Intensification in the epoxidation of used cooking oils using acid catalysts
dc.contributor.advisor | Orjuela, Alvaro | spa |
dc.contributor.advisor | Katryniok, Benjamin | spa |
dc.contributor.author | Cárdenas Ramírez, Juliana | spa |
dc.contributor.googlescholar | Juliana Cardenas Ramirez [BFL-4vQAAAAJ] | spa |
dc.contributor.orcid | Juliana Cardenas-Ramirez [0000-0003-1142-8064] | spa |
dc.contributor.researchgroup | Grupo de Investigación en Procesos Químicos y Bioquímicos | spa |
dc.contributor.supervisor | Araque, Marcia | spa |
dc.date.accessioned | 2025-03-10T13:14:22Z | |
dc.date.available | 2025-03-10T13:14:22Z | |
dc.date.issued | 2025 | |
dc.description | ilustraciones, diagramas, fotografías | spa |
dc.description.abstract | Este trabajo se centra en la intensificación del proceso de epoxidación de aceites usados de cocina (UCO) mediante catálisis de transferencia de fase y el uso de reactores de milifluidos de flujo segmentado. Se desarrolló un nuevo catalizador heteropoliácido (HPA) modificado mediante la hibridación del ácido fosfotúngstico con surfactantes, lo que le permitió actuar como catalizador de transferencia de fase y transportador de oxígeno, eliminando la necesidad de ácido peracético. Aunque la actividad catalítica mejoró, la selectividad hacia los grupos oxirano fue limitada, lo que requirió el uso de una resina de intercambio iónico ácida como co-catalizador para optimizar el rendimiento. Posteriormente, se empleó un reactor de flujo segmentado para intensificar el proceso, optimizando parámetros clave con aceite de soya como modelo y extendiendo luego el estudio a UCO. Se alcanzó hasta un 82 % de conversión, 86 % de selectividad y una productividad de 7,91 mL·min⁻¹, con un contenido de oxígeno oxirano del 4,02 % en peso. Los resultados demuestran el potencial de los reactores de flujo segmentado para una epoxidación eficiente y escalable, contribuyendo a la producción sostenible de oleoquímicos de segunda generación a partir de aceites residuales (Texto tomado de la fuente). | spa |
dc.description.abstract | This work focuses on the intensification of the epoxidation process of used cooking oils (UCO) through phase-transfer catalysis and continuous slug-flow millireactors. A novel modified heteropolyacid (HPA) catalyst was developed by hybridizing phosphotungstic acid with surfactants, acting as both phase-transfer catalyst and oxygen carrier, eliminating the need for peracetic acid. While catalytic activity was enhanced, selectivity towards oxirane groups was limited, requiring an acid ion exchange resin as a co-catalyst to improve performance. A slug-flow millireactor was then employed for process intensification, optimizing key parameters using soybean oil as a model and later extending the study to UCO. The process achieved up to 82% conversion, 86% selectivity, and 7.91 mL·min⁻¹ productivity, with a 4.02% wt. oxirane oxygen content. Results demonstrate the potential of continuous slug-flow reactors for efficient and scalable epoxidation, contributing to the sustainable production of second-generation oleochemicals from waste oils. | eng |
dc.description.abstract | Ce travail porte sur l’intensification du processus d’époxydation des huiles de cuisson usagées (UCO) par catalyse de transfert de phase et l’utilisation de réacteurs millifuidiques à flux segmenté. Un nouveau catalyseur d’acide hétéropolyacide (HPA) modifié a été développé en hybridant l’acide phosphotungstique avec des tensioactifs, agissant à la fois comme catalyseur de transfert de phase et transporteur d’oxygène, éliminant ainsi le besoin d’acide peracétique. Bien que l’activité catalytique ait été améliorée, la sélectivité vis-à-vis des groupes oxirane était limitée, nécessitant l’ajout d’une résine échangeuse d’ions acides comme co-catalyseur pour optimiser les performances. Un réacteur à flux segmenté a ensuite été utilisé pour intensifier le processus, en optimisant les paramètres clés avec l’huile de soja comme substrat modèle, puis en étendant l’étude aux UCO. Le procédé a permis d’atteindre jusqu’à 82 % de conversion, 86 % de sélectivité et une productivité de 7.91 mL·min⁻¹, avec une teneur en oxygène oxiranique de 4.02 % en poids. Ces résultats démontrent le potentiel des réacteurs à flux segmenté pour une époxydation efficace et évolutive, contribuant à la production durable d’oléochimiques de seconde génération à partir d’huiles usagées. | fra |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctor en Ingeniería Química | spa |
dc.description.researcharea | Biorefineries – Biofuels | spa |
dc.description.sponsorship | Programa ECOSNORD, Minciencias Contract 487-2021 | spa |
dc.description.sponsorship | Minciencias Contract 933-2023 | spa |
dc.description.sponsorship | DAAD research scholarship 2023/2024 | spa |
dc.description.sponsorship | Max Planck Institute of Colloids and Interfaces | spa |
dc.format.extent | 208 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87623 | |
dc.language.iso | eng | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Química | spa |
dc.relation.references | Abdullah, B. M., & Salimon, J. (2010). Epoxidation of vegetable oils and fatty acids: Catalysts, methods and advantages. Journal of Applied Sciences, 10(15). https://doi.org/10.3923/jas.2010.1545.1553 | spa |
dc.relation.references | Acme Hardesty. (2021). Epoxidized Soybean Oil Distributors (Jenkinol 680) - Acme-Hardesty. https://www.acme-hardesty.com/product/jenkinol-680-eso-epoxidizedsoybean-oil/ | spa |
dc.relation.references | ADEKA. (2021). PLASTICIZERS|ADEKA. https://www.adeka.co.jp/en/chemical/products/pvc/pro121c.html | spa |
dc.relation.references | Aguilera, A. F., Tolvanen, P., Oger, A., Eränen, K., Leveneur, S., Mikkola, J. P., & Salmi, T. (2019). Screening of ion exchange resin catalysts for epoxidation of oleic acid under the influence of conventional and microwave heating. Journal of Chemical Technology and Biotechnology, 94(9). https://doi.org/10.1002/jctb.6112 | spa |
dc.relation.references | Alibaba. (2021). Products. https://www.alibaba.com/products/glyceryl_monostearate.html | spa |
dc.relation.references | Antony, R., Giri Nandagopal, M. S., Sreekumar, N., Rangabhashiyam, S., & Selvaraju, N. (2014). Liquid-liquid slug flow in a microchannel reactor and its mass transfer properties - A review. Bulletin of Chemical Reaction Engineering and Catalysis, 9(3), 207–223. https://doi.org/10.9767/bcrec.9.3.6977.207-223 | spa |
dc.relation.references | Arkema inc. (2014). Vikoflex ® 7170 Epoxidized Soybean Oil Data Sheet. 7–9. | spa |
dc.relation.references | ASTM. (2019a). Standard Test Method for Acid Number of Petroleum Products by Potentiometric Titration. ASTM D664-18e2. https://doi.org/10.1520/D0664-18E02 | spa |
dc.relation.references | ASTM. (2019b). Standard Test Method for Epoxy Content of Epoxy Resins. Standard Test Method for Epoxy Content of Epoxy Resins D1652-11. https://doi.org/10.1520/D1652-11R19 | spa |
dc.relation.references | Bansal, G., Zhou, W., Barlow, P. J., Joshi, P. S., Lo, H. L., & Chung, Y. K. (2010). Review of rapid tests available for measuring the quality changes in frying oils and comparison with standard methods. Critical Reviews in Food Science and Nutrition, 50(6). https://doi.org/10.1080/10408390802544611 | spa |
dc.relation.references | Benecke, H. P., Vijayendran, B. R., & Elhard, J. D. (2004). Plasticizers derived from vegetable oils (Patent 6,797,753 B2). In United State Patent (6,797,753 B2).https://patents.google.com/patent/US6797753B2/en | spa |
dc.relation.references | Bhalerao, M. S., Kulkarni, V. M., & Patwardhan, A. V. (2018). Ultrasound-assisted chemoenzymatic epoxidation of soybean oil by using lipase as biocatalyst. Ultrasonics Sonochemistry, 40. https://doi.org/10.1016/j.ultsonch.2017.08.042 | spa |
dc.relation.references | Bohórquez, W. F., Orjuela, A., Rincón, P. C. N., Cadavid, J. G., & García-Nunez, J. A. (2022). Experimental optimization during epoxidation of a high-oleic palm oil using a simplex algorithm. Industrial Crops and Products, 187. https://doi.org/10.1016/j.indcrop.2022.115321 | spa |
dc.relation.references | Bohórquez, W. F., Orjuela, A., Solarte, S. A., & García-Nunez, J. A. (2023). Natural Oil Polyol from High-Oleic Palm Oil─Reaction Kinetics and Monitoring Using Near-Infrared Spectroscopy. Industrial and Engineering Chemistry Research, 62(26). https://doi.org/10.1021/acs.iecr.3c01040 | spa |
dc.relation.references | Boravelli, J. A. R., & Vir, A. B. (2023). Chapter two - Liquid–liquid biphasic reactions in microreactor. In Process Intensification for Chemical and Biotechnology Industries: Fundamentals and Applications to Critical and Advanced Processes (pp.15–33). https://doi.org/10.1016/B978-0-323-95177-7.00002-3 | spa |
dc.relation.references | Borugadda, V. B., & Goud, V. V. (2016). Physicochemical and Rheological Characterization of Waste Cooking Oil Epoxide and Their Blends. Waste and Biomass Valorization, 7(1). https://doi.org/10.1007/s12649-015-9434-8 | spa |
dc.relation.references | Boyacá, L. A., & Beltrán, Á. A. (2010). Soybean epoxide production with in situ peracetic acid using homogeneous catalysis. Ingenieria e Investigacion, 30(1). | spa |
dc.relation.references | Bueno-Ferrer, C., Garrigós, M. C., & Jiménez, A. (2010). Characterization and thermal stability of poly(vinyl chloride) plasticized with epoxidized soybean oil for food packaging. Polymer Degradation and Stability, 95(11), 2207–2212. https://doi.org/10.1016/j.polymdegradstab.2010.01.027 | spa |
dc.relation.references | Buffon, R., & Schuchardt, U. (2003). Heterogenization of alkene epoxidation catalysts. In Journal of the Brazilian Chemical Society (Vol. 14, Issue 3). https://doi.org/10.1590/S0103-50532003000300002 | spa |
dc.relation.references | Burns, J. R., & Ramshaw, C. (2001). The intensification of rapid reactions in multiphase systems using slug flow in capillaries. Lab on a Chip, 1(1). https://doi.org/10.1039/b102818a | spa |
dc.relation.references | Byun, J. H., & Kim, C. H. (2014). A simplex evolutionary operation for mixture production processes. Quality Engineering, 26(4), 383–391. https://doi.org/10.1080/08982112.2013.830741 | spa |
dc.relation.references | Cai, C., Dai, H., Chen, R., Su, C., Xu, X., Zhang, S., & Yang, L. (2008). Studies on the kinetics of in situ epoxidation of vegetable oils. European Journal of Lipid Science and Technology, 110(4). https://doi.org/10.1002/ejlt.200700104 | spa |
dc.relation.references | Cai, J., Wu, Z., Gao, N., Xu, H., Wang, D., Zhou, F., & Nie, Y. (2022). Novel packed bed reactor designed for Prileschajew epoxidation of fatty acid methyl ester: Intensification of mass/heat transfer. Chemical Engineering and Processing - Process Intensification, 176, 108960. https://doi.org/10.1016/j.cep.2022.108960 | spa |
dc.relation.references | Cai, X., Zheng, J. L., Aguilera, A. F., Vernières-Hassimi, L., Tolvanen, P., Salmi, T., & Leveneur, S. (2018). Influence of ring-opening reactions on the kinetics of cottonseed oil epoxidation. International Journal of Chemical Kinetics, 50(10). https://doi.org/10.1002/kin.21208 | spa |
dc.relation.references | Campanella, A., & Baltanás, M. A. (2005). Degradation of the oxirane ring of epoxidized vegetable oils with hydrogen peroxide using an ion exchange resin. Catalysis Today, 107–108. https://doi.org/10.1016/j.cattod.2005.07.092 | spa |
dc.relation.references | Campanella, A., Fontanini, C., & Baltanás, M. A. (2008a). High yield epoxidation of fatty acid methyl esters with performic acid generated in situ. Chemical Engineering Journal, 144(3). https://doi.org/10.1016/j.cej.2008.07.016 | spa |
dc.relation.references | Campanella, A., Fontanini, C., & Baltanás, M. A. (2008b). High yield epoxidation of fatty acid methyl esters with performic acid generated in situ. Chemical Engineering Journal, 144(3). https://doi.org/10.1016/j.cej.2008.07.016 | spa |
dc.relation.references | Cárdenas, J., Katryniok, B., Araque, M., & Orjuela, A. (2024). Synthesis of a modified heteropolyacid and evaluation as a phase-transfer catalyst for soybean oil epoxidation. Chemical Engineering Research and Design, 215, 356–366. https://doi.org/10.1016/j.cherd.2024.10.010 | spa |
dc.relation.references | Cárdenas, J., Katryniok, B., Araque, M., Seeberger, P. H., Danglad-Flores, J., & Orjuela, A. (2025). Intensified Epoxidation of Soybean Oil: Evaluation and Experimental Optimization in a Slug-Flow Millireactor. Chemical Engineering Journal | spa |
dc.relation.references | Cárdenas, J., Montañez, M. A., Orjuela, A., Narváez, P. C., & Katryniok, B. (2022). Deacidification of used cooking oils by solvent extraction under lab scale and in a falling film contactor. Chemical Engineering and Processing - Process Intensification, 181, 109089. https://doi.org/10.1016/j.cep.2022.109089 | spa |
dc.relation.references | Cárdenas, J., Orjuela, A., Sánchez, D. L., Narváez, P. C., Katryniok, B., & Clark, J. (2021). Pre-treatment of used cooking oils for the production of green chemicals: A review. Journal of Cleaner Production, 289. https://doi.org/10.1016/j.jclepro.2020.125129 | spa |
dc.relation.references | Casuscelli, S. G., Crivello, M. E., Perez, C. F., Ghione, G., Herrero, E. R., Pizzio, L. R., Vázquez, P. G., Cáceres, C. V., & Blanco, M. N. (2004). Effect of reaction conditions on limonene epoxidation with H2O2 catalyzed by supported Keggin heteropolycompounds. Applied Catalysis A: General, 274(1–2). https://doi.org/10.1016/j.apcata.2004.05.043 | spa |
dc.relation.references | Chattopadhyay, K., & Guthrie, R. I. L. (2014). Single Phase, Two Phase, and Multiphase Flows, and Methods to Model these Flows. In Treatise on Process Metallurgy (pp.527–553). Elsevier. https://doi.org/10.1016/B978-0-08-096984-8.00012-4 | spa |
dc.relation.references | Chemodex. (2021). Epoxidized linseed oil - CAS-Number 8016-11-3 - . https://www.chemodex.com/products/epoxidized-linseed-oil/ | spa |
dc.relation.references | Chen, J., Cheng, Y., Zhang, Q., Fang, C., Wu, L., Bai, M., & Yao, Y. (2019). Facile synthesis of mesoporous carbon microspheres/graphene composites: In situ for application in supercapacitors. RSC Advances, 9(55), 32258–32269. https://doi.org/10.1039/c9ra06191f | spa |
dc.relation.references | Cheng, W., Liu, G., Wang, X., Liu, X., & Jing, L. (2015). Kinetics of the epoxidation of soybean oil with H2O2 catalyzed by phosphotungstic heteropoly acid in the presence of polyethylene glycol. European Journal of Lipid Science and Technology, 117(8). https://doi.org/10.1002/ejlt.201400614 | spa |
dc.relation.references | Chhabra, R. P., & Richardson, J. F. (1999). Flow of multi-phase mixtures in pipes. In Non-Newtonian Flow in the Process Industries (pp. 162–205). Elsevier. https://doi.org/10.1016/B978-075063770-1/50005-1 | spa |
dc.relation.references | Chinthapalli, R., Skoczinski, P., Carus, M., Baltus, W., De Guzman, D., Käb, H., Raschka, A., & Ravenstijn, J. (2019). Biobased Building Blocks and Polymers - Global Capacities, Production and Trends, 2018-2023. Industrial Biotechnology,15(4). https://doi.org/10.1089/ind.2019.29179.rch | spa |
dc.relation.references | CHS inc. (2013). CHS introduces PlastiSoy TM epoxidized soybean oil. https://www.chsinc.com/about-chs/news/news/2013/02/19/chs-introducesplastisoy-epoxidized-soybean-oil | spa |
dc.relation.references | Chua, S. C., Xu, X., & Guo, Z. (2012). Emerging sustainable technology for epoxidation directed toward plant oil-based plasticizers. Process Biochemistry, 47(10), 1439– 1451. https://doi.org/10.1016/j.procbio.2012.05.025 | spa |
dc.relation.references | Cogliano, T., Russo, V., Eränen, K., Tesser, R., Di Serio, M., & Salmi, T. (2024). Epoxidation of vegetable oils in continuous device: kinetics, mass transfer and reactor modelling. Chemical Engineering Science, 294, 120079. https://doi.org/10.1016/j.ces.2024.120079 | spa |
dc.relation.references | Cogliano, T., Turco, R., Di Serio, M., Salmi, T., Tesser, R., & Russo, V. (2024). Epoxidation of Vegetable Oils via the Prilezhaev Reaction Method: A Review of the Transition from Batch to Continuous Processes. Industrial and Engineering Chemistry Research, 63(26), 11231–11262. https://doi.org/10.1021/acs.iecr.3c04211 | spa |
dc.relation.references | Cogliano, T., Turco, R., Russo, V., Di Serio, M., & Tesser, R. (2022). 1H NMR-based analytical method: A valid and rapid tool for the epoxidation processes. Industrial Crops and Products, 186, 115258. https://doi.org/10.1016/j.indcrop.2022.115258 | spa |
dc.relation.references | Corma Canos, A., Iborra, S., & Velty, A. (2007). Chemical routes for the transformation of biomass into chemicals. Chemical Reviews, 107(6), 2411–2502. https://doi.org/10.1021/cr050989d | spa |
dc.relation.references | Cvengroš, J., & Cvengrošová, Z. (2004). Used frying oils and fats and their utilization in the production of methyl esters of higher fatty acids. Biomass and Bioenergy, 27(2). https://doi.org/10.1016/j.biombioe.2003.11.006 | spa |
dc.relation.references | DANE. (2021). Encuesta anual manufacturera (EAM). https://www.dane.gov.co/index.php/estadisticas-por-tema/industria/encuesta-anualmanufacturera-enam | spa |
dc.relation.references | Danov, S. M., Kazantsev, O. A., Esipovich, A. L., Belousov, A. S., Rogozhin, A. E., & Kanakov, E. A. (2017). Recent advances in the field of selective epoxidation of vegetable oils and their derivatives: A review and perspective. Catalysis Science and Technology, 7(17), 3659–3675. https://doi.org/10.1039/c7cy00988g | spa |
dc.relation.references | De La Garza, L. C., De Oliveira Vigier, K., Chatel, G., & Moores, A. (2017). Amphiphilic dipyridinium-phosphotungstate as an efficient and recyclable catalyst for triphasic fatty ester epoxidation and oxidative cleavage with hydrogen peroxide. Green Chemistry, 19(12), 2855. https://doi.org/10.1039/c7gc00298j | spa |
dc.relation.references | Demirbas, A. (2009). Biodiesel from waste cooking oil via base-catalytic and supercritical methanol transesterification. Energy Conversion and Management, 50(4). https://doi.org/10.1016/j.enconman.2008.12.023 | spa |
dc.relation.references | Desroches, M., Escouvois, M., Auvergne, R., Caillol, S., & Boutevin, B. (2012). From vegetable oils to polyurethanes: Synthetic routes to polyols and main industrial products. Polymer Reviews, 52(1), 38–79. https://doi.org/10.1080/15583724.2011.640443 | spa |
dc.relation.references | Dinda, S., Goud, V. V., Patwardhan, A. V., & Pradhan, N. C. (2011). Selective epoxidation of natural triglycerides using acidic ion exchange resin as catalyst. Asia-Pacific Journal of Chemical Engineering, 6(6), 870–878. https://doi.org/10.1002/apj.466 | spa |
dc.relation.references | Dinda, S., Patwardhan, A. V., Goud, V. V., & Pradhan, N. C. (2008). Epoxidation of cottonseed oil by aqueous hydrogen peroxide catalysed by liquid inorganic acids. Bioresource Technology, 99(9), 3373–3744. https://doi.org/10.1016/j.biortech.2007.07.015 | spa |
dc.relation.references | Dong, Z., Wen, Z., Zhao, F., Kuhn, S., & Noël, T. (2021). Scale-up of micro- and millireactors: An overview of strategies, design principles and applications. Chemical Engineering Science: X, 10, 100097. https://doi.org/10.1016/j.cesx.2021.100097 | spa |
dc.relation.references | Dow. (2004). DOWEXTM Fine Mesh Spherical Ion Exchange Resins. | spa |
dc.relation.references | Duque, U. (2006). Exploración de la reacción de epoxidación del aceite de palma a escala de un litro -. Universidad de los Andes. | spa |
dc.relation.references | Ehrfeld. (2020). Integrated scale-up concept. Ehrfeld Mikrotechnik GmbH. https://www.ehrfeld.com/en/labor-integriertes-scale-up-konzept | spa |
dc.relation.references | Enferadi-Kerenkan, A., Do, T. O., & Kaliaguine, S. (2018). Heterogeneous catalysis by tungsten-based heteropoly compounds. In Catalysis Science and Technology (Vol.8, Issue 9). https://doi.org/10.1039/c8cy00281a | spa |
dc.relation.references | Eryilmaz, T., Aksoy, F., Aksoy, L., Bayrakceken, H., Aysal, F. E., Sahin, S., & Yesilyurt, M. K. (2018). Process optimization for biodiesel production from neutralized waste cooking oil and the effect of this biodiesel on engine performance. CTyF - Ciencia, Tecnologia y Futuro, 8(1). https://doi.org/10.29047/01225383.99 | spa |
dc.relation.references | FAO. (1999). Codex Standards for Fats and Oils from Vegetable Sources - Standard for named vegetable oils CODEX STAN 210-1999. ALIMENTARIUM,C. https://www.fao.org/input/download/standards/336/CXS_210e_2015.pdf | spa |
dc.relation.references | FAO. (2015). Standard for Named Vegetable Oils Codex Stan 210-1999. Codex Alimentarius, 1–13. | spa |
dc.relation.references | Foo, W. H., Koay, S. S. N., Chia, S. R., Chia, W. Y., Tang, D. Y. Y., Nomanbhay, S., & Chew, K. W. (2022). Recent advances in the conversion of waste cooking oil into value-added products: A review. Fuel, 324. https://doi.org/10.1016/j.fuel.2022.124539 | spa |
dc.relation.references | Gamage, P. K., O’Brien, M., & Karunanayake, L. (2009). Epoxidation of some vegetable oils and their hydrolysed products with peroxyformic acid - Optimised to industrial scale. Journal of the National Science Foundation of Sri Lanka, 37(4). https://doi.org/10.4038/jnsfsr.v37i4.1469 | spa |
dc.relation.references | Gao, J., Chen, Y., Han, B., Feng, Z., Li, C., Zhou, N., Gao, S., & Xi, Z. (2004). A spectroscopic study on the reaction-controlled phase transfer catalyst in the epoxidation of cyclohexene. Journal of Molecular Catalysis A: Chemical, 210(1–2). https://doi.org/10.1016/j.molcata.2003.09.018 | spa |
dc.relation.references | García, E., & Pascuales, M. (2004). Preparación de poliol y evaluación en la formulación de espumas de poliuretano. Universidad Nacional de Colombia. | spa |
dc.relation.references | Gertz, C., Klostermann, S., & Kochhar, S. P. (2000). Testing and comparing oxidative stability of vegetable oils and fats at frying temperature. European Journal of Lipid Science and Technology, 102(8–9). https://doi.org/10.1002/1438-9312(200009)102:8/9<543::aid-ejlt543>3.0.co;2-v | spa |
dc.relation.references | Ghaini, A., Mescher, A., & Agar, D. W. (2011). Hydrodynamic studies of liquid-liquid slug flows in circular microchannels. Chemical Engineering Science, 66(6), 1168–1178. https://doi.org/10.1016/j.ces.2010.12.033 | spa |
dc.relation.references | Ghidurus, M., Turtoi, M., Boskou, G., Niculita, P., & Stan, V. (2011). Nutritional and health aspects related to frying (II). In Romanian Biotechnological Letters (Vol. 16, Issue 5). | spa |
dc.relation.references | Giakoumis, E. G. (2018). Analysis of 22 vegetable oils’ physico-chemical properties and fatty acid composition on a statistical basis, and correlation with the degree of unsaturation. Renewable Energy, 126, 403–419. https://doi.org/10.1016/j.renene.2018.03.057 | spa |
dc.relation.references | GitHub. (2022). GitHub – cambiegroup/flowchem: Flowchem is an application to simplify the control of instruments and devices commonly found in chemistry labs. https://github.com/cambiegroup/flowchem | spa |
dc.relation.references | Gladius, A. W., Mylenbusch, J. A., & Agar, D. W. (2023). A computer vision sensor for the parallelization of actively regulated capillary slug flow microreactors. SN Applied Sciences, 5(263). https://doi.org/10.1007/s42452-023-05489-3 | spa |
dc.relation.references | Gladius, A. W., Vondran, J., Ramesh, Y., Seidensticker, T., & Agar, D. W. (2021). Slug flow as tool for selectivity control in the homogeneously catalysed solvent-free epoxidation of methyl oleate. Journal of Flow Chemistry, 11(3), 407–427. https://doi.org/10.1007/s41981-021-00199-6 | spa |
dc.relation.references | Goicoechea, E., & Guillen, M. D. (2010). Analysis of hydroperoxides, aldehydes and epoxides by 1H nuclear magnetic resonance in sunflower oil oxidized at 70 and 100 °c. Journal of Agricultural and Food Chemistry, 58(10), 6234–6245. https://doi.org/10.1021/jf1005337 | spa |
dc.relation.references | Goud, V. V., Patwardhan, A. V., Dinda, S., & Pradhan, N. C. (2007). Kinetics of epoxidation of jatropha oil with peroxyacetic and peroxyformic acid catalysed by acidic ion exchange resin. Chemical Engineering Science, 62(15), 4065–4076. https://doi.org/10.1016/j.ces.2007.04.038 | spa |
dc.relation.references | Greenea. (2022). Precios de los biocombustibles y análisis de mercado para biodiesel de residuos como UCOME, TME y aceite de cocina usado - Greenea. http://www.greenea.com/en/market-analysis/ | spa |
dc.relation.references | Guo, A., & Petrovic, Z. (2005). Vegetable Oils-Based Polyols. In Industrial Uses of Vegetable Oil. https://doi.org/10.1201/9781439822388.ch6 | spa |
dc.relation.references | Gupta, R. D., & Raghav, N. (2020). Differential effect of surfactants tetra-n-butyl ammonium bromide and N-Cetyl-N, N, N-trimethyl ammonium bromide bound to nano-cellulose on binding and sustained release of some non-steroidal antiinflammatory drugs. International Journal of Biological Macromolecules, 164. https://doi.org/10.1016/j.ijbiomac.2020.08.091 | spa |
dc.relation.references | Gurbanov, M. S., Chalabiev, C. A., Mamedov, B. A., & Efendiev, A. A. (2005). Epoxidation of soybean oil in the course of cooxidation with hydrogen peroxide in the presence of propanoic acid and chlorinated KU-2 x 8 cation exchanger. Russian Journal of Applied Chemistry, 78(10). https://doi.org/10.1007/s11167-005-0585-4 | spa |
dc.relation.references | Gutmann, B., Cantillo, D., & Kappe, C. O. (2015). Continuous-flow technology - A tool for the safe manufacturing of active pharmaceutical ingredients. In Angewandte Chemie - International Edition (Vol. 54, Issue 23). https://doi.org/10.1002/anie.201409318 | spa |
dc.relation.references | He, W., Fang, Z., Ji, D., Chen, K., Wan, Z., Li, X., Gan, H., Tang, S., Zhang, K., & Guo, K. (2013). Epoxidation of soybean oil by continuous micro-flow system with continuous separation. Organic Process Research and Development, 17(9), 1137–1141. https://doi.org/10.1021/op400050n | spa |
dc.relation.references | Hegelmann, M., Bohórquez, W. F., Luibl, J., Jess, A., Orjuela, A., & Cokoja, M. (2024). Biphasic phase-transfer catalysis: epoxidation of vegetable oils by surface active ionic liquids in water. Reaction Chemistry & Engineering, 9(10), 2710–2717. https://doi.org/10.1039/D4RE00215F | spa |
dc.relation.references | Henan Go Biotech. (2021). Epoxidized Soybean Oil -Henan GO Biotech Co.,Ltd. https://www.go-chem.net/epoxidized-soybean-oilesbo.html?google-network=gcampaignid=1768789814-adgroupid=70416065473-target=kwd-315611576330-creative=342625538548-device=c-placement=-keyword=epoxidized soybean oilprice&gclid=EAIaIQobChMI69aPyrqZ6gI | spa |
dc.relation.references | HORIBA. (2020). What is Raman Spectroscopy? - HORIBA. https://www.horiba.com/ind/scientific/technologies/raman-imaging-andspectroscopy/raman-spectroscopy/ | spa |
dc.relation.references | Hua, L., Qiao, Y., Yu, Y., Zhu, W., Cao, T., Shi, Y., Li, H., Feng, B., & Hou, Z. (2011). A Ti-substituted polyoxometalate as a heterogeneous catalyst for olefin epoxidation with aqueous hydrogen peroxide. New Journal of Chemistry, 35(9). https://doi.org/10.1039/c1nj20312f | spa |
dc.relation.references | Huang, X., Wang, W., & Liu, X. (2020). H3PW12O40-doped pyromellitic diimide prepared via thermal transformation as an efficient visible-light photocatalyst. Journal of Materials Science, 55(20). https://doi.org/10.1007/s10853-020-04642-2 | spa |
dc.relation.references | Hussein, S., Shehata, N., Mahmoud, M., Abdelkareem, M. A., & Olabi, A. G. (2023). Green Chemicals From Cooking oil. In Reference Module in Materials Science and Materials Engineering. https://doi.org/10.1016/b978-0-443-15738-7.00008-8 | spa |
dc.relation.references | Ian Buckley, R., & Clark, R. J. H. (1985). Structural and electronic properties of some polymolybdates reducible to molybdenum blues. Coordination Chemistry Reviews, 65(C). https://doi.org/10.1016/0010-8545(85)85025-6 | spa |
dc.relation.references | ICONTEC. (2013). NTC 3272. Grasas y aceites comestibles para frito industrial. | spa |
dc.relation.references | Inbra. (2021). Plastificantes. http://inbra.com.br/home/produtos/ | spa |
dc.relation.references | ISO. (2018). Animal and Vegetable Fats and Oils - Determination of Iodine Value (ISO3961:18). International Standard. https://www.iso.org/es/contents/data/standard/07/18/71868.html | spa |
dc.relation.references | ISO. (2023). Animal and vegetable fats and oils. Determination of saponification value. ISO 3657:2023. https://www.iso.org/es/contents/data/standard/08/51/85171.html | spa |
dc.relation.references | Izumi, Y., Urabe, K., & Onaka, M. (1997). Development of catalyst materials for acid catalyzed reactions in the liquid phase. Catalysis Today, 35(1–2). https://doi.org/10.1016/S0920-5861(96)00126-5 | spa |
dc.relation.references | Jaiswal, P., Kumar, U., & Biswas, K. G. (2022). Liquid-liquid flow through micro dimensional reactors: A review on hydrodynamics, mass transfer, and reaction kinetics. Experimental and Computational Multiphase Flow, 4(3), 193–211. https://doi.org/10.1007/s42757-020-0092-0 | spa |
dc.relation.references | Jeannin, Y. P. (1998). The nomenclature of polyoxometalates: How to connect a name and a structure. Chemical Reviews, 98(1). https://doi.org/10.1021/cr960397i | spa |
dc.relation.references | Jia, P., Zheng, M., Ma, Y., Feng, G., Xia, H., Hu, L., Zhang, M., & Zhou, Y. (2019). Clean synthesis of epoxy plasticizer with quaternary ammonium phosphotungstate as catalyst from a byproduct of cashew nut processing. Journal of Cleaner Production, 206. https://doi.org/10.1016/j.jclepro.2018.09.238 | spa |
dc.relation.references | Jiang, J., Zhang, Y., Yan, L., & Jiang, P. (2012). Epoxidation of soybean oil catalyzed by peroxo phosphotungstic acid supported on modified halloysite nanotubes. Applied Surface Science, 258(17), 6637–6642. https://doi.org/10.1016/J.APSUSC.2012.03.095 | spa |
dc.relation.references | Johnson, L. A., & Myers, D. J. (1995). Industrial Uses for Soybeans. In Practical Handbook of Soybean Processing and Utilization. https://doi.org/10.1016/b978-0-935315-63-9.50025-5 | spa |
dc.relation.references | Jordanov, D. I., Petkov, P. S., & Kirov, Yanko., Ivanov, S. Kunev. (2007). Methanol transesterification of different vegetable oils. Petroleum & Coal, 30 ml. | spa |
dc.relation.references | Kaba, M. S., Song, I. K., Duncan, D. C., Hill, C. L., & Barteau, M. A. (1998). Molecular Shapes, Orientation, and Packing of Polyoxometalate Arrays Imaged by Scanning Tunneling Microscopy. Inorganic Chemistry, 37(3). https://doi.org/10.1021/ic9705655 | spa |
dc.relation.references | Karmakar, G., Ghosh, P., Kohli, K., Sharma, B. K., & Erhan, S. Z. (2020). Chemicals from Vegetable Oils, Fatty Derivatives, and Plant Biomass. In ACS Symposium Series (Vol. 1347, pp. 1–31). https://doi.org/10.1021/bk-2020-1347.ch001 | spa |
dc.relation.references | Kashid, M. N., & Agar, D. W. (2007). Hydrodynamics of liquid-liquid slug flow capillary microreactor: Flow regimes, slug size and pressure drop. Chemical Engineering Journal, 131(1–3), 1–13. https://doi.org/10.1016/j.cej.2006.11.020 | spa |
dc.relation.references | Kashid, M. N., Gerlach, I., Goetz, S., Franzke, J., Acker, J. F., Platte, F., Agar, D. W., & Turek, S. (2005). Internal circulation within the liquid slugs of a liquid-liquid slugflow capillary microreactor. Industrial and Engineering Chemistry Research, 44(14), 5003–5010. https://doi.org/10.1021/ie0490536 | spa |
dc.relation.references | Keggin. (1934). The structure and formula of 12-phosphotungstic acid. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 144(851). https://doi.org/10.1098/rspa.1934.0035 | spa |
dc.relation.references | Kholdeeva, O. A., Timofeeva, M. N., Maksimov, G. M., Maksimovskaya, R. I., Neiwert, W. A., & Hill, C. L. (2005). Aerobic oxidation of formaldehyde mediated by a Cecontaining polyoxometalate under mild conditions. Inorganic Chemistry, 44(3). https://doi.org/10.1021/ic049109o | spa |
dc.relation.references | Kim, H. J., Jeon, Y., Park, J. Il, & Shul, Y. G. (2013). Heterocycle-modified 12-tungstophosphoric acid as heterogeneous catalyst for epoxidation of propylene with hydrogen peroxide. Journal of Molecular Catalysis A: Chemical, 378, 232–237. https://doi.org/10.1016/J.MOLCATA.2013.06.014 | spa |
dc.relation.references | Kleiner, J., & Hinrichsen, O. (2019). Epoxidation of methyl oleate in a rotor-stator spinning disc reactor. Chemical Engineering and Processing - Process Intensification, 136, 152–162. https://doi.org/10.1016/j.cep.2019.01.004 | spa |
dc.relation.references | Klemens, E., Lutz, J., Alfred, M., Eberhard, P., & Bernhard, G. (1984). Process for the epoxidation of olefinically unsaturated hydrocarbon compounds with peracetic acid. us pattent. | spa |
dc.relation.references | Köckritz, A., & Martin, A. (2008). Oxidation of unsaturated fatty acid derivatives and vegetable oils. European Journal of Lipid Science and Technology, 110(9). https://doi.org/10.1002/ejlt.200800042 | spa |
dc.relation.references | Kozhevnikov, I. V. (1998). Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions. Chemical Reviews, 98(1). https://doi.org/10.1021/cr960400y | spa |
dc.relation.references | Kozhevnikov, I. V., Mulder, G. P., Steverink-de Zoete, M. C., & Oostwal, M. G. (1998). Epoxidation of oleic acid catalyzed by peroxo phosphotungstate in a two-phase system. Journal of Molecular Catalysis A: Chemical, 134(1–3). https://doi.org/10.1016/S1381-1169(98)00039-9 | spa |
dc.relation.references | Kunal, A., & Sonal, S. (2018). Epoxidized Soybean Oil Market Share 2018-2024 Industry Size Report. Global Market Insights. https://www.gminsights.com/industryanalysis/epoxidized-soybean-oil-market | spa |
dc.relation.references | Kurańska, M., Beneš, H., Prociak, A., Trhlíková, O., Walterová, Z., & Stochlińska, W. (2019). Investigation of epoxidation of used cooking oils with homogeneous and heterogeneous catalysts. Journal of Cleaner Production, 236. https://doi.org/10.1016/j.jclepro.2019.117615 | spa |
dc.relation.references | Kurańska, M., & Niemiec, M. (2020). Cleaner production of epoxidized cooking oil using a heterogeneous catalyst. Catalysts, 10(11). https://doi.org/10.3390/catal10111261 | spa |
dc.relation.references | Kyriacos, D. (2020). Biobased polyols for industrial polymers. In Biobased Polyols for Industrial Polymers. https://doi.org/10.1002/9781119620358 | spa |
dc.relation.references | La Scala, J., & Wool, R. P. (2002). Effect of FA composition on epoxidation kinetics of TAG. JAOCS, Journal of the American Oil Chemists’ Society, 79(4). https://doi.org/10.1007/s11746-002-0491-9 | spa |
dc.relation.references | Lafargue-Pérez, F. I., Díaz-Velázquez, M. I., Leiva-Aguilar, I. I., Sánchez-Hechavarría III, J., & Salazar-Avila, O. I. (2015). Epoxidación del aceite vegetal de Jatropha curcas L con ácido perfórmico Epoxidation of Jatropha curcas L Vegetable oil with Performic Acid. In Tecnología Quimica: Vol. XXXV (Issue 3). | spa |
dc.relation.references | Lee, P. L., Wan Yunus, W. M. Z., Yeong, S. K., Abdullah, D. K., & Lim, W. H. (2009). Optimization of the epoxidation of methyl ester of palm fatty acid distillate. Journal of Oil Palm Research, 21, 675–682. http://jopr.mpob.gov.my/wpcontent/uploads/2013/09/joprv21dec09-lee.pdf | spa |
dc.relation.references | Lee, S., Park, M. S., Shin, J., & Kim, Y. W. (2018). Effect of the individual and combined use of cardanol-based plasticizers and epoxidized soybean oil on the properties of PVC. Polymer Degradation and Stability, 147, 1–11. https://doi.org/10.1016/j.polymdegradstab.2017.11.002 | spa |
dc.relation.references | Leveneur, S., Kumar, N., Salmi, T., & Murzin, D. Y. (2010). Stability of hydrogen peroxide during perhydrolysis of carboxylic acids on acidic heterogeneous catalysts. Research on Chemical Intermediates, 36(4). https://doi.org/10.1007/s11164-010- 0149-y | spa |
dc.relation.references | Leveneur, S., Tolvanen, P., & Russo, V. (2024). Catalytic Epoxidation Reaction. Catalysts, 14(5), 285. https://doi.org/10.3390/catal14050285 | spa |
dc.relation.references | Li, G., Ding, Y., Wang, J., Wang, X., & Suo, J. (2007). New progress of Keggin and Wells-Dawson type polyoxometalates catalyze acid and oxidative reactions. Journal of Molecular Catalysis A: Chemical, 262(1–2). https://doi.org/10.1016/j.molcata.2006.08.067 | spa |
dc.relation.references | Li, H., Hou, Z., Qiao, Y., Feng, B., Hu, Y., Wang, X., & Zhao, X. (2010). Peroxopolyoxometalate-based room temperature ionic liquid as a self-separation catalyst for epoxidation of olefins. Catalysis Communications, 11(5). https://doi.org/10.1016/j.catcom.2009.11.025 | spa |
dc.relation.references | Li, Y. Y., Luo, X., & Hu, S. (2015). Bio-based Polyols and Polyurethanes. In Bio-based Polyols and Polyurethanes. https://doi.org/10.1007/978-3-319-21539-6 | spa |
dc.relation.references | Lin, C. S. K., Pfaltzgraff, L. A., Herrero-Davila, L., Mubofu, E. B., Abderrahim, S., Clark, J. H., Koutinas, A. A., Kopsahelis, N., Stamatelatou, K., Dickson, F., Brocklesby, R., & Luque, R. (2013). Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective. Energy and Environmental Science, 6(2), 426–464. https://doi.org/10.1039/c2ee23440h | spa |
dc.relation.references | Lombana Coy, J., Vega Jurado, J., Britton Acevedo, E., & Herrera Velásquez, S. (2015). Análisis del sector biodiésel en Colombia y su cadena de suministro. In Editorial: Universidad del Norte. | spa |
dc.relation.references | Lopresto, C. G., De Paola, M. G., & Calabrò, V. (2024). Importance of the properties, collection, and storage of waste cooking oils to produce high-quality biodiesel – An overview. Biomass and Bioenergy, 189, 107363. https://doi.org/10.1016/j.biombioe.2024.107363 | spa |
dc.relation.references | Lutze, P., Gani, R., & Woodley, J. M. (2010). Process intensification: A perspective on process synthesis. Chemical Engineering and Processing: Process Intensification, 49(6). https://doi.org/10.1016/j.cep.2010.05.002 | spa |
dc.relation.references | Ma, Y., Hu, Y., Fang, Y., Li, Q., Huang, Q., Shang, Q., Zhang, M., Li, S., Jia, P., & Zhou, Y. (2024). Recent advances in vegetable oil based fine chemicals and polymers. Green Materials, 1–22. https://doi.org/10.1680/jgrma.24.00083 | spa |
dc.relation.references | Maddikeri, G. L., Pandit, A. B., & Gogate, P. R. (2012). Intensification approaches for biodiesel synthesis from waste cooking oil: A review. In Industrial and Engineering Chemistry Research (Vol. 51, Issue 45). https://doi.org/10.1021/ie301675j | spa |
dc.relation.references | Maiti, S. K., Snavely, W. K., Venkitasubramanian, P., Hagberg, E. C., Busch, D. H., & Subramaniam, B. (2019). Reaction Engineering Studies of the Epoxidation of Fatty Acid Methyl Esters with Venturello Complex. Industrial and Engineering Chemistry Research, 58(7), 2514–2523. https://doi.org/10.1021/acs.iecr.8b05977 | spa |
dc.relation.references | Makwell Plastisizers. (2020). Epoxidised soybean oil. https://www.makwellplastisizers.com/epoxidised-soybean-oil.html | spa |
dc.relation.references | Markets and Markets. (2017). Epoxidized Soybean Oil (ESBO) Market by Raw Material, Application, End-use Application & Geography | COVID-19 Impact Analysis |MarketsandMarkets. https://www.marketsandmarkets.com/Market-Reports/epoxidized-soybean-oil-market-27777113.html | spa |
dc.relation.references | Marmesat, S., Rodrigues, E., Velasco, J., & Dobarganes, C. (2007). Quality of used frying fats and oils: Comparison of rapid tests based on chemical and physical oil properties. International Journal of Food Science and Technology, 42(5). https://doi.org/10.1111/j.1365-2621.2006.01284.x | spa |
dc.relation.references | Marriam, F., Irshad, A., Umer, I., Asghar, M. A., & Atif, M. (2023). Vegetable oils as bio-based precursors for epoxies. Sustainable Chemistry and Pharmacy, 31, 100935. https://doi.org/10.1016/j.scp.2022.100935 | spa |
dc.relation.references | Mashhadi, F., Habibi, A., & Varmira, K. (2018). Enzymatic production of green epoxides from fatty acids present in soapstock in a microchannel bioreactor. Industrial Crops and Products, 113, 324–334. https://doi.org/10.1016/j.indcrop.2018.01.052 | spa |
dc.relation.references | Medina, S., Sierra, C., & Orjuela, A. (2006). Producción de polioles a partir de aceites vegetales para formualción de sistemas de poliuretano. Memorias XXI Interamerican Confederation of Chemical Engineering, 45–46. | spa |
dc.relation.references | Metzger, J. O., & Biermann, U. (2006). Sustainable development and renewable feedstocks for chemical industry. ACS Symposium Series, 921. https://doi.org/10.1021/bk-2006-0921.ch002 | spa |
dc.relation.references | Miéville, P., & Nanteuil, F. de. (2024). Modern Automation in Organic Synthesis Laboratories. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Elsevier. https://doi.org/10.1016/B978-0-323-96025-0.00047-8 | spa |
dc.relation.references | Milchert, E., Smagowicz, A., & Lewandowski, G. (2010). Optimization of the reaction parameters of epoxidation of rapeseed oil with peracetic acid. Journal of Chemical Technology and Biotechnology, 85(8). https://doi.org/10.1002/jctb.2405 | spa |
dc.relation.references | Ministerio de Ambiente y Desarrollo Sostenible, C. (2018). Resolución No. 316. Ministry of Environment and Development in Colombia. | spa |
dc.relation.references | Mioč, U., Davidović, M., Tjapkin, N., Colomban, P., & Novak, A. (1991). Equilibrium of the protonic species in hydrates of some heteropolyacids at elevated temperatures. Solid State Ionics, 46(1–2). https://doi.org/10.1016/0167-2738(91)90136-Y | spa |
dc.relation.references | Miyake, Y., Yokomizo, K., & Matsuzaki, N. (1998). Determination of unsaturated fatty acid composition by high-resolution nuclear magnetic resonance spectroscopy. JAOCS, Journal of the American Oil Chemists’ Society, 75(9). https://doi.org/10.1007/s11746-998-0118-4 | spa |
dc.relation.references | MPOC. (2021). Daily Palm Oil Price – MPOC. http://mpoc.org.my/daily-palm-oil-price/ | spa |
dc.relation.references | Mukhtar Gunam Resul, M. F., Rehman, A., Saleem, F., Usman, M., López Fernández, A. M., Eze, V. C., & Harvey, A. P. (2023). Recent advances in catalytic and noncatalytic epoxidation of terpenes: a pathway to bio-based polymers from waste biomass. In RSC Advances (Vol. 13, Issue 47). https://doi.org/10.1039/d3ra04870e | spa |
dc.relation.references | Noshi, M. N. (2013). Phosphotungstic Acid Hydrate. In Encyclopedia of Reagents for Organic Synthesis. https://doi.org/10.1002/047084289x.rn01615 | spa |
dc.relation.references | NTC 2366:2000 (2000). | spa |
dc.relation.references | Oleoline. (2021). Oleochemical Market Report :: Oleoline. https://www.oleoline.com/products/Oleochemical-Market-Report-4.html | spa |
dc.relation.references | Olivieri, G. V., & Giudici, R. (2023). CFD and reaction aspects for the soybean oil epoxidation in a millireactor. Chemical Engineering and Processing - Process Intensification, 193, 109557. https://doi.org/10.1016/j.cep.2023.109557 | spa |
dc.relation.references | Olivieri, G. V., Meira, P. A., de Mattos, T. T., Okuda, H. M., de Quadros, J. V., Palma, M. S. A., & Giudici, R. (2023). Microreactor x millireactor: Experimental performance in the epoxidation of soybean oil. Chemical Engineering and Processing - Process Intensification, 193, 109562. https://doi.org/10.1016/j.cep.2023.109562 | spa |
dc.relation.references | Orjuela, A. (2020). Industrial Oleochemicals from Used Cooking Oils (UCOs). In Advances in Carbon Management Technologies. https://doi.org/10.1201/9781003056157-6 | spa |
dc.relation.references | Orjuela, A., & Clark, J. (2020). Green chemicals from used cooking oils: Trends, challenges, and opportunities. Current Opinion in Green and Sustainable Chemistry, 26. https://doi.org/10.1016/j.cogsc.2020.100369 | spa |
dc.relation.references | Pai, Z. P., Chesalov, Y. A., Berdnikova, P. V., Uslamin, E. A., Yushchenko, D. Y., Uchenova, Y. V., Khlebnikova, T. B., Baltakhinov, V. P., Kochubey, D. I., & Bukhtiyarov, V. I. (2020). Tungsten Peroxopolyoxo Complexes as Advanced Catalysts for the Oxidation of Organic Compounds with Hydrogen Peroxide. Applied Catalysis A: General, 604, 117786. https://doi.org/10.1016/j.apcata.2020.117786 | spa |
dc.relation.references | Palermo, V. (2012). Síntesis y caracterización de heteropoliácidos constituyendo materiales híbridos para su aplicación como catalizadores en la oxidación ecocompatible de sulfuros. Universidad Nacional de la Plata. | spa |
dc.relation.references | Papaconstantinou, E., Dimotikali, D., & Politou, A. (1980). Photochemistry of heteropoly electrolytes. The 18-molybdodiphosphate. Inorganica Chimica Acta, 43(C). https://doi.org/10.1016/S0020-1693(00)90521-8 | spa |
dc.relation.references | Phan, A. N., & Phan, T. M. (2008). Biodiesel production from waste cooking oils. Fuel, 87(17–18). https://doi.org/10.1016/j.fuel.2008.07.008 | spa |
dc.relation.references | Phimsen, S., Yamada, H., Tagawa, T., Kiatkittipong, W., Kiatkittipong, K., Laosiripojana, N., & Assabumrungrat, S. (2017). Epoxidation of methyl oleate in a TiO2 coated-wall capillary microreactor. Chemical Engineering Journal, 314, 594–599. https://doi.org/10.1016/j.cej.2016.12.017 | spa |
dc.relation.references | Plante, M., Bailey, B., & Acworth, I. N. (2014). Characterization of Used Cooking Oils by High Performance Liquid Chromatography and Corona Charged Aerosol Detection. Thermo Fisher. | spa |
dc.relation.references | Polar Industries, Inc. (2021). HiBond TM Epoxidized Oil. http://polarindustries.net/EpoxidizedOil.html | spa |
dc.relation.references | Poli, E., Clacens, J. M., Barrault, J., & Pouilloux, Y. (2009). Solvent-free selective epoxidation of fatty esters over a tungsten-based catalyst. Catalysis Today, 140(1–2). https://doi.org/10.1016/j.cattod.2008.07.004 | spa |
dc.relation.references | Ponce-Ortega, J. M., Al-Thubaiti, M. M., & El-Halwagi, M. M. (2012). Process intensification: New understanding and systematic approach. Chemical Engineering and Processing: Process Intensification, 53. https://doi.org/10.1016/j.cep.2011.12.010 | spa |
dc.relation.references | Qiao, Y., Hou, Z., Li, H., Hu, Y., Feng, B., Wang, X., Hua, L., & Huang, Q. (2009). Polyoxometalate-based protic alkylimidazolium salts as reaction-induced phaseseparation catalysts for olefin epoxidation. Green Chemistry, 11(12). https://doi.org/10.1039/b916766h | spa |
dc.relation.references | Rafiee, E., & Eavani, S. (2016). Heterogenization of heteropoly compounds: A review of their structure and synthesis. In RSC Advances (Vol. 6, Issue 52). https://doi.org/10.1039/c6ra04891a | spa |
dc.relation.references | Rajisha, K. R., Deepa, B., Pothan, L. A., & Thomas, S. (2011). Thermomechanical and spectroscopic characterization of natural fibre composites. In Interface Engineering of Natural Fibre Composites for Maximum Performance. https://doi.org/10.1016/B978-1-84569-742-6.50009-5 | spa |
dc.relation.references | Ramadhas, A. S., Jayaraj, S., & Muraleedharan, C. (2005). Biodiesel production from high FFA rubber seed oil. Fuel, 84(4). https://doi.org/10.1016/j.fuel.2004.09.016 | spa |
dc.relation.references | Ramírez J., L. M. (2020). Modelo cinético para la reacción de epoxidación de aceite vegetal usado. Universidad Nacional de Colombia. | spa |
dc.relation.references | Ramírez, L. M., Cadavid, J. G., Orjuela, A., Gutiérrez, M. F., & Bohórquez, W. F. (2022). Epoxidation of used cooking oils: Kinetic modeling and reaction optimization. Chemical Engineering & Processing: Process Intensification, 176. https://doi.org/10.1016/j.cep.2022.108963 | spa |
dc.relation.references | Rangarajan, B., Havey, A., Grulke, E. A., & Culnan, P. D. (1995). Kinetic parameters of a two-phase model for in situ epoxidation of soybean oil. Journal of the American Oil Chemists’ Society, 72(10), 1161–1169. https://doi.org/10.1007/BF02540983 | spa |
dc.relation.references | Raval, N., Maheshwari, R., Kalyane, D., Youngren-Ortiz, S. R., Chougule, M. B., & Tekade, R. K. (2018). Importance of physicochemical characterization of nanoparticles in pharmaceutical product development. In Basic Fundamentals of Drug Delivery. https://doi.org/10.1016/B978-0-12-817909-3.00010-8 | spa |
dc.relation.references | Research and Markets. (2020). Renewable Chemicals Market - Forecasts from 2020 to 2025. https://www.researchandmarkets.com/reports/5009215/renewable-chemicalsmarket- forecasts-from-2020 | spa |
dc.relation.references | Rezvani, M. A., Asli, M. A., Khandan, S., Mousavi, H., & Aghbolagh, Z. S. (2017). Synthesis and characterization of new nanocomposite CTAB-PTA@CS as an efficient heterogeneous catalyst for oxidative desulphurization of gasoline. Chemical Engineering Journal, 312. https://doi.org/10.1016/j.cej.2016.11.137 | spa |
dc.relation.references | Rincón, L. A. (2019). Reutilización de aceites de cocina usados en aceites epoxidados. Universidad Nacional de Colombia. | spa |
dc.relation.references | Rincón, L. A., Cadavid, J. G., & Orjuela, A. (2019). Used cooking oils as potential oleochemical feedstock for urban biorefineries – Study case in Bogota, Colombia. Waste Management, 88, 200–210. https://doi.org/10.1016/j.wasman.2019.03.042 | spa |
dc.relation.references | Rincón, L. A., Ramírez, J. C., & Orjuela, A. (2021). Assessment of degumming and bleaching processes for used cooking oils upgrading into oleochemical feedstocks. Journal of Environmental Chemical Engineering, 9(1). https://doi.org/10.1016/j.jece.2020.104610 | spa |
dc.relation.references | Rios, L. A., Weckes, P., Schuster, H., & Hoelderich, W. F. (2005). Mesoporous and amorphous Ti-silicas on the epoxidation of vegetable oils. Journal of Catalysis, 232(1). https://doi.org/10.1016/j.jcat.2005.02.011 | spa |
dc.relation.references | Rohm and Haas. (2014). Product data sheet AMBERLITETM IR120 H. Industrial Grade Strong Acid Cation Exchanger. | spa |
dc.relation.references | Rohm and Hass. (2005). AMBERLYSTTM 15DRY Industrial Grade Strongly Acidic Catalyst. | spa |
dc.relation.references | Romanelli, G. P., Autino, J. C., Blanco, M. N., & Pizzio, L. R. (2005). Tungstosilicate salts as catalysts in phenol tetrahydropyranylation and depyranylation. Applied Catalysis A: General, 295(2). https://doi.org/10.1016/j.apcata.2005.08.019 | spa |
dc.relation.references | Rüsch, M., & Warwel, S. (1999). Complete and partial epoxidation of plant oils by lipasecatalyzed perhydrolysis. Industrial Crops and Products, 9(2). https://doi.org/10.1016/S0926-6690(98)00023-5 | spa |
dc.relation.references | Sanli, H., Canakci, M., & Alptekin, E. (2011). Characterization of Waste Frying Oils Obtained from Different Facilities. Bioenergy Technology, 479–485. https://doi.org/10.3384 | spa |
dc.relation.references | Santacesaria, E., Renken, A., Russo, V., Turco, R., Tesser, R., & Di Serio, M. (2012). Biphasic model describing soybean oil epoxidation with H2O2 in continuous reactors. Industrial and Engineering Chemistry Research, 51(26), 8760–8767. https://doi.org/10.1021/ie2016174 | spa |
dc.relation.references | Santacesaria, E., Tesser, R., Serio, M. Di, Russo, V., & Turco, R. (2011). A new simple microchannel device to test process intensification. Industrial and Engineering Chemistry Research, 50(5), 2569–2575. https://doi.org/10.1021/ie1006307 | spa |
dc.relation.references | Santacesaria, E., Turco, R., Russo, V., Tesser, R., & Di, M. (2020). Soybean oil epoxidation: Kinetics of the epoxide ring opening reactions. Processes, 8(9), 1134. https://doi.org/10.3390/PR8091134 | spa |
dc.relation.references | Sarmah, N., Mehtab, V., Borah, K., Palanisamy, A., Parthasarathy, R., & Chenna, S. (2024). Inverse design of chemoenzymatic epoxidation of soyabean oil through artificial intelligence-driven experimental approach. Bioresource Technology, 412,131405. https://doi.org/10.1016/j.biortech.2024.131405 | spa |
dc.relation.references | Scheiff, F., Mendorf, M., Agar, D., Reis, N., & MacKley, M. (2011). The separation of immiscible liquid slugs within plastic microchannels using a metallic hydrophilic sidestream. Lab on a Chip, 11(6), 1022–1029. https://doi.org/10.1039/C0LC00442A | spa |
dc.relation.references | Schröter, S., & Schnitzlein, K. (2018). Enzymatic hydrolysis of rapeseed oil by Thermomyces lanuginosus lipase: variation of continuous and dispersed phase in a slug flow reactor. Applied Microbiology and Biotechnology, 102(11), 4799–4806. https://doi.org/10.1007/s00253-018-8902-z | spa |
dc.relation.references | Seifrid, M., Pollice, R., Aguilar-Granda, A., Morgan Chan, Z., Hotta, K., Ser, C. T., Vestfrid, J., Wu, T. C., & Aspuru-Guzik, A. (2022). Autonomous Chemical Experiments: Challenges and Perspectives on Establishing a Self-Driving Lab. Accounts of Chemical Research, 55(17). https://doi.org/10.1021/acs.accounts.2c00220 | spa |
dc.relation.references | Sienel, G., Rieth, R., & Rowbottom, K. T. (2000). Epoxides. In Ullmann’s Encyclopedia of Industrial Chemistry. https://doi.org/10.1002/14356007.a09 | spa |
dc.relation.references | Sinadinović-Fišer, S., Janković, M., & Petrović, Z. S. (2001). Kinetics of in situ epoxidation of soybean oil in bulk catalyzed by ion exchange resin. JAOCS, Journal of the American Oil Chemists’ Society, 78(7). https://doi.org/10.1007/s11746-001-0333-9 | spa |
dc.relation.references | Singh, R. P. (2000). Food Frying. In Food Engineering (Vol.III). | spa |
dc.relation.references | Sotowa, K. I. (2014). Fluid behavior and mass transport characteristics of gas-liquid and liquid-liquid flows in microchannels. Journal of Chemical Engineering of Japan, 47(3), 213–224. https://doi.org/10.1252/jcej.13we141 | spa |
dc.relation.references | Spendley, W., Hext, G. R., & Himsworth, F. R. (1962). Sequential Application of Simplex Designs in Optimisation and Evolutionary Operation. Technometrics, 4(4), 441–461. https://doi.org/10.1080/00401706.1962.10490033 | spa |
dc.relation.references | Stankiewicz, A., Gerven, T. V., & Stefanidis, G. (2019). The Fundamentals of Process Intensification (1st ed.). Wiley-VCH. | spa |
dc.relation.references | Stewart, M. (2016). Fluid flow and pressure drop. In Surface Production Operations. https://doi.org/10.1016/b978-1-85617-808-2.00006-7 | spa |
dc.relation.references | Strandberg, R., Haaland, A., Novak, D. P., Andresen, A. F., Southern, J. T., Edlund, K., Eliasen, M., Herskind, C., Laursen, T., & Pedersen, P. M. (1975). Multicomponent Polyanions. 13. The Crystal Structure of a Hydrated Dodecamolybdophosphoric Acid, H3Mo12PO40(H2O)29-31. Acta Chemica Scandinavica, 29a. https://doi.org/10.3891/acta.chem.scand.29a-0359 | spa |
dc.relation.references | Suzuki, A. H., Botelho, B. G., Oliveira, L. S., & Franca, A. S. (2018). Sustainable synthesis of epoxidized waste cooking oil and its application as a plasticizer for polyvinyl chloride films. European Polymer Journal, 99. https://doi.org/10.1016/j.eurpolymj.2017.12.014 | spa |
dc.relation.references | Swern, D. (1970). Organic Peroxides: Volume 1. Wiley-Interscience. | spa |
dc.relation.references | Talebian-Kiakalaieh, A., Amin, N. A. S., & Mazaheri, H. (2013). A review on novel processes of biodiesel production from waste cooking oil. In Applied Energy (Vol.104). https://doi.org/10.1016/j.apenergy.2012.11.061 | spa |
dc.relation.references | Tarmizi, A. H., Samsul, K. R., Zaiton, R., & Rosli, M. Y. (2008). Multiplication of oil palm liquid cultures in bioreactors. Journal of Oil Palm Research, SPEC. ISS. APRIL. | spa |
dc.relation.references | Teixeira, M. R., Nogueira, R., & Nunes, L. M. (2018). Quantitative assessment of the valorisation of used cooking oils in 23 countries. Waste Management, 78, 611–620. https://doi.org/10.1016/j.wasman.2018.06.039 | spa |
dc.relation.references | The Chemical Company. (2021). ChemFlexx Epoxidized Soybean Oil (ESO) - The Chemical Company. https://thechemco.com/chemical/epoxidized-soybean-oil/ | spa |
dc.relation.references | Tomasevic, A. V., & Siler-Marinkovic, S. S. (2003). Methanolysis of used frying oil. Fuel Processing Technology, 81(1). https://doi.org/10.1016/S0378-3820(02)00096-6 | spa |
dc.relation.references | Trivedi, J., Bhonsle, A. K., & Atray, N. (2019). Processing food waste for the production of platform chemicals. In Refining Biomass Residues for Sustainable Energy and Bioproducts: Technology, Advances, Life Cycle Assessment, and Economics. https://doi.org/10.1016/B978-0-12-818996-2.00019-3 | spa |
dc.relation.references | Tsoutsos, T. D., Tournaki, S., Paraíba, O., & Kaminaris, S. D. (2016). The Used Cooking Oil-to-biodiesel chain in Europe assessment of best practices and environmental performance. In Renewable and Sustainable Energy Reviews (Vol. 54). https://doi.org/10.1016/j.rser.2015.09.039 | spa |
dc.relation.references | Turco, R., Vitiello, R., Russo, V., Tesser, R., Santacesaria, E., & Di Serio, M. (2013). Selective epoxidation of soybean oil with performic acid catalyzed by acidic ionic exchange resins. Green Processing and Synthesis, 2(5). https://doi.org/10.1515/gps-2013-0045 | spa |
dc.relation.references | Tyagi, V., Tiwati, P., & Gaur, V. (2008). Influence of acidic catalysts on epoxidation of soybean oil using per acid formed in-situ. 105–112. UNIPOX. (2021). ACEITES VEGETALES EPOXIDADOS. https://unipoxpvc.com.ar/aceites-vegetales-epoxidados/ | spa |
dc.relation.references | Vaccaro, L. (2017). Sustainable flow chemistry: Methods and applications. In Sustainable Flow Chemistry: Methods and Applications. https://doi.org/10.1002/9783527689118 | spa |
dc.relation.references | Valdez, I. L., Farfan, O., Sterner, O., & Giménez Turba, A. (2009). Preliminary studies about the chemical characterization of fatty acids from Bertholletia excelsa fruit’s oil by gas chromatography. Biofarbo, 47–53. | spa |
dc.relation.references | Valtris. (2021). Plas-Chek® 775 – Valtris. https://www.valtris.com/product/plas-chek-775/ | spa |
dc.relation.references | Vanoye, L., Hamami, Z. E., Wang, J., de Bellefon, C., Fongarland, P., & Favre-Réguillon, A. (2017). Epoxidation of methyl oleate with molecular oxygen: Implementation of Mukaiyama reaction in flow. European Journal of Lipid Science and Technology, 119(5), 1–7. https://doi.org/10.1002/ejlt.201600281 | spa |
dc.relation.references | Venturello, C., & D’Aloisio, R. (1988). Quaternary Ammonium Tetrakis(diperoxotungsto)phosphates(3-) as a New Class of Catalysts for Efficient Alkene Epoxidation with Hydrogen Peroxide. Journal of Organic Chemistry, 53(7). https://doi.org/10.1021/jo00242a041 | spa |
dc.relation.references | Verified market research. (2020). Global Epoxidized Soybean Oil Market Size By Raw Material, By Application, By End-User, By Geographic Scope And Forecast. | spa |
dc.relation.references | Verma, R. K., & Ghosh, S. (2019). Two‐Phase Flow in Miniature Geometries: Comparison of Gas‐Liquid and Liquid‐Liquid Flows. ChemBioEng Reviews, 6(1), 5–16. https://doi.org/10.1002/cben.201800016 | spa |
dc.relation.references | Voskian, A., & Voskian, S. (2016). Regulation of Plasticizers Under EU REACH and RoHS. | spa |
dc.relation.references | Wai, P. T., Jiang, P., Shen, Y., Zhang, P., Gu, Q., & Leng, Y. (2019). Catalytic developments in the epoxidation of vegetable oils and the analysis methods of epoxidized products. In RSC Advances (Vol. 9, Issue 65). https://doi.org/10.1039/c9ra05943a | spa |
dc.relation.references | Wang, X. S., Huang, Y. B., Lin, Z. J., & Cao, R. (2014). Phosphotungstic acid encapsulated in the mesocages of amine-functionalized metal-organic frameworks for catalytic oxidative desulfurization. Dalton Transactions, 43(31). https://doi.org/10.1039/c4dt01043d | spa |
dc.relation.references | Wang, X., Wang, Y., Li, F., Li, L., Ge, X., Zhang, S., & Qiu, T. (2020). Scale-up of microreactor: Effects of hydrodynamic diameter on liquid–liquid flow and mass transfer. Chemical Engineering Science, 226. https://doi.org/10.1016/j.ces.2020.115838 | spa |
dc.relation.references | Wentzel, B. B., Alsters, P. L., Feiters, M. C., & Nolte, R. J. M. (2004). Mechanistic Studies on the Mukaiyama Epoxidation. Journal of Organic Chemistry, 69(10). https://doi.org/10.1021/jo030345a | spa |
dc.relation.references | Wu, J., Jiang, P., Qin, X., Ye, Y., & Leng, Y. (2014). Peroxopolyoxotungsten-based ionic hybrid as a highly efficient recyclable catalyst for epoxidation of vegetable oil with H2O2. Bulletin of the Korean Chemical Society, 35(6). https://doi.org/10.5012/bkcs.2014.35.6.1675 | spa |
dc.relation.references | Xu, L., Yang, F., Li, X., Zhao, C., Jin, Q., Huang, J., & Wang, X. (2019). Kinetics of forming polar compounds in frying oils under frying practice of fast food restaurants. LWT, 115. https://doi.org/10.1016/j.lwt.2019.108307 | spa |
dc.relation.references | Yaakob, Z., Mohammad, M., Alherbawi, M., Alam, Z., & Sopian, K. (2013). Overview of the production of biodiesel from Waste cooking oil. In Renewable and Sustainable Energy Reviews (Vol. 18). https://doi.org/10.1016/j.rser.2012.10.016 | spa |
dc.relation.references | Yadav, G. D., & Manjula Devi, K. (2001). A kinetic model for the enzyme-catalyzed selfepoxidation of oleic acid. JAOCS, Journal of the American Oil Chemists’ Society, 78(4). https://doi.org/10.1007/s11746-001-0267-2 | spa |
dc.relation.references | Yadav, G. D., & Pujari, A. A. (2000a). Epoxidation of styrene to styrene oxide: Synergism of heteropoly acid and phase-transfer catalyst under Ishii-Venturello mechanism. Organic Process Research and Development, 4(2). https://doi.org/10.1021/op990055p | spa |
dc.relation.references | Yadav, G. D., & Pujari, A. A. (2000b). Epoxidation of styrene to styrene oxide: Synergism of heteropoly acid and phase-transfer catalyst under Ishii-Venturello mechanism. Organic Process Research and Development, 4(2). https://doi.org/10.1021/op990055p | spa |
dc.relation.references | Yan, Z., Tian, J., Wang, K., Nigam, K. D. P., & Luo, G. (2021). Microreaction processes for synthesis and utilization of epoxides: A review. Chemical Engineering Science, 229, 116071. https://doi.org/10.1016/j.ces.2020.116071 | spa |
dc.relation.references | Yao, X., Zhang, Y., Du, L., Liu, H., & Jiang, S. (2016). Efficient continuous epoxidation of biodiesel in a microstructured reactor. Korean Journal of Chemical Engineering, 33(9), 2622–2627. https://doi.org/10.1007/s11814-016-0115-5 | spa |
dc.relation.references | Yarbro, L. A., & Deming, S. N. (1974). Selection and preprocessing of factors for simplex optimization. Analytica Chimica Acta, 73(2), 391–398. https://doi.org/10.1016/S0003-2670(01)85476-3 | spa |
dc.relation.references | Yu, Z., Chen, X., Zhang, Y., Tu, H., Pan, P., Li, S., Han, Y., Piao, M., Hu, J., Shi, F., & Yang, X. (2022). Phosphotungstic acid and propylsulfonic acid bifunctionalized ordered mesoporous silica: A highly efficient and reusable catalysts for esterification of oleic acid. Chemical Engineering Journal, 430. https://doi.org/10.1016/j.cej.2021.133059 | spa |
dc.relation.references | Yun, D., Ayla, E. Z., Bregante, D. T., & Flaherty, D. W. (2021). Reactive Species and Reaction Pathways for the Oxidative Cleavage of 4-Octene and Oleic Acid with H2O2over Tungsten Oxide Catalysts. ACS Catalysis, 11(5), 3137–3152. https://doi.org/10.1021/ACSCATAL.0C05393/SUPPL_FILE/CS0C05393_SI_001. PDF | spa |
dc.relation.references | Zaher, F. A., El-Mallah, M. H., & El-Hefnawy, M. M. (1989). Kinetics of oxirane cleavage in epoxidized soybean oil. Journal of the American Oil Chemists’ Society, 66(5). https://doi.org/10.1007/BF02669955 | spa |
dc.relation.references | Zhang, F., Chen, M., Jia, X., Xu, W., & Shi, N. (2019). Research on the effect of resin on the thermal stability of hydrogen peroxide. Process Safety and Environmental Protection, 126. https://doi.org/10.1016/j.psep.2019.03.040 | spa |
dc.relation.references | Zhang, F., Dong, Y., Lin, S., Gui, X., & Hu, J. (2023). A novel amphiphilic phase transfer catalyst for the green epoxidation of soybean oil with hydrogen peroxide. Molecular Catalysis, 547, 113384. https://doi.org/10.1016/j.mcat.2023.113384 | spa |
dc.relation.references | Zhang, H., Yang, H., Guo, H., Yang, J., Xiong, L., Huang, C., Chen, X., Ma, L., & Chen, Y. (2014). Solvent-free selective epoxidation of soybean oil catalyzed by peroxophosphotungstate supported on palygorskite. Applied Clay Science, 90. https://doi.org/10.1016/j.clay.2014.01.015 | spa |
dc.relation.references | Zhang, J., Wang, K., Teixeira, A. R., Jensen, K. F., & Luo, G. (2017). Design and scaling up of microchemical systems: A review. In Annual Review of Chemical and Biomolecular Engineering (Vol. 8). https://doi.org/10.1146/annurev-chembioeng-060816-101443 | spa |
dc.relation.references | Zuleta, S. E., M., M. M., Avendaño, G. I., & Diaz, L. C. (2013). Epoxidación de oleíma de palma con ácido peroxiacético formado in situ. Biotecnología En El Sector Agropecuario y Agroindustrial, 235–244. | spa |
dc.relation.references | Zuwei, X., Ning, Z., Yu, S., & Kunlan, L. (2001). Reaction-controlled phase-transfer catalysis for propylene epoxidation to propylene oxide. Science, 292(5519). https://doi.org/10.1126/science.292.5519.1139 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 660 - Ingeniería química::665 - Tecnología de aceites, grasas, ceras, gases industriales | spa |
dc.subject.lemb | RECUPERACION DE ACEITES USADOS | spa |
dc.subject.lemb | Oil reclamation | eng |
dc.subject.lemb | CATALISIS DE TRANSFERENCIA DE FASE | spa |
dc.subject.lemb | Phase-transfer catalysis | eng |
dc.subject.lemb | AGENTES TENSOACTIVOS | spa |
dc.subject.lemb | Surface active agents | eng |
dc.subject.lemb | BIOTENSOACTIVOS | spa |
dc.subject.lemb | Biosurfactants | eng |
dc.subject.proposal | Vegetable oils | eng |
dc.subject.proposal | Waste valorization | eng |
dc.subject.proposal | Chemical reactions | eng |
dc.subject.proposal | Epoxidation | eng |
dc.subject.proposal | Phase- transfer catalysis | eng |
dc.subject.proposal | Mathematical optimization | eng |
dc.subject.proposal | Automation | eng |
dc.subject.proposal | Intensification | eng |
dc.subject.proposal | Aceites vegetales | spa |
dc.subject.proposal | Valorización de residuo | spa |
dc.subject.proposal | Reacciones químicas | spa |
dc.subject.proposal | Epoxidación | spa |
dc.subject.proposal | Catálisis de transferencia de fase | spa |
dc.subject.proposal | Optimización matemática | spa |
dc.subject.proposal | Automatización | spa |
dc.subject.proposal | Intensificación | spa |
dc.title | Intensification in the epoxidation of used cooking oils using acid catalysts | eng |
dc.title.translated | Intensification de l'époxydation des huiles de cuisson usagées en utilisant des catalyseurs acidese | fra |
dc.title.translated | Intensificación en la epoxidación de aceites usados de cocina utilizando catalizadores ácidos | spa |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Image | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TD | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1018478517.2025.pdf
- Tamaño:
- 13.59 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de doctorado en Ingeniería Química
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: