Theory of associated and attached prime ideals over quantum algebras

dc.contributor.advisorReyes Villamil, Milton Armando
dc.contributor.authorHiguera Rincón, Sebastián David
dc.contributor.orcidHiguera Rincón, Sebastián David [0009-0003-4520-2802]
dc.contributor.researchgateHiguera Rincón, Sebastián David [Sebastian-Higuera-4]
dc.date.accessioned2025-09-16T15:01:42Z
dc.date.available2025-09-16T15:01:42Z
dc.date.issued2024
dc.description.abstractEn esta tesis estudiamos la propiedad nilpotente-reflexiva (RNP para abreviar) sobre álgebras cuánticas como anillos de polinomios torcidos y extensiones PBW torcidas. Investigamos la transferencia de esta propiedad entre anillos de coeficientes y anillos no conmutativos de tipo polinomial sobre estos anillos. Consideramos esta propiedad para localizaciones mediante elementos regulares de extensiones PBW torcidas. En relación con la propiedad RNP, estudiamos las nociones de anulador débil e ideal primo asociado nilpotente, y formulamos varios resultados que extienden o contribuyen a los correspondientes en la literatura. Adicionalmente, investigamos los ideales primos asociados de módulos inducidos sobre álgebras cuánticas y los caracterizamos. Nuestro trabajo es una contribución a una extensa investigación presentada por diferentes autores sobre las propiedades teóricas de los anillos no conmutativos y su descripción de los ideales primos asociados. Por otro lado, motivados por la investigación sobre los ideales primos adjuntos del módulo polinomial inverso sobre anillos de polinomios torcidos de tipo automorfismo, y considerando una familia muy importante de álgebras cuánticas conocidas como polinomios de Ore torcidos de orden superior, caracterizamos los ideales primos adjuntos de esos módulos sobre polinomios de Ore torcidos. También formulamos resultados sobre la dimensión uniforme y los primos asociados de módulos inducidos sobre algunas familias de álgebras cuánticas. Finalmente, estudiamos la dimensión couniforme para módulos polinomiales inversos sobre polinomios de Ore torcidos. (Texto tomado de la fuente)spa
dc.description.abstractIn this thesis we study the reflexive-nilpotents-property (RNP for short) over quantum algebras such as skew polynomial rings and skew PBW extensions. We investigate the transfer of this property between ring of coefficients and noncommutative rings of polynomial type over these rings. We consider this property for localizations by regular elements of skew PBW extensions. Related to RNP property, we study the notions of weak annihilator and nilpotent associated prime ideal, and formulate several results that extend or contribute those corresponding in the literature. Additionally, we investigate the associated prime ideals of induced modules over quantum algebras and characterize them. Our work is a contribution to an extensive research presented by different authors on ring-theoretical properties of noncommutative rings and its description of associated prime ideals. On the other hand, motivated by the research about the attached prime ideals of the inverse polynomial module over skew polynomial rings of automorphism type, and considering a very important family of quantum algebras known as skew Ore polynomials of higher order, we characterize the attached prime ideals of those modules over skew Ore polynomials. We also formulate results about the uniform dimension and the associated primes of induced modules over some families of quantum algebras. Finally, we study the couniform dimension for inverse polynomial modules over skew Ore polynomials.eng
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ciencias - Matemáticas
dc.format.extentviii, 98 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88799
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia - sede Bogotá
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Matemáticas
dc.relation.referencesJ. Alev and F. Dumas. Automorphismes de certains completés du corps de Weyl quantique. Collect. Math., 46:1–9, 1995.
dc.relation.referencesS. Alberola. Macaulay’s Inverse System. Master Thesis. University of Barcelona, 2014
dc.relation.referencesA. Alhevaz and A. Moussavi. On Skew Armendariz and Skew Quasi-Armendariz Modules. Bull. Iranian Math. Soc., 38(1):55–84, 2012
dc.relation.referencesM. F. Atiyah and I. G. MacDonald. Introduction to Commutative Algebra. Addison- Wesley Publishing Company, Inc, 2018
dc.relation.referencesS. A. Annin. Associated and Attached Primes Over Noncommutative Rings. Ph.D. Thesis. University of California, Berkeley, 2002.
dc.relation.referencesS. A. Annin. Associated Primes Over Skew Polynomial Rings. Comm. Algebra, 30(5):2511–2528, 2002.
dc.relation.referencesS. A. Annin. Associated primes over Ore extension rings. J. Algebra Appl., 3(2):193– 205, 2004.
dc.relation.referencesS. A. Annin. Couniform dimension over skew polynomial rings. Comm. Algebra, 33(4):1195–1204, 2005.
dc.relation.referencesS. A. Annin. Attached primes over noncommutative rings. J. Pure. Appl. Algebra, 212(3):510–521, 2008.
dc.relation.referencesS. A. Annin. Attached Primes Under Skew Polynomial Extensions. J. Algebra Appl., 10(3):537–547, 2011.
dc.relation.referencesV. A. Artamonov. Derivations of Skew PBW-Extensions. Commun. Math. Stat., 3(4):449–457, 2015.
dc.relation.referencesM. Abdi and Y. Talebi. On the diameter of the zero-divisor graph over skew PBW extensions. J. Algebra Appl., 23(05):2450089, 2024.
dc.relation.referencesM. Baig. Primary decomposition and secondary representation of modules over a commutative ring. Master Thesis. Georgia State University, 2009.
dc.relation.referencesV. V. Bavula. Generalized Weyl algebras and their representations. St. Petersburg Math. J., 4(1):71–92, 1992.
dc.relation.referencesV. V. Bavula. Global dimension of Generalized Weyl Algebras. In Raymundo Bautista, Roberto Martínez-Villa, and José Antonio de la Peña, editors, Representation Theory of Algebras. Seventh International Conference on Representations of Algebras, August 22–26, 1994, Cocoyoc, México, volume 18 of CMS Conferences Proceedings, pages 81–107. Canadian Mathematical Society, 1996.
dc.relation.referencesV. V. Bavula. Description of bi-quadratic algebras on 3 generators with PBW basis. J. Algebra, 631:695–730, 2023.
dc.relation.referencesG. Benkart. Down-up algebras and Witten’s deformation of the universal enveloping algebra of sl2. In S. Geun Hahn, H. Chul Myung, and E. Zelmanov, editors, Recent Progress in Algebra. An International Conference on Recent Progress in Algebra, August 11–15, KAIST, Taejon, South Korea, volume 224 of Contemporary Mathematics, pages 29–45. American Mathematical Society, Providence, Rhode Island, 1999.
dc.relation.referencesG. M. Bergman. The Diamond Lemma for Ring Theory. Adv. Math., 29(2):178–218, 1978.
dc.relation.referencesA. D. Bell and K. R. Goodearl. Uniform Rank Over Differential Operator Rings and Poincaré-Birkhoff-Witt Extensions. Pacific J. Math., 131(1):13–37, 1988.
dc.relation.referencesK. Brown and K. R. Goodearl. Lectures on Algebraic Quantum Groups. Birkäuser- Verlag, 2002.
dc.relation.referencesG. F. Birkenmeier, M. Ghirati, and A. Taherifar. When is a sum of annihilator ideals an annihilator ideal? Comm. Algebra, 43(7):2690–2702, 2015.
dc.relation.referencesJ. Brewer and W. Heinzer. Associated primes of principal ideals. Duke Math. J., 41(1):1–7, 1974.
dc.relation.referencesA. Bhattacharjee. Reflexive-nilpotents-property skewed by ring endomorphisms. Arab. J. Math., 9(1):63–72, 2020.
dc.relation.referencesG. F. Birkenmeier, J. Y. Kim, and J. K. Park. Principally quasi-Baer rings. Comm. Algebra, 29(2):639–660, 2001.
dc.relation.referencesC. Burdík and O. Navrátil. Decomposition of the Enveloping Algebra so(5). In: Silve- strov, S., Paal, E., Abramov, V., Stolin, A., eds. Generalized Lie Theory in Mathematics, Physics and Beyond. Springer, Berlin, Heidelberg, pp. 297–302., 2009.
dc.relation.referencesG. F. Birkenmeier, J. K. Park, and S. T. Rizvi. Extensions of Rings and Modules. Birkhäuser, New York, 2013.
dc.relation.referencesG. Benkart and T. Roby. Down-Up Algebras. J. Algebra, 209(1):305–344, 1998.
dc.relation.referencesL. Le Bruyn. Conformal sl2 enveloping algebras. Comm. Algebra, 23(4):1325–1362, 1994.
dc.relation.referencesL. Le Bruyn. Two remarks on Witten’s quantum enveloping algebra. Comm. Algebra, 22(3):865–876, 1994.
dc.relation.referencesA. D. Bell and S. P. Smith. Some 3-dimensional skew polynomial rings. University of Wisconsin, Milwaukee, preprint, 1990.
dc.relation.referencesP. Brodmann and R. Y. Sharp. Local Cohomology: An Algebraic Introduction with Geometric Applications. Second Edition. Vol. 136. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2013.
dc.relation.referencesA. Chacón, S. Higuera, and A. Reyes. On types of elements, Gelfand and strongly harmonic rings of skew PBW extensions over weak compatible rings. Arab. J. Math. (Springer), https://arxiv.org/abs/2212.09601 To appear, 2024.
dc.relation.referencesP. A. A. B. Carvalho, S. A. Lopes, and J. Matczuk. Double Ore Extensions Versus Iterated Ore Extensions. Comm. Algebra, 39(8):2838–2848, 2011
dc.relation.referencesV. Camillo, W. K. Nicholson, and M. F. Yousif. Ikeda-Nakayama rings. J. Algebra, 226(2):1001–1010, 2000.
dc.relation.referencesP. M. Cohn. Quadratic extensions of skew fields. Proc. Lond. Math. Soc, 11(3):531–556, 1961.
dc.relation.referencesP. M. Cohn. Reversible rings. Bull. Lond. Math. Soc., 31(6):641–648, 1999.
dc.relation.referencesP. A. M. Dirac. The Fundamental Equations of Quantum Mechanics. Proceedings of the Royal Society. Series A, 109(752):642–653, 1925.
dc.relation.referencesP. A. M. Dirac. On Quantum Algebra. Math. Proc. Cambridge Philos. Soc., 23(4):412– 418, 1926.
dc.relation.referencesF. Dumas and F. Martin. Invariants of formal pseudodifferential operator algebras and algebraic modular forms. Rev. Un. Mat. Argentina, 65(1):1–31, 2023.
dc.relation.referencesR. Díaz and E. Pariguan. On the q-meromorphic Weyl algebra. São Paulo J. Math. Sci., 3(2):283–298, 2009.
dc.relation.referencesF. Dumas. Sous-Corps de fractions rationnelles des corps gauches de séries de Laurent. In Topics in Invariant Theory, volume 1478 of Lecture Notes in Mathematics. Springer, Berlin, Heidelberg, 1991.
dc.relation.referencesF. Dumas. Skew power series rings with general commutation formula. Theoret. Comput. Sci., 98(1):99–114, 1992.
dc.relation.referencesD. Eisenbud. Commutative Algebra with a View Toward Algebraic Geometry. Gradu- ate Texts in Mathematics Vol. 150, Springer-Verlag, Berlin, 1995.
dc.relation.referencesC. Faith. Associated primes in commutative polynomial rings. Comm. Algebra, 28(8):3983–3986, 2000.
dc.relation.referencesW. Fajardo. Extended Modules over Skew PBW Extensions. PhD thesis, Universidad Nacional de Colombia, Bogotá, D. C., 2018.
dc.relation.referencesW. Fajardo, C. Gallego, O. Lezama, A. Reyes, H. Suárez, and H. Venegas. Skew PBW Extensions: Ring and Module-theoretic properties, Matrix and Gröbner Methods, and Applications. Algebra and Applications. Springer, Cham., 2020.
dc.relation.referencesW. Fajardo, O. Lezama, C. Payares, A. Reyes, and C. Rodríguez. Introduction to Algebraic Analysis on Ore Extensions. In A. Martsinkovsky, editor, Functor Cat- egories, Model Theory, Algebraic Analysis and Constructive Methods FCMTCCT2 2022, Almería, Spain, July 11-15, Invited and Selected Contributions, volume 450 of Springer Proceedings in Mathematics & Statistics, pages 45–116. Springer, Cham, 2024
dc.relation.referencesG. Freudenburg. Algebraic theory of locally nilpotent derivations. Vol. 136. Berlin: Springer., 2006.
dc.relation.referencesC. Gallego. Matrix Methods for Projective Modules over σ-PBW Extensions. PhD thesis, Universidad Nacional de Colombia, Bogotá, D. C., Colombia, 2015.
dc.relation.referencesK. R. Goodearl and R. B. Warfield Jr. An Introduction to Noncommutative Noethe- rian Rings, volume 61 of London Mathematical Society Student Texts. Cambridge University Press, 2004.
dc.relation.referencesK. R. Goodearl and E. S. Letzter. Prime Ideals in Skew and q -Skew Polynomial Rings. Vol. 521, American Mathematical Society, 1994.
dc.relation.referencesC. Gallego and O. Lezama. Gröbner Bases for Ideals of σ-PBW Extensions. Comm. Algebra, 39(1):50–75, 2010.
dc.relation.referencesC. Gallego and O. Lezama. Projective modules and Gröbner bases for skew PBW extensions. Dissertationes Math, 521:1–50, 2017.
dc.relation.referencesO. W. Greenberg and A. M. L. Messiah. Selection Rules for parafields and the absence of para particles in nature. Phys. Rev., 138(5B):B1155–B1167, 1965.
dc.relation.referencesA. V. Golovashkin and V. M. Maksimov. Skew Ore polynomials of higher orders generated by homogeneous quadratic relations. Russian Math. Surveys, 53(2):384– 386, 1998.
dc.relation.referencesA. V. Golovashkin and V. M. Maksimov. On algebras of skew polynomials generated by quadratic homogeneous relations. J. Math. Sci. (N.Y.), 129(2):3757–3771, 2005.
dc.relation.referencesR. Gordon. Primary decomposition in right Noetherian rings. Comm. Algebra, 2(6):491–524, 1974.
dc.relation.referencesH. S. Green. A generalized method of field quantization. Phys. Rev., 90(2):270, 1953.
dc.relation.referencesP. Grzeszczuk. Goldie dimension of differential operator rings. Comm. Algebra, 16(4):689–701, 1988.
dc.relation.referencesJ. G. Gómez Torrecillas. Basic Module Theory over Non-commutative Rings with Computational Aspects of Operator Algebras. eds. Algebraic and Algorithmic Aspects of Differential and Integral Operators. AADIOS 2012. Lecture Notes in Computer Science, Vol. 8372, Springer, Berlin, Heidelberg pp. 23–82, 2014.
dc.relation.referencesW. Heisenberg. Über quantentheoretische Umdeutung kinematischer und mecha- nischer Beziehungen. Zeitschrift für Physik, 33(1):879–893, 1925.
dc.relation.referencesJ. Han, Y. Hirano, and H. Kim. Semiprime Ore extensions. Comm. Algebra, 28(8):3795– 3801, 2000.
dc.relation.referencesM. Hamidizadeh, E. Hashemi, and A. Reyes. A classification of ring elements in skew PBW extensions over compatible rings. Int. Electron. J. Algebra, 28(1):75–97, 2020.
dc.relation.referencesO. Hinchcliffe. Diffusion algebras. PhD thesis, University of Sheffield, Sheffield, South Yorkshire, England, 2005.
dc.relation.referencesE. Hashemi, Kh. Khalilnezhad, and A. Alhevaz. (σ, δ)-Compatible Skew PBW Exten- sion Ring. Kyungpook Math. J., 57(3):401–417, 2017
dc.relation.referencesE. Hashemi, Kh. Khalilnezhad, and A. Alhevaz. Extensions of rings over 2-primal rings. Matematiche, 74(1):141–162, 2019.
dc.relation.referencesC. Y. Hong, N. K. Kim, and T. K. Kwak. Ore extensions of Baer and p.p.-rings. J. Pure Appl. Algebra, 151(3):215–226, 2000
dc.relation.referencesC. Y. Hong, N. K. Kim, and T. K. Kwak. On skew Armendariz rings. Comm. Algebra, 31(1):103–122, 2003.
dc.relation.referencesM. Havlíˇcek, A. U. Klimyk, and S. Pošta. Central elements of the algebras U ′(som ) and U (isom ). Czech. J. Phys., 50(1):79–84, 2000.
dc.relation.referencesC. Huh, Y. Lee, and A. Smoktunowicz. Armendariz rings and semicommutative rings. Comm. Algebra, 30(2):751–761, 2002.
dc.relation.referencesE. Hashemi and A. Moussavi. Polinomial extensions of quasi-Baer rings. Acta Math. Hungar., 107(3):207–224, 2005.
dc.relation.referencesE. Hashemi, A. Moussavi, and H. Haj Seyyed Javadi. Polynomial Ore extensions of Baer and p.p.-rings. Bull. Iranian Math. Soc., 29(2):65–86, 2003.
dc.relation.referencesM. Helmi, H. Marubayashi, and A. Ueda. Ore-Rees rings which are maximal orders. J. Math. Soc. Japan, 68(1):405–423, 2016.
dc.relation.referencesS. Higuera and A. Reyes. A survey on the fusible property for skew PBW extensions. J. Algebr. Syst., 10(1):1–29, 2022.
dc.relation.referencesM. Ikeda. A characterization of quasi-Frobenius rings. Osaka J. Math., 4:203–210, 1952.
dc.relation.referencesM. Ikeda and T. Nakayama. On some characteristic properties of quasi-Frobenius and regular rings. Proc. Amer. Math. Soc., 15(1):15–19, 1954.
dc.relation.referencesA. P. Isaev, P. N. Pyatov, and V. Rittenberg. Diffusion algebras. J. Phys. A., 34(29):5815– 5834, 2001.
dc.relation.referencesD. A. Jordan. Iterated Skew Polynomial Rings and Quantum Groups. J. Algebra, 156(1):194–218, 1993
dc.relation.referencesD. A. Jordan. Down-up Algebras and Ambiskew Polynomial Rings. J. Algebra, 228(1):311–346, 2000.
dc.relation.referencesD. Jordan. The Graded Algebra Generated by Two Eulerian Derivatives. Algebr. Represent. Theory, 4(3):249–275, 2001.
dc.relation.referencesD. A. Jordan and I. E. Wells. Invariants for automorphisms of certain iterated skew polynomial rings. Proc. Edinb. Math. Soc. (2)., 39(3):461–472, 1996.
dc.relation.referencesD. A. Jordan and I. E. Wells. Simple ambiskew polynomial rings. J. Algebra, 382:46–70, 2013
dc.relation.referencesV. G. Kac. Lie Superalgebras. Adv. Math., 26(1):8–96, 1977.
dc.relation.referencesI. Kaplansky. Rings of Operators. Mathematics Lecture Notes Series. New York, Benjamin., 1965.
dc.relation.referencesK. Kanakoglou and C. Daskaloyannis. Bosonisation and Parastatistics. In: Silvestrov, S., Paal, E., Abramov, V., Stolin, A., eds. Generalized Lie Theory in Mathematics, Physics and Beyond. Springer, Berlin, Heidelberg, pp. 207–218, 2009.
dc.relation.referencesM. Kheradmand, H. Khabazian, T. K. Kwak, and Y. Lee. Reflexive property restricted to nilpotents. J. Algebra Appl., 16(3):1750044, 2017.
dc.relation.referencesM. Kheradmand, H. K. Kim, T. K. Kwak, and Y. Lee. Reflexive property on nil ideals. J. Algebra Appl., 17(1):1750022, 2017.
dc.relation.referencesT. K. Kwak and Y. Lee. Rings over which coefficients of nilpotent polynomials are nilpotent. Int. J. Algebra Comput., 21(5):745762, 2011.
dc.relation.referencesK. Kwak, Y. Lee, and S. J. Yun. Reflexive property skewed by ring endomorphisms. Korean J. Math, 22(2):217–234, 2014.
dc.relation.referencesE. Kirkman, I. M. Musson, and D. S. Passman. Noetherian Down-up algebras. Proc. Amer. Math. Soc., 127(11):3161–3167, 1999.
dc.relation.referencesJ. Krempa. Some examples of reduced rings. Algebra Colloq., 3(4):289–300, 1996.
dc.relation.referencesA. Kandri-Rody and V Weispfenning. Non-commutative Gröbner Bases in Algebras of Solvable Type. J. Symbolic Comput., 9(1):1–26, 1990.
dc.relation.referencesK. Krebs and S. Sandow. Matrix product eigenstates for one-dimensional stochastic models and quantum spin chains. J. Phys. A: Math. Gen., 30(9):3165–3173, 1997.
dc.relation.referencesR. S. Kulkarni. Irreducible Representations of Witten’s Deformations of u(sl2). J. Algebra, 214(1):64–91, 1999.
dc.relation.referencesO. Lezama, J. Acosta, C. Chaparro, I. Ojeda, and C. Venegas. Ore and Goldie Theo- rems for Skew PBW Extensions. Asian-Eur. J. Math., 6(4):1350061, 2013.
dc.relation.referencesT. Y. Lam. A First Course in Noncommutative Rings. Graduate Texts in Mathematics Vol. 131, Springer-Verlag, Berlin, 1991.
dc.relation.referencesT. Y. Lam. Lectures on Modules and Rings. Graduate Texts in Mathematics Vol. 189, Springer-Verlag, Berlin, 1998.
dc.relation.referencesO. Lezama, J. Acosta, and A. Reyes. Prime Ideals of Skew PBW Extensions. Rev. Un. Mat. Argentina, 56(2):39–55, 2015.
dc.relation.referencesE. Lasker. Zur theorie der moduln und ideale. Math. Ann., 60(1):20–116, 1905.
dc.relation.referencesD. Lazard. Autour de la platitude. Bull. Soc. Math. France, 97:81–128, 1969.
dc.relation.referencesV. Levandovskyy. Non-Commutative Computer Algebra for Polynomial Algebras: Gröbner Bases, Applications and Implementation. PhD thesis, Universität Kaiser- slautern, 2005.
dc.relation.referencesO. Lezama. Some Open Problems in the Context of Skew PBW Extensions and Semi-graded rings. Commun. Math. Stat., 9:347–378, 2021
dc.relation.referencesO. Lezama and J. Gómez. Koszulity and Point Modules of Finitely Semi-graded Rings and Algebras. Symmetry, 11(7):1–22, 2019.
dc.relation.referencesO. Lezama and E. Latorre. Non-commutative algebraic geometry of semi-graded rings. Internat. J. Algebra Comput., 27(4):361–389, 2017
dc.relation.referencesT. Y. Lam, A. Leroy, and J. Matczuk. Primeness, semiprimeness and prime radical of Ore extensions. Comm. Algebra, 25(8):2459–2506, 1997.
dc.relation.referencesA. Leroy and J. Matczuk. On Induced Modules Over Ore Extensions. Comm. Algebra, 32(7):2743–2766, 2004.
dc.relation.referencesA. Leroy and J. Matczuk. Goldie Conditions for Ore Extensions over Semiprime Rings. Algebr. Represent. Theory, 8(5):679–688, 2005.
dc.relation.referencesS. A. Lopes. Noncommutative Algebra and Representation Theory: Symmetry, Structure & Invariants. Commun. Math., 32(3):63–117, 2023.
dc.relation.referencesO. Lezama and A. Reyes. Some Homological Properties of Skew PBW Extensions. Comm. Algebra, 42(3):1200–1230, 2014.
dc.relation.referencesM. Louzari and A. Reyes. Generalized Rigid Modules and Their Polynomial Exten- sions. In M. Siles Molina, L. El Kaoutit, M. Louzari, L. Ben Yakoub, and M. Bensli- mane, editors, Associative and Non-Associative Algebras and Applications. MAMAA 2018, volume 311 of Springer Proceedings in Mathematics & Statistics, pages 147–158. Springer, Cham, 2020.
dc.relation.referencesM. Louzari and A. Reyes. Minimal prime ideals of skew PBW extensions over 2- primal compatible rings. Rev. Colombiana Mat., 54(1):39–63, 2020
dc.relation.referencesT. K. Lee and T. L. Wong. On Armendariz rings. Houston J. Math., 29(3):583–593, 2003
dc.relation.referencesI. G. Macdonald. Secondary representation of modules over a commutative ring. Sympos. Math., 11:23–43, 1973.
dc.relation.referencesV. M. Maksimov. A generalization of the ring of Ore skew polynomials. Russian Math. Surveys, 55(4):817–818, 2000.
dc.relation.referencesG. Marks. On 2-primal Ore extensions. Comm. Algebra, 29(5):2113–2123, 2001.
dc.relation.referencesG. Mason. Reflexive ideals. Comm. Algebra, 9(17):1709–1724, 1981.
dc.relation.referencesH. Matsumura. Commutative Ring Theory. Cambridge Studies in Advanced Math, 8, 1986
dc.relation.referencesN. H. McCoy. On Commutation Formulas in the Algebra of Quantum Mechanics. Trans. Amer. Math. Soc., 31:793–806, 1929
dc.relation.referencesN. H. McCoy. On Commutation Rules in the Algebra of Quantum Mechanics. Proc. Natl. Acad. Sci. USA, 15(3):200–202, 1929
dc.relation.referencesN. H. McCoy. On some general commutation formulas. Am. J. Math., 53(3):710–720, 1931
dc.relation.referencesN. H. McCoy. Certain Expansions in the Algebra of Quantum Mechanics. Proc. Edinb. Math. Soc. II., 3:118–127, 1932
dc.relation.referencesN. H. McCoy. On the function in quantum mechanics which corresponds to a given function in classical mechanics. Proc. Natl. Acad. Sci. USA, 18:674–676, 1932.
dc.relation.referencesN. H. McCoy. Expansions of certain differential operators. Tohoku Math. J. (2), 39:181–186, 1934.
dc.relation.referencesJ. C. McConnell. Representations of solvable Lie algebras and the Gelfand-Kirillov conjecture. Proc. Lond. Math. Soc. (3), 3(3):453–484, 1974.
dc.relation.referencesL. Melkersson. Content and inverse polynomials on Artinian modules. Comm. Algebra, 26(4):1141–1145, 1998
dc.relation.referencesJ. McConnell and J. Robson. Noncommutative Noetherian Rings. Second Edition. Graduate Studies in Mathematics, New-York, American Mathematical Society, 2001
dc.relation.referencesA. R. Nasr-Isfahani. Ore extensions of 2-primal rings. J. Algebra Appl., 13(3):1350117, 2014
dc.relation.referencesA. R. Nasr-Isfahani. On NI skew polynomial rings. Comm. Algebra, 43(12):5113–5120, 2015.
dc.relation.referencesE. Noether. Idealtheorie in ringbereichen. Math. Ann., 83(1):24–66, 1921.
dc.relation.referencesA. Niño and A. Reyes. Some remarks about minimal prime ideals of skew Poincaré- Birkhoff-Witt extensions. Algebra Discrete Math., 30(2):207–229, 2020
dc.relation.referencesA. Niño and A. Reyes. On centralizers and pseudo-multidegree functions for non- commutative rings having PBW bases. J. Algebra Appl., https://doi.org/10. 1142/S0219498825501099, 2023.
dc.relation.referencesA. Niño, M. C. Ramírez, and A. Reyes. Associated prime ideals over skew PBW extensions. Comm. Algebra, 48(12):5038–5055, 2020.
dc.relation.referencesE. Noether and W. Schmeidler. Moduln in nichtkommutativen Bereichen, insbeson- dere aus Differential - und Differenzenausdrücken. Math. Zeitschrift, 8:1–35, 1920
dc.relation.referencesL. Ouyang and G. F. Birkenmeier. Weak Annihilator over Extension Rings. Bull. Malays. Math. Sci. Soc., 35(2):345–347, 2012
dc.relation.referencesL. Ouyang and J. Liu. On weak (α, δ)-compatible rings. Int. J. Algebra, 5(26):1283– 1296, 2011.
dc.relation.referencesL. Ouyang and J. Liu. Weak associated primes over differential polynomial rings. Rocky Mountain J. Math., 42(5):1583–1600, 2012.
dc.relation.referencesL. Ouyang, J. Liu, and Y. Xiang. Ore extensions of skew π-Armendariz rings. Bull. Iranian Math. Soc., 39(2):355–368, 2013.
dc.relation.referencesO. Ore. Linear Equations in Non-commutative Fields. Ann. of Math. (2), 32(3):463– 477, 1931.
dc.relation.referencesO. Ore. Theory of Non-Commutative Polynomials. Ann. of Math. (2), 34(3):480–508, 1933.
dc.relation.referencesL. Ouyang. Extensions of generalized α-rigid rings. Int. Electron. J. Algebra, 3(13):103– 116, 2008.
dc.relation.referencesD. S. Passman. Prime ideals in enveloping rings. Trans. Amer. Math. Soc., 302(2):535– 560, 1987
dc.relation.referencesM. Paykanian, E. Hashemi, and A. Alhevaz. On skew polynomials over Ikeda- Nakayama rings. Comm. Algebra, 49(9):4038–4049, 2021
dc.relation.referencesP. N. Pyatov and R. Twarock. Construction of diffusion algebras. J. Math. Phys., 43(6):3268–3279, 2002.
dc.relation.referencesD. Quinn. Embeddings of differential operator rings and Goldie dimension. Proc. Amer. Math. Soc., 12(1):9–16, 1988
dc.relation.referencesA. Reyes. Ring and Module Theoretical Properties of Skew PBW Extensions. PhD thesis, Universidad Nacional de Colombia, Bogotá, D. C., Colombia, 2013.
dc.relation.referencesA. Reyes. Uniform Dimension over Skew PBW Extensions. Rev. Colombiana Mat., 48(1):79 – 96, 2014
dc.relation.referencesA. Reyes. Skew PBW extensions of Baer, quasi-Baer, p.p. and p.q.-rings. Rev. Integr. Temas Mat., 33(2):173–189, 2015.
dc.relation.referencesA. Reyes. σ-PBW Extensions of Skew π-Armendariz Rings. Far East J. Math. Sci. (FJMS), 103(2):401–428, 2018
dc.relation.referencesA. Reyes. Armendariz modules over skew PBW extensions. Comm. Algebra, 47(3):1248–1270, 2019.
dc.relation.referencesA. S. Richardson. Attached primes of graded modules. Comm. Algebra, 31(6):2603– 2613, 2003.
dc.relation.referencesG. S. Rinehart. Differential forms on general commutative algebras. Trans. Amer. Math. Soc., 108(2):195–222, 1963
dc.relation.referencesA. L. Rosenberg. Noncommutative Algebraic Geometry and Representations of Quan- tized Algebras. Mathematics and Its Applications 330. Springer, Netherlands, 1995.
dc.relation.referencesA. Reyes and C. Rodríguez. The McCoy condition on skew Poincaré-Birkhoff-Witt extensions. Commun. Math. Stat., 9(1):1–21, 2021.
dc.relation.referencesM. C. Ramírez and A. Reyes. A view toward homomorphisms and cv-polynomials be- tween double Ore extensions. To appear. https://arxiv.org/abs/2401.14162 2024.
dc.relation.referencesA. Reyes and H. Suárez. Armendariz property for skew PBW extensions and their classical ring of quotients. Rev. Integr. Temas Mat., 34(2):147–168, 2016.
dc.relation.referencesA. Reyes and H. Suárez. σ-PBW Extensions of Skew Armendariz Rings. Adv. Appl. Clifford Algebr., 27(4):3197–3224, 2017.
dc.relation.referencesA. Reyes and H. Suárez. A notion of compatibility for Armendariz and Baer properties over skew PBW extensions. Rev. Un. Mat. Argentina, 59(1):157–178, 2018.
dc.relation.referencesA. Reyes and H. Suárez. Skew Poincaré-Birkhoff-Witt extensions over weak σ-rigid rings. Far East J. Math. Sci., 106(2):421–440, 2018.
dc.relation.referencesA. Reyes and Y. Suárez. On the ACCP in Skew Poincaré-Birkhoff-Witt Extensions. Beitr. Algebra. Geom., 59(4):625–643, 2018.
dc.relation.referencesA. Reyes and H. Suárez. Skew Poincaré-Birkhoff-Witt extensions over weak compati- ble rings. J. Algebra Appl., 19(12):2050225, 2020.
dc.relation.referencesA. Reyes and H. Suárez. Radicals and Köthe’s Conjecture for Skew PBW Extensions. Commun. Math. Stat., 9(2):119–138, 2021
dc.relation.referencesH. Suárez, A. Chacón, and A. Reyes. On NI and NJ skew PBW extensions. Comm. Algebra, 50(8):3261–3275, 2022.
dc.relation.referencesW. M. Seiler. Involution. The Formal Theory of Differential Equations and its Appli- cations in Computer Algebra. Algorithms Computat. Math, Vol. 24, Springer, 2010.
dc.relation.referencesR. Y. Sharp. Asymptotic behaviour of certain sets of attached prime ideals. J. Lond. Math. Soc. (2), 2(2):212–218, 1986.
dc.relation.referencesE. N. Shirikov. Two-generated graded algebras. Algebra Discrete Math., 4(3):60–84, 2005.
dc.relation.referencesR. C. Shock. Polynomial rings over finite dimensional rings. Pacific J. Math., 42(1):251–257, 1972.
dc.relation.referencesT. H. M. Smits. Skew polynomial rings. Indag. Math. (N.S.), 30:209–224, 1968.
dc.relation.referencesS. P. Smith. A Class of Algebras Similar to the Enveloping Algebra of sl(2). Trans. Amer. Math. Soc., 322:285–314, 1990.
dc.relation.referencesH. Suárez and A. Reyes. A generalized Koszul property for skew PBW extensions. Far East J. Math. Sci., 101(2):301–320, 2017.
dc.relation.referencesH. Suárez, A. Reyes, and Y. Suárez. Homogenized skew PBW extensions. Arab. J. Math. (Springer), 12(1):247–263, 2023.
dc.relation.referencesB. Sarath and K. Varadarajan. Dual Goldie dimension - II. Comm. Algebra, 7(17):1885– 1899, 1979.
dc.relation.referencesE. Tengan and H. M. Borges Filho. Algebra comutativa em quatro movimentos. 2015.
dc.relation.referencesA. B. Tumwesigye, J. Richter, and S. Silvestrov. Centralizers in PBW extensions. In S. Silvestrov, A. Malyarenko, and M. Ranˇci´c, editors, Algebraic Structures and Applications. SPAS 2017, volume 317 of Springer Proc. Math. Stat., pages 469–490. Springer, Cham, 2020.
dc.relation.referencesR. Twarok. Representations for Selected Types of Diffusion Systems. In E. Kapuscik and A. Horzela, editors, Quantum Theory and Symmetries. Proceedings of the Second International Symposium, Held 18–21, July 2001 in Kraków, Poland, pages 615–620. World Scientific Publishing Co. Pte. Ltd., 2002.
dc.relation.referencesK. Varadarajan. Dual Goldie dimension. Comm. Algebra, 7(6):565–610, 1979.
dc.relation.referencesE. Witten. Gauge Theories, Vertex Models, and Quantum Groups. Nuclear Phys. B, 330(2-3):285–346, 1990.
dc.relation.referencesE. Witten. Quantization of Chern-Simons Gauge Theory with Complex Gauge Group. Comm. Math. Phys., 137(1):29–66, 1991.
dc.relation.referencesS. L. Woronowicz. Twisted SU(2)-Group. An Example of a Non-Commutative Differ- ential Calculus. Publ. Res. Inst. Math. Sci., 23:117–181, 1987.
dc.relation.referencesA. S. Zhedanov. “Hidden symmetry” of Askey–Wilson polynomials. Theoret. and Math. Phys., 89(2):1146–1157, 1991.
dc.relation.referencesJ. J. Zhang and J. Zhang. Double Ore extensions. J. Pure Appl. Algebra, 212(12):2668– 2690, 2008.
dc.relation.referencesJ. J. Zhang and J. Zhang. Double extension regular algebras of type (14641). J. Algebra, 322(2):373–409, 2009.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseReconocimiento 4.0 Internacional
dc.subject.ddc510 - Matemáticas
dc.subject.lembPolinomiosspa
dc.subject.lembPolynomialseng
dc.subject.lembAnillos (Algebra)spa
dc.subject.lembRings (algebra)eng
dc.subject.otherTeoría de la dimensión (Álgebra)spa
dc.subject.otherDimension theory (Algebra)eng
dc.subject.proposalSkew polynomial ringeng
dc.subject.proposalskew Ore polynomialseng
dc.subject.proposalskew PBW extensioneng
dc.subject.proposalsemi-graded ringeng
dc.subject.proposalRNP ringeng
dc.subject.proposalassociated primeeng
dc.subject.proposalweak annihilatoreng
dc.subject.proposalnilpotent associated primeeng
dc.subject.proposalinduced moduleeng
dc.subject.proposalattached primeeng
dc.subject.proposalinverse polynomial moduleeng
dc.subject.proposalBass moduleeng
dc.subject.proposaluniform dimensioneng
dc.subject.proposalcouniform dimensioneng
dc.subject.proposalperfect ringeng
dc.titleTheory of associated and attached prime ideals over quantum algebraseng
dc.title.translatedTeoría de ideales primos asociados y adjuntos sobre álgebras cuánticasspa
dc.typeTrabajo de grado - Doctorado
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis doctorado - Sebastián Higuera.pdf
Tamaño:
1.02 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: