523727/spa
dc.relation.referencesP. Xiong, C. Wu, H. Zhou, A. Song, L. Hu, and X. P. Liu, “Design of an accurate end-of-arm force display system based on wearable arm gesture sensors and EMG sensors,” Information Fusion, vol. 39, pp. 178–185, jan 2018. [Online]. Available: http://dx.doi.org/10.1016/j.inffus.2017.04.009https: //linkinghub.elsevier.com/retrieve/pii/S1566253517302695spa
dc.relation.referencesA. Shabani and M. J. Mahjoob, “Bio-signal interface for knee rehabilitation robot utilizing EMG signals of thigh muscles,” in 2016 4th International Conference on Robotics and Mechatronics (ICROM). IEEE, oct 2016, pp. 228–233. [Online]. Available: http://ieeexplore.ieee.org/document/7886851/spa
dc.relation.referencesJ. Martin-Moreno, D. Ruiz-Fernandez, A. Soriano-Paya, and V. Jesus Berenguer-Miralles, “Monitoring 3D movements for the rehabilitation of joints in physiotherapy,” in 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 300000. IEEE, aug 2008, pp. 4836–4839. [Online]. Available: https://ieeexplore.ieee.org/document/4650296/spa
dc.relation.referencesH. Zheng, R. J. Davies, and N. D. Black, “Web-based monitoring system for home-based rehabilitation with stroke patients,” Proceedings - IEEE Symposium on Computer-Based Medical Systems, pp. 419–424, 2005.spa
dc.relation.referencesKathleen A. Martin and Adrienne R. Sinden, “Who Will Stay and Who Will Go? A Review of Older Adults’ Adherence to Randomized Controlled Trials of Exercise,” Aging and Physical Activity, vol. 9, no. 2, pp. 91–114, 2001.spa
dc.relation.referencesL. Jackson, “Getting the most out of cardiac rehabilitation: a review of referral and adherence predictors,” Heart, vol. 91, no. 1, pp. 10–14, jan 2005. [Online]. Available: https://heart.bmj.com/lookup/doi/10.1136/hrt.2004.045559spa
dc.relation.referencesT. Shaw, M. T. Williams, and L. S. Chipchase, “A review and user’s guide to measurement of rehabilitation adherence following anterior cruciate ligament reconstruction,” Physical Therapy in Sport, vol. 6, no. 1, pp. 45–51, feb 2005. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S1466853X05000179spa
dc.relation.referencesB. Wright, N. Galtieri, and M. Fell, “Non-adherence to prescribed home rehabilitation exercises for musculoskeletal injuries: The role of the patient-practitioner relationship,” Journal of Rehabilitation Medicine, vol. 46, no. 2, pp. 153–158, 2014. [Online]. Available: http://www.medicaljournals.se/jrm/content/?doi=10.2340/16501977-1241spa
dc.relation.referencesJ. E. Broderick and A. A. Stone, “Paper and electronic diaries: Too early for conclusions on compliance rates and their effects–Comment on Green, Rafaeli, Bolger, Shrout, and Reis (2006).” Psychological Methods, vol. 11, no. 1, pp. 106–111, mar 2006. [Online]. Available: http://doi.apa.org/getdoi.cfm?doi=10.1037/1082-989X.11.1.106spa
dc.relation.referencesA. S. Green, E. Rafaeli, N. Bolger, P. E. Shrout, and H. T. Reis, “Paper or plastic? Data equivalence in paper and electronic diaries.” Psychological Methods, vol. 11, no. 1, pp. 87–105, mar 2006. [Online]. Available: http: //doi.apa.org/getdoi.cfm?doi=10.1037/1082-989X.11.1.87spa
dc.relation.referencesM. Friedrich, G. Gittler, Y. Halberstadt, T. Cermak, and I. Heiller, “Combined exercise and motivation program: Effect on the compliance and level of disability of patients with chronic low back pain: A randomized controlled trial,” Archives of Physical Medicine and Rehabilitation, vol. 79, no. 5, pp. 475–487, may 1998. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0003999398900594spa
dc.relation.referencesSeniam, “Seniam project,” 2018. [Online]. Available: http://www.seniam.org/spa
dc.relation.referencesY. Ganesan, S. Gobee, and V. Durairajah, “Development of an Upper Limb Exoskeleton for Rehabilitation with Feedback from EMG and IMU Sensor,” Procedia Computer Science, vol. 76, pp. 53–59, 2015. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S187705091503776Xhttps://linkinghub.elsevier.com/retrieve/pii/S187705091503776Xspa
dc.relation.referencesM. Hakonen, H. Piitulainen, and A. Visala, “Current state of digital signal processing in myoelectric interfaces and related applications,” Biomedical Signal Processing and Control, vol. 18, pp. 334–359, apr 2015. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S174680941500021Xhttps://linkinghub.elsevier.com/retrieve/pii/S174680941500021Xspa
dc.relation.referencesM. Lopez-Gordo, D. Sanchez-Morillo, and F. Valle, “Dry EEG Electrodes”, Sensors, vol. 14, no. 7, pp. 12 847–12 870, jul 2014. [Online]. Available: http://www.mdpi.com/1424-8220/14/7/12847spa
dc.relation.referencesK. Vlach, J. Kijonka, F. Jurek, P. Vavra, and P. Zonca, “Capacitive biopotential electrode with a ceramic dielectric layer,” Sensors and Actuators B: Chemical, vol. 245, pp.988–995, jun 2017. [Online]. Available: http://dx.doi.org/10.1016/j.snb.2017.01.116https://linkinghub.elsevier.com/retrieve/pii/S0925400517301235spa
dc.relation.referencesE. Spinelli and M. Haberman, “Insulating electrodes: a review on biopotential front ends for dielectric skin–electrode interfaces,” Physiological Measurement, vol. 31, no. 10, pp. S183–S198, oct 2010. [Online]. Available: https://iopscience.iop.org/article/10.1088/0967-3334/31/10/S03spa
dc.relation.referencesE. Spinelli, F. Guerrero, P. García, and M. Haberman, “A simple and reproducible capacitive electrode,” Medical Engineering & Physics, vol. 38, no. 3, pp. 286–289, mar 2016. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S1350453315002854spa
dc.relation.referencesB. Babusiak, S. Borik, and L. Balogova, “Textile electrodes in capacitive signal sensing applications,” Measurement, vol. 114, no. March 2017, pp. 69–77, jan 2018. [Online]. Available: http://dx.doi.org/10.1016/j.measurement.2017.09.024https://linkinghub.elsevier.com/retrieve/pii/S0263224117305894spa
dc.relation.referencesC. Ng and M. Reaz, “Characterization of Textile-Insulated Capacitive Biosensors,” Sensors, vol. 17, no. 3, p. 574, mar 2017. [Online]. Available: http://www.mdpi.com/1424-8220/17/3/574spa
dc.relation.referencesT. Seel, J. Raisch, and T. Schauer, “IMU-based joint angle measurement for gait analysis,” Sensors (Switzerland), vol. 14, no. 4, pp. 6891–6909, apr 2014.spa
dc.relation.referencesM. Kok, J. D. Hol, and T. B. Schön, “Using inertial sensors for position and orientation estimation,” Foundations and Trends in Signal Processing, vol. 11, no. 1-2, pp. 1–153, 2017.spa
dc.relation.referencesT. Roland, S. Amsüss, M. F. Russold, C. Wolf, and W. Baumgartner, “Capacitive Sensing of Surface EMG for Upper Limb Prostheses Control,” Procedia Engineering, vol. 168, pp. 155–158, 2016. [Online]. Available: http://dx.doi.org/10.1016/j.proeng.2016.11.190https://linkinghub.elsevier.com/retrieve/pii/S1877705816335007spa
dc.relation.referencesM. Tavakoli, C. Benussi, and J. L. Lourenco, “Single channel surface EMG control of advanced prosthetic hands: A simple, low cost and efficient approach,” Expert Systems with Applications, vol. 79, pp. 322–332, 2017.spa
dc.relation.referencesJ. Poonsiri and W. Charoensuk, “Surface EMG based controller design for knee rehabilitation devices,” BMEiCON-2011 - 4th Biomedical Engineering International Conference, pp. 131–134, 2011.spa
dc.relation.referencesI. Campanini, C. Disselhorst-Klug, W. Z. Rymer, and R. Merletti, “Surface EMG in Clinical Assessment and Neurorehabilitation: Barriers Limiting Its Use,” Frontiers in Neurology, vol. 11, sep 2020. [Online]. Available: https://www.frontiersin.org/article/10.3389/fneur.2020.00934/fullspa
dc.relation.referencesT. Roland, W. Baumgartner, S. Amsuess, and M. Friedrich Russold, “Signal evaluation of capacitive EMG for upper limb prostheses control using an ultra-low-power microcontroller,” in 2016 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES), 2016, pp. 317–320.spa
dc.relation.referencesL. E. Avendaño, Sistemas Electrónicos Analógicos: Un enfoque matricial, 1st ed. Pereira: Universidad Tecnológica de Pereira, 2007.spa
dc.relation.referencesE. Mora Tola, J. Loja Duchi, A. Vázquez Rodas, F. Astudillo Salinas, and L. Minchala, “Robotic Knee Exoskeleton Prototype to Assist Patients in Gait rehabilitation,” Tech. Rep. 9, 2020.spa
dc.relation.referencesF. Dadashi, F. Crettenand, G. P. Millet, and K. Aminian, “Front-crawl instantaneous velocity estimation using a wearable inertial measurement unit,” Sensors (Switzerland), vol. 12, no. 10, pp. 12 927–12 939, 2012.spa
dc.relation.referencesC. A. Castillo-Benavides, L. F. García-Arias, N. . D. Duque-Méndez, and D. A. Ovalle-Carranza, “IMU-Mouse: diseño e implementación de un dispositivo apuntador dirigido al desarrollo de interfaces adaptativas para personas con discapacidad física,” TecnoLógicas, vol. 21, no. 41, pp. 63–79, jan 2018. [Online]. Available: https://revistas.itm.edu.co/index.php/tecnologicas/article/view/727spa
dc.relation.referencesA. Oppenheim and R. Schafer, Discrete-Time Processing- Second Edition, 2nd ed. Prentice Hall, 1999.spa
dc.relation.referencesL. Marple, “Computing the discrete-time .analytic"signal via FFT,” IEEE Transactions on Signal Processing, vol. 47, no. 9, pp. 2600–2603, 1999. [Online]. Available: papers3://publication/uuid/C7BC1B03-B80D-43D5-A544-6534B085DEE1http://ieeexplore.ieee.org/document/782222/spa
dc.relation.referencesK. Englehart, B. Hudgins, P. Parker, and M. Stevenson, “Classification of the myoelectric signal using time-frequency based representations,” Medical Engineering & Physics, vol. 21, no. 6-7, pp. 431–438, jul 1999. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S1350453399000661spa
dc.relation.referencesK. Englehart, B. Hudgin, and P. Parker, “A wavelet-based continuous classification scheme for multifunction myoelectric control,” IEEE Transactions on Biomedical Engineering, vol. 48, no. 3, pp. 302–311, mar 2001. [Online]. Available: http://ieeexplore.ieee.org/document/914793/spa
dc.relation.referencesY. Meng, S. Gao, Y. Zhong, G. Hu, and A. Subic, “Covariance matching based adaptive unscented Kalman filter for direct filtering in INS/GNSS integration,” Acta Astronautica, vol. 120, pp. 171–181, mar 2016.spa
dc.relation.referencesJ. A. George, S. Radhakrishnan, M. Brinton, and G. A. Clark, “Inexpensive and Portable System for Dexterous High-Density Myoelectric Control of Multiarticulate Prostheses,” Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics, vol. 2020-Octob, no. January, pp. 3441–3446, 2020.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc600 - Tecnología (Ciencias aplicadas)spa
dc.subject.proposalElectromiografíaspa
dc.subject.proposalEMGspa
dc.subject.proposalFisioterapiaspa
dc.subject.proposalIMUspa
dc.subject.proposalRodillaspa
dc.subject.proposalTecnología asistivaspa
dc.subject.proposalUnidad de medida inercialspa
dc.subject.proposalAssistive technologyeng
dc.subject.proposalElectromyographyeng
dc.subject.proposalInertial measurement uniteng
dc.subject.proposalKneeeng
dc.subject.proposalPhysical therapyeng
dc.subject.unescoRehabilitación médicaspa
dc.subject.unescoMedical rehabilitationeng
dc.titleDispositivo de asistencia a la rehabilitación musculo-esquelética de rodillaspa
dc.title.translatedDevice for assisting rehabilitation of the knee skeletal muscleeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentImagespa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1060653961.2022.pdf
Tamaño:
19.3 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Automatización Industrial

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
4.57 KB
Formato:
Item-specific license agreed upon to submission
Descripción: