Diseño de un sistema de adquisición de imágenes multiespectrales basado en iluminación LED de potencia de ancho de banda estrecho

dc.contributor.advisorOsorio Londoño, Gustavo Adolfospa
dc.contributor.advisorMontes Castrillón, Nubia Lilianaspa
dc.contributor.authorTamayo Monsalve, Manuel Alejandrospa
dc.contributor.researchgroupPercepción y Control Inteligente (PCI)spa
dc.date.accessioned2020-08-28T19:03:47Zspa
dc.date.available2020-08-28T19:03:47Zspa
dc.date.issued2020spa
dc.description.abstractLos sistemas de imágenes multiespectrales que utilizan LED de potencia de ancho de banda estrecho se han convertido en una solución factible para una amplia gama de aplicaciones. En comparación con los sistemas RGB tradicionales, aumentan el espacio de características según el número de longitudes de onda manteniendo el rango en precio y tiempo de adquisición. Por otra parte si se comparan con sistemas hiperespectrales, el tiempo de adquisición es menor, son más simples de implementar, pero sacrifican resolución espectral. En este documento, se presenta el diseño y la construcción de un sistema multiespectral basado en iluminación LED para medición de color a partir de la información espectral. De igual forma se busca llenar el vacío existente en la literatura al presentar el diseño detallado del controlador de luz, el proceso de calibración y la caracterización como un instrumento de medida, así como un análisis de correlación frente a un sistema de altas prestaciones utilizado en el control de calidad de frutas. También se presenta un caso de estudio en frutos de café en cereza, con el fin de determinar sus características de color y establecer una posible aplicación en control de calidad. El sistema captura imágenes multiespectrales con 15 longitudes de onda diferentes entre los 410 y los 960nm, y puede llegar a capturar hasta 8 imágenes espectrales por segundo. Cuenta con una corona de iluminación LED que calibra la cantidad de luz emitida en cada longitud de onda por medio de una modulación digital, y genera un efecto estroboscópico al sincronizar los disparos de la cámara y la luz. Dentro de los principales hallazgos en la caracterización se muestra la precisión con una variación en la medida inferior al 10% (o2 < 0;1) y una exactitud con distancia de color E inferior al 2% luego de un proceso de corrección de color. También se muestra un índice de correlación de Pearson por encima de 80% ( > 0;8) respecto al sistema hiperespectral y se presenta una completa separabilidad de los 24 colores del colorchecker usado como objeto de referencia. Los resultados en café destacan que las longitudes de onda 560, 620, 720 y 840nm aportan mayor información discriminante respecto al color. Adicionalmente, se presenta un análisis de la información entregada por la banda del infrarrojo cercano, en el cual se encuentra una correlación entre la pérdida de agua en el fruto y la reflectancia en dicha banda. Por último se explora una clasificación por color con una eficiencia superior al 93% con el fin de abrir las posibilidades a un sistema de control de calidad en frutos de café con restricciones de velocidad y tiempo real.spa
dc.description.abstractMultispectral imaging systems using narrow bandwidth power LEDs have become a feasible solution for a wide range of applications. Compared to traditional RGB systems, they increase the feature space according to the number of wavelengths maintaining the range in price and acquisition time. On the other hand, compared to a hyperspectral system, the acquisition time is shorter, it is simpler to implement, but it sacri ces spectral resolution. This document presents the design and construction of a multispectral system based on LED illumination for color measurement from spectral information. Similarly, it seeks to fill the gap in the literature by presenting the detailed design of the light controller, the calibration process and the characterization as an instrument, as well as a correlation analysis against a high performance system used in fruit quality control. A study case is also presented on cherry coffee fruits, in order to determine their color characteristics and establish a possible application in quality control. The system captures multispectral images with 15 different wavelengths between 410 and 960 nm, and can capture up to 8 spectral images per second at 120fps. It has an LED illumination crown that calibrates the amount of light emitted through a digital modulation, and synchronizes the camera's and light's triggers to generate a strobe effect. Among the main findings in the characterization, the precision with measurement variation of less than 10% (o2 < 0;1) and an accuracy with color distance E less than 2% after a color correction process. Also a Pearson's correlation index of over 80% ( > 0;8) against to the hyperspectral system and complete separability of the 24 colorchecker used as a reference object. The results in coffee shows more discriminating information to separate the different fruits in 560, 620, 720 and 840nm. Additionally, we presents an analysis of the information provided by the near infrared band, in which a correlation is found between the loss of water in the fruit and the reflectance in the NIR band. Finally, we explore a color sorting with an efficiency higher than 93% in order to open the possibilities for a quality control system in coffee fruits with speed and real time restrictions.eng
dc.description.additionalTesis presentada como requisito parcial para optar al título de: Doctor en Ingeniería - Línea Automática. -- Línea de Investigación: Procesamiento Digital de Imágenes, Diseño Electrónico.spa
dc.description.degreelevelDoctoradospa
dc.format.extent131spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationM. A. Tamayo Monsalve, "Diseño de un sistema de adquisición de imágenes multiespectrales basado en iluminación LED de potencia de ancho de banda estrecho", PhD thesis,Universidad Nacional de Colombia sede Manizales, 2020.spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78316
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.departmentDepartamento de Ingeniería Eléctrica y Electrónicaspa
dc.publisher.programManizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Automáticaspa
dc.relation.referencesS. P. Brumby, J. P. Theiler, J. J. Bloch, N. R. Harvey, S. J. Perkins, J. J. Szymanski, and A. C. Young, "Evolving land cover classification algorithms for multispectral and multitemporal imagery," in Imaging Spectrometry VII, vol. 4480, pp. 120-129, International Society for Optics and Photonics, 2002.spa
dc.relation.referencesL. Biehl and D. Landgrebe, "Multispec- tool for multispectral-hyperspectral image data analysis", Computers & Geosciences, vol. 28, no. 10, pp. 1153-1159, 2002.spa
dc.relation.referencesR. Rud, M. Shoshany, V. Alchanatis, and Y. Cohen, "Application of spectral features' ratios for improving classification in partially calibrated hyperspectral imagery: a case study of separating mediterranean vegetation species", Journal of Real-Time Image Processing, vol. 1, no. 2, pp. 143-152, 2006.spa
dc.relation.referencesS. Bostan, M. A. Ortak, C. Tuna, A. Akoguz, E. Sertel, and B. B. Ustundag, "Comparison of classification accuracy of co-located hyperspectral & multispectral images for agricultural purposes", in 2016 Fifth International Conference on Agro-Geoinformatics (Agro-Geoinformatics), pp. 1-4, IEEE, 2016.spa
dc.relation.referencesF. A. Kruse, L. L. Richardson, and V. G. Ambrosia, "Techniques developed for geologic analysis of hyperspectral data applied to near-shore hyperspectral ocean data", in Presented at the Fourth International Conference on Remote Sensing for Marine and Coastal Environments, vol. 17, p. 19, 1997.spa
dc.relation.referencesA. J. Tchekmedyian, M. Pellisé, and R. Sáenz, "Imágenes de banda estrecha o narrow band imaging (nbi): una nueva era en endoscopía digestiva", Revista Médica del Uruguay, vol. 24, no. 1, pp. 42-49, 2008.spa
dc.relation.referencesF. S. Assirati, C. L. Hashimoto, R. A. Dib, L. H. S. Fontes, and T. Navarro-Rodriguez, "High definition endoscopy and 'narrow band imagin' the diagnosis of gastroesophageal reflux disease", ABCD. Arquivos Brasileiros de Cirurgia Digestiva (São Paulo), vol. 27, no. 1, pp. 59-65, 2014.spa
dc.relation.referencesP. Lukes, M. Zabrodsky, J. Plzak, M. Chovanec, J. Betka, E. Foltynova, and J. Betka, "Narrow band imaging (nbi)-endoscopic method for detection of head and neck cancer", Endoscopy, no. 5, pp. 75-87, 2013.spa
dc.relation.referencesH. Erives and N. B. Targhetta, "Implementation of a 3-d hyperspectral instrument for skin imaging applications", IEEE Transactions on Instrumentation and Measurement, vol. 58, no. 3, pp. 631-638, 2009.spa
dc.relation.referencesY.-J. Kim and G. Yoon, "Prediction of glucose in whole blood by near-infrared spectroscopy: influence of wavelength region, preprocessing, and hemoglobin concentration", Journal of biomedical optics, vol. 11, no. 4, p. 041128, 2006.spa
dc.relation.referencesT. Vitorino, A. Casini, C. Cucci, A. Gebejesje, J. Hiltunen, M. Hauta-Kasari, M. Picollo, and L. Stefani, "Accuracy in colour reproduction: using a colorchecker chart to assess the usefulness and comparability of data acquired with two hyper-spectral systems", in International Workshop on Computational Color Imaging, pp. 225-235, Springer, 2015.spa
dc.relation.referencesA. Cosentino, "Identification of pigments by multispectral imaging; a flowchart method", Heritage Science, vol. 2, no. 1, p. 8, 2014.spa
dc.relation.referencesD. Comelli, G. Valentini, A. Nevin, A. Farina, L. Toniolo, and R. Cubeddu, "A portable uv-fluorescence multispectral imaging system for the analysis of painted surfaces", Review of Scientific Instruments, vol. 79, no. 8, p. 086112, 2008.spa
dc.relation.referencesY. H. El-Sharkawy and S. Elbasuney, "Design and implementation of novel hyperspectral imaging for dental carious early detection using laser induced fluorescence", Photodiagnosis and photodynamic therapy, vol. 24, pp. 166-178, 2018.spa
dc.relation.referencesC. Odaira, S. Itoh, and K. Ishibashi, "Clinical evaluation of a dental color analysis system: the crystaleye spectrophotometer®", Journal of prosthodontic research, vol. 55, no. 4, pp. 199-205, 2011.spa
dc.relation.referencesM. F. Carlsohn, "Spectral image processing in real-time", Journal of Real-Time Image Processing, vol. 1, no. 1, pp. 25-32, 2006.spa
dc.relation.referencesR. Leitner, H. Mairer, and A. Kercek, "Real-time classification of polymers with nir spectral imaging and blob analysis", Real-Time Imaging, vol. 9, no. 4, pp. 245-251, 2003.spa
dc.relation.referencesP. Tatzer, M. Wolf, and T. Panner, "Industrial application for inline material sorting using hyperspectral imaging in the nir range", Real-Time Imaging, vol. 11, no. 2, pp. 99-107, 2005.spa
dc.relation.referencesJ. Blasco, N. Aleixos, S. Cubero, J. Gómez-Sanchís, and E. Moltó, "Automatic sorting of satsuma (citrus unshiu) segments using computer vision and morphological features", Computers and electronics in agriculture, vol. 66, no. 1, pp. 1-8, 2009.spa
dc.relation.referencesS. Cubero, M. P. Diago, J. Blasco, J. Tardaguila, B. Millan, and N. Aleixos, "A new method for pedicel/peduncle detection and size assessment of grapevine berries and other fruits by image analysis", Biosystems engineering, vol. 117, pp. 62-72, 2014.spa
dc.relation.referencesR. Lu, "Multispectral imaging for predicting firmness and soluble solids content of apple fruit", Postharvest Biology and Technology, vol. 31, no. 2, pp. 147-157, 2004.spa
dc.relation.referencesE. Brach, P. Poirier, R. Desjardins, and D. Lord, "Multispectral radiometer to measure crop canopy characteristics", Review of Scientific Instruments, vol. 54, no. 4, pp. 493- 500, 1983.spa
dc.relation.referencesL. Lleó, P. Barreiro, M. Ruiz-Altisent, and A. Herrero, "Multispectral images of peach related to firmness and maturity at harvest", Journal of Food Engineering, vol. 93, no. 2, pp. 229-235, 2009.spa
dc.relation.referencesN. Kobayashi and T. Okabe, "Separating reflection components in images under multispectral and multidirectional light sources", in 2016 23rd International Conference on Pattern Recognition (ICPR), pp. 3210-3215, IEEE, 2016.spa
dc.relation.referencesJ. A. Herrera Ramírez, "Diseño e implementación de un sistema multiespectral en el rango ultravioleta, visible e infrarrojo: aplicación al estudio y conservación de obras de arte", Universitat Politécnica de Catalunya, 2014.spa
dc.relation.referencesB. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huo, H. Xiao, R. G. May, and A. Wang, "Novel data processing techniques for dispersive white light interferometer", Optical engineering, vol. 42, pp. 3165-3171, 2003.spa
dc.relation.referencesA. Yan, W. Zhenye, Z. Tao, D. Keyan, and L. Xinhang, "Development status and aberration overview of micro spectrometer with czerny-turner structure", in 2016 IEEE Optoelectronics Global Conference (OGC), pp. 1-3, IEEE, 2016.spa
dc.relation.referencesH. Imani, S. Golmohammadi, A. Rostami, and K. Abbasian, "Resolution improvement in high-speed fiber-optic spectrometers using photonic crystal fibers", in International Conference On Photonics 2010, pp. 1-5, IEEE, 2010.spa
dc.relation.referencesM. Parmar, F. Imai, S. H. Park, and J. Farrell, "A database of high dynamic range visible and near-infrared multispectral images", in Digital photography iv, vol. 6817, p. 68170N, International Society for Optics and Photonics, 2008.spa
dc.relation.referencesN. Nakajima and A. Taguchi, "A novel color image processing scheme in hsi color space with negative image processing", in 2014 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), pp. 029-033, IEEE, 2014.spa
dc.relation.referencesM. Rai, "Thermal imaging system and its real time applications: a survey", Journal of Engineering Technology, vol. 62, 06 2018.spa
dc.relation.referencesA. K. Krishnan, P. McGarey, and S. S. J. F. Bell, "Nir-cam-development of a near infrared camera", in IEEE International Symposium on Robotic and Sensors Environments (ROSE), 2013.spa
dc.relation.referencesA. de la Casa, G. Ovando, L. Bressanini, and J. Martinez, "Empleo del ndvi de una cámara digital modificada para estimar la cobertura del cultivo de papa bajo distintas condiciones de fertilización nitrogenada", AgriScientia, vol. 33, pp. 75-88, 12 2016.spa
dc.relation.referencesG. ElMasry and D.-w. Sun, "Principles of hyperspectral imaging technology", in Hyperspectral imaging for food quality analysis and control, pp. 3-43, Elsevier, 2010.spa
dc.relation.referencesM. Parmar, S. Lansel, and B. A.Wandell, "Spatio-spectral reconstruction of the multispectral datacube using sparse recovery", in 2008 15th IEEE International Conference on Image Processing, pp. 473-476, IEEE, 2008.spa
dc.relation.referencesD. Lorente, N. Aleixos, J. Gómez-Sanchis, S. Cubero, O. L. García-Navarrete, and J. Blasco, "Recent advances and applications of hyperspectral imaging for fruit and vegetable quality assessment", Food and Bioprocess Technology, vol. 5, no. 4, pp. 1121- 1142, 2012.spa
dc.relation.referencesJ. Beeckman, K. Neyts, and P. J. Vanbrabant, "Liquid-crystal photonic applications", Optical Engineering, vol. 50, no. 8, p. 081202, 2011.spa
dc.relation.referencesJ. Vila-Frances, J. Calpe-Maravilla, L. Gomez-Chova, and J. Amoros-Lopez, "Design of a configurable multispectral imaging system based on an aotf", IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 58, no. 1, pp. 259-262, 2011.spa
dc.relation.referencesR. Shrestha and J. Y. Hardeberg, "How are led illumination based multispectral imaging systems influenced by different factors?", in International Conference on Image and Signal Processing, pp. 61-71, Springer, 2014.spa
dc.relation.referencesD. Lorente, N. Aleixos, J. Gómez-Sanchis, S. Cubero, and J. Blasco, "Selection of optimal wavelength features for decay detection in citrus fruit using the roc curve and neural networks", Food and Bioprocess Technology, vol. 6, no. 2, pp. 530-541, 2013.spa
dc.relation.references"Sistema de visión de fácil programación serie cv-x. keyence mexico s.a. de c.v." <https://www.keyence.com.mx/products/vision/vision-sys/cv-x100/> . Accessed: 2020-08-19.spa
dc.relation.references"Multispectral cameras cms series visible to near ir ranges. silios technologies rue gaston imbert prolongée. france." <https://www.silios.com/cms-series>. Accessed: 2020- 08-19.spa
dc.relation.referencesY. Kanzawa, Y. Kimura, and T. Naito, "Human skin detection by visible and nearinfrared imaging", in IAPR Conference on Machine Vision Applications, vol. 12, pp. 14-22, Citeseer, 2011.spa
dc.relation.referencesP. Colantoni, R. Pillay, C. Lahanier, and D. Pitzalis, "Analysis of multispectral images of paintings", in 2006 14th European Signal Processing Conference, pp. 1-5, IEEE, 2006.spa
dc.relation.referencesD. Ghimire and J. Lee, "A lighting insensitive face detection method on color images", in 2012 Spring Congress on Engineering and Technology, pp. 1-4, IEEE, 2012.spa
dc.relation.referencesH.-n. Li, J. Feng, W.-p. Yang, L. Wang, H.-b. Xu, P.-f. Cao, and J.-j. Duan, "Multispectral imaging using led illuminations", in 2012 5th International Congress on Image and Signal Processing, pp. 538-542, IEEE, 2012.spa
dc.relation.referencesA. Paviotti and D. A. Forsyth, "A lightness recovery algorithm for the multispectral acquisition of frescoed environments", in 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops, pp. 970-977, IEEE, 2009.spa
dc.relation.referencesF. Wu, S. Li, X. Zhang, and W. Ye, "A design method for leds arrays structure illumination", Journal of Display Technology, vol. 12, no. 10, pp. 1177-1184, 2016.spa
dc.relation.referencesS. Shirmohammadi and A. Ferrero, "Camera as the instrument: the rising trend of vision based measurement", IEEE Instrumentation & Measurement Magazine, vol. 17, no. 3, pp. 41-47, 2014.spa
dc.relation.referencesH. Yang, J. W. Bergmans, T. C. Schenk, J.-P. M. Linnartz, and R. Rietman, "Uniform illumination rendering using an array of leds: a signal processing perspective", IEEE transactions on signal processing, vol. 57, no. 3, pp. 1044-1057, 2008.spa
dc.relation.referencesI. Moreno, M. Avendaño-Alejo, and R. I. Tzonchev, "Designing light-emitting diode arrays for uniform near-field irradiance", Applied optics, vol. 45, no. 10, pp. 2265-2272, 2006.spa
dc.relation.referencesE. Samani, V. Gupta, and S. Raman, "Flash/no-flash image fusion using dictionary learning", in 2015 Fifth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG), pp. 1-4, IEEE, 2015.spa
dc.relation.referencesA. Pourreza, H. Pourreza, and M. Hossein-Aghkhani, "An automatic foreign materials detection of barberries using red-free image processing", in Third International Workshop on Advanced Computational Intelligence, pp. 517-521, IEEE, 2010.spa
dc.relation.referencesM.-C. Chuang, J.-N. Hwang, K. Williams, and R. Towler, "Automatic fish segmentation via double local thresholding for trawl-based underwater camera systems", in 2011 18th IEEE International Conference on Image Processing, pp. 3145-3148, IEEE, 2011spa
dc.relation.referencesG. Polder, Spectral imaging for measuring biochemicals in plant material. PhD thesis, Delft University of Technology, Faculty of Applied Sciences, 2004.spa
dc.relation.referencesB. Bennedsen and D. Peterson, "Performance of a system for apple surface defect identification in near-infrared images", Biosystems engineering, vol. 90, no. 4, pp. 419- 431, 2005.spa
dc.relation.referencesO. Kleynen, V. Leemans, and M.-F. Destain, "Development of a multi-spectral vision system for the detection of defects on apples", Journal of food engineering, vol. 69, no. 1, pp. 41-49, 2005.spa
dc.relation.referencesY. Peng and R. Lu, "An lctf-based multispectral imaging system for estimation of apple fruit firmness: Part i. acquisition and characterization of scattering images", Transactions of the ASABE, vol. 49, no. 1, pp. 259-267, 2006.spa
dc.relation.referencesJ . B. Ivars, A. Gutierrez, S. Alegre, S. C. García, and J. Gómez-Sanchís, “Sistemas de visión artificial para la inspección automática de fruta procesada. aplicación a gajos de satsuma y arilos de granada ,”Levante Agrícola: Revista internacional de cítricos, vol. 391, pp. 198–203,2008.spa
dc.relation.referencesS. Leavesley, Y. Jiang, V. Patsekin, B. Rajwa, and J. P. Robinson, "An excitation wavelength-scanning spectral imaging system for preclinical imaging", Review of Scientific Instruments, vol. 79, no. 2, p. 023707, 2008.spa
dc.relation.referencesD. Zhang, Z. Guo, G. Lu, L. Zhang, and W. Zuo, "An online system of multispectral palmprint verification", IEEE transactions on instrumentation and measurement, vol. 59, no. 2, pp. 480-490, 2009.spa
dc.relation.referencesW. A. Christens-Barry, K. Boydston, F. G. France, K. T. Knox, R. L. Easton Jr, and M. B. Toth, "Camera system for multispectral imaging of documents", in Sensors, Cameras, and Systems for Industrial/Scientific Applications X, vol. 7249, p. 724908, International Society for Optics and Photonics, 2009.spa
dc.relation.referencesG. ElMasry, N.Wang, and C. Vigneault, "Detecting chilling injury in red delicious apple using hyperspectral imaging and neural networks", Postharvest biology and technology, vol. 52, no. 1, pp. 1-8, 2009.spa
dc.relation.referencesN. Everdell, I. Styles, A. Calcagni, J. Gibson, J. Hebden, and E. Claridge, "Multispectral imaging of the ocular fundus using light emitting diode illumination", Review of scientific instruments, vol. 81, no. 9, p. 093706, 2010.spa
dc.relation.referencesH. Kalkan, P. Beriat, Y. Yardimci, and T. Pearson, "Detection of contaminated hazelnuts and ground red chili pepper flakes by multispectral imaging", Computers and Electronics in Agriculture, vol. 77, no. 1, pp. 28-34, 2011.spa
dc.relation.referencesM. Taghizadeh, A. A. Gowen, and C. P. O'Donnell, "Comparison of hyperspectral imaging with conventional rgb imaging for quality evaluation of agaricus bisporus mushrooms", Biosystems engineering, vol. 108, no. 2, pp. 191-194, 2011.spa
dc.relation.referencesY. Gong, D. Zhang, P. Shi, and J. Yan, "High-speed multispectral iris capture system design", IEEE Transactions on instrumentation and measurement, vol. 61, no. 7, pp. 1966-1978, 2012.spa
dc.relation.referencesP. Usenik, M. Bürmen, A. Fidler, F. Pernus, and B. Likar, "Automated classification and visualization of healthy and diseased hard dental tissues by near-infrared hyperspectral imaging", Applied Spectroscopy, vol. 66, no. 9, pp. 1067-1074, 2012.spa
dc.relation.referencesK. Hirai, T. Tanimoto, K. Yamamoto, T. Horiuchi, and S. Tominaga, "An led-based spectral imaging system for surface reflectance and normal estimation", in 2013 International Conference on Signal-Image Technology & Internet-Based Systems, pp. 441- 447, IEEE, 2013.spa
dc.relation.referencesJ. Herrera-Ramírez, M. Vilaseca, and J. Pujol, "Portable multispectral imaging system based on light-emitting diodes for spectral recovery from 370 to 1630 nm", Applied optics, vol. 53, no. 14, pp. 3131-3141, 2014.spa
dc.relation.referencesM. Goel, E. Whitmire, A. Mariakakis, T. S. Saponas, N. Joshi, D. Morris, B. Guenter, M. Gavriliu, G. Borriello, and S. N. Patel, "Hypercam: hyperspectral imaging for ubiquitous computing applications", in Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 145-156, 2015.spa
dc.relation.referencesC. LeGendre, X. Yu, D. Liu, J. Busch, A. Jones, S. Pattanaik, and P. Debevec, "Practical multispectral lighting reproduction", ACM Transactions on Graphics (TOG), vol. 35, no. 4, pp. 1-11, 2016.spa
dc.relation.referencesC. LeGendre, X. Yu, and P. Debevec, "Optimal led selection for multispectral lighting reproduction", Electronic Imaging, vol. 2017, no. 8, pp. 25-32, 2017.spa
dc.relation.referencesT. Fu, J. Liu, and J. Tian, "Vis-nir multispectral synchronous imaging pyrometer for high-temperature measurements", Review of Scientific Instruments, vol. 88, no. 6, p. 064902, 2017.spa
dc.relation.referencesJ. van Roy, J. Keresztes, N.Wouters, B. De Ketelaere, and W. Saeys, "Measuring colour of vine tomatoes using hyperspectral imaging", Postharvest Biology and Technology, vol. 129, pp. 79-89, 2017.spa
dc.relation.referencesA. Patrick, S. Pelham, A. Culbreath, C. C. Holbrook, I. J. De Godoy, and C. Li, "High throughput phenotyping of tomato spot wilt disease in peanuts using unmanned aerial systems and multispectral imaging", IEEE Instrumentation Measurement Magazine, vol. 20, pp. 4-12, June 2017.spa
dc.relation.referencesB. Zhang, L. Liu, B. Gu, J. Zhou, J. Huang, and G. Tian, "From hyperspectral imaging to multispectral imaging: Portability and stability of his-mis algorithms for common defect detection", Postharvest Biology and Technology, vol. 137, pp. 95-105, 2018.spa
dc.relation.referencesA. Duliu, J. Vogel, C. D. Samoilescu, T. Lasser, and N. Navab, "Illumination compensation for high-resolution multispectral image mosaicing of heritage paintings", in 2015 Digital Heritage, vol. 1, pp. 191-198, IEEE, 2015.spa
dc.relation.referencesP. C.West, "High speed, real-time machine vision", Imagenation and Automated Vision Systems, Inc, 2001.spa
dc.relation.referencesS.-H. Yang, F.-M. Jheng, and Y. C. Cheng, "Two-dimensional adaptive image stabilisation", Electronics Letters, vol. 43, no. 8, pp. 446-448, 2007.spa
dc.relation.referencesK.-S. Lee, W. B. Cohen, R. E. Kennedy, T. K. Maiersperger, and S. T. Gower, "Hyperspectral versus multispectral data for estimating leaf area index in four different biomes", Remote Sensing of Environment, vol. 91, no. 3-4, pp. 508-520, 2004.spa
dc.relation.referencesS. K. Rout, M. Sahani, and M. N. Mohanty, "Modified color brightness preserving bihistogram equalization with variable enhancement degree for restoration of skin color", in 2015 International Conference on Information Technology (ICIT), pp. 88-93, IEEE, 2015.spa
dc.relation.referencesB. Abdou, D. Morin, F. Bonn, and A. Huete, "A review of vegetation indices", Remote Sensing Reviews, vol. 13, pp. 95-120, 01 1996.spa
dc.relation.referencesF. J. Bolton, A. S. Bernat, K. Bar-Am, D. Levitz, and S. Jacques, "Portable, lowcost multispectral imaging system: design, development, validation, and utilization", Journal of biomedical optics, vol. 23, no. 12, p. 121612, 2018.spa
dc.relation.referencesP. G. R. Inc, “Hardware Warranty WEEE Licensing FleaR©3 GigE Imaging Performance Specification,” tech.rep., Point Grey Research© Inc 12051 Riverside Way• Richmond, BC • Canada, 2013spa
dc.relation.referencesY. S. Cho, J. Kwon, and H.-Y. Kim, "Design and implementation of led dimming system with intelligent sensor module", Journal of information and communication convergence engineering, vol. 11, no. 4, pp. 247-252, 2013.spa
dc.relation.referencesJ. Fan, W. Yung, and M. Pecht, "Lifetime estimation of high-power white led using degradation-data-driven method", IEEE Transactions on Device and Materials Reliability - IEEE TRANS DEVICE MATER RELIA, vol. 12, pp. 470-477, 06 2012.spa
dc.relation.referencesR. T. Marcus, "chapter 2 - the measurement of color", in Color for Science, Art and Technology (K. Nassau, ed.), vol. 1 of AZimuth, pp. 31 - 96, North-Holland, 1998.spa
dc.relation.referencesD. R. Wyble and D. C. Rich, "Evaluation of methods for verifying the performance of color-measuring instruments. part ii: Inter-instrument reproducibility", Color Research & Application: Endorsed by Inter-Society Color Council, The Colour Group (Great Britain), Canadian Society for Color, Color Science Association of Japan, Dutch Society for the Study of Color, The Swedish Colour Centre Foundation, Colour Society of Australia, Centre Français de la Couleur, vol. 32, no. 3, pp. 176-194, 2007.spa
dc.relation.referencesA. E2214-19, "Standard practice for specifying and verifying the performance of color-measuring instruments", astm international, west conshohocken, pa, 2019, www.astm.org.spa
dc.relation.referencesM. Down, "Measurement System Analysis", 4th ed. Southfield, Michigan: Automotive Industry Action Group, 2010.spa
dc.relation.referencesD. H. Foster and K. Amano, "Hyperspectral imaging in color vision research: tutorial", JOSA A, vol. 36, no. 4, pp. 606-627, 2019.spa
dc.relation.referencesD. H. Foster, K. Amano, S. M. Nascimento, and M. J. Foster, "Frequency of metamerism in natural scenes", Josa a, vol. 23, no. 10, pp. 2359-2372, 2006.spa
dc.relation.referencesD. H. Foster, K. Amano, and S. M. Nascimento, "Color constancy in natural scenes explained by global image statistics", Visual neuroscience, vol. 23, no. 3-4, pp. 341-349, 2006.spa
dc.relation.referencesB. E. Bayer, "Color imaging array", Mar. 5 1975. US Patent 3971065.spa
dc.relation.referencesJ. van Roy, J. Keresztes, N.Wouters, B. De Ketelaere, and W. Saeys, "Measuring colour of vine tomatoes using hyperspectral imaging", Postharvest Biology and Technology, vol. 129, pp. 79-89, 2017.spa
dc.relation.referencesR. Hunt and M. Pointer, "A colour-appearance transform for the cie 1931 standard colorimetric observer", Color Research & Application, vol. 10, no. 3, pp. 165-179, 1985.spa
dc.relation.referencesM. Afifi, "Semantic white balance: Semantic color constancy using convolutional neural network", arXiv preprint arXiv:1802.00153, 2018.spa
dc.relation.referencesH. D. Beale, H. B. Demuth, and M. Hagan, "Neural network design", Pws, Boston, 1996.spa
dc.relation.referencesH. Gavin, "The levenberg-marquardt algorithm for nonlinear least squares curve-fitting problems", 2019.spa
dc.relation.referencesN. J. Guliyev and V. E. Ismailov, "On the approximation by single hidden layer feedforward neural networks with fixed weights", Neural Networks, vol. 98, pp. 296-304, 2018.spa
dc.relation.referencesP. Goldstein, "Non-macadam color discrimination ellipses", in Novel Optical Systems Design and Optimization XV, vol. 8487, p. 84870A, International Society for Optics and Photonics, 2012.spa
dc.relation.referencesD. L. MacAdam, "Visual sensitivities to color differences in daylight", Josa, vol. 32, no. 5, pp. 247-274, 1942.spa
dc.relation.referencesY. Yusuf, J. T. Sri Sumantyo, and H. Kuze, "Spectral information analysis of image fusion data for remote sensing applications", Geocarto international, vol. 28, no. 4, pp. 291-310, 2013.spa
dc.relation.referencesS. Li, Z. Li, and J. Gong, "Multivariate statistical analysis of measures for assessing the quality of image fusion", International Journal of Image and Data Fusion, vol. 1, no. 1, pp. 47-66, 2010.spa
dc.relation.referencesA. C. Schuerger, G. A. Capelle, J. A. Di Benedetto, C. Mao, C. N. Thai, M. D. Evans, J. T. Richards, T. A. Blank, and E. C. Stryjewski, "Comparison of two hyperspectral imaging and two laser-induced fluorescence instruments for the detection of zinc stress and chlorophyll concentration in bahia grass (paspalum notatum flugge.)", Remote sensing of environment, vol. 84, no. 4, pp. 572-588, 2003.spa
dc.relation.referencesN. S. Annamdevula, B. Sweat, P. Favreau, A. S. Lindsey, D. F. Alvarez, T. C. Rich, and S. J. Leavesley, "An approach for characterizing and comparing hyperspectral microscopy systems", Sensors, vol. 13, no. 7, pp. 9267-9293, 2013.spa
dc.relation.referencesC. A. T. Navarrete, P. M. Narvaez, and L. E. A. Parada, "1ccd and 3ccd color cameras performance comparison applied to hyperspectral image reconstruction", IEEE Latin America Transactions, vol. 13, no. 8, pp. 2661-2667, 2015.spa
dc.relation.referencesM. N. Kumar, M. Seshasai, K. V. Prasad, V. Kamala, K. Ramana, R. Dwivedi, and P. Roy, "A new hybrid spectral similarity measure for discrimination of vigna species", arXiv preprint arXiv:1509.05767, 2015.spa
dc.relation.referencesK. X. Wan, I. Vidavsky, and M. L. Gross, "Comparing similar spectra: from similarity index to spectral contrast angle", Journal of the American Society for Mass Spectrometry, vol. 13, no. 1, pp. 85-88, 2002.spa
dc.relation.referencesJ. Gómez-Sanchis, D. Lorente, E. Soria-Olivas, N. Aleixos, S. Cubero, and J. Blasco, "Development of a hyperspectral computer vision system based on two liquid crystal tuneable filters for fruit inspection. application to detect citrus fruits decay", Food and bioprocess technology, vol. 7, no. 4, pp. 1047-1056, 2014.spa
dc.relation.referencesN. Sándor, T. Ondró, and J. Schanda, "Spectral interpolation errors", Color Research & Application: Endorsed by Inter-Society Color Council, The Colour Group (Great Britain), Canadian Society for Color, Color Science Association of Japan, Dutch Society for the Study of Color, The Swedish Colour Centre Foundation, Colour Society of Australia, Centre Français de la Couleur, vol. 30, no. 5, pp. 348-353, 2005.spa
dc.relation.referencesK. Inoue, K. Hara, and K. Urahama, "Spectral reflectance estimation and color reproduction based on sparse neugebauer model", Advances in Science, Technology and Engineering Systems Journal, vol. 2, pp. 958-966, 06 2017.spa
dc.relation.referencesS. Mika, G. Ratsch, J. Weston, B. Scholkopf, and K.-R. Mullers, "Fisher discriminant analysis with kernels", in Neural networks for signal processing IX: Proceedings of the 1999 IEEE signal processing society workshop (cat. no. 98th8468), pp. 41-48, Ieee, 1999.spa
dc.relation.referencesP. Li, S. H. Lee, and H. Y. Hsu, "Study on citrus fruit image using fisher linear discriminant analysis", Proceedings - 2011 IEEE International Conference on Computer Science and Automation Engineering, CSAE 2011, vol. 4, pp. 175-180, 2011.spa
dc.relation.referencesF. Hollaus, M. Gau, and R. Sablatnig, "Enhancement of multispectral images of degraded documents by employing spatial information", in 2013 12th International Conference on Document Analysis and Recognition, pp. 145-149, IEEE, 2013.spa
dc.relation.referencesK. Perumal and R. Bhaskaran, "Supervised classification performance of multispectral images", arXiv preprint arXiv:1002.4046, 2010.spa
dc.relation.referencesS. Baronti, A. Casini, F. Lotti, and S. Porcinai, "Multispectral imaging system for the mapping of pigments in works of art by use of principal-component analysis", Applied optics, vol. 37, no. 8, pp. 1299-1309, 1998.spa
dc.relation.referencesC. E. Thomaz and G. A. Giraldi, "A new ranking method for principal components analysis and its application to face image analysis", Image and Vision Computing, vol. 28, no. 6, pp. 902-913, 2010.spa
dc.relation.referencesC.-C. Hung, H. Purnawan, and B.-C. Kuo, "Multispectral image classification using rough set theory and the comparison with parallelepiped classifier", in 2007 IEEE International Geoscience and Remote Sensing Symposium, pp. 2052-2055, IEEE, 2007.spa
dc.relation.referencesC. Bishop, "Pattern Recognition and Machine Learning". Springer, 2006.spa
dc.relation.referencesC. R. Rao, S. K. Mitra, et al., "Generalized inverse of a matrix and its applications", in Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Theory of Statistics, The Regents of the University of California, 1972.spa
dc.relation.referencesS. Shalev-Shwartz and S. Ben-David, "Understanding Machine Learning". From Theory to Algorithms. Cambridge University Press, 2014.spa
dc.relation.referencesC.-I. Chang, "Spectral information divergence for hyperspectral image analysis", in IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No. 99CH36293), vol. 1, pp. 509-511, IEEE, 1999.spa
dc.relation.referencesD. G. Altman and J. M. Bland, "Measurement in medicine: the analysis of method comparison studies", Journal of the Royal Statistical Society: Series D (The Statistician) , vol. 32, no. 3, pp. 307-317, 1983.spa
dc.relation.referencesC. Oliveros-Tascón and J. Sanz-Uribe, "Ingeniería y café en colombia", Revista de Ingeniería, no. 33, pp. 99-114, 2011.spa
dc.relation.referencesC. Oliveros, J. Pabón, E. Montoya, C. Ramírez, and J. Sanz, "Separación de frutos de café verdes por medios mecánicos", Cenicafé, vol. 61, pp. 260-269, 01 2010.spa
dc.relation.referencesJ. R. Sanz-Uribe, P. J. Ramos-Giraldo, and C. E. Oliveros-Tascon, "Algorithm to identify maturation stages of coffee fruits", in Advances in Electrical and Electronics Engineering-IAENG Special Edition of the World Congress on Engineering and Computer Science 2008, pp. 167-174, IEEE, 2008.spa
dc.relation.references"Anhui. jiexun optoelectronic technology co. ltd. multifunction color sorter." <http: //www.hfjiexun.com>. Accessed: 2019-09-05.spa
dc.relation.references"Buhler. coffee sorting. separador classificador mtra." <https://www.buhlergroup. com/southamerica/pt/produtos/separador-classificador-mtra.htm> . Accessed: 2019-09-05.spa
dc.relation.references"China hefei taiho optoelectronic technology co. ltd. beans color sorter." <http://www. chinacolorsort.com/display2.asp?id=768>. Accessed: 2019-09-05.spa
dc.relation.references"Orange sorting machines (india) private limited. coffee sorting machines." <https: //www.orangesorter.net/>. Accessed: 2019-09-05.spa
dc.relation.references"Multiscan technologies. café." <http://www.multiscan.eu/ clasificacion-y-seleccion/cafe-es/>. Accessed: 2019-09-05.spa
dc.relation.references"Hcg tecnologia ltda. máquina separadora de café." <http://www.hcgtecnologia. com.br/produtos/separacao-de-graos-de-cafe> . Accessed: 2019-09-05.spa
dc.relation.referencesZ. Sandoval, F. Prieto, and J. Betancur, "Digital image processing for classification of coffee cherries", in 2010 IEEE Electronics, Robotics and Automotive Mechanics Conference, pp. 417-421, IEEE, 2010.spa
dc.relation.referencesM. N. Merzlyak, A. E. Solovchenko, and A. A. Gitelson, "Reflectance spectral features and non-destructive estimation of chlorophyll, carotenoid and anthocyanin content in apple fruit", Postharvest biology and technology, vol. 27, no. 2, pp. 197-211, 2003.spa
dc.relation.referencesD. Balasundaram, T. Burks, D. Bulanon, T. Schubert, and W. Lee, "Spectral reflectance characteristics of citrus canker and other peel conditions of grapefruit", Postharvest Biology and Technology, vol. 51, no. 2, pp. 220-226, 2009.spa
dc.relation.referencesM. Moyano, A. J. Meléndez-Martínez, J. Alba, and F. J. Heredia, "A comprehensive study on the colour of virgin olive oils and its relationship with their chlorophylls and carotenoids indexes (i): Ciexyz non-uniform colour space", Food Research International, vol. 41, no. 5, pp. 505-512, 2008.spa
dc.relation.referencesI. D. Aristizabal Torres, J. J. Carvajal Herrera, and C. E. Oliveros Tascon, "Physical and mechanical properties correlation of coffee fruit (coffea arabica) during its ripening, " Dyna, vol. 79, no. 172, pp. 148-155, 2012.spa
dc.relation.referencesZ. L. S. Niño and F. A. P. Ortiz, "Caracterización de café cereza empleando técnicas de visión artificial", Revista Facultad Nacional de Agronomía-Medellín, vol. 60, no. 2, pp. 4105-4127, 2007.spa
dc.relation.referencesN. L. Montes Castrillón et al., "Real-time classification of coffee fruits using FPGA". PhD thesis, Universidad Nacional de Colombia-Sede Manizales,2015.spa
dc.relation.referencesQ. Gu, A. Al Noman, T. Aoyama, T. Takaki, and I. Ishii, "A fast color tracking system with automatic exposure control", in 2013 IEEE International Conference on Information and Automation (ICIA), pp. 1302-1307, IEEE, 2013.spa
dc.relation.referencesJ. J. Carvajal Herrera, I. D. Aristizábal Torres, C. E. Oliveros Tascón, M. Montoya, and J. Wilson, "Coffee fruit (coffea arabica l.) colorimetry during its development and maturation", Revista Facultad Nacional de Agronomía Medellín, vol. 64, no. 2, pp. 6229-6240, 2011.spa
dc.relation.referencesP. Ramos, J. Sanz, and J. Estrada, "Sistema opto electrónico para la identificación de frutos de café por estados de maduración", Cenicafé, vol. 62, no. 1, pp. 87-99, 2011.spa
dc.relation.referencesA. Bustillo, "El manejo de cafetales y su relación con el control de la broca del café", Hypothenemus hampei. 01 2002.spa
dc.relation.referencesP. Benavides and H. Arévalo, "Manejo integrado: una estrategia para el control de la broca del café en colombia", Cenicafé, vol. 53, no. 1, pp. 39-48, 2002.spa
dc.relation.referencesA. Pardey, "Una revisión sobre la broca del café", Hypothenemus hampei, 2006.spa
dc.relation.referencesJ. G. Clevers, L. Kooistra, and M. E. Schaepman, "Using spectral information from the nir water absorption features for the retrieval of canopy water content", International Journal of Applied Earth Observation and Geoinformation, vol. 10, no. 3, pp. 388-397, 2008.spa
dc.relation.referencesA. A. Gitelson, Y. J. Kaufman, and M. N. Merzlyak, "Use of a green channel in remote sensing of global vegetation from eos-modis", Remote sensing of Environment, vol. 58, no. 3, pp. 289-298, 1996.spa
dc.relation.referencesY. Uwadaira, Y. Sekiyama, and A. Ikehata, "An examination of the principle of nondestructive fresh firmness measurement of peach fruit by using vis-nir spectroscopy", Heliyon, vol. 4, p. e00531, 02 2018.spa
dc.relation.referencesL. Huang, L. Meng, N. Zhu, and D.Wu, "A primary study on forecasting the days before decay of peach fruit using near-infrared spectroscopy and electronic nose techniques", Postharvest Biology and Technology, vol. 133, pp. 104-112, 2017.spa
dc.relation.referencesJ. Rogowska, "Overview and fundamentals of medical image segmentation", Handbook of medical imaging, processing and analysis, pp. 69-85, 2000.spa
dc.relation.referencesG. ElMasry, N. Wang, A. ElSayed, and M. Ngadi, "Hyperspectral imaging for nondestructive determination of some quality attributes for strawberry", Journal of Food Engineering, vol. 81, no. 1, pp. 98-107, 2007.spa
dc.relation.referencesA. A. Gitelson and M. N. Merzlyak, "Remote sensing of chlorophyll concentration in higher plant leaves", Advances in Space Research, vol. 22, no. 5, pp. 689-692, 1998.spa
dc.relation.referencesJ. J. Díaz García-Cervigón, "Estudio de índices de vegetación a partir de imágenes aéreas tomadas desde uas/rpas y aplicaciones de estos a la agricultura de precisión", Universidad Complutense de Madrid, Madrid, España. Recuperado de http://eprints. ucm. es/31423/1/TFM_Juan_Diaz_Cervignon. pdf, 2015.spa
dc.relation.referencesH. A. Vrooman, C. A. Cocosco, F. van der Lijn, R. Stokking, M. A. Ikram, M. W. Vernooij, M. M. Breteler, and W. J. Niessen, "Multi-spectral brain tissue segmentation using automatically trained k-nearest-neighbor classification", Neuroimage, vol. 37, no. 1, pp. 71-81, 2007.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/spa
dc.subject.ddc530 - Física::537 - Electricidad y electrónicaspa
dc.subject.proposalSistema de imágenes multiespectralesspa
dc.subject.proposalMultispectral images systemeng
dc.subject.proposalElectronic designeng
dc.subject.proposalDiseño electrónicospa
dc.subject.proposalPower LEDseng
dc.subject.proposalLEDs de potenciaspa
dc.subject.proposalColor perceptioneng
dc.subject.proposalPercepción de colorspa
dc.subject.proposalCoffee fruitseng
dc.subject.proposalFrutos de caféspa
dc.titleDiseño de un sistema de adquisición de imágenes multiespectrales basado en iluminación LED de potencia de ancho de banda estrechospa
dc.title.alternativeDesign of a multispectral image acquisition system based on narrow bandwidth power ledspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1053805232.2020.pdf
Tamaño:
11.4 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Automática

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: