Diseño de una metodología para el mejoramiento de procesos odontológicos basados en técnicas de segmentación en odontología digital
dc.contributor.advisor | Gómez-Mendoza, Juan Bernardo | |
dc.contributor.advisor | Guevara Perez, Sonia V. | |
dc.contributor.author | Tamayo-Quintero, Juan David | |
dc.contributor.cvlac | Tamayo-Quintero, Juan David [https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001523579] | spa |
dc.contributor.googlescholar | Tamayo-Quintero, Juan David [https://scholar.google.com.co/citations?user=Bkfzfk4AAAAJ&hl=en] | spa |
dc.contributor.orcid | Tamayo-Quintero, Juan David [https://orcid.org/0000-0002-0159-1573] | spa |
dc.contributor.researchgroup | SHAC - Computación aplicada suave y dura | spa |
dc.date.accessioned | 2024-11-05T15:20:08Z | |
dc.date.available | 2024-11-05T15:20:08Z | |
dc.date.issued | 2024 | |
dc.description | fotografías, ilustraciones, tablas | spa |
dc.description.abstract | This thesis proposes a methodology for supporting orthodontic treatments through image processing techniques in digital dentistry. Led by Juan David Tamayo Quintero at the Universidad Nacional de Colombia, the research aims to improve orthodontic processes using artificial vision and image processing. The study focuses on developing tools for dental arch shape classification and analysis, employing image processing methods. The methodology integrates data structures for dental models, including various file formats like PLY, STL, OBJ, and PCD. Point cloud data representation is explored, emphasizing neighborhood and curvature estimation techniques. The document introduces the creation of a database comprising digitized dental models and outlines arch form classification methodologies, including ovoid, tapered, and square forms, along with morphometric templates. Ground truth determination methods and statistical analyses for evaluating model accuracy are also presented. The data analysis and implementation section details techniques for representing data in a 2.5D space, image projections, and segmentation methods, including watershed segmentation. Two software tools, DentalArch and DentiShape3D, were developed to aid in dental arch analysis, incorporating machine learning and image processing techniques. The conclusion reflects on achievements in image processing and database construction, highlighting future work areas such as enhancing sample diversity and reducing evaluator biases. The thesis provides a contribution to the field of digital dentistry, offering methodologies and tools to improve orthodontic processes through image processing techniques (Texto tomado de la fuente). | eng |
dc.description.abstract | Esta tesis propone una metodología para apoyar los tratamientos de ortodoncia a través de técnicas de procesamiento de imágenes en la odontología digital. Dirigida por Juan David Tamayo Quintero en la Universidad Nacional de Colombia, la investigación tiene como objetivo mejorar los procesos de ortodoncia utilizando visión artificial y procesamiento de imágenes. El estudio se centra en desarrollar herramientas para la clasificación y análisis de la forma del arco dental, empleando métodos de procesamiento de imágenes y técnicas de aprendizaje automático. La metodología integra estructuras de datos para modelos dentales, incluyendo varios formatos de archivo como PLY, STL, OBJ y PCD. Se explora la representación de datos de nube de puntos, haciendo hincapié en técnicas de estimación de vecindario y curvatura. El documento presenta la creación de una base de datos que comprende modelos dentales digitalizados y describe metodologías de clasificación de forma de arco, incluyendo formas ovoide, cónica y cuadrada, junto con plantillas morfométricas. También se presentan métodos de determinación de la verdad fundamental y análisis estadísticos para evaluar la precisión del modelo. La sección de análisis de datos e implementación detalla técnicas para representar datos en un espacio 2.5D, proyecciones de imágenes y métodos de segmentación, incluida la segmentación de cuenca hidrográfica. Se desarrollaron dos herramientas de software, DentalArch y DentiShape3D, para ayudar en el análisis del arco dental, incorporando técnicas de aprendizaje automático y procesamiento de imágenes. La conclusión reflexiona sobre los logros en el procesamiento de imágenes y la construcción de bases de datos, destacando áreas de trabajo futuro como mejorar la diversidad de muestras y reducir los sesgos del evaluador. La tesis proporciona una contribución al campo de la odontología digital, ofreciendo metodologías y herramientas para mejorar los procesos de ortodoncia a través de técnicas de procesamiento de imágenes | spa |
dc.description.curriculararea | Eléctrica, Electrónica, Automatización Y Telecomunicaciones.Sede Manizales | spa |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctor en Ingeniería | spa |
dc.description.researcharea | Tratamiento, modelado y visualizacion de datos | spa |
dc.format.extent | xii, 148 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87149 | |
dc.language.iso | eng | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Manizales | spa |
dc.publisher.faculty | Facultad de Ingeniería y Arquitectura | spa |
dc.publisher.place | Manizales, Colombia | spa |
dc.publisher.program | Manizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Automática | spa |
dc.relation.references | H. Yang, F. Li, and L. Li, “Comparison of maxillary anterior mathematical proportions among 3 dental arch forms,” The Journal of Prosthetic Dentistry, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0022391321006594 | spa |
dc.relation.references | B. Kim, M. Bayome, Y. Kim, S. Baek, and S. Han, “Comparison of overjet among 3 arch types in normal occlusion,” American Journal of Orthodontics and Dentofacial Orthopedics, 2011. [Online]. Available: https://www.sciencedirect.com/science/article/ pii/S0889540610009327 | spa |
dc.relation.references | J. Tamayo-Quintero, J. Gómez-Mendoza, and S. Guevara-Pérez, “Dentalarch: Ai-based arch shape detection in orthodontics,” Applied Sciences, 2024. [Online]. Available: https://www.mdpi.com/2076-3417/14/6/2567 | spa |
dc.relation.references | I. Tajik, N. Mushtaq, and M. Khan, “Arch forms among different angle classifications a–study.” Pakistan Oral & Dental Journal, 2011. [Online]. Availa- ble: https://search.ebscohost.com/login.aspx?direct=true&profile=ehost&scope=site& authtype=crawler&jrnl=10128700&AN=66962276 | spa |
dc.relation.references | M. Bae, J. Park, and N. Kim, “Fully automated estimation of arch forms in cone-beam ct with cubic b-spline approximation: Evaluation of digital dental models with missing teeth,” Computers in Biology and Medicine, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0010482521000500 | spa |
dc.relation.references | J. Pillai, R. Patel, and A. Banker, “Correlation between maxillary central incisor crown form and maxillary dental arch form: A model-based morphometric, cross-sectional study,” Journal of Forensic Sciences, 2018. [Online]. Available: https://journals.lww. com/jfsm/fulltext/2018/04020/correlation between maxillary central incisor.2.aspx | spa |
dc.relation.references | M. Toodehzaeim and S. Mostafavi, “Dental arch morphology in iranian population,” Iranian Journal of Orthodontics, vol. 11, no. 1, p. e245697, 2016, access date: 2024-03-25. [Online]. Available: https://www.ijorth.com/article 245697.html | spa |
dc.relation.references | M. Slaj, S. Spalj, D. Jelusic, and M. Slaj, “Discriminant factor analysis of dental arch dimensions with 3-dimensional virtual models,” American Journal of Orthodontics and Dentofacial Orthopedics, vol. 140, no. 4, pp. e181–e192, 2011. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0889540611006792 | spa |
dc.relation.references | K. Arai and L. Will, “Subjective classification and objective analysis of the mandibular dental-arch form of orthodontic patients,” American Journal of Orthodontics and Dentofacial Orthopedics, vol. 140, no. 4, pp. e197–e204, 2011. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0889540610010243 | spa |
dc.relation.references | J. Budiman, “Neural network in developing software for identifying arch form,” International Journal of Artificial Intelligence Applications, vol. 4, no. 2, pp. 1–11, 2013. [Online]. Available: https://www.researchgate.net/publication/307671113 Neural Network in Developing Software for Identifying Arch Form | spa |
dc.relation.references | A. Ender, T. Attin, and A. Mehl, “In vivo precision of conventional and digital methods of obtaining complete-arch dental impressions,” The Journal of prosthetic dentistry, 2016. | spa |
dc.relation.references | M. Cicci`u, L. Fiorillo, C. D’Amico, and D. Gambino, “3d digital impression systems compared with traditional techniques in dentistry: a recent data systematic review,” Materials, 2020. | spa |
dc.relation.references | A. Al-Khatib, Z. Rajion, and M. Sam’an, “Validity and reliability of tooth size and dental arch measurements: a stereo photogrammetric study,” Australasian, 2012 | spa |
dc.relation.references | C. Lane and W. H. Jr, “Completing the 3-dimensional picture,” American journal of orthodontics and dentofacial, 2008 | spa |
dc.relation.references | C. Keul and J. G¨uth, “Accuracy of full-arch digital impressions: an in vitro and in vivo comparison,” Clinical oral investigations, 2020. | spa |
dc.relation.references | A. Boltunov, Y. Brailov, F. Chelnokov, and R. Roschin, “Digital dental modeling,” US Patent, 2014. [Online]. Available: https://patents.google.com/patent/US8896592B2/en | spa |
dc.relation.references | E. Rekow, “Digital dentistry: The new state of the art—is it disruptive or destructive?” Dental Materials, 2020. [Online]. Available: https://www.sciencedirect.com/science/ article/pii/S0109564119308061 | spa |
dc.relation.references | L. Lin, Y. Fang, Y. Liao, G. Chen, and C. Gao, “3d printing and digital processing techniques in dentistry: a review of literature,” Advanced Engineering, 2019. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/adem.201801013 | spa |
dc.relation.references | K. Hung, A. Yeung, and R. Tanaka, “Current applications, opportunities, and limitations of ai for 3d imaging in dental research and practice,” International Journal of, 2020. [Online]. Available: https://www.mdpi.com/1660-4601/17/12/4424 | spa |
dc.relation.references | S. Logozzo, G. Franceschini, and A. Kilpela, “A comparative analysis of intraoral 3d digital scanners for restorative dentistry,” Journal of Medical Technology, 2011. [Online]. Available: https://flore.unifi.it/bitstream/2158/438866/1/ARTICOLO%20ULTIMA% 20SINTESI rev.doc | spa |
dc.relation.references | G. Reesu, B. Woodsend, S. Mˆanica, G. Revie et al., “Automated identification from dental data (autoidd): A new development in digital forensics,” Forensic Science International, 2020. [Online]. Available: https://www.sciencedirect.com/ science/article/pii/S0379073820300803 | spa |
dc.relation.references | ] R. Chauhan, T. Shah, D. Shah, T. Gohil et al., “An overview of image processing for dental diagnosis,” Innovation and Research in BioMedical Engineering, 2023. | spa |
dc.relation.references | M. Marshall and B. Hultgren, “Method and apparatus for combining 3d dental scans with other 3d data sets,” Patent, 2012. [Online]. Available: https://patents.google.com/patent/US8199988B2/en | spa |
dc.relation.references | W. Bholsithi, N. Phichitchaiphan, and C. Sinthanayothin, “Online dental information database for dental identification system,” Proceeding - 5th International Conference on Computer Sciences and Convergence Information Technology, ICCIT 2010, pp. 278–283, 2010. | spa |
dc.relation.references | R. DeLong, M. Heinzen, J. Hodges et al., “Accuracy of a system for creating 3d computer models of dental arches,” Journal of Dental Research, 2003. [Online]. Available: https://journals.sagepub.com/doi/abs/10.1177/15440591030820060 | spa |
dc.relation.references | U. Orth and V. Wedler, “Method for obtaining a position match of 3d data sets in a dental cad/cam system,” Patent, 2010. [Online]. Available: https://patents.google.com/patent/US7796811B2/en | spa |
dc.relation.references | X. Zhong, D. Yu, Y. S. Wong, T. Sim, W. Lu et al., “3d dental biometrics: Alignment and matching of dental casts for human identification,” Computers in Biology and Medicine, 2013. [Online]. Available: https://www.sciencedirect.com/science/article/ pii/S016636151300119X | spa |
dc.relation.references | T. Alghazzawi, “Advancements in cad/cam technology: Options for practical implementation,” Journal of Prosthodontic Research, 2016. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1883195816000098 | spa |
dc.relation.references | S. Pillai, A. Upadhyay, P. Khayambashi, I. Farooq et al., “Dental 3d-printing: transferring art from the laboratories to the clinics,” Polymers, 2021. [Online]. Available: https://www.mdpi.com/2073-4360/13/1/157 | spa |
dc.relation.references | V. Ronsivalle, F. Ruiz, A. L. Giudice, E. Carli, P. Venezia et al., “From reverse engineering software to cad-cam systems: how digital environment has influenced the clinical applications in modern dentistry,” Applied Sciences, 2023. [Online]. Available: https://www.mdpi.com/2076-3417/13/8/4986 | spa |
dc.relation.references | J. Pirskanen, Dental health care technologies: factors affecting technology adoption and latest information technology solutions. Aalto University, 2018. [Online]. Available: https://aaltodoc.aalto.fi/handle/123456789/32993 | spa |
dc.relation.references | M. Alauddin, A. Baharuddin, and M. M. Ghazali, “The modern and digital transformation of oral health care: A mini review,” Healthcare, 2021. [Online]. Available: https://www.mdpi.com/2227-9032/9/2/118 | spa |
dc.relation.references | W. Schroeder, K. Martin, and B. Lorensen, The Visualization Toolkit: An Object- Oriented Approach to 3D Graphics, 4th ed. Clifton Park, NY, USA: Kitware, Inc., 2006. | spa |
dc.relation.references | G. Turk, “The PLY Polygon File Format,” https://web.archive.org/web/ 20161204152348/http://www.dcs.ed.ac.uk/teaching/cs4/www/graphics/Web/ply. html, 1994, permission to copy the documentation was explicitly granted. | spa |
dc.relation.references | P. Bourke, “STL format,” October 1999, written by Paul Bourke. | spa |
dc.relation.references | Wavefront, Inc., “MTL material format (Lightwave, OBJ),” http://paulbourke.net/ dataformats/mtl/, October 1995, excerpt from FILE FORMATS, Version 4.2, Copyright 1995, Alias—Wavefront, Inc. Original documentation created by: Diane Ramey, Linda Rose, and Lisa Tyerman. | spa |
dc.relation.references | W. Technologies, “Copy of Appendix B1 of Advanced Visualizer manual,” http://www. cs.utah.edu/∼boulos/cs3505/obj spec.pdf, 1992, text as distributed with version 3 of Wavefront’s Advanced Visualizer software. | spa |
dc.relation.references | Point Cloud Library, “The PCD (Point Cloud Data) file format,” https://pcl. readthedocs.io/projects/tutorials/en/latest/pcd file format.html. | spa |
dc.relation.references | R. Aburashed, 3D printing in Clinical Diagnostics: A Versatile Tool to Develop Testing Devices for the Diagnosis of Infectious Diseases. prism.ucalgary.ca, 2023. [Online]. Available: https://prism.ucalgary.ca/bitstreams/ 01abce21-e198-42c7-b094-f29caf463a27/download | spa |
dc.relation.references | P. Gil, C. Mateo Agull´o, J. Pomares, G. J. Garcia, and F. Torres, “Reconocimiento de objetos 3d con descriptores de superficie,” 2016-06. | spa |
dc.relation.references | S. Arya and D. M. Mount, “Algorithms for fast vector quantization,” in Data Compres- sion Conference, 1993. DCC’93. IEEE, 1993, pp. 381–390. | spa |
dc.relation.references | S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu, “An optimal algorithm for approximate nearest neighbor searching fixed dimensions,” Journal of the ACM (JACM), vol. 45, no. 6, pp. 891–923, 1998. | spa |
dc.relation.references | M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with automatic algo- rithm configuration.” VISAPP (1), vol. 2, no. 331-340, p. 2, 2009. | spa |
dc.relation.references | N. Bhatia et al., “Survey of nearest neighbor techniques,” arXiv preprint ar- Xiv:1007.0085, 2010. | spa |
dc.relation.references | A. Nuchter, K. Lingemann, and J. Hertzberg, “Cached kd tree search for icp algorithms,” in 3-D Digital Imaging and Modeling, 2007. 3DIM’07. Sixth International Conference on. IEEE, 2007, pp. 419–426. | spa |
dc.relation.references | C. Silpa-Anan and R. Hartley, “Optimised kd-trees for fast image descriptor matching,” in Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on. IEEE, 2008, pp. 1–8. | spa |
dc.relation.references | R. Rusu and S. Cousins, “3d is here: Point cloud library (),” in Robotics and Automation (ICRA), 2011 IEEE International Conference on, May 2011, pp. 1–4. | spa |
dc.relation.references | G. Turk and M. Levoy, “Zippered polygon meshes from range images,” in Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques, ser. SIGGRAPH ’94. New York, NY, USA: ACM, 1994, pp. 311–318. [Online]. Available: http://doi.acm.org/10.1145/192161.192241 | spa |
dc.relation.references | J.-F. Lalonde, R. Unnikrishnan, N. Vandapel, and M. Hebert, “Scale selection for clas- sification of point-sampled 3d surfaces,” in 3-D Digital Imaging and Modeling, 2005. 3DIM 2005. Fifth International Conference on. IEEE, 2005, pp. 285–292. | spa |
dc.relation.references | N. J. Mitra and A. Nguyen, “Estimating surface normals in noisy point cloud data,” in Proceedings of the nineteenth annual symposium on Computational geometry. ACM, 2003, pp. 322–328. | spa |
dc.relation.references | R. B. Rusu, “Semantic 3D Object Maps for Everyday Manipulation in Human Living Environments,” KI-K¨unstliche Intelligenz, pp. 1–4, 2010. | spa |
dc.relation.references | J. Tamayo-Quintero, “A Contribution to Semi-automatic Segmentation of Point Clouds,” Tesis, Universidad Nacional de Colombia, 2015. | spa |
dc.relation.references | C. M. Shakarji, “Least-squares fitting algorithms of the nist algorithm testing system,” Journal of research of the National Institute of Standards and Technology, vol. 103, no. 6, p. 633, 1998. | spa |
dc.relation.references | G. Hetzel, B. Leibe, P. Levi, and B. Schiele, “3d object recognition from range images using local feature histograms,” in Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on, vol. 2. IEEE, 2001, pp. II–II. | spa |
dc.relation.references | M. Pauly, M. Gross, and L. P. Kobbelt, “Efficient simplification of point-sampled sur- faces,” in Proceedings of the conference on Visualization’02. IEEE Computer Society, 2002, pp. 163–170. | spa |
dc.relation.references | R. B. Rusu, Z. C. Marton, N. Blodow, M. E. Dolha, and M. Beetz, “Functional object mapping of kitchen environments.” in IROS, 2008, pp. 3525–3532 | spa |
dc.relation.references | Shining 3D, AutoScan-DS-EX: Entry Level Dental 3D Scanner, 2023. [Online]. Available: https://www.shining3d.com | spa |
dc.relation.references | P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, and G. Ranzuglia, “Meshlab: An open-source mesh processing tool,” in Proceedings of the Eurographics Italian Chapter Conference, V. Scarano, R. De Chiara, and U. Erra, Eds. Salerno, Italy: The Eurographics Association, 2008, pp. 129–136. | spa |
dc.relation.references | I. Tajik, N. Mushtaq, and M. Khan, “Arch forms among different angle classifications a—study,” Pak. Oral Dent. J., vol. 31, 2011. | spa |
dc.relation.references | M. Nouri, S. Asefi, A. Baghban, M. Ahmadvand, and M. Shamsa, “Objective vs. subjec- tive analyses of arch form and preformed archwire selection,” Am. J. Orthod. Dentofac. Orthop., vol. 149, pp. 543–554, 2016. | spa |
dc.relation.references | H. Bueller, “Ideal facial relationships and goals,” Facial Plastic Surgery, vol. 34, no. 05, pp. 458–465, 2018. | spa |
dc.relation.references | J.-W. Song, R. Leesungbok, S.-J. Park, S. H. Chang, S.-J. Ahn, and S.-W. Lee, “Analysis of crown size and morphology, and gingival shape in the maxillary anterior dentition in korean young adults,” The Journal of Advanced Prosthodontics, vol. 9, no. 4, p. 315, 2017. | spa |
dc.relation.references | J. D. McCoy, “A consideration of normal arch form and some of the methods of de- termining it,” International Journal of Orthodontia and Oral Surgery (1919), vol. 5, no. 12, pp. 697–723, 1919. | spa |
dc.relation.references | S. A. Othman, E. Soh, S. Lim, M. Jamaludin, N. Mohamed, Z. Yusof, L. Shoaib, and N. Hussein, “Comparison of arch form between ethnic malays and malaysian aborigines in peninsular malaysia,” The Korean Journal of Orthodontics, vol. 42, pp. 47–54, 02 2012. | spa |
dc.relation.references | 3M, “OrthoForm™ Arch Form Selection,” https://www.3mae.ae/3M/en AE/p/d/ v000360116/, 3M United Arab Emirates, 2024, accessed on 28-March-2024 | spa |
dc.relation.references | ] “Dental numbering system,” Pressbooks: Oral Surgery for RNs, accessed: Sep. 14, 2024. [Online]. Available: https://pressbooks.pub/oralsurgery4rns/ | spa |
dc.relation.references | L. R. Dice, “Measures of the amount of ecologic association between species,” Ecology, vol. 26, no. 3, pp. 297–302, 1945. [Online]. Available: http://dx.doi.org/10.2307/1932409 | spa |
dc.relation.references | H. H. Chang, A. H. Zhuang, D. J. Valentino, and W. C. Chu, “Performance measure characterization for evaluating neuroimage segmentation algorithms,” NeuroImage, vol. 47, no. 1, pp. 122–135, 2009. [Online]. Available: http: //dx.doi.org/10.1016/j.neuroimage.2009.03.068 | spa |
dc.relation.references | G. Gerig, M. Jomier, and M. Chakos, Valmet: A New Validation Tool for Assessing and Improving 3D Object Segmentation. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 516–523. [Online]. Available: https://doi.org/10.1007/3-540-45468-3 62 | spa |
dc.relation.references | A. Fenster and B. Chiu, “Evaluation of Segmentation algorithms for Medical Imaging,” 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, pp. 7186–7189, 2005. [Online]. Available: http://ieeexplore.ieee.org/document/1616166/ | spa |
dc.relation.references | J. K. Udupa, V. R. LeBlanc, Y. Zhuge, C. Imielinska, H. Schmidt, L. M. Currie, B. E. Hirsch, and J. Woodburn, “A framework for evaluating image segmentation algorithms,” Computerized Medical Imaging and Graphics, vol. 30, no. 2, pp. 75–87, 2006. | spa |
dc.relation.references | A. Serna and B. Marcotegui, “Detection, segmentation and classification of 3d urban objects using mathematical morphology and supervised learning,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 93, pp. 243–255, 2014. | spa |
dc.relation.references | A. Hoover, G. Jean-Baptiste, X. Jiang, P. J. Flynn, H. Bunke, D. B. Goldgof, K. Bowyer, D. W. Eggert, A. Fitzgibbon, and R. B. Fisher, “An experimental comparison of range image segmentation algorithms,” IEEE transactions on pattern analysis and machine intelligence, vol. 18, no. 7, pp. 673–689, 1996. | spa |
dc.relation.references | J. Tamayo-Quintero, S. Arboleda-Duque, and J. G´omez-Mendoza, “Semi-automatic teeth segmentation in 3d models of dental casts using a hybrid methodology,” in Emer- ging Trends in Image Processing, Computer Vision and Pattern Recognition. Elsevier, 2015, pp. 433–446. | spa |
dc.relation.references | P. Mariaca, A. Garces, N. Trujillo, A. Ramirez, E. Florez, and D. Liz, Manual para realizaci´on de historia cl´ınica odontol´ogica del escolar. Universidad Cooperativa de Colombia, 2007. [Online]. Available: https://books.google.com.co/books?id= 89OZXQM067MC | spa |
dc.relation.references | G. Spreitzer, J. Tunnicliffe, and H. Friedrich, “Large wood (lw) 3d accumulation mapping and assessment using structure from motion photogrammetry in the laboratory,” Journal of Hydrology, vol. 581, p. 124430, 2020. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0022169419311655 | spa |
dc.relation.references | A. Serna and B. Marcotegui, “Detection, segmentation and classification of 3d urban objects using mathematical morphology and supervised learning,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 93, 07 2014. | spa |
dc.relation.references | L. Avila and I. Kitware, The VTK User’s Guide. Kitware, 2010. [Online]. Available: https://books.google.com.co/books?id=6IxSewAACAAJ | spa |
dc.relation.references | J. B. Smith, D. R. Vann, and P. Dodson, “Dental morphology and variation in theropod dinosaurs: implications for the taxonomic identification of isolated teeth,” The Anato- mical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, vol. 285, no. 2, pp. 699–736, 2005. | spa |
dc.relation.references | T. Kronfeld, D. Brunner, and G. Brunnett, “Snake-based segmentation of teeth from virtual dental casts,” Computer-Aided Design and Applications, vol. 7, no. 2, pp. 221– 233, 2010. | spa |
dc.relation.references | D. Mairaj, S. D. Wolthusen, and C. Busch, “Teeth segmentation and feature extrac- tion for odontological biometrics,” in 2010 Sixth International Conference on Intelligent Information Hiding and Multimedia Signal Processing. IEEE, 2010, pp. 323–328. | spa |
dc.relation.references | C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on point sets for 3d classification and segmentation,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 652–660. | spa |
dc.relation.references | C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical feature learning on point sets in a metric space,” in Advances in neural information processing systems, 2017, pp. 5099–5108. | spa |
dc.relation.references | K. Wu, L. Chen, J. Li, and Y. Zhou, “Tooth segmentation on dental meshes using morphologic skeleton,” Computers and Graphics (Pergamon), vol. 38, no. 1, pp. 199– 211, 2014. | spa |
dc.relation.references | R. Yanagisawa and S. Omachi, “Extraction of 3d shape of a tooth from dental ct images with region growing method,” in International Workshop on Computational Forensics. Springer, 2010, pp. 68–77. | spa |
dc.relation.references | C. Revol and M. Jourlin, “A new minimum variance region growing algorithm for image segmentation,” Pattern Recognition Letters, vol. 18, no. 3, pp. 249–258, 1997. | spa |
dc.relation.references | X. Zhou, Y. Gan, J. Xiong, D. Zhang, Q. Zhao, and Z. Xia, “A method for tooth model reconstruction based on integration of multimodal images,” Journal of Healthcare Engineering, vol. 2018, 2018. | spa |
dc.relation.references | K. El Emam, L. Mosquera, and R. Hoptroff, Practical Synthetic Data Generation: Ba- lancing Privacy and the Broad Availability of Data. Sebastopol, CA, USA: O’Reilly Media, 2020. | spa |
dc.relation.references | O. Huseby, “Use of synthetic health data in prototyping for developing dental implant registry services,” The University of Bergen, 2022. | spa |
dc.relation.references | L. Kloski and N. Kloski, Getting Started with 3D printing. books.google.com, 2021. [Online]. Available: https://books.google.com/books?hl=en&lr=&id= rdhyEAAAQBAJ&oi=fnd&pg=PP12&dq=digital+dentistry+3d+dental+modeling+ point+cloud+data+ply+stl+obj+pcd+”cad+cam”+technology&ots=wVIZymMstc& sig=qVtcn5XDoLFgLh1vSu0UEqjN65M | spa |
dc.relation.references | ] S. Barone, A. Paoli et al., “Computer-aided modelling of three-dimensional maxillofacial tissues through multi-modal imaging,” Proceedings, 2013. [Online]. Available: https://journals.sagepub.com/doi/abs/10.1177/0954411912463869 | spa |
dc.relation.references | J. Wang, M. Ruilova, and S. Hsieh, “A web-based platform for automated vat photopolymerization additive manufacturing process,” Journal of Advanced Manufacturing Technology, 2022. [Online]. Available: https://link.springer.com/article/ 10.1007/s00170-021-08318-2 | spa |
dc.relation.references | C. Hagemann, Going the Distance. kclpure.kcl.ac.uk, 2022. [Online]. Available: https://kclpure.kcl.ac.uk/ws/portalfiles/portal/198471391/2023 Hagemann Cathleen 1869404 ethesis.pdf | spa |
dc.relation.references | S. Abdul Rehman, S. Rizwan, S. Faisal, and S. Hussain, “Association between intercanine width and mandibular dental arch forms,” J. Coll. Physicians Surg. Pak., vol. 30, pp. 478–480, 2021, pMID: 33866740. [Online]. Available: https://doi.org/10.29271/jcpsp.2021.04.478 | spa |
dc.relation.references | V. Paulino, V. Paredes, J. Gandia, and R. Cibrian, “Prediction of arch length based on intercanine width,” Eur. J. Orthod., vol. 30, pp. 295–298, 2008. | spa |
dc.relation.references | O. Elhiny, M. Elyazied, and G. Salem, “Prediction of arch perimeter based on arch width as a guide for diagnosis and treatment planning,” Bull. Natl. Res. Cent., vol. 45, p. 141, 2021. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 610 - Medicina y salud::617 - Cirugía, medicina regional, odontología, oftalmología, otología, audiología | spa |
dc.subject.proposal | Digital dentistry | eng |
dc.subject.proposal | Image processing | eng |
dc.subject.proposal | Orthodontics | eng |
dc.subject.proposal | Segmentation techniques | eng |
dc.subject.proposal | Dental arch shape classification | eng |
dc.subject.proposal | Machine learning | eng |
dc.subject.proposal | 3D Database | eng |
dc.subject.proposal | Statistical analysis | eng |
dc.subject.proposal | Software tools | eng |
dc.subject.proposal | DentalArch | eng |
dc.subject.proposal | DentiShape3D | eng |
dc.subject.proposal | Odontología digital | spa |
dc.subject.proposal | Procesamiento de imágenes | spa |
dc.subject.proposal | Ortodoncia | spa |
dc.subject.proposal | Técnicas de segmentación | spa |
dc.subject.proposal | Clasificación de formas de arco dental | eng |
dc.subject.proposal | Aprendizaje automático | spa |
dc.subject.proposal | Base de datos 3D | spa |
dc.subject.proposal | Análisis estadístico | spa |
dc.subject.proposal | Herramientas de Software | spa |
dc.subject.unesco | Segmentación de imágenes | spa |
dc.subject.unesco | Modelos dentales | spa |
dc.title | Diseño de una metodología para el mejoramiento de procesos odontológicos basados en técnicas de segmentación en odontología digital | spa |
dc.title.translated | Design of a methodology for the improvement of dental processes based on image processing in digital dentistry | eng |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.awardtitle | Análisis y diseño de una metodología basada en técnicas de segmentación, caracterización y medición asistida en odontología digital | spa |
oaire.fundername | MinCiencias | spa |
oaire.fundername | CONVOCATORIA 757 DE 2016- DOCTORES NACIONALES DE MINCIENCIAS | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1053794456.2024.pdf
- Tamaño:
- 21.71 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Doctorado en Ingeniería - Automática
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: