Análisis computacional de la hemaglutinina de los virus influenza A de linaje pandémico en Colombia

dc.contributor.advisorHernández Ortiz, Juan Pablo
dc.contributor.advisorCiuoderis Aponte, Karl Adolf
dc.contributor.authorÚsuga Restrepo, Jaime Andrés
dc.contributor.orcid0009-0005-2830-908Xspa
dc.contributor.researchgroupCrs-Tid Center for Research and Surveillance of Tropical and Infectious Diseasesspa
dc.date.accessioned2024-01-24T20:14:33Z
dc.date.available2024-01-24T20:14:33Z
dc.date.issued2023-08-01
dc.descriptionIlustracionesspa
dc.description.abstractAunque se ha demostrado la amplia circulación del virus influenza (VI) A en cerdos y humanos en el mundo y en Colombia, existen pocos estudios que hayan caracterizado los aspectos biológicos de estos virus. Por tanto, éste trabajo se basó en el análisis computacional de la proteína de superficie hemaglutinina (HA) de cepas pandémicas del VI circulantes en el país, y su relación con un cambio en las propiedades biológicas de estos. Este trabajo se desarrolló en tres capítulos, en el primero se caracterizó la composición genómica de la HA, seguido de la identificación de las mutaciones en esta proteína y su posible contribución a la diseminación de estos virus en la región. Los últimos dos capítulos, correspondieron al análisis estructural de la HA y su interacción con los receptores celulares. En general, se sugiere que las mutaciones I322V, P84S, S204T, E375K entre otras, pudieron haber contribuido al fitness y en el establecimiento de estos virus en las poblaciones actuales en Colombia. Las mutaciones más relevantes (E375K y S163N) estaban relacionadas con el aumento de la virulencia y la capacidad de evadir la respuesta inmune. Adicionalmente, se observó un clúster filogenéticamente relacionado que presentó dos mutaciones únicas (D223X y Q224X) no reportadas previamente. Por otra parte, para los modelos de los consensos tridimensionales de la HA, se observó que el modelo cBri18 (con mutaciones únicas R46G, P283A y I299V), representativo de su clúster, mostró comportamientos estructurales ligeramente distintos a los otros modelos y presentó cambios en el loop130 del sitio de unión al receptor. Adicionalmente, luego del análisis de los modelos de HA más relevantes, se encontró que estos mantienen preferencia la unión con los receptores celulares humanos (SA2,6) sobre los aviares (SA2,3). También que el modelo cCal09 tuvo mayor afinidad por SA2,6; y que el modelo cBri18 fue el única interactuó con SA2,3, hecho que puede atribuirse a los cambios evidenciados en el loop130. En conclusión, la presencia de ciertas mutaciones en la proteína HA de VI H1N1pdm de Colombia están posiblemente influenciando las propiedades biológicas de estos virus, sin embargo, otros estudios son necesarios para poder confirmar estos hallazgos. No obstante, este conocimiento generado aporta en el fortalecimiento de las acciones en la vigilancia y control de estos virus en el país y la región. (texto tomado de la fuente)spa
dc.description.abstractDespite circulation of influenza virus (IV) in pigs and humans globally, few studies have characterized its biological features in Colombia. Therefore, in this study a computational analysis of the hemagglutinin (HA) surface protein of IV pandemic strains circulating in the country, and its relationship with a change in their biological properties was carried out. This work was developed in three chapters, in the first one, the genomic composition of HA was characterized, followed by the identification of the mutations and their possible contribution to the dissemination of these viruses in the region. The last two chapters corresponded to the structural analysis of HA and its interaction with cell receptors. In general, the mutations I322V, P84S, S204T, E375K, among others, have contributed to the fitness and establishment of these viruses in current populations in Colombia. The most relevant changes (E375K and S163N) were related to increased virulence and the ability to evade the immune response. In addition, a phylogenetically related cluster was found that exhibited two unique changes (D223X and Q224X) not previously reported. On the other hand, for the three-dimensional consensus models of the HA, it was shown that the cBri18 model (with exclusive mutations R46G, P283A and I299V), representative of its cluster, showed structural changes in the loop130 of receptor binding domain behaviors slightly different from the other models. In addition, analyzing the most relevant HA models, it was found that they preferentially bind to human cell receptors (SA2,6) over avian (SA2,3). Also, that the cCal09 model had a higher affinity for SA2,6; and that the cBri18 model was the only one that interacted with SA2,3, a fact that can be attributed to the changes observed in loop130. In conclusion, the presence of certain mutations in the HA protein of IV H1N1pdm from Colombia might be influencing the biological properties of these viruses, however, other studies are necessary to confirm these findings. However, this generated knowledge contributes to strengthening actions in the surveillance and control of these viruses in the country and the region.eng
dc.description.curricularareaÁrea Curricular de Materiales y Nanotecnologíaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Materiales y Procesosspa
dc.description.researchareaBioinformáticaspa
dc.description.researchareaVirologíaspa
dc.format.extent103 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85425
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Materiales y Procesosspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAbraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindah, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/J.SOFTX.2015.06.001spa
dc.relation.referencesAl Khatib, H. A., Al Thani, A. A., & Yassine, H. M. (2018a). Evolution and dynamics of the pandemic H1N1 influenza hemagglutinin protein from 2009 to 2017. Archives of Virology, 163(11), 3035–3049. https://doi.org/10.1007/S00705-018-3962-Z/FIGURES/5spa
dc.relation.referencesAlhossary, A., Handoko, S. D., Mu, Y., & Kwoh, C. K. (2015). Fast, accurate, and reliable molecular docking with QuickVina 2. Bioinformatics, 31(13), 2214–2216. https://doi.org/10.1093/BIOINFORMATICS/BTV082spa
dc.relation.referencesAnderson, T. K., Macken, C. A., Lewis, N. S., Scheuermann, R. H., Reeth, K. Van, Brown, I. H., Swenson, S. L., Simon, G., Saito, T., Berhane, Y., Ciacci-Zanella, J., Pereda, A., Davis, C. T., Donis, R. O., Webby, R. J., & Vincent, A. L. (2016). A Phylogeny-Based Global Nomenclature System and Automated Annotation Tool for H1 Hemagglutinin Genes from Swine Influenza A Viruses. mSphere, 1(6). https://doi.org/10.1128/MSPHERE.00275-16spa
dc.relation.referencesAyres, D. L., Darling, A., Zwickl, D. J., Beerli, P., Holder, M. T., Lewis, P. O., Huelsenbeck, J. P., Ronquist, F., Swofford, D. L., Cummings, M. P., Rambaut, A., & Suchard, M. A. (2012). BEAGLE: An Application Programming Interface and High-Performance Computing Library for Statistical Phylogenetics. Systematic Biology, 61(1), 170. https://doi.org/10.1093/SYSBIO/SYR100spa
dc.relation.referencesBawono, P., & Heringa, J. (2014). Phylogenetic Analyses. Comprehensive Biomedical Physics, 6, 93–110. https://doi.org/10.1016/B978-0-444-53632-7.01108-4spa
dc.relation.referencesBII Flusurver - Frequently Asked Questions. (s/f). Recuperado el 2 de julio de 2023, de https://flusurver.bii.a-star.edu.sg/help/faq.htmlspa
dc.relation.referencesBoni, M. F., Galvani, A. P., Wickelgren, A. L., & Malani, A. (2013). Economic epidemiology of avian influenza on smallholder poultry farms. Theoretical Population Biology, 90, 135–144. https://doi.org/10.1016/j.tpb.2013.10.001spa
dc.relation.referencesBouvier, N. M., & Palese, P. (2008). THE BIOLOGY OF INFLUENZA VIRUSES. Vaccine.spa
dc.relation.referencesBoyoglu-Barnum, S., Ellis, D., Gillespie, R. A., Hutchinson, G. B., Park, Y. J., Moin, S. M., Acton, O. J., Ravichandran, R., Murphy, M., Pettie, D., Matheson, N., Carter, L., Creanga, A., Watson, M. J., Kephart, S., Ataca, S., Vaile, J. R., Ueda, G., Crank, M. C., … Kanekiyo, M. (2021). Quadrivalent influenza nanoparticle vaccines induce broad protection. Nature, 592(7855), 623–628. https://doi.org/10.1038/S41586-021-03365-Xspa
dc.relation.referencesBradley, K. C., Jones, C. A., Tompkins, S. M., Tripp, R. A., Russell, R. J., Gramer, M. R., Heimburg-Molinaro, J., Smith, D. F., Cummings, R. D., & Steinhauer, D. A. (2011). Comparison of the receptor binding properties of contemporary swine isolates and early human pandemic H1N1 isolates (Novel 2009 H1N1). Virology, 413(2), 169–182. https://doi.org/10.1016/J.VIROL.2011.01.027spa
dc.relation.referencesBrice, A. R., & Dominy, B. N. (2011). Analyzing the robustness of the MM/PBSA free energy calculation method: Application to DNA conformational transitions. Journal of Computational Chemistry, 32(7), 1431–1440. https://doi.org/10.1002/JCC.21727spa
dc.relation.referencesBussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. The Journal of chemical physics, 126(1). https://doi.org/10.1063/1.2408420spa
dc.relation.referencesByrd-Leotis, L., Cummings, R. D., & Steinhauer, D. A. (2017). Molecular Sciences The Interplay between the Host Receptor and Influenza Virus Hemagglutinin and Neuraminidase. https://doi.org/10.3390/ijms18071541spa
dc.relation.referencesCador, C., Andraud, M., Willem, L., & Rose, N. (2017). Control of endemic swine flu persistence in farrow-to-finish pig farms: A stochastic metapopulation modeling assessment. Veterinary Research, 48(1), 1–14. https://doi.org/10.1186/S13567-017-0462-1/FIGURES/7spa
dc.relation.referencesCarbone, V., Schneider, E. K., Rockman, S., Baker, M., Huang, J. X., Ong, C., Cooper, M. A., Yuriev, E., Li, J., & Velkov, T. (2015). Molecular Characterisation of the Haemagglutinin Glycan-Binding Specificity of Egg-Adapted Vaccine Strains of the Pandemic 2009 H1N1 Swine Influenza A Virus. Molecules, 20(6), 10415. https://doi.org/10.3390/MOLECULES200610415spa
dc.relation.referencesChen, L. M., Blixt, O., Stevens, J., Lipatov, A. S., Davis, C. T., Collins, B. E., Cox, N. J., Paulson, J. C., & Donis, R. O. (2012). In vitro evolution of H5N1 avian influenza virus toward human-type receptor specificity. Virology, 422(1), 105. https://doi.org/10.1016/J.VIROL.2011.10.006spa
dc.relation.referencesChen, L. M., Rivailler, P., Hossain, J., Carney, P., Balish, A., Perry, I., Davis, C. T., Garten, R., Shu, B., Xu, X., Klimov, A., Paulson, J. C., Cox, N. J., Swenson, S., Stevens, J., Vincent, A., Gramer, M., & Donis, R. O. (2011). Receptor specificity of subtype H1 influenza A viruses isolated from swine and humans in the United States. Virology, 412(2), 401. https://doi.org/10.1016/J.VIROL.2011.01.015spa
dc.relation.referencesChen, Z., Wang, W., Zhou, H., Amorsolo L. Suguitan, Jr., Shambaugh, C., Kim, L., Zhao, J., Kemble, G., & Jin, H. (2010). Generation of Live Attenuated Novel Influenza Virus A/California/7/09 (H1N1) Vaccines with High Yield in Embryonated Chicken Eggs. Journal of Virology, 84(1), 44. https://doi.org/10.1128/JVI.02106-09spa
dc.relation.referencesChepkwony, S., Parys, A., Vandoorn, E., Stadejek, W., Xie, J., King, J., Graaf, A., Pohlmann, A., Beer, M., Harder, T., & Van Reeth, K. (2021). Genetic and antigenic evolution of H1 swine influenza A viruses isolated in Belgium and the Netherlands from 2014 through 2019. Scientific Reports 2021 11:1, 11(1), 1–12. https://doi.org/10.1038/s41598-021-90512-zspa
dc.relation.referencesChilds, R. A., Palma, A. S., Wharton, S., Matrosovich, T., Liu, Y., Chai, W., Campanero-Rhodes, M. A., Zhang, Y., Eickmann, M., Kiso, M., Hay, A., Matrosovich, M., & Feizi, T. (2009). Receptor-binding specificity of pandemic influenza A (H1N1) 2009 virus determined by carbohydrate microarray. Nature biotechnology, 27(9), 797. https://doi.org/10.1038/NBT0909-797spa
dc.relation.referencesChua, K., & Chai, H. (2012). Hemagglutinin protein of Asian strains of human inluenza virus A H1N1 binds to sialic acid-a major component of human airway receptors. Genetics and Molecular Research, 11(1), 636–643. https://doi.org/10.4238/2012.March.16.1spa
dc.relation.referencesChutinimitkul, S., Herfst, S., Steel, J., Lowen, A. C., Ye, J., van Riel, D., Schrauwen, E. J. A., Bestebroer, T. M., Koel, B., Burke, D. F., Sutherland-Cash, K. H., Whittleston, C. S., Russell, C. A., Wales, D. J., Smith, D. J., Jonges, M., Meijer, A., Koopmans, M., Rimmelzwaan, G. F., … Fouchier, R. A. M. (2010). Virulence-Associated Substitution D222G in the Hemagglutinin of 2009 Pandemic Influenza A(H1N1) Virus Affects Receptor Binding. Journal of Virology, 84(22), 11802–11813. https://doi.org/10.1128/JVI.01136-10/SUPPL_FILE/27_8_10_REVISED_SOM_JVI01136_10.DOCspa
dc.relation.referencesConsuelo Ramirez-Nieto, G., Augusto, C., Rojas, D., Julio, V., Alfonso, V., Correa, J., Dario, J., & Galvis, M. (2012). First isolation and identification of H1N1 swine influenza viruses in Colombian pig farms. 4, 983–990. https://doi.org/10.4236/health.2012.430150spa
dc.relation.referencesCotter, C. R., Jin, H., & Chen, Z. (2014). A Single Amino Acid in the Stalk Region of the H1N1pdm Influenza Virus HA Protein Affects Viral Fusion, Stability and Infectivity. PLoS Pathogens, 10(1). https://doi.org/10.1371/JOURNAL.PPAT.1003831spa
dc.relation.referencesDarden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397spa
dc.relation.referencesDou, D., Revol, R., Östbye, H., Wang, H., & Daniels, R. (2018). Influenza A virus cell entry, replication, virion assembly and movement. En Frontiers in Immunology (Vol. 9, Número JUL). Frontiers Media S.A. https://doi.org/10.3389/fimmu.2018.01581spa
dc.relation.referencesDrummond, A. J., Suchard, M. A., Xie, D., & Rambaut, A. (2012). Bayesian Phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29(8), 1969. https://doi.org/10.1093/MOLBEV/MSS075spa
dc.relation.referencesDuBois, R. M., Aguilar-Yañez, J. M., Mendoza-Ochoa, G. I., Oropeza-Almazán, Y., Schultz-Cherry, S., Alvarez, M. M., White, S. W., & Russell, C. J. (2011). The Receptor-Binding Domain of Influenza Virus Hemagglutinin Produced in Escherichia coli Folds into Its Native, Immunogenic Structure . Journal of Virology, 85(2), 865–872. https://doi.org/10.1128/jvi.01412-10spa
dc.relation.referencesFiser, A., & Šali, A. (2003). Modeller: Generation and Refinement of Homology-Based Protein Structure Models. Methods in Enzymology, 374, 461–491. https://doi.org/10.1016/S0076-6879(03)74020-8spa
dc.relation.referencesForli, S., Huey, R., Pique, M. E., Sanner, M. F., Goodsell, D. S., & Olson, A. J. (2016). Computational protein–ligand docking and virtual drug screening with the AutoDock suite. Nature Protocols 2016 11:5, 11(5), 905–919. https://doi.org/10.1038/nprot.2016.051spa
dc.relation.referencesFraser, C., Cummings, D. A. T., Klinkenberg, D., Burke, D. S., & Ferguson, N. M. (2011). Special Article Influenza Transmission in Households During the 1918 Pandemic. 174(5). https://doi.org/10.1093/aje/kwr122spa
dc.relation.referencesGao, S., Anderson, T. K., Walia, R. R., Dorman, K. S., Janas-Martindale, A., & Vincent, A. L. (2017). The genomic evolution of H1 influenza A viruses from swine detected in the United States between 2009 and 2016. The Journal of General Virology, 98(8), 2001. https://doi.org/10.1099/JGV.0.000885spa
dc.relation.referencesGorbalenya, A. E., & Lauber, C. (2017). Phylogeny of Viruses. Reference Module in Biomedical Sciences. https://doi.org/10.1016/B978-0-12-801238-3.95723-4spa
dc.relation.referencesGraaf Miranda, & Fouchier Ron A. (2014). Role of receptor binding specificity in influenza A virus transmission and pathogenesis. EMBO, 33(8), 823–841. https://doi.org/https://doi.org/10.1002/embj.201387442spa
dc.relation.referencesGuedes, I. A., Costa, L. S. C., dos Santos, K. B., Karl, A. L. M., Rocha, G. K., Teixeira, I. M., Galheigo, M. M., Medeiros, V., Krempser, E., Custódio, F. L., Barbosa, H. J. C., Nicolás, M. F., & Dardenne, L. E. (2021). Drug design and repurposing with DockThor-VS web server focusing on SARS-CoV-2 therapeutic targets and their non-synonym variants. Scientific Reports 2021 11:1, 11(1), 1–20. https://doi.org/10.1038/s41598-021-84700-0spa
dc.relation.referencesGuldemir, D., Coskun-Ari, F. F., Altas, A. B., Bakkaloglu, Z., Unaldi, O., Bayraktar, F., Korukluoglu, G., Aktas, A. R., & Durmaz, R. (2019). Molecular characterization of the influenza A(H1N1)pdm09 isolates collected in the 2015-2016 season and comparison of HA mutations detected in Turkey since 2009. Journal of Medical Virology, 91(12), 2074–2082. https://doi.org/10.1002/JMV.25565spa
dc.relation.referencesGuvench, O., & MacKerell, A. D. (2008). Comparison of protein force fields for molecular dynamics simulations. Methods in Molecular Biology, 443, 63–88. https://doi.org/10.1007/978-1-59745-177-2_4/COVERspa
dc.relation.referencesHan, Y., Sun, N., Lv, Q. yue, Liu, D. hong, & Liu, D. peng. (2016). Molecular epidemiology and phylogenetic analysis of HA gene of influenza A(H1N1)pdm09 strain during 2010–2014 in Dalian, North China. Virus Genes, 52(5), 606–612. https://doi.org/10.1007/S11262-016-1358-2/FIGURES/2spa
dc.relation.referencesHanssen, H., Hincapié, O., & López, J. H. (1977). INFLUENZA EN PORCINOS DE ANTIOQUIA, COLOMBIA ’.spa
dc.relation.referencesHollingsworth, S. A., & Dror, R. O. (2018). Review Molecular Dynamics Simulation for All. Neuron, 1129–1143. https://doi.org/10.1016/j.neuron.2018.08.011spa
dc.relation.referencesHorimoto, T., & Kawaoka, Y. (2005). INFLUENZA: LESSONS FROM PAST PANDEMICS, WARNINGS FROM CURRENT INCIDENTS. https://doi.org/10.1038/nrmicro1208spa
dc.relation.referencesHornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., & Simmerling, C. (2006). Comparison of multiple AMBER force fields and development of improved protein backbone parameters. Proteins, 65(3), 712. https://doi.org/10.1002/PROT.21123spa
dc.relation.referencesHou, T., Wang, J., Li, Y., & Wang, W. (2011). Assessing the performance of the MM/PBSA and MM/GBSA methods: I. The accuracy of binding free energy calculations based on molecular dynamics simulations. Journal of chemical information and modeling, 51(1), 69. https://doi.org/10.1021/CI100275Aspa
dc.relation.referencesHuang, D. T. N., Lu, C. Y., Chi, Y. H., Li, W. L., Chang, L. Y., Lai, M. J., Chen, J. S., Hsu, W. M., & Huang, L. M. (2017). Adaptation of influenza A (H7N9) virus in primary human airway epithelial cells. Scientific Reports, 7(1). https://doi.org/10.1038/S41598-017-10749-5spa
dc.relation.referencesIvan, F. X., Zhou, X., Lau, S. H., Rashid, S., Teo, J. S. M., Lee, H. K., Koay, E. S., Chan, K. P., Leo, Y. S., Chen, M. I. C., Kwoh, C. K., & Chow, V. T. (2020). Molecular insights into evolution, mutations and receptor-binding specificity of influenza A and B viruses from outpatients and hospitalized patients in Singapore. International Journal of Infectious Diseases, 90, 84–96. https://doi.org/10.1016/J.IJID.2019.10.024spa
dc.relation.referencesJavanian, M., Barary, M., Ghebrehewet, S., Koppolu, V., Vasigala, V. K. R., & Ebrahimpour, S. (2021). A brief review of influenza virus infection. En Journal of Medical Virology (Vol. 93, Número 8, pp. 4638–4646). John Wiley and Sons Inc. https://doi.org/10.1002/jmv.26990spa
dc.relation.referencesJorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869spa
dc.relation.referencesKapli, P., Yang, Z., & Telford, M. J. (2020). Phylogenetic tree building in the genomic age. Nature Reviews Genetics 2020 21:7, 21(7), 428–444. https://doi.org/10.1038/s41576-020-0233-0spa
dc.relation.referencesKarlsson, E. A., Ciuoderis, K., Freiden, P. J., Seufzer, B., Jones, J. C., Johnson, J., Parra, R., Gongora, A., Cardenas, D., Barajas, D., Osorio, J. E., & Schultz-Cherry, S. (2013). Prevalence and characterization of influenza viruses in diverse species in Los Llanos, Colombia. Emerging Microbes and Infections, 2. https://doi.org/10.1038/emi.2013.20spa
dc.relation.referencesKatoh, K., Rozewicki, J., & Yamada, K. D. (2019). MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics, 20(4), 1160–1166. https://doi.org/10.1093/BIB/BBX108spa
dc.relation.referencesKim, H., Webster, R. G., & Webby, R. J. (2018). Influenza Virus: Dealing with a Drifting and Shifting Pathogen. Viral Immunology, 31(2), 174–183. https://doi.org/10.1089/vim.2017.0141spa
dc.relation.referencesKitchen, D. B., Decornez, H., Furr, J. R., & Bajorath, J. (2004). Docking and scoring in virtual screening for drug discovery: Methods and applications. En Nature Reviews Drug Discovery (Vol. 3, Número 11, pp. 935–949). https://doi.org/10.1038/nrd1549spa
dc.relation.referencesKlement, E., Weng, H.-Y., Poljak, Z., Orlando, F., Pardo, C., Alba-Casals, A., Nerem, J., Morrison, R. B., Puig, P., & Torremorell, M. (2017). influenza herd-level Prevalence and seasonality in Breed-to-Wean Pig Farms in the Midwestern United states. 4, 11. https://doi.org/10.3389/fvets.2017.00167spa
dc.relation.referencesKoel, B. F., Burke, D. F., Bestebroer, T. M., Van Der Vliet, S., Zondag, G. C. M., Vervaet, G., Skepner, E., Lewis, N. S., Spronken, M. I. J., Russell, C. A., Eropkin, M. Y., Hurt, A. C., Barr, I. G., De Jong, J. C., Rimmelzwaan, G. F., Osterhaus, A. D. M. E., Fouchier, R. A. M., & Smith, D. J. (2013). Substitutions near the receptor binding site determine major antigenic change during influenza virus evolution. Science, 342(6161), 976–979. https://doi.org/10.1126/SCIENCE.1244730/SUPPL_FILE/KOEL.SM.PDFspa
dc.relation.referencesKoul, P. A., Mir, M. A., Bali, N. K., Chawla-Sarkar, M., Sarkar, M., Kaushik, S., Khan, U. H., Ahmad, F., Garten, R., Lal, R. B., & Broor, S. (2011). Pandemic and seasonal influenza viruses among patients with acute respiratory illness in Kashmir (India). Influenza and Other Respiratory Viruses, 5(6), e521. https://doi.org/10.1111/J.1750-2659.2011.00261.Xspa
dc.relation.referencesKuhner, M. K. (2009). Coalescent genealogy samplers: windows into population history. Trends in ecology & evolution, 24(2), 86. https://doi.org/10.1016/J.TREE.2008.09.007spa
dc.relation.referencesKuntz, I. D., Blaney, J. M., Oatley, S. J., Langridge, R., & Ferrin, T. E. (1982). A Geometric Approach to Macromolecule-Ligand Interactions. En J. Mol. Bid.spa
dc.relation.referencesLaskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: a program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/S0021889892009944spa
dc.relation.referencesLaskowski, R. A., & Swindells, M. B. (2011). LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51(10), 2778–2786. https://doi.org/10.1021/CI200227U/ASSET/IMAGES/MEDIUM/CI-2011-00227U_0006.GIFspa
dc.relation.referencesLee, A. N., Hartono, Y. D., Sun, T., Leow, M. L., Liu, X. W., Huang, X., & Zhang, D. (2011). Molecular dynamics studies of human receptor molecule in hemagglutinin of 1918 and 2009 H1N1 influenza viruses. Journal of Molecular Modeling, 17(7), 1635–1641. https://doi.org/10.1007/S00894-010-0867-5/METRICSspa
dc.relation.referencesLetunic, I., & Bork, P. (2021). Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Research, 49(W1), W293–W296. https://doi.org/10.1093/NAR/GKAB301spa
dc.relation.referencesLevitt, M. (2014). Birth and Future of Multiscale Modeling for Macromolecular Systems (Nobel Lecture). Angewandte Chemie International Edition, 53(38), 10006–10018. https://doi.org/10.1002/ANIE.201403691spa
dc.relation.referencesMaines, T. R., Jayaraman, A., Belser, J. A., Wadford, D. A., Pappas, C., Zeng, H., Gustin, K. M., Pearce, M. B., Viswanathan, K., Shriver, Z. H., Raman, R., Cox, N. J., Sasisekharan, R., Katz, J. M., & Tumpey, T. M. (2009). Transmission and Pathogenesis of Swine-Origin 2009 A(H1N1) Influenza Viruses in Ferrets and Mice. Science (New York, N.Y.), 325(5939), 484. https://doi.org/10.1126/SCIENCE.1177238spa
dc.relation.referencesMark Berg Jeremy, Stryer Lubert, & Tymoczko John. (2006). Biochemistry (6th ed.). https://books.google.com.cu/books?id=HRr4MNH2YssC&printsec=frontcover#v=onepage&q&f=falsespa
dc.relation.referencesMatrosovich, M., Tuzikov, A., Bovin, N., Gambaryan, A., Klimov, A., Castrucci, M. R., Donatelli, I., & Kawaoka, Y. (2000). Early Alterations of the Receptor-Binding Properties of H1, H2, and H3 Avian Influenza Virus Hemagglutinins after Their Introduction into Mammals. Journal of Virology, 74(18), 8502. https://doi.org/10.1128/JVI.74.18.8502-8512.2000spa
dc.relation.referencesMcAuley, J. L., Gilbertson, B. P., Trifkovic, S., Brown, L. E., & McKimm-Breschkin, J. L. (2019). Influenza virus neuraminidase structure and functions. En Frontiers in Microbiology (Vol. 10, Número JAN). Frontiers Media S.A. https://doi.org/10.3389/fmicb.2019.00039spa
dc.relation.referencesMcGinnis, S., & Madden, T. L. (2004). BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Research, 32(Web Server issue), W20. https://doi.org/10.1093/NAR/GKH435spa
dc.relation.referencesMichaelis, M., Doerr, H. W., & Cinatl, J. (2009). An influenza A H1N1 virus revival - Pandemic H1N1/09 virus. En Infection (Vol. 37, Número 5, pp. 381–389). https://doi.org/10.1007/s15010-009-9181-5spa
dc.relation.referencesMinh, B. Q., Schmidt, H. A., Chernomor, O., Schrempf, D., Woodhams, M. D., Von Haeseler, A., Lanfear, R., & Teeling, E. (2020). IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Molecular Biology and Evolution, 37(5), 1530–1534. https://doi.org/10.1093/MOLBEV/MSAA015spa
dc.relation.referencesMunjal, G., Hanmandlu, M., & Srivastava, S. (2019). Phylogenetics Algorithms and Applications. Ambient Communications and Computer Systems, 904, 187. https://doi.org/10.1007/978-981-13-5934-7_17spa
dc.relation.referencesNi, F., Kondrashkina, E., & Wang, Q. (2018). Determinant of receptor-preference switch in influenza hemagglutinin. Virology, 513, 98. https://doi.org/10.1016/J.VIROL.2017.10.010spa
dc.relation.referencesOsorio-Zambrano, W. F., Ospina-Jimenez, A. F., Alvarez-Munoz, S., Gomez, A. P., & Ramirez-Nieto, G. C. (2022). Zooming in on the molecular characteristics of swine influenza virus circulating in Colombia before and after the H1N1pdm09 virus. Frontiers in Veterinary Science, 9. https://doi.org/10.3389/FVETS.2022.983304/FULLspa
dc.relation.referencesOtte, J., Hinrichs, J., Rushton, J., Roland-Holst, D., & Zilberman, D. (2008). Impacts of avian influenza virus on animal production in developing countries. En CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources (Vol. 3). https://doi.org/10.1079/PAVSNNR20083080spa
dc.relation.referencesParrinello, M., Rahman, A., Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. JAP, 52(12), 7182–7190. https://doi.org/10.1063/1.328693spa
dc.relation.referencesPatel, H., & Kukol, A. (2021). Integrating molecular modelling methods to advance influenza A virus drug discovery. Drug Discovery Today, 26(2), 503–510. https://doi.org/10.1016/J.DRUDIS.2020.11.014spa
dc.relation.referencesPetrova, V. N., & Russell, C. A. (2017). The evolution of seasonal influenza viruses. Nature Publishing Group, 16. https://doi.org/10.1038/nrmicro.2017.118spa
dc.relation.referencesRajao, D. S., Anderson, T. K., Kitikoon, P., Stratton, J., Lewis, N. S., & Vincent, A. L. (2018). Antigenic and genetic evolution of contemporary swine H1 influenza viruses in the United States. Virology, 518, 45–54. https://doi.org/10.1016/J.VIROL.2018.02.006spa
dc.relation.referencesRajapaksha, H., Petrovsky, N., & Guan, Y. (2014). In Silico Structural Homology Modelling and Docking for Assessment of Pandemic Potential of a Novel H7N9 Influenza Virus and Its Ability to Be Neutralized by Existing Anti-Hemagglutinin Antibodies. PLoS ONE. https://doi.org/10.1371/journal.pone.0102618spa
dc.relation.referencesRambaut, A., Drummond, A. J., Xie, D., Baele, G., & Suchard, M. A. (2018). Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Systematic Biology, 67(5), 901. https://doi.org/10.1093/SYSBIO/SYY032spa
dc.relation.referencesRambo-Martin, B. L., Keller, M. W., Wilson, M. M., Nolting, J. M., Anderson, T. K., Vincent, A. L., Bagal, U. R., Jang, Y., Neuhaus, E. B., Davis, C. T., Bowman, A. S., Wentworth, D. E., & Barnes, J. R. (2020). Influenza A Virus Field Surveillance at a Swine-Human Interface. mSphere, 5(1). https://doi.org/10.1128/MSPHERE.00822-19/ASSET/43499F7B-FAE5-42D2-BBA4-4D2CB9F4741F/ASSETS/GRAPHIC/MSPHERE.00822-19-F0004.JPEGspa
dc.relation.referencesRamos, A. P., Herrera, B. A., Ramírez, O. V., García, A. A., Jiménez, M. M., Valdés, C. S., Fernández, A. G., González, G., Fernández, S. I. O., Báez, G. G., & Espinosa, B. H. (2013). Molecular and phylogenetic analysis of influenza A H1N1 pandemic viruses in Cuba, May 2009 to August 2010. International Journal of Infectious Diseases, 17(7), e565–e567. https://doi.org/10.1016/j.ijid.2013.01.028spa
dc.relation.referencesRogers’ And, G. N., & D’souz~, B. L. (1989). 322 Receptor Binding Properties of Human and Animal Hl Influenza Virus Isolates. En VIROLOGY (Vol. 173).spa
dc.relation.referencesŠali, A., & Blundell, T. L. (1993). Comparative protein modelling by satisfaction of spatial restraints. Journal of molecular biology, 234(3), 779–815. https://doi.org/10.1006/JMBI.1993.1626spa
dc.relation.referencesSandbulte, M. R., Spickler, A. R., Zaabel, P. K., & Roth, J. A. (2015). Optimal Use of Vaccines for Control of Influenza A Virus in Swine. Vaccines 2015, Vol. 3, Pages 22-73, 3(1), 22–73. https://doi.org/10.3390/VACCINES3010022spa
dc.relation.referencesSchneider, R., Sharma, A. R., & Rai, A. (2008). Introduction to molecular dynamics. Lecture Notes in Physics, 739, 3–40. https://doi.org/10.1007/978-3-540-74686-7_1/COVERspa
dc.relation.referencesShen, M., & Sali, A. (2006). Statistical potential for assessment and prediction of protein structures. Protein Science : A Publication of the Protein Society, 15(11), 2507. https://doi.org/10.1110/PS.062416606spa
dc.relation.referencesSippl, M. J. (1993). Recognition of errors in three‐dimensional structures of proteins. Proteins: Structure, Function, and Bioinformatics, 17(4), 355–362. https://doi.org/10.1002/PROT.340170404/ABSTRACTspa
dc.relation.referencesSoundararajan, V., Tharakaraman, K., Raman, R., Raguram, S., Shriver, Z., Sasisekharan, V., & Sasisekharan, R. (2009). Extrapolating from sequence—the 2009 H1N1 “swine” influenza virus. Nature Biotechnology 2009 27:6, 27(6), 510–513. https://doi.org/10.1038/nbt0609-510spa
dc.relation.referencesSousa Da Silva, A. W., & Vranken, W. F. (2012). ACPYPE - AnteChamber PYthon Parser interfacE. BMC Research Notes, 5, 367. https://doi.org/10.1186/1756-0500-5-367spa
dc.relation.referencesStanley, W. M. (1944). THE SIZE OF INFLUENZA VIRUS. Journal of Experimental Medicine, 79(3), 267–283. https://doi.org/10.1084/JEM.79.3.267spa
dc.relation.referencesTafalla, M., Buijssen, M., Egine Geets, R., & Vonk Noordegraaf-Schouten, M. (2016). A comprehensive review of the epidemiology and disease burden of Influenza B in 9 European countries. Human Vaccines & Immunotherapeutics, 12. https://doi.org/10.1080/21645515.2015.1111494spa
dc.relation.referencesTamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution, 38(7), 3022–3027. https://doi.org/10.1093/MOLBEV/MSAB120spa
dc.relation.referencesTaubenberger, J. K., & Morens, D. M. (2008). The Pathology of Influenza Virus Infections. https://doi.org/10.1146/annurev.pathmechdis.3.121806.154316.spa
dc.relation.referencesTorres, P. H. M., Sodero, A. C. R., Jofily, P., & Silva-Jr, F. P. (2019). Key topics in molecular docking for drug design. En International Journal of Molecular Sciences (Vol. 20, Número 18). MDPI AG. https://doi.org/10.3390/ijms20184574spa
dc.relation.referencesTramontano, A., & Morea, V. (2003). Assessment of Homology-Based Predictions in CASP5. Proteins: Structure, Function and Genetics, 53, 352–368. https://doi.org/Doi: 10.1002/prot.10543spa
dc.relation.referencesTse, H., Kao, R. Y. T., Wu, W. L., Lim, W. W. L., Chen, H., Yeung, M. Y., Woo, P. C. Y., Sze, K. H., & Yuen, K. Y. (2011). Structural basis and sequence co-evolution analysis of the hemagglutinin protein of pandemic influenza A/H1N1 (2009) virus, 236(8), 915–925. https://doi.org/10.1258/EBM.2011.010264spa
dc.relation.referencesTzarum, N., De Vries, R. P., Paulson, J. C., & Wilson, I. A. (2015). Structure and Receptor Binding of the Hemagglutinin from a Human H6N1 Influenza Virus. Cell Host & Microbe. https://doi.org/10.1016/j.chom.2015.02.005spa
dc.relation.referencesValdés-Tresanco, M. S., Valdés-Tresanco, M. E., Valiente, P. A., & Moreno, E. (2021). gmx_MMPBSA: A New Tool to Perform End-State Free Energy Calculations with GROMACS. Journal of chemical theory and computation, 17(10), 6281–6291. https://doi.org/10.1021/ACS.JCTC.1C00645spa
dc.relation.referencesVincent, A. L., Ma, W., Lager, K. M., Janke, B. H., & Richt, J. A. (2008). Chapter 3 Swine Influenza Viruses: A North American Perspective. Advances in Virus Research, 72, 127–154. https://doi.org/10.1016/S0065-3527(08)00403-Xspa
dc.relation.referencesVyas, V. K., Ukawala, R. D., Ghate, M., & Chintha, C. (2012). Homology modeling a fast tool for drug discovery: Current perspectives. Indian Journal of Pharmaceutical Sciences, 74(1), 1–17. https://doi.org/10.4103/0250-474X.102537spa
dc.relation.referencesWang, E., Sun, H., Wang, J., Wang, Z., Liu, H., Zhang, J. Z. H., & Hou, T. (2019). End-Point Binding Free Energy Calculation with MM/PBSA and MM/GBSA: Strategies and Applications in Drug Design. Chemical Reviews, 119(16), 9478–9508. https://doi.org/10.1021/ACS.CHEMREV.9B00055/ASSET/IMAGES/MEDIUM/CR-2019-000558_0003.GIFspa
dc.relation.referencesWang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and Testing of a General Amber Force Field. En J Comput Chem (Vol. 25).spa
dc.relation.referencesWang, Y., Tang, C. Y., & Wan, X.-F. (2022). Antigenic characterization of influenza and SARS-CoV-2 viruses. Analytical and Bioanalytical Chemistry, 414, 3. https://doi.org/10.1007/s00216-021-03806-6spa
dc.relation.referencesWaterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., De Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. https://doi.org/10.1093/NAR/GKY427spa
dc.relation.referencesWaterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M., & Barton, G. J. (2009). Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics, 25(9), 1189–1191. https://doi.org/10.1093/BIOINFORMATICS/BTP033spa
dc.relation.referencesWatson, S. J., Langat, P., Reid, S. M., Lam, T. T.-Y., Cotten, M., Kelly, M., Reeth, K. Van, Qiu, Y., Simon, G., Bonin, E., Foni, E., Chiapponi, C., Larsen, L., Hjulsager, C., Markowska-Daniel, I., Urbaniak, K., Dürrwald, R., Schlegel, M., Huovilainen, A., … Kellam, P. (2015). Molecular Epidemiology and Evolution of Influenza Viruses Circulating within European Swine between 2009 and 2013. Journal of Virology, 89(19), 9920. https://doi.org/10.1128/JVI.00840-15spa
dc.relation.referencesWebster, R. G., & Govorkova, E. A. (2014). Continuing challenges in influenza. Annals of the New York Academy of Sciences, 1323(1), 115. https://doi.org/10.1111/NYAS.12462spa
dc.relation.referencesWennekes Tom. (2013). New Flu Vaccine? Drug Shuts Down Resistant Strains of Influenza Virus. https://www.medicaldaily.com/new-flu-vaccine-drug-shuts-down-resistant-strains-influenza-virus-244497spa
dc.relation.referencesWiederstein, M., & Sippl, M. J. (2007). ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(Web Server issue), W407. https://doi.org/10.1093/NAR/GKM290spa
dc.relation.referencesXu, R., McBride, R., Nycholat, C. M., Paulson, J. C., & Wilson, I. A. (2012). Structural Characterization of the Hemagglutinin Receptor Specificity from the 2009 H1N1 Influenza Pandemic. Journal of Virology, 86(2), 982–990. https://doi.org/10.1128/JVI.06322-11spa
dc.relation.referencesYang, H., Carney, P., & Stevens, J. (2010). Structure and Receptor binding properties of a pandemic H1N1 virus hemagglutinin. PLoS Currents, 2(MAR). https://doi.org/10.1371/CURRENTS.RRN1152spa
dc.relation.referencesYasugi, M., Nakamura, S., Daidoji, T., Kawashita, N., Ramadhany, R., Yang, C. S., Yasunaga, T., Iida, T., Horii, T., Ikuta, K., Takahashi, K., & Nakaya, T. (2012). Frequency of D222G and Q223R Hemagglutinin Mutants of Pandemic (H1N1) 2009 Influenza Virus in Japan between 2009 and 2010. PLoS ONE, 7(2). https://doi.org/10.1371/JOURNAL.PONE.0030946spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc570 - Biologíaspa
dc.subject.lembDinámica molecular
dc.subject.lembVariación genética
dc.subject.lembVirus de la influenza
dc.subject.proposalHAspa
dc.subject.proposalInfluenza viruseng
dc.subject.proposalInfluenzaspa
dc.subject.proposalDiversidad genéticaspa
dc.subject.proposalDinámica molecularspa
dc.subject.proposalMutacionesspa
dc.subject.proposalDockingeng
dc.subject.proposalGenetic diversityeng
dc.subject.proposalMolecular dynamicseng
dc.subject.proposalMutationseng
dc.titleAnálisis computacional de la hemaglutinina de los virus influenza A de linaje pandémico en Colombiaspa
dc.title.translatedComputational analysis of the hemagglutinin of pandemic lineage influenza A viruses in Colombiaeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1152706894.2023.pdf
Tamaño:
14.5 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de maestría Influenza

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: