Intensification in the epoxidation of used cooking oils using acid catalysts

dc.contributor.advisorOrjuela, Alvarospa
dc.contributor.advisorKatryniok, Benjaminspa
dc.contributor.authorCárdenas Ramírez, Julianaspa
dc.contributor.googlescholarJuliana Cardenas Ramirez [BFL-4vQAAAAJ]spa
dc.contributor.orcidJuliana Cardenas-Ramirez [0000-0003-1142-8064]spa
dc.contributor.researchgroupGrupo de Investigación en Procesos Químicos y Bioquímicosspa
dc.contributor.supervisorAraque, Marciaspa
dc.date.accessioned2025-03-10T13:14:22Z
dc.date.available2025-03-10T13:14:22Z
dc.date.issued2025
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractEste trabajo se centra en la intensificación del proceso de epoxidación de aceites usados de cocina (UCO) mediante catálisis de transferencia de fase y el uso de reactores de milifluidos de flujo segmentado. Se desarrolló un nuevo catalizador heteropoliácido (HPA) modificado mediante la hibridación del ácido fosfotúngstico con surfactantes, lo que le permitió actuar como catalizador de transferencia de fase y transportador de oxígeno, eliminando la necesidad de ácido peracético. Aunque la actividad catalítica mejoró, la selectividad hacia los grupos oxirano fue limitada, lo que requirió el uso de una resina de intercambio iónico ácida como co-catalizador para optimizar el rendimiento. Posteriormente, se empleó un reactor de flujo segmentado para intensificar el proceso, optimizando parámetros clave con aceite de soya como modelo y extendiendo luego el estudio a UCO. Se alcanzó hasta un 82 % de conversión, 86 % de selectividad y una productividad de 7,91 mL·min⁻¹, con un contenido de oxígeno oxirano del 4,02 % en peso. Los resultados demuestran el potencial de los reactores de flujo segmentado para una epoxidación eficiente y escalable, contribuyendo a la producción sostenible de oleoquímicos de segunda generación a partir de aceites residuales (Texto tomado de la fuente).spa
dc.description.abstractThis work focuses on the intensification of the epoxidation process of used cooking oils (UCO) through phase-transfer catalysis and continuous slug-flow millireactors. A novel modified heteropolyacid (HPA) catalyst was developed by hybridizing phosphotungstic acid with surfactants, acting as both phase-transfer catalyst and oxygen carrier, eliminating the need for peracetic acid. While catalytic activity was enhanced, selectivity towards oxirane groups was limited, requiring an acid ion exchange resin as a co-catalyst to improve performance. A slug-flow millireactor was then employed for process intensification, optimizing key parameters using soybean oil as a model and later extending the study to UCO. The process achieved up to 82% conversion, 86% selectivity, and 7.91 mL·min⁻¹ productivity, with a 4.02% wt. oxirane oxygen content. Results demonstrate the potential of continuous slug-flow reactors for efficient and scalable epoxidation, contributing to the sustainable production of second-generation oleochemicals from waste oils.eng
dc.description.abstractCe travail porte sur l’intensification du processus d’époxydation des huiles de cuisson usagées (UCO) par catalyse de transfert de phase et l’utilisation de réacteurs millifuidiques à flux segmenté. Un nouveau catalyseur d’acide hétéropolyacide (HPA) modifié a été développé en hybridant l’acide phosphotungstique avec des tensioactifs, agissant à la fois comme catalyseur de transfert de phase et transporteur d’oxygène, éliminant ainsi le besoin d’acide peracétique. Bien que l’activité catalytique ait été améliorée, la sélectivité vis-à-vis des groupes oxirane était limitée, nécessitant l’ajout d’une résine échangeuse d’ions acides comme co-catalyseur pour optimiser les performances. Un réacteur à flux segmenté a ensuite été utilisé pour intensifier le processus, en optimisant les paramètres clés avec l’huile de soja comme substrat modèle, puis en étendant l’étude aux UCO. Le procédé a permis d’atteindre jusqu’à 82 % de conversion, 86 % de sélectivité et une productivité de 7.91 mL·min⁻¹, avec une teneur en oxygène oxiranique de 4.02 % en poids. Ces résultats démontrent le potentiel des réacteurs à flux segmenté pour une époxydation efficace et évolutive, contribuant à la production durable d’oléochimiques de seconde génération à partir d’huiles usagées.fra
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingeniería Químicaspa
dc.description.researchareaBiorefineries – Biofuelsspa
dc.description.sponsorshipPrograma ECOSNORD, Minciencias Contract 487-2021spa
dc.description.sponsorshipMinciencias Contract 933-2023spa
dc.description.sponsorshipDAAD research scholarship 2023/2024spa
dc.description.sponsorshipMax Planck Institute of Colloids and Interfacesspa
dc.format.extent208 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87623
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Químicaspa
dc.relation.referencesAbdullah, B. M., & Salimon, J. (2010). Epoxidation of vegetable oils and fatty acids: Catalysts, methods and advantages. Journal of Applied Sciences, 10(15). https://doi.org/10.3923/jas.2010.1545.1553spa
dc.relation.referencesAcme Hardesty. (2021). Epoxidized Soybean Oil Distributors (Jenkinol 680) - Acme-Hardesty. https://www.acme-hardesty.com/product/jenkinol-680-eso-epoxidizedsoybean-oil/spa
dc.relation.referencesADEKA. (2021). PLASTICIZERS|ADEKA. https://www.adeka.co.jp/en/chemical/products/pvc/pro121c.htmlspa
dc.relation.referencesAguilera, A. F., Tolvanen, P., Oger, A., Eränen, K., Leveneur, S., Mikkola, J. P., & Salmi, T. (2019). Screening of ion exchange resin catalysts for epoxidation of oleic acid under the influence of conventional and microwave heating. Journal of Chemical Technology and Biotechnology, 94(9). https://doi.org/10.1002/jctb.6112spa
dc.relation.referencesAlibaba. (2021). Products. https://www.alibaba.com/products/glyceryl_monostearate.htmlspa
dc.relation.referencesAntony, R., Giri Nandagopal, M. S., Sreekumar, N., Rangabhashiyam, S., & Selvaraju, N. (2014). Liquid-liquid slug flow in a microchannel reactor and its mass transfer properties - A review. Bulletin of Chemical Reaction Engineering and Catalysis, 9(3), 207–223. https://doi.org/10.9767/bcrec.9.3.6977.207-223spa
dc.relation.referencesArkema inc. (2014). Vikoflex ® 7170 Epoxidized Soybean Oil Data Sheet. 7–9.spa
dc.relation.referencesASTM. (2019a). Standard Test Method for Acid Number of Petroleum Products by Potentiometric Titration. ASTM D664-18e2. https://doi.org/10.1520/D0664-18E02spa
dc.relation.referencesASTM. (2019b). Standard Test Method for Epoxy Content of Epoxy Resins. Standard Test Method for Epoxy Content of Epoxy Resins D1652-11. https://doi.org/10.1520/D1652-11R19spa
dc.relation.referencesBansal, G., Zhou, W., Barlow, P. J., Joshi, P. S., Lo, H. L., & Chung, Y. K. (2010). Review of rapid tests available for measuring the quality changes in frying oils and comparison with standard methods. Critical Reviews in Food Science and Nutrition, 50(6). https://doi.org/10.1080/10408390802544611spa
dc.relation.referencesBenecke, H. P., Vijayendran, B. R., & Elhard, J. D. (2004). Plasticizers derived from vegetable oils (Patent 6,797,753 B2). In United State Patent (6,797,753 B2).https://patents.google.com/patent/US6797753B2/enspa
dc.relation.referencesBhalerao, M. S., Kulkarni, V. M., & Patwardhan, A. V. (2018). Ultrasound-assisted chemoenzymatic epoxidation of soybean oil by using lipase as biocatalyst. Ultrasonics Sonochemistry, 40. https://doi.org/10.1016/j.ultsonch.2017.08.042spa
dc.relation.referencesBohórquez, W. F., Orjuela, A., Rincón, P. C. N., Cadavid, J. G., & García-Nunez, J. A. (2022). Experimental optimization during epoxidation of a high-oleic palm oil using a simplex algorithm. Industrial Crops and Products, 187. https://doi.org/10.1016/j.indcrop.2022.115321spa
dc.relation.referencesBohórquez, W. F., Orjuela, A., Solarte, S. A., & García-Nunez, J. A. (2023). Natural Oil Polyol from High-Oleic Palm Oil─Reaction Kinetics and Monitoring Using Near-Infrared Spectroscopy. Industrial and Engineering Chemistry Research, 62(26). https://doi.org/10.1021/acs.iecr.3c01040spa
dc.relation.referencesBoravelli, J. A. R., & Vir, A. B. (2023). Chapter two - Liquid–liquid biphasic reactions in microreactor. In Process Intensification for Chemical and Biotechnology Industries: Fundamentals and Applications to Critical and Advanced Processes (pp.15–33). https://doi.org/10.1016/B978-0-323-95177-7.00002-3spa
dc.relation.referencesBorugadda, V. B., & Goud, V. V. (2016). Physicochemical and Rheological Characterization of Waste Cooking Oil Epoxide and Their Blends. Waste and Biomass Valorization, 7(1). https://doi.org/10.1007/s12649-015-9434-8spa
dc.relation.referencesBoyacá, L. A., & Beltrán, Á. A. (2010). Soybean epoxide production with in situ peracetic acid using homogeneous catalysis. Ingenieria e Investigacion, 30(1).spa
dc.relation.referencesBueno-Ferrer, C., Garrigós, M. C., & Jiménez, A. (2010). Characterization and thermal stability of poly(vinyl chloride) plasticized with epoxidized soybean oil for food packaging. Polymer Degradation and Stability, 95(11), 2207–2212. https://doi.org/10.1016/j.polymdegradstab.2010.01.027spa
dc.relation.referencesBuffon, R., & Schuchardt, U. (2003). Heterogenization of alkene epoxidation catalysts. In Journal of the Brazilian Chemical Society (Vol. 14, Issue 3). https://doi.org/10.1590/S0103-50532003000300002spa
dc.relation.referencesBurns, J. R., & Ramshaw, C. (2001). The intensification of rapid reactions in multiphase systems using slug flow in capillaries. Lab on a Chip, 1(1). https://doi.org/10.1039/b102818aspa
dc.relation.referencesByun, J. H., & Kim, C. H. (2014). A simplex evolutionary operation for mixture production processes. Quality Engineering, 26(4), 383–391. https://doi.org/10.1080/08982112.2013.830741spa
dc.relation.referencesCai, C., Dai, H., Chen, R., Su, C., Xu, X., Zhang, S., & Yang, L. (2008). Studies on the kinetics of in situ epoxidation of vegetable oils. European Journal of Lipid Science and Technology, 110(4). https://doi.org/10.1002/ejlt.200700104spa
dc.relation.referencesCai, J., Wu, Z., Gao, N., Xu, H., Wang, D., Zhou, F., & Nie, Y. (2022). Novel packed bed reactor designed for Prileschajew epoxidation of fatty acid methyl ester: Intensification of mass/heat transfer. Chemical Engineering and Processing - Process Intensification, 176, 108960. https://doi.org/10.1016/j.cep.2022.108960spa
dc.relation.referencesCai, X., Zheng, J. L., Aguilera, A. F., Vernières-Hassimi, L., Tolvanen, P., Salmi, T., & Leveneur, S. (2018). Influence of ring-opening reactions on the kinetics of cottonseed oil epoxidation. International Journal of Chemical Kinetics, 50(10). https://doi.org/10.1002/kin.21208spa
dc.relation.referencesCampanella, A., & Baltanás, M. A. (2005). Degradation of the oxirane ring of epoxidized vegetable oils with hydrogen peroxide using an ion exchange resin. Catalysis Today, 107–108. https://doi.org/10.1016/j.cattod.2005.07.092spa
dc.relation.referencesCampanella, A., Fontanini, C., & Baltanás, M. A. (2008a). High yield epoxidation of fatty acid methyl esters with performic acid generated in situ. Chemical Engineering Journal, 144(3). https://doi.org/10.1016/j.cej.2008.07.016spa
dc.relation.referencesCampanella, A., Fontanini, C., & Baltanás, M. A. (2008b). High yield epoxidation of fatty acid methyl esters with performic acid generated in situ. Chemical Engineering Journal, 144(3). https://doi.org/10.1016/j.cej.2008.07.016spa
dc.relation.referencesCárdenas, J., Katryniok, B., Araque, M., & Orjuela, A. (2024). Synthesis of a modified heteropolyacid and evaluation as a phase-transfer catalyst for soybean oil epoxidation. Chemical Engineering Research and Design, 215, 356–366. https://doi.org/10.1016/j.cherd.2024.10.010spa
dc.relation.referencesCárdenas, J., Katryniok, B., Araque, M., Seeberger, P. H., Danglad-Flores, J., & Orjuela, A. (2025). Intensified Epoxidation of Soybean Oil: Evaluation and Experimental Optimization in a Slug-Flow Millireactor. Chemical Engineering Journalspa
dc.relation.referencesCárdenas, J., Montañez, M. A., Orjuela, A., Narváez, P. C., & Katryniok, B. (2022). Deacidification of used cooking oils by solvent extraction under lab scale and in a falling film contactor. Chemical Engineering and Processing - Process Intensification, 181, 109089. https://doi.org/10.1016/j.cep.2022.109089spa
dc.relation.referencesCárdenas, J., Orjuela, A., Sánchez, D. L., Narváez, P. C., Katryniok, B., & Clark, J. (2021). Pre-treatment of used cooking oils for the production of green chemicals: A review. Journal of Cleaner Production, 289. https://doi.org/10.1016/j.jclepro.2020.125129spa
dc.relation.referencesCasuscelli, S. G., Crivello, M. E., Perez, C. F., Ghione, G., Herrero, E. R., Pizzio, L. R., Vázquez, P. G., Cáceres, C. V., & Blanco, M. N. (2004). Effect of reaction conditions on limonene epoxidation with H2O2 catalyzed by supported Keggin heteropolycompounds. Applied Catalysis A: General, 274(1–2). https://doi.org/10.1016/j.apcata.2004.05.043spa
dc.relation.referencesChattopadhyay, K., & Guthrie, R. I. L. (2014). Single Phase, Two Phase, and Multiphase Flows, and Methods to Model these Flows. In Treatise on Process Metallurgy (pp.527–553). Elsevier. https://doi.org/10.1016/B978-0-08-096984-8.00012-4spa
dc.relation.referencesChemodex. (2021). Epoxidized linseed oil - CAS-Number 8016-11-3 - . https://www.chemodex.com/products/epoxidized-linseed-oil/spa
dc.relation.referencesChen, J., Cheng, Y., Zhang, Q., Fang, C., Wu, L., Bai, M., & Yao, Y. (2019). Facile synthesis of mesoporous carbon microspheres/graphene composites: In situ for application in supercapacitors. RSC Advances, 9(55), 32258–32269. https://doi.org/10.1039/c9ra06191fspa
dc.relation.referencesCheng, W., Liu, G., Wang, X., Liu, X., & Jing, L. (2015). Kinetics of the epoxidation of soybean oil with H2O2 catalyzed by phosphotungstic heteropoly acid in the presence of polyethylene glycol. European Journal of Lipid Science and Technology, 117(8). https://doi.org/10.1002/ejlt.201400614spa
dc.relation.referencesChhabra, R. P., & Richardson, J. F. (1999). Flow of multi-phase mixtures in pipes. In Non-Newtonian Flow in the Process Industries (pp. 162–205). Elsevier. https://doi.org/10.1016/B978-075063770-1/50005-1spa
dc.relation.referencesChinthapalli, R., Skoczinski, P., Carus, M., Baltus, W., De Guzman, D., Käb, H., Raschka, A., & Ravenstijn, J. (2019). Biobased Building Blocks and Polymers - Global Capacities, Production and Trends, 2018-2023. Industrial Biotechnology,15(4). https://doi.org/10.1089/ind.2019.29179.rchspa
dc.relation.referencesCHS inc. (2013). CHS introduces PlastiSoy TM epoxidized soybean oil. https://www.chsinc.com/about-chs/news/news/2013/02/19/chs-introducesplastisoy-epoxidized-soybean-oilspa
dc.relation.referencesChua, S. C., Xu, X., & Guo, Z. (2012). Emerging sustainable technology for epoxidation directed toward plant oil-based plasticizers. Process Biochemistry, 47(10), 1439– 1451. https://doi.org/10.1016/j.procbio.2012.05.025spa
dc.relation.referencesCogliano, T., Russo, V., Eränen, K., Tesser, R., Di Serio, M., & Salmi, T. (2024). Epoxidation of vegetable oils in continuous device: kinetics, mass transfer and reactor modelling. Chemical Engineering Science, 294, 120079. https://doi.org/10.1016/j.ces.2024.120079spa
dc.relation.referencesCogliano, T., Turco, R., Di Serio, M., Salmi, T., Tesser, R., & Russo, V. (2024). Epoxidation of Vegetable Oils via the Prilezhaev Reaction Method: A Review of the Transition from Batch to Continuous Processes. Industrial and Engineering Chemistry Research, 63(26), 11231–11262. https://doi.org/10.1021/acs.iecr.3c04211spa
dc.relation.referencesCogliano, T., Turco, R., Russo, V., Di Serio, M., & Tesser, R. (2022). 1H NMR-based analytical method: A valid and rapid tool for the epoxidation processes. Industrial Crops and Products, 186, 115258. https://doi.org/10.1016/j.indcrop.2022.115258spa
dc.relation.referencesCorma Canos, A., Iborra, S., & Velty, A. (2007). Chemical routes for the transformation of biomass into chemicals. Chemical Reviews, 107(6), 2411–2502. https://doi.org/10.1021/cr050989dspa
dc.relation.referencesCvengroš, J., & Cvengrošová, Z. (2004). Used frying oils and fats and their utilization in the production of methyl esters of higher fatty acids. Biomass and Bioenergy, 27(2). https://doi.org/10.1016/j.biombioe.2003.11.006spa
dc.relation.referencesDANE. (2021). Encuesta anual manufacturera (EAM). https://www.dane.gov.co/index.php/estadisticas-por-tema/industria/encuesta-anualmanufacturera-enamspa
dc.relation.referencesDanov, S. M., Kazantsev, O. A., Esipovich, A. L., Belousov, A. S., Rogozhin, A. E., & Kanakov, E. A. (2017). Recent advances in the field of selective epoxidation of vegetable oils and their derivatives: A review and perspective. Catalysis Science and Technology, 7(17), 3659–3675. https://doi.org/10.1039/c7cy00988gspa
dc.relation.referencesDe La Garza, L. C., De Oliveira Vigier, K., Chatel, G., & Moores, A. (2017). Amphiphilic dipyridinium-phosphotungstate as an efficient and recyclable catalyst for triphasic fatty ester epoxidation and oxidative cleavage with hydrogen peroxide. Green Chemistry, 19(12), 2855. https://doi.org/10.1039/c7gc00298jspa
dc.relation.referencesDemirbas, A. (2009). Biodiesel from waste cooking oil via base-catalytic and supercritical methanol transesterification. Energy Conversion and Management, 50(4). https://doi.org/10.1016/j.enconman.2008.12.023spa
dc.relation.referencesDesroches, M., Escouvois, M., Auvergne, R., Caillol, S., & Boutevin, B. (2012). From vegetable oils to polyurethanes: Synthetic routes to polyols and main industrial products. Polymer Reviews, 52(1), 38–79. https://doi.org/10.1080/15583724.2011.640443spa
dc.relation.referencesDinda, S., Goud, V. V., Patwardhan, A. V., & Pradhan, N. C. (2011). Selective epoxidation of natural triglycerides using acidic ion exchange resin as catalyst. Asia-Pacific Journal of Chemical Engineering, 6(6), 870–878. https://doi.org/10.1002/apj.466spa
dc.relation.referencesDinda, S., Patwardhan, A. V., Goud, V. V., & Pradhan, N. C. (2008). Epoxidation of cottonseed oil by aqueous hydrogen peroxide catalysed by liquid inorganic acids. Bioresource Technology, 99(9), 3373–3744. https://doi.org/10.1016/j.biortech.2007.07.015spa
dc.relation.referencesDong, Z., Wen, Z., Zhao, F., Kuhn, S., & Noël, T. (2021). Scale-up of micro- and millireactors: An overview of strategies, design principles and applications. Chemical Engineering Science: X, 10, 100097. https://doi.org/10.1016/j.cesx.2021.100097spa
dc.relation.referencesDow. (2004). DOWEXTM Fine Mesh Spherical Ion Exchange Resins.spa
dc.relation.referencesDuque, U. (2006). Exploración de la reacción de epoxidación del aceite de palma a escala de un litro -. Universidad de los Andes.spa
dc.relation.referencesEhrfeld. (2020). Integrated scale-up concept. Ehrfeld Mikrotechnik GmbH. https://www.ehrfeld.com/en/labor-integriertes-scale-up-konzeptspa
dc.relation.referencesEnferadi-Kerenkan, A., Do, T. O., & Kaliaguine, S. (2018). Heterogeneous catalysis by tungsten-based heteropoly compounds. In Catalysis Science and Technology (Vol.8, Issue 9). https://doi.org/10.1039/c8cy00281aspa
dc.relation.referencesEryilmaz, T., Aksoy, F., Aksoy, L., Bayrakceken, H., Aysal, F. E., Sahin, S., & Yesilyurt, M. K. (2018). Process optimization for biodiesel production from neutralized waste cooking oil and the effect of this biodiesel on engine performance. CTyF - Ciencia, Tecnologia y Futuro, 8(1). https://doi.org/10.29047/01225383.99spa
dc.relation.referencesFAO. (1999). Codex Standards for Fats and Oils from Vegetable Sources - Standard for named vegetable oils CODEX STAN 210-1999. ALIMENTARIUM,C. https://www.fao.org/input/download/standards/336/CXS_210e_2015.pdfspa
dc.relation.referencesFAO. (2015). Standard for Named Vegetable Oils Codex Stan 210-1999. Codex Alimentarius, 1–13.spa
dc.relation.referencesFoo, W. H., Koay, S. S. N., Chia, S. R., Chia, W. Y., Tang, D. Y. Y., Nomanbhay, S., & Chew, K. W. (2022). Recent advances in the conversion of waste cooking oil into value-added products: A review. Fuel, 324. https://doi.org/10.1016/j.fuel.2022.124539spa
dc.relation.referencesGamage, P. K., O’Brien, M., & Karunanayake, L. (2009). Epoxidation of some vegetable oils and their hydrolysed products with peroxyformic acid - Optimised to industrial scale. Journal of the National Science Foundation of Sri Lanka, 37(4). https://doi.org/10.4038/jnsfsr.v37i4.1469spa
dc.relation.referencesGao, J., Chen, Y., Han, B., Feng, Z., Li, C., Zhou, N., Gao, S., & Xi, Z. (2004). A spectroscopic study on the reaction-controlled phase transfer catalyst in the epoxidation of cyclohexene. Journal of Molecular Catalysis A: Chemical, 210(1–2). https://doi.org/10.1016/j.molcata.2003.09.018spa
dc.relation.referencesGarcía, E., & Pascuales, M. (2004). Preparación de poliol y evaluación en la formulación de espumas de poliuretano. Universidad Nacional de Colombia.spa
dc.relation.referencesGertz, C., Klostermann, S., & Kochhar, S. P. (2000). Testing and comparing oxidative stability of vegetable oils and fats at frying temperature. European Journal of Lipid Science and Technology, 102(8–9). https://doi.org/10.1002/1438-9312(200009)102:8/9<543::aid-ejlt543>3.0.co;2-vspa
dc.relation.referencesGhaini, A., Mescher, A., & Agar, D. W. (2011). Hydrodynamic studies of liquid-liquid slug flows in circular microchannels. Chemical Engineering Science, 66(6), 1168–1178. https://doi.org/10.1016/j.ces.2010.12.033spa
dc.relation.referencesGhidurus, M., Turtoi, M., Boskou, G., Niculita, P., & Stan, V. (2011). Nutritional and health aspects related to frying (II). In Romanian Biotechnological Letters (Vol. 16, Issue 5).spa
dc.relation.referencesGiakoumis, E. G. (2018). Analysis of 22 vegetable oils’ physico-chemical properties and fatty acid composition on a statistical basis, and correlation with the degree of unsaturation. Renewable Energy, 126, 403–419. https://doi.org/10.1016/j.renene.2018.03.057spa
dc.relation.referencesGitHub. (2022). GitHub – cambiegroup/flowchem: Flowchem is an application to simplify the control of instruments and devices commonly found in chemistry labs. https://github.com/cambiegroup/flowchemspa
dc.relation.referencesGladius, A. W., Mylenbusch, J. A., & Agar, D. W. (2023). A computer vision sensor for the parallelization of actively regulated capillary slug flow microreactors. SN Applied Sciences, 5(263). https://doi.org/10.1007/s42452-023-05489-3spa
dc.relation.referencesGladius, A. W., Vondran, J., Ramesh, Y., Seidensticker, T., & Agar, D. W. (2021). Slug flow as tool for selectivity control in the homogeneously catalysed solvent-free epoxidation of methyl oleate. Journal of Flow Chemistry, 11(3), 407–427. https://doi.org/10.1007/s41981-021-00199-6spa
dc.relation.referencesGoicoechea, E., & Guillen, M. D. (2010). Analysis of hydroperoxides, aldehydes and epoxides by 1H nuclear magnetic resonance in sunflower oil oxidized at 70 and 100 °c. Journal of Agricultural and Food Chemistry, 58(10), 6234–6245. https://doi.org/10.1021/jf1005337spa
dc.relation.referencesGoud, V. V., Patwardhan, A. V., Dinda, S., & Pradhan, N. C. (2007). Kinetics of epoxidation of jatropha oil with peroxyacetic and peroxyformic acid catalysed by acidic ion exchange resin. Chemical Engineering Science, 62(15), 4065–4076. https://doi.org/10.1016/j.ces.2007.04.038spa
dc.relation.referencesGreenea. (2022). Precios de los biocombustibles y análisis de mercado para biodiesel de residuos como UCOME, TME y aceite de cocina usado - Greenea. http://www.greenea.com/en/market-analysis/spa
dc.relation.referencesGuo, A., & Petrovic, Z. (2005). Vegetable Oils-Based Polyols. In Industrial Uses of Vegetable Oil. https://doi.org/10.1201/9781439822388.ch6spa
dc.relation.referencesGupta, R. D., & Raghav, N. (2020). Differential effect of surfactants tetra-n-butyl ammonium bromide and N-Cetyl-N, N, N-trimethyl ammonium bromide bound to nano-cellulose on binding and sustained release of some non-steroidal antiinflammatory drugs. International Journal of Biological Macromolecules, 164. https://doi.org/10.1016/j.ijbiomac.2020.08.091spa
dc.relation.referencesGurbanov, M. S., Chalabiev, C. A., Mamedov, B. A., & Efendiev, A. A. (2005). Epoxidation of soybean oil in the course of cooxidation with hydrogen peroxide in the presence of propanoic acid and chlorinated KU-2 x 8 cation exchanger. Russian Journal of Applied Chemistry, 78(10). https://doi.org/10.1007/s11167-005-0585-4spa
dc.relation.referencesGutmann, B., Cantillo, D., & Kappe, C. O. (2015). Continuous-flow technology - A tool for the safe manufacturing of active pharmaceutical ingredients. In Angewandte Chemie - International Edition (Vol. 54, Issue 23). https://doi.org/10.1002/anie.201409318spa
dc.relation.referencesHe, W., Fang, Z., Ji, D., Chen, K., Wan, Z., Li, X., Gan, H., Tang, S., Zhang, K., & Guo, K. (2013). Epoxidation of soybean oil by continuous micro-flow system with continuous separation. Organic Process Research and Development, 17(9), 1137–1141. https://doi.org/10.1021/op400050nspa
dc.relation.referencesHegelmann, M., Bohórquez, W. F., Luibl, J., Jess, A., Orjuela, A., & Cokoja, M. (2024). Biphasic phase-transfer catalysis: epoxidation of vegetable oils by surface active ionic liquids in water. Reaction Chemistry & Engineering, 9(10), 2710–2717. https://doi.org/10.1039/D4RE00215Fspa
dc.relation.referencesHenan Go Biotech. (2021). Epoxidized Soybean Oil -Henan GO Biotech Co.,Ltd. https://www.go-chem.net/epoxidized-soybean-oilesbo.html?google-network=gcampaignid=1768789814-adgroupid=70416065473-target=kwd-315611576330-creative=342625538548-device=c-placement=-keyword=epoxidized soybean oilprice&gclid=EAIaIQobChMI69aPyrqZ6gIspa
dc.relation.referencesHORIBA. (2020). What is Raman Spectroscopy? - HORIBA. https://www.horiba.com/ind/scientific/technologies/raman-imaging-andspectroscopy/raman-spectroscopy/spa
dc.relation.referencesHua, L., Qiao, Y., Yu, Y., Zhu, W., Cao, T., Shi, Y., Li, H., Feng, B., & Hou, Z. (2011). A Ti-substituted polyoxometalate as a heterogeneous catalyst for olefin epoxidation with aqueous hydrogen peroxide. New Journal of Chemistry, 35(9). https://doi.org/10.1039/c1nj20312fspa
dc.relation.referencesHuang, X., Wang, W., & Liu, X. (2020). H3PW12O40-doped pyromellitic diimide prepared via thermal transformation as an efficient visible-light photocatalyst. Journal of Materials Science, 55(20). https://doi.org/10.1007/s10853-020-04642-2spa
dc.relation.referencesHussein, S., Shehata, N., Mahmoud, M., Abdelkareem, M. A., & Olabi, A. G. (2023). Green Chemicals From Cooking oil. In Reference Module in Materials Science and Materials Engineering. https://doi.org/10.1016/b978-0-443-15738-7.00008-8spa
dc.relation.referencesIan Buckley, R., & Clark, R. J. H. (1985). Structural and electronic properties of some polymolybdates reducible to molybdenum blues. Coordination Chemistry Reviews, 65(C). https://doi.org/10.1016/0010-8545(85)85025-6spa
dc.relation.referencesICONTEC. (2013). NTC 3272. Grasas y aceites comestibles para frito industrial.spa
dc.relation.referencesInbra. (2021). Plastificantes. http://inbra.com.br/home/produtos/spa
dc.relation.referencesISO. (2018). Animal and Vegetable Fats and Oils - Determination of Iodine Value (ISO3961:18). International Standard. https://www.iso.org/es/contents/data/standard/07/18/71868.htmlspa
dc.relation.referencesISO. (2023). Animal and vegetable fats and oils. Determination of saponification value. ISO 3657:2023. https://www.iso.org/es/contents/data/standard/08/51/85171.htmlspa
dc.relation.referencesIzumi, Y., Urabe, K., & Onaka, M. (1997). Development of catalyst materials for acid catalyzed reactions in the liquid phase. Catalysis Today, 35(1–2). https://doi.org/10.1016/S0920-5861(96)00126-5spa
dc.relation.referencesJaiswal, P., Kumar, U., & Biswas, K. G. (2022). Liquid-liquid flow through micro dimensional reactors: A review on hydrodynamics, mass transfer, and reaction kinetics. Experimental and Computational Multiphase Flow, 4(3), 193–211. https://doi.org/10.1007/s42757-020-0092-0spa
dc.relation.referencesJeannin, Y. P. (1998). The nomenclature of polyoxometalates: How to connect a name and a structure. Chemical Reviews, 98(1). https://doi.org/10.1021/cr960397ispa
dc.relation.referencesJia, P., Zheng, M., Ma, Y., Feng, G., Xia, H., Hu, L., Zhang, M., & Zhou, Y. (2019). Clean synthesis of epoxy plasticizer with quaternary ammonium phosphotungstate as catalyst from a byproduct of cashew nut processing. Journal of Cleaner Production, 206. https://doi.org/10.1016/j.jclepro.2018.09.238spa
dc.relation.referencesJiang, J., Zhang, Y., Yan, L., & Jiang, P. (2012). Epoxidation of soybean oil catalyzed by peroxo phosphotungstic acid supported on modified halloysite nanotubes. Applied Surface Science, 258(17), 6637–6642. https://doi.org/10.1016/J.APSUSC.2012.03.095spa
dc.relation.referencesJohnson, L. A., & Myers, D. J. (1995). Industrial Uses for Soybeans. In Practical Handbook of Soybean Processing and Utilization. https://doi.org/10.1016/b978-0-935315-63-9.50025-5spa
dc.relation.referencesJordanov, D. I., Petkov, P. S., & Kirov, Yanko., Ivanov, S. Kunev. (2007). Methanol transesterification of different vegetable oils. Petroleum & Coal, 30 ml.spa
dc.relation.referencesKaba, M. S., Song, I. K., Duncan, D. C., Hill, C. L., & Barteau, M. A. (1998). Molecular Shapes, Orientation, and Packing of Polyoxometalate Arrays Imaged by Scanning Tunneling Microscopy. Inorganic Chemistry, 37(3). https://doi.org/10.1021/ic9705655spa
dc.relation.referencesKarmakar, G., Ghosh, P., Kohli, K., Sharma, B. K., & Erhan, S. Z. (2020). Chemicals from Vegetable Oils, Fatty Derivatives, and Plant Biomass. In ACS Symposium Series (Vol. 1347, pp. 1–31). https://doi.org/10.1021/bk-2020-1347.ch001spa
dc.relation.referencesKashid, M. N., & Agar, D. W. (2007). Hydrodynamics of liquid-liquid slug flow capillary microreactor: Flow regimes, slug size and pressure drop. Chemical Engineering Journal, 131(1–3), 1–13. https://doi.org/10.1016/j.cej.2006.11.020spa
dc.relation.referencesKashid, M. N., Gerlach, I., Goetz, S., Franzke, J., Acker, J. F., Platte, F., Agar, D. W., & Turek, S. (2005). Internal circulation within the liquid slugs of a liquid-liquid slugflow capillary microreactor. Industrial and Engineering Chemistry Research, 44(14), 5003–5010. https://doi.org/10.1021/ie0490536spa
dc.relation.referencesKeggin. (1934). The structure and formula of 12-phosphotungstic acid. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 144(851). https://doi.org/10.1098/rspa.1934.0035spa
dc.relation.referencesKholdeeva, O. A., Timofeeva, M. N., Maksimov, G. M., Maksimovskaya, R. I., Neiwert, W. A., & Hill, C. L. (2005). Aerobic oxidation of formaldehyde mediated by a Cecontaining polyoxometalate under mild conditions. Inorganic Chemistry, 44(3). https://doi.org/10.1021/ic049109ospa
dc.relation.referencesKim, H. J., Jeon, Y., Park, J. Il, & Shul, Y. G. (2013). Heterocycle-modified 12-tungstophosphoric acid as heterogeneous catalyst for epoxidation of propylene with hydrogen peroxide. Journal of Molecular Catalysis A: Chemical, 378, 232–237. https://doi.org/10.1016/J.MOLCATA.2013.06.014spa
dc.relation.referencesKleiner, J., & Hinrichsen, O. (2019). Epoxidation of methyl oleate in a rotor-stator spinning disc reactor. Chemical Engineering and Processing - Process Intensification, 136, 152–162. https://doi.org/10.1016/j.cep.2019.01.004spa
dc.relation.referencesKlemens, E., Lutz, J., Alfred, M., Eberhard, P., & Bernhard, G. (1984). Process for the epoxidation of olefinically unsaturated hydrocarbon compounds with peracetic acid. us pattent.spa
dc.relation.referencesKöckritz, A., & Martin, A. (2008). Oxidation of unsaturated fatty acid derivatives and vegetable oils. European Journal of Lipid Science and Technology, 110(9). https://doi.org/10.1002/ejlt.200800042spa
dc.relation.referencesKozhevnikov, I. V. (1998). Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions. Chemical Reviews, 98(1). https://doi.org/10.1021/cr960400yspa
dc.relation.referencesKozhevnikov, I. V., Mulder, G. P., Steverink-de Zoete, M. C., & Oostwal, M. G. (1998). Epoxidation of oleic acid catalyzed by peroxo phosphotungstate in a two-phase system. Journal of Molecular Catalysis A: Chemical, 134(1–3). https://doi.org/10.1016/S1381-1169(98)00039-9spa
dc.relation.referencesKunal, A., & Sonal, S. (2018). Epoxidized Soybean Oil Market Share 2018-2024 Industry Size Report. Global Market Insights. https://www.gminsights.com/industryanalysis/epoxidized-soybean-oil-marketspa
dc.relation.referencesKurańska, M., Beneš, H., Prociak, A., Trhlíková, O., Walterová, Z., & Stochlińska, W. (2019). Investigation of epoxidation of used cooking oils with homogeneous and heterogeneous catalysts. Journal of Cleaner Production, 236. https://doi.org/10.1016/j.jclepro.2019.117615spa
dc.relation.referencesKurańska, M., & Niemiec, M. (2020). Cleaner production of epoxidized cooking oil using a heterogeneous catalyst. Catalysts, 10(11). https://doi.org/10.3390/catal10111261spa
dc.relation.referencesKyriacos, D. (2020). Biobased polyols for industrial polymers. In Biobased Polyols for Industrial Polymers. https://doi.org/10.1002/9781119620358spa
dc.relation.referencesLa Scala, J., & Wool, R. P. (2002). Effect of FA composition on epoxidation kinetics of TAG. JAOCS, Journal of the American Oil Chemists’ Society, 79(4). https://doi.org/10.1007/s11746-002-0491-9spa
dc.relation.referencesLafargue-Pérez, F. I., Díaz-Velázquez, M. I., Leiva-Aguilar, I. I., Sánchez-Hechavarría III, J., & Salazar-Avila, O. I. (2015). Epoxidación del aceite vegetal de Jatropha curcas L con ácido perfórmico Epoxidation of Jatropha curcas L Vegetable oil with Performic Acid. In Tecnología Quimica: Vol. XXXV (Issue 3).spa
dc.relation.referencesLee, P. L., Wan Yunus, W. M. Z., Yeong, S. K., Abdullah, D. K., & Lim, W. H. (2009). Optimization of the epoxidation of methyl ester of palm fatty acid distillate. Journal of Oil Palm Research, 21, 675–682. http://jopr.mpob.gov.my/wpcontent/uploads/2013/09/joprv21dec09-lee.pdfspa
dc.relation.referencesLee, S., Park, M. S., Shin, J., & Kim, Y. W. (2018). Effect of the individual and combined use of cardanol-based plasticizers and epoxidized soybean oil on the properties of PVC. Polymer Degradation and Stability, 147, 1–11. https://doi.org/10.1016/j.polymdegradstab.2017.11.002spa
dc.relation.referencesLeveneur, S., Kumar, N., Salmi, T., & Murzin, D. Y. (2010). Stability of hydrogen peroxide during perhydrolysis of carboxylic acids on acidic heterogeneous catalysts. Research on Chemical Intermediates, 36(4). https://doi.org/10.1007/s11164-010- 0149-yspa
dc.relation.referencesLeveneur, S., Tolvanen, P., & Russo, V. (2024). Catalytic Epoxidation Reaction. Catalysts, 14(5), 285. https://doi.org/10.3390/catal14050285spa
dc.relation.referencesLi, G., Ding, Y., Wang, J., Wang, X., & Suo, J. (2007). New progress of Keggin and Wells-Dawson type polyoxometalates catalyze acid and oxidative reactions. Journal of Molecular Catalysis A: Chemical, 262(1–2). https://doi.org/10.1016/j.molcata.2006.08.067spa
dc.relation.referencesLi, H., Hou, Z., Qiao, Y., Feng, B., Hu, Y., Wang, X., & Zhao, X. (2010). Peroxopolyoxometalate-based room temperature ionic liquid as a self-separation catalyst for epoxidation of olefins. Catalysis Communications, 11(5). https://doi.org/10.1016/j.catcom.2009.11.025spa
dc.relation.referencesLi, Y. Y., Luo, X., & Hu, S. (2015). Bio-based Polyols and Polyurethanes. In Bio-based Polyols and Polyurethanes. https://doi.org/10.1007/978-3-319-21539-6spa
dc.relation.referencesLin, C. S. K., Pfaltzgraff, L. A., Herrero-Davila, L., Mubofu, E. B., Abderrahim, S., Clark, J. H., Koutinas, A. A., Kopsahelis, N., Stamatelatou, K., Dickson, F., Brocklesby, R., & Luque, R. (2013). Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective. Energy and Environmental Science, 6(2), 426–464. https://doi.org/10.1039/c2ee23440hspa
dc.relation.referencesLombana Coy, J., Vega Jurado, J., Britton Acevedo, E., & Herrera Velásquez, S. (2015). Análisis del sector biodiésel en Colombia y su cadena de suministro. In Editorial: Universidad del Norte.spa
dc.relation.referencesLopresto, C. G., De Paola, M. G., & Calabrò, V. (2024). Importance of the properties, collection, and storage of waste cooking oils to produce high-quality biodiesel – An overview. Biomass and Bioenergy, 189, 107363. https://doi.org/10.1016/j.biombioe.2024.107363spa
dc.relation.referencesLutze, P., Gani, R., & Woodley, J. M. (2010). Process intensification: A perspective on process synthesis. Chemical Engineering and Processing: Process Intensification, 49(6). https://doi.org/10.1016/j.cep.2010.05.002spa
dc.relation.referencesMa, Y., Hu, Y., Fang, Y., Li, Q., Huang, Q., Shang, Q., Zhang, M., Li, S., Jia, P., & Zhou, Y. (2024). Recent advances in vegetable oil based fine chemicals and polymers. Green Materials, 1–22. https://doi.org/10.1680/jgrma.24.00083spa
dc.relation.referencesMaddikeri, G. L., Pandit, A. B., & Gogate, P. R. (2012). Intensification approaches for biodiesel synthesis from waste cooking oil: A review. In Industrial and Engineering Chemistry Research (Vol. 51, Issue 45). https://doi.org/10.1021/ie301675jspa
dc.relation.referencesMaiti, S. K., Snavely, W. K., Venkitasubramanian, P., Hagberg, E. C., Busch, D. H., & Subramaniam, B. (2019). Reaction Engineering Studies of the Epoxidation of Fatty Acid Methyl Esters with Venturello Complex. Industrial and Engineering Chemistry Research, 58(7), 2514–2523. https://doi.org/10.1021/acs.iecr.8b05977spa
dc.relation.referencesMakwell Plastisizers. (2020). Epoxidised soybean oil. https://www.makwellplastisizers.com/epoxidised-soybean-oil.htmlspa
dc.relation.referencesMarkets and Markets. (2017). Epoxidized Soybean Oil (ESBO) Market by Raw Material, Application, End-use Application & Geography | COVID-19 Impact Analysis |MarketsandMarkets. https://www.marketsandmarkets.com/Market-Reports/epoxidized-soybean-oil-market-27777113.htmlspa
dc.relation.referencesMarmesat, S., Rodrigues, E., Velasco, J., & Dobarganes, C. (2007). Quality of used frying fats and oils: Comparison of rapid tests based on chemical and physical oil properties. International Journal of Food Science and Technology, 42(5). https://doi.org/10.1111/j.1365-2621.2006.01284.xspa
dc.relation.referencesMarriam, F., Irshad, A., Umer, I., Asghar, M. A., & Atif, M. (2023). Vegetable oils as bio-based precursors for epoxies. Sustainable Chemistry and Pharmacy, 31, 100935. https://doi.org/10.1016/j.scp.2022.100935spa
dc.relation.referencesMashhadi, F., Habibi, A., & Varmira, K. (2018). Enzymatic production of green epoxides from fatty acids present in soapstock in a microchannel bioreactor. Industrial Crops and Products, 113, 324–334. https://doi.org/10.1016/j.indcrop.2018.01.052spa
dc.relation.referencesMedina, S., Sierra, C., & Orjuela, A. (2006). Producción de polioles a partir de aceites vegetales para formualción de sistemas de poliuretano. Memorias XXI Interamerican Confederation of Chemical Engineering, 45–46.spa
dc.relation.referencesMetzger, J. O., & Biermann, U. (2006). Sustainable development and renewable feedstocks for chemical industry. ACS Symposium Series, 921. https://doi.org/10.1021/bk-2006-0921.ch002spa
dc.relation.referencesMiéville, P., & Nanteuil, F. de. (2024). Modern Automation in Organic Synthesis Laboratories. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Elsevier. https://doi.org/10.1016/B978-0-323-96025-0.00047-8spa
dc.relation.referencesMilchert, E., Smagowicz, A., & Lewandowski, G. (2010). Optimization of the reaction parameters of epoxidation of rapeseed oil with peracetic acid. Journal of Chemical Technology and Biotechnology, 85(8). https://doi.org/10.1002/jctb.2405spa
dc.relation.referencesMinisterio de Ambiente y Desarrollo Sostenible, C. (2018). Resolución No. 316. Ministry of Environment and Development in Colombia.spa
dc.relation.referencesMioč, U., Davidović, M., Tjapkin, N., Colomban, P., & Novak, A. (1991). Equilibrium of the protonic species in hydrates of some heteropolyacids at elevated temperatures. Solid State Ionics, 46(1–2). https://doi.org/10.1016/0167-2738(91)90136-Yspa
dc.relation.referencesMiyake, Y., Yokomizo, K., & Matsuzaki, N. (1998). Determination of unsaturated fatty acid composition by high-resolution nuclear magnetic resonance spectroscopy. JAOCS, Journal of the American Oil Chemists’ Society, 75(9). https://doi.org/10.1007/s11746-998-0118-4spa
dc.relation.referencesMPOC. (2021). Daily Palm Oil Price – MPOC. http://mpoc.org.my/daily-palm-oil-price/spa
dc.relation.referencesMukhtar Gunam Resul, M. F., Rehman, A., Saleem, F., Usman, M., López Fernández, A. M., Eze, V. C., & Harvey, A. P. (2023). Recent advances in catalytic and noncatalytic epoxidation of terpenes: a pathway to bio-based polymers from waste biomass. In RSC Advances (Vol. 13, Issue 47). https://doi.org/10.1039/d3ra04870espa
dc.relation.referencesNoshi, M. N. (2013). Phosphotungstic Acid Hydrate. In Encyclopedia of Reagents for Organic Synthesis. https://doi.org/10.1002/047084289x.rn01615spa
dc.relation.referencesNTC 2366:2000 (2000).spa
dc.relation.referencesOleoline. (2021). Oleochemical Market Report :: Oleoline. https://www.oleoline.com/products/Oleochemical-Market-Report-4.htmlspa
dc.relation.referencesOlivieri, G. V., & Giudici, R. (2023). CFD and reaction aspects for the soybean oil epoxidation in a millireactor. Chemical Engineering and Processing - Process Intensification, 193, 109557. https://doi.org/10.1016/j.cep.2023.109557spa
dc.relation.referencesOlivieri, G. V., Meira, P. A., de Mattos, T. T., Okuda, H. M., de Quadros, J. V., Palma, M. S. A., & Giudici, R. (2023). Microreactor x millireactor: Experimental performance in the epoxidation of soybean oil. Chemical Engineering and Processing - Process Intensification, 193, 109562. https://doi.org/10.1016/j.cep.2023.109562spa
dc.relation.referencesOrjuela, A. (2020). Industrial Oleochemicals from Used Cooking Oils (UCOs). In Advances in Carbon Management Technologies. https://doi.org/10.1201/9781003056157-6spa
dc.relation.referencesOrjuela, A., & Clark, J. (2020). Green chemicals from used cooking oils: Trends, challenges, and opportunities. Current Opinion in Green and Sustainable Chemistry, 26. https://doi.org/10.1016/j.cogsc.2020.100369spa
dc.relation.referencesPai, Z. P., Chesalov, Y. A., Berdnikova, P. V., Uslamin, E. A., Yushchenko, D. Y., Uchenova, Y. V., Khlebnikova, T. B., Baltakhinov, V. P., Kochubey, D. I., & Bukhtiyarov, V. I. (2020). Tungsten Peroxopolyoxo Complexes as Advanced Catalysts for the Oxidation of Organic Compounds with Hydrogen Peroxide. Applied Catalysis A: General, 604, 117786. https://doi.org/10.1016/j.apcata.2020.117786spa
dc.relation.referencesPalermo, V. (2012). Síntesis y caracterización de heteropoliácidos constituyendo materiales híbridos para su aplicación como catalizadores en la oxidación ecocompatible de sulfuros. Universidad Nacional de la Plata.spa
dc.relation.referencesPapaconstantinou, E., Dimotikali, D., & Politou, A. (1980). Photochemistry of heteropoly electrolytes. The 18-molybdodiphosphate. Inorganica Chimica Acta, 43(C). https://doi.org/10.1016/S0020-1693(00)90521-8spa
dc.relation.referencesPhan, A. N., & Phan, T. M. (2008). Biodiesel production from waste cooking oils. Fuel, 87(17–18). https://doi.org/10.1016/j.fuel.2008.07.008spa
dc.relation.referencesPhimsen, S., Yamada, H., Tagawa, T., Kiatkittipong, W., Kiatkittipong, K., Laosiripojana, N., & Assabumrungrat, S. (2017). Epoxidation of methyl oleate in a TiO2 coated-wall capillary microreactor. Chemical Engineering Journal, 314, 594–599. https://doi.org/10.1016/j.cej.2016.12.017spa
dc.relation.referencesPlante, M., Bailey, B., & Acworth, I. N. (2014). Characterization of Used Cooking Oils by High Performance Liquid Chromatography and Corona Charged Aerosol Detection. Thermo Fisher.spa
dc.relation.referencesPolar Industries, Inc. (2021). HiBond TM Epoxidized Oil. http://polarindustries.net/EpoxidizedOil.htmlspa
dc.relation.referencesPoli, E., Clacens, J. M., Barrault, J., & Pouilloux, Y. (2009). Solvent-free selective epoxidation of fatty esters over a tungsten-based catalyst. Catalysis Today, 140(1–2). https://doi.org/10.1016/j.cattod.2008.07.004spa
dc.relation.referencesPonce-Ortega, J. M., Al-Thubaiti, M. M., & El-Halwagi, M. M. (2012). Process intensification: New understanding and systematic approach. Chemical Engineering and Processing: Process Intensification, 53. https://doi.org/10.1016/j.cep.2011.12.010spa
dc.relation.referencesQiao, Y., Hou, Z., Li, H., Hu, Y., Feng, B., Wang, X., Hua, L., & Huang, Q. (2009). Polyoxometalate-based protic alkylimidazolium salts as reaction-induced phaseseparation catalysts for olefin epoxidation. Green Chemistry, 11(12). https://doi.org/10.1039/b916766hspa
dc.relation.referencesRafiee, E., & Eavani, S. (2016). Heterogenization of heteropoly compounds: A review of their structure and synthesis. In RSC Advances (Vol. 6, Issue 52). https://doi.org/10.1039/c6ra04891aspa
dc.relation.referencesRajisha, K. R., Deepa, B., Pothan, L. A., & Thomas, S. (2011). Thermomechanical and spectroscopic characterization of natural fibre composites. In Interface Engineering of Natural Fibre Composites for Maximum Performance. https://doi.org/10.1016/B978-1-84569-742-6.50009-5spa
dc.relation.referencesRamadhas, A. S., Jayaraj, S., & Muraleedharan, C. (2005). Biodiesel production from high FFA rubber seed oil. Fuel, 84(4). https://doi.org/10.1016/j.fuel.2004.09.016spa
dc.relation.referencesRamírez J., L. M. (2020). Modelo cinético para la reacción de epoxidación de aceite vegetal usado. Universidad Nacional de Colombia.spa
dc.relation.referencesRamírez, L. M., Cadavid, J. G., Orjuela, A., Gutiérrez, M. F., & Bohórquez, W. F. (2022). Epoxidation of used cooking oils: Kinetic modeling and reaction optimization. Chemical Engineering & Processing: Process Intensification, 176. https://doi.org/10.1016/j.cep.2022.108963spa
dc.relation.referencesRangarajan, B., Havey, A., Grulke, E. A., & Culnan, P. D. (1995). Kinetic parameters of a two-phase model for in situ epoxidation of soybean oil. Journal of the American Oil Chemists’ Society, 72(10), 1161–1169. https://doi.org/10.1007/BF02540983spa
dc.relation.referencesRaval, N., Maheshwari, R., Kalyane, D., Youngren-Ortiz, S. R., Chougule, M. B., & Tekade, R. K. (2018). Importance of physicochemical characterization of nanoparticles in pharmaceutical product development. In Basic Fundamentals of Drug Delivery. https://doi.org/10.1016/B978-0-12-817909-3.00010-8spa
dc.relation.referencesResearch and Markets. (2020). Renewable Chemicals Market - Forecasts from 2020 to 2025. https://www.researchandmarkets.com/reports/5009215/renewable-chemicalsmarket- forecasts-from-2020spa
dc.relation.referencesRezvani, M. A., Asli, M. A., Khandan, S., Mousavi, H., & Aghbolagh, Z. S. (2017). Synthesis and characterization of new nanocomposite CTAB-PTA@CS as an efficient heterogeneous catalyst for oxidative desulphurization of gasoline. Chemical Engineering Journal, 312. https://doi.org/10.1016/j.cej.2016.11.137spa
dc.relation.referencesRincón, L. A. (2019). Reutilización de aceites de cocina usados en aceites epoxidados. Universidad Nacional de Colombia.spa
dc.relation.referencesRincón, L. A., Cadavid, J. G., & Orjuela, A. (2019). Used cooking oils as potential oleochemical feedstock for urban biorefineries – Study case in Bogota, Colombia. Waste Management, 88, 200–210. https://doi.org/10.1016/j.wasman.2019.03.042spa
dc.relation.referencesRincón, L. A., Ramírez, J. C., & Orjuela, A. (2021). Assessment of degumming and bleaching processes for used cooking oils upgrading into oleochemical feedstocks. Journal of Environmental Chemical Engineering, 9(1). https://doi.org/10.1016/j.jece.2020.104610spa
dc.relation.referencesRios, L. A., Weckes, P., Schuster, H., & Hoelderich, W. F. (2005). Mesoporous and amorphous Ti-silicas on the epoxidation of vegetable oils. Journal of Catalysis, 232(1). https://doi.org/10.1016/j.jcat.2005.02.011spa
dc.relation.referencesRohm and Haas. (2014). Product data sheet AMBERLITETM IR120 H. Industrial Grade Strong Acid Cation Exchanger.spa
dc.relation.referencesRohm and Hass. (2005). AMBERLYSTTM 15DRY Industrial Grade Strongly Acidic Catalyst.spa
dc.relation.referencesRomanelli, G. P., Autino, J. C., Blanco, M. N., & Pizzio, L. R. (2005). Tungstosilicate salts as catalysts in phenol tetrahydropyranylation and depyranylation. Applied Catalysis A: General, 295(2). https://doi.org/10.1016/j.apcata.2005.08.019spa
dc.relation.referencesRüsch, M., & Warwel, S. (1999). Complete and partial epoxidation of plant oils by lipasecatalyzed perhydrolysis. Industrial Crops and Products, 9(2). https://doi.org/10.1016/S0926-6690(98)00023-5spa
dc.relation.referencesSanli, H., Canakci, M., & Alptekin, E. (2011). Characterization of Waste Frying Oils Obtained from Different Facilities. Bioenergy Technology, 479–485. https://doi.org/10.3384spa
dc.relation.referencesSantacesaria, E., Renken, A., Russo, V., Turco, R., Tesser, R., & Di Serio, M. (2012). Biphasic model describing soybean oil epoxidation with H2O2 in continuous reactors. Industrial and Engineering Chemistry Research, 51(26), 8760–8767. https://doi.org/10.1021/ie2016174spa
dc.relation.referencesSantacesaria, E., Tesser, R., Serio, M. Di, Russo, V., & Turco, R. (2011). A new simple microchannel device to test process intensification. Industrial and Engineering Chemistry Research, 50(5), 2569–2575. https://doi.org/10.1021/ie1006307spa
dc.relation.referencesSantacesaria, E., Turco, R., Russo, V., Tesser, R., & Di, M. (2020). Soybean oil epoxidation: Kinetics of the epoxide ring opening reactions. Processes, 8(9), 1134. https://doi.org/10.3390/PR8091134spa
dc.relation.referencesSarmah, N., Mehtab, V., Borah, K., Palanisamy, A., Parthasarathy, R., & Chenna, S. (2024). Inverse design of chemoenzymatic epoxidation of soyabean oil through artificial intelligence-driven experimental approach. Bioresource Technology, 412,131405. https://doi.org/10.1016/j.biortech.2024.131405spa
dc.relation.referencesScheiff, F., Mendorf, M., Agar, D., Reis, N., & MacKley, M. (2011). The separation of immiscible liquid slugs within plastic microchannels using a metallic hydrophilic sidestream. Lab on a Chip, 11(6), 1022–1029. https://doi.org/10.1039/C0LC00442Aspa
dc.relation.referencesSchröter, S., & Schnitzlein, K. (2018). Enzymatic hydrolysis of rapeseed oil by Thermomyces lanuginosus lipase: variation of continuous and dispersed phase in a slug flow reactor. Applied Microbiology and Biotechnology, 102(11), 4799–4806. https://doi.org/10.1007/s00253-018-8902-zspa
dc.relation.referencesSeifrid, M., Pollice, R., Aguilar-Granda, A., Morgan Chan, Z., Hotta, K., Ser, C. T., Vestfrid, J., Wu, T. C., & Aspuru-Guzik, A. (2022). Autonomous Chemical Experiments: Challenges and Perspectives on Establishing a Self-Driving Lab. Accounts of Chemical Research, 55(17). https://doi.org/10.1021/acs.accounts.2c00220spa
dc.relation.referencesSienel, G., Rieth, R., & Rowbottom, K. T. (2000). Epoxides. In Ullmann’s Encyclopedia of Industrial Chemistry. https://doi.org/10.1002/14356007.a09spa
dc.relation.referencesSinadinović-Fišer, S., Janković, M., & Petrović, Z. S. (2001). Kinetics of in situ epoxidation of soybean oil in bulk catalyzed by ion exchange resin. JAOCS, Journal of the American Oil Chemists’ Society, 78(7). https://doi.org/10.1007/s11746-001-0333-9spa
dc.relation.referencesSingh, R. P. (2000). Food Frying. In Food Engineering (Vol.III).spa
dc.relation.referencesSotowa, K. I. (2014). Fluid behavior and mass transport characteristics of gas-liquid and liquid-liquid flows in microchannels. Journal of Chemical Engineering of Japan, 47(3), 213–224. https://doi.org/10.1252/jcej.13we141spa
dc.relation.referencesSpendley, W., Hext, G. R., & Himsworth, F. R. (1962). Sequential Application of Simplex Designs in Optimisation and Evolutionary Operation. Technometrics, 4(4), 441–461. https://doi.org/10.1080/00401706.1962.10490033spa
dc.relation.referencesStankiewicz, A., Gerven, T. V., & Stefanidis, G. (2019). The Fundamentals of Process Intensification (1st ed.). Wiley-VCH.spa
dc.relation.referencesStewart, M. (2016). Fluid flow and pressure drop. In Surface Production Operations. https://doi.org/10.1016/b978-1-85617-808-2.00006-7spa
dc.relation.referencesStrandberg, R., Haaland, A., Novak, D. P., Andresen, A. F., Southern, J. T., Edlund, K., Eliasen, M., Herskind, C., Laursen, T., & Pedersen, P. M. (1975). Multicomponent Polyanions. 13. The Crystal Structure of a Hydrated Dodecamolybdophosphoric Acid, H3Mo12PO40(H2O)29-31. Acta Chemica Scandinavica, 29a. https://doi.org/10.3891/acta.chem.scand.29a-0359spa
dc.relation.referencesSuzuki, A. H., Botelho, B. G., Oliveira, L. S., & Franca, A. S. (2018). Sustainable synthesis of epoxidized waste cooking oil and its application as a plasticizer for polyvinyl chloride films. European Polymer Journal, 99. https://doi.org/10.1016/j.eurpolymj.2017.12.014spa
dc.relation.referencesSwern, D. (1970). Organic Peroxides: Volume 1. Wiley-Interscience.spa
dc.relation.referencesTalebian-Kiakalaieh, A., Amin, N. A. S., & Mazaheri, H. (2013). A review on novel processes of biodiesel production from waste cooking oil. In Applied Energy (Vol.104). https://doi.org/10.1016/j.apenergy.2012.11.061spa
dc.relation.referencesTarmizi, A. H., Samsul, K. R., Zaiton, R., & Rosli, M. Y. (2008). Multiplication of oil palm liquid cultures in bioreactors. Journal of Oil Palm Research, SPEC. ISS. APRIL.spa
dc.relation.referencesTeixeira, M. R., Nogueira, R., & Nunes, L. M. (2018). Quantitative assessment of the valorisation of used cooking oils in 23 countries. Waste Management, 78, 611–620. https://doi.org/10.1016/j.wasman.2018.06.039spa
dc.relation.referencesThe Chemical Company. (2021). ChemFlexx Epoxidized Soybean Oil (ESO) - The Chemical Company. https://thechemco.com/chemical/epoxidized-soybean-oil/spa
dc.relation.referencesTomasevic, A. V., & Siler-Marinkovic, S. S. (2003). Methanolysis of used frying oil. Fuel Processing Technology, 81(1). https://doi.org/10.1016/S0378-3820(02)00096-6spa
dc.relation.referencesTrivedi, J., Bhonsle, A. K., & Atray, N. (2019). Processing food waste for the production of platform chemicals. In Refining Biomass Residues for Sustainable Energy and Bioproducts: Technology, Advances, Life Cycle Assessment, and Economics. https://doi.org/10.1016/B978-0-12-818996-2.00019-3spa
dc.relation.referencesTsoutsos, T. D., Tournaki, S., Paraíba, O., & Kaminaris, S. D. (2016). The Used Cooking Oil-to-biodiesel chain in Europe assessment of best practices and environmental performance. In Renewable and Sustainable Energy Reviews (Vol. 54). https://doi.org/10.1016/j.rser.2015.09.039spa
dc.relation.referencesTurco, R., Vitiello, R., Russo, V., Tesser, R., Santacesaria, E., & Di Serio, M. (2013). Selective epoxidation of soybean oil with performic acid catalyzed by acidic ionic exchange resins. Green Processing and Synthesis, 2(5). https://doi.org/10.1515/gps-2013-0045spa
dc.relation.referencesTyagi, V., Tiwati, P., & Gaur, V. (2008). Influence of acidic catalysts on epoxidation of soybean oil using per acid formed in-situ. 105–112. UNIPOX. (2021). ACEITES VEGETALES EPOXIDADOS. https://unipoxpvc.com.ar/aceites-vegetales-epoxidados/spa
dc.relation.referencesVaccaro, L. (2017). Sustainable flow chemistry: Methods and applications. In Sustainable Flow Chemistry: Methods and Applications. https://doi.org/10.1002/9783527689118spa
dc.relation.referencesValdez, I. L., Farfan, O., Sterner, O., & Giménez Turba, A. (2009). Preliminary studies about the chemical characterization of fatty acids from Bertholletia excelsa fruit’s oil by gas chromatography. Biofarbo, 47–53.spa
dc.relation.referencesValtris. (2021). Plas-Chek® 775 – Valtris. https://www.valtris.com/product/plas-chek-775/spa
dc.relation.referencesVanoye, L., Hamami, Z. E., Wang, J., de Bellefon, C., Fongarland, P., & Favre-Réguillon, A. (2017). Epoxidation of methyl oleate with molecular oxygen: Implementation of Mukaiyama reaction in flow. European Journal of Lipid Science and Technology, 119(5), 1–7. https://doi.org/10.1002/ejlt.201600281spa
dc.relation.referencesVenturello, C., & D’Aloisio, R. (1988). Quaternary Ammonium Tetrakis(diperoxotungsto)phosphates(3-) as a New Class of Catalysts for Efficient Alkene Epoxidation with Hydrogen Peroxide. Journal of Organic Chemistry, 53(7). https://doi.org/10.1021/jo00242a041spa
dc.relation.referencesVerified market research. (2020). Global Epoxidized Soybean Oil Market Size By Raw Material, By Application, By End-User, By Geographic Scope And Forecast.spa
dc.relation.referencesVerma, R. K., & Ghosh, S. (2019). Two‐Phase Flow in Miniature Geometries: Comparison of Gas‐Liquid and Liquid‐Liquid Flows. ChemBioEng Reviews, 6(1), 5–16. https://doi.org/10.1002/cben.201800016spa
dc.relation.referencesVoskian, A., & Voskian, S. (2016). Regulation of Plasticizers Under EU REACH and RoHS.spa
dc.relation.referencesWai, P. T., Jiang, P., Shen, Y., Zhang, P., Gu, Q., & Leng, Y. (2019). Catalytic developments in the epoxidation of vegetable oils and the analysis methods of epoxidized products. In RSC Advances (Vol. 9, Issue 65). https://doi.org/10.1039/c9ra05943aspa
dc.relation.referencesWang, X. S., Huang, Y. B., Lin, Z. J., & Cao, R. (2014). Phosphotungstic acid encapsulated in the mesocages of amine-functionalized metal-organic frameworks for catalytic oxidative desulfurization. Dalton Transactions, 43(31). https://doi.org/10.1039/c4dt01043dspa
dc.relation.referencesWang, X., Wang, Y., Li, F., Li, L., Ge, X., Zhang, S., & Qiu, T. (2020). Scale-up of microreactor: Effects of hydrodynamic diameter on liquid–liquid flow and mass transfer. Chemical Engineering Science, 226. https://doi.org/10.1016/j.ces.2020.115838spa
dc.relation.referencesWentzel, B. B., Alsters, P. L., Feiters, M. C., & Nolte, R. J. M. (2004). Mechanistic Studies on the Mukaiyama Epoxidation. Journal of Organic Chemistry, 69(10). https://doi.org/10.1021/jo030345aspa
dc.relation.referencesWu, J., Jiang, P., Qin, X., Ye, Y., & Leng, Y. (2014). Peroxopolyoxotungsten-based ionic hybrid as a highly efficient recyclable catalyst for epoxidation of vegetable oil with H2O2. Bulletin of the Korean Chemical Society, 35(6). https://doi.org/10.5012/bkcs.2014.35.6.1675spa
dc.relation.referencesXu, L., Yang, F., Li, X., Zhao, C., Jin, Q., Huang, J., & Wang, X. (2019). Kinetics of forming polar compounds in frying oils under frying practice of fast food restaurants. LWT, 115. https://doi.org/10.1016/j.lwt.2019.108307spa
dc.relation.referencesYaakob, Z., Mohammad, M., Alherbawi, M., Alam, Z., & Sopian, K. (2013). Overview of the production of biodiesel from Waste cooking oil. In Renewable and Sustainable Energy Reviews (Vol. 18). https://doi.org/10.1016/j.rser.2012.10.016spa
dc.relation.referencesYadav, G. D., & Manjula Devi, K. (2001). A kinetic model for the enzyme-catalyzed selfepoxidation of oleic acid. JAOCS, Journal of the American Oil Chemists’ Society, 78(4). https://doi.org/10.1007/s11746-001-0267-2spa
dc.relation.referencesYadav, G. D., & Pujari, A. A. (2000a). Epoxidation of styrene to styrene oxide: Synergism of heteropoly acid and phase-transfer catalyst under Ishii-Venturello mechanism. Organic Process Research and Development, 4(2). https://doi.org/10.1021/op990055pspa
dc.relation.referencesYadav, G. D., & Pujari, A. A. (2000b). Epoxidation of styrene to styrene oxide: Synergism of heteropoly acid and phase-transfer catalyst under Ishii-Venturello mechanism. Organic Process Research and Development, 4(2). https://doi.org/10.1021/op990055pspa
dc.relation.referencesYan, Z., Tian, J., Wang, K., Nigam, K. D. P., & Luo, G. (2021). Microreaction processes for synthesis and utilization of epoxides: A review. Chemical Engineering Science, 229, 116071. https://doi.org/10.1016/j.ces.2020.116071spa
dc.relation.referencesYao, X., Zhang, Y., Du, L., Liu, H., & Jiang, S. (2016). Efficient continuous epoxidation of biodiesel in a microstructured reactor. Korean Journal of Chemical Engineering, 33(9), 2622–2627. https://doi.org/10.1007/s11814-016-0115-5spa
dc.relation.referencesYarbro, L. A., & Deming, S. N. (1974). Selection and preprocessing of factors for simplex optimization. Analytica Chimica Acta, 73(2), 391–398. https://doi.org/10.1016/S0003-2670(01)85476-3spa
dc.relation.referencesYu, Z., Chen, X., Zhang, Y., Tu, H., Pan, P., Li, S., Han, Y., Piao, M., Hu, J., Shi, F., & Yang, X. (2022). Phosphotungstic acid and propylsulfonic acid bifunctionalized ordered mesoporous silica: A highly efficient and reusable catalysts for esterification of oleic acid. Chemical Engineering Journal, 430. https://doi.org/10.1016/j.cej.2021.133059spa
dc.relation.referencesYun, D., Ayla, E. Z., Bregante, D. T., & Flaherty, D. W. (2021). Reactive Species and Reaction Pathways for the Oxidative Cleavage of 4-Octene and Oleic Acid with H2O2over Tungsten Oxide Catalysts. ACS Catalysis, 11(5), 3137–3152. https://doi.org/10.1021/ACSCATAL.0C05393/SUPPL_FILE/CS0C05393_SI_001. PDFspa
dc.relation.referencesZaher, F. A., El-Mallah, M. H., & El-Hefnawy, M. M. (1989). Kinetics of oxirane cleavage in epoxidized soybean oil. Journal of the American Oil Chemists’ Society, 66(5). https://doi.org/10.1007/BF02669955spa
dc.relation.referencesZhang, F., Chen, M., Jia, X., Xu, W., & Shi, N. (2019). Research on the effect of resin on the thermal stability of hydrogen peroxide. Process Safety and Environmental Protection, 126. https://doi.org/10.1016/j.psep.2019.03.040spa
dc.relation.referencesZhang, F., Dong, Y., Lin, S., Gui, X., & Hu, J. (2023). A novel amphiphilic phase transfer catalyst for the green epoxidation of soybean oil with hydrogen peroxide. Molecular Catalysis, 547, 113384. https://doi.org/10.1016/j.mcat.2023.113384spa
dc.relation.referencesZhang, H., Yang, H., Guo, H., Yang, J., Xiong, L., Huang, C., Chen, X., Ma, L., & Chen, Y. (2014). Solvent-free selective epoxidation of soybean oil catalyzed by peroxophosphotungstate supported on palygorskite. Applied Clay Science, 90. https://doi.org/10.1016/j.clay.2014.01.015spa
dc.relation.referencesZhang, J., Wang, K., Teixeira, A. R., Jensen, K. F., & Luo, G. (2017). Design and scaling up of microchemical systems: A review. In Annual Review of Chemical and Biomolecular Engineering (Vol. 8). https://doi.org/10.1146/annurev-chembioeng-060816-101443spa
dc.relation.referencesZuleta, S. E., M., M. M., Avendaño, G. I., & Diaz, L. C. (2013). Epoxidación de oleíma de palma con ácido peroxiacético formado in situ. Biotecnología En El Sector Agropecuario y Agroindustrial, 235–244.spa
dc.relation.referencesZuwei, X., Ning, Z., Yu, S., & Kunlan, L. (2001). Reaction-controlled phase-transfer catalysis for propylene epoxidation to propylene oxide. Science, 292(5519). https://doi.org/10.1126/science.292.5519.1139spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc660 - Ingeniería química::665 - Tecnología de aceites, grasas, ceras, gases industrialesspa
dc.subject.lembRECUPERACION DE ACEITES USADOSspa
dc.subject.lembOil reclamationeng
dc.subject.lembCATALISIS DE TRANSFERENCIA DE FASEspa
dc.subject.lembPhase-transfer catalysiseng
dc.subject.lembAGENTES TENSOACTIVOSspa
dc.subject.lembSurface active agentseng
dc.subject.lembBIOTENSOACTIVOSspa
dc.subject.lembBiosurfactantseng
dc.subject.proposalVegetable oilseng
dc.subject.proposalWaste valorizationeng
dc.subject.proposalChemical reactionseng
dc.subject.proposalEpoxidationeng
dc.subject.proposalPhase- transfer catalysiseng
dc.subject.proposalMathematical optimizationeng
dc.subject.proposalAutomationeng
dc.subject.proposalIntensificationeng
dc.subject.proposalAceites vegetalesspa
dc.subject.proposalValorización de residuospa
dc.subject.proposalReacciones químicasspa
dc.subject.proposalEpoxidaciónspa
dc.subject.proposalCatálisis de transferencia de fasespa
dc.subject.proposalOptimización matemáticaspa
dc.subject.proposalAutomatizaciónspa
dc.subject.proposalIntensificaciónspa
dc.titleIntensification in the epoxidation of used cooking oils using acid catalystseng
dc.title.translatedIntensification de l'époxydation des huiles de cuisson usagées en utilisant des catalyseurs acidesefra
dc.title.translatedIntensificación en la epoxidación de aceites usados de cocina utilizando catalizadores ácidosspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentImagespa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1018478517.2025.pdf
Tamaño:
13.59 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de doctorado en Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: