Dinámicas transcripcionales y fisiológicas de la respuesta a déficit hídrico progresivo en gulupa

dc.contributor.advisorSarmiento Salazar, Felipe
dc.contributor.advisorMelgarejo Muñoz, Luz Marina
dc.contributor.authorLozano Montaña, Paula Andrea
dc.contributor.cvlacLozano-Montaña, P.spa
dc.contributor.researchgroupFisiología del Estrés y Biodiversidad en Plantas y Microorganismosspa
dc.date.accessioned2023-02-07T19:16:41Z
dc.date.available2023-02-07T19:16:41Z
dc.date.issued2022-10-07
dc.descriptionilustracionesspa
dc.description.abstractEl cambio climático, especialmente de la escasez de agua, ha tenido dentro de sus consecuencias, algunas devastadoras para la agricultura en los últimos 50 años; amenazando directamente la seguridad alimentaria de las comunidades involucradas en producción de alimentos y demás consumidores. Para el siglo 21 se espera un aumento de la sequía en distintas zonas del mundo, resultado de un aumento de la evapotranspiración, acompañado de una reducción en la precipitación. En la zona Andina su efecto se ha visto principalmente en el retroceso acelerado de los glaciares, que proveen de agua a los sistemas agrícolas circundantes, por lo que se espera una disminución en la capacidad de abastecimiento hídrico de las comunidades andinas y de sus sistemas agrícolas. Colombia es un país que está intentado posicionarse en exportaciones agrícolas pero debido a eventos climáticos como el déficit hídrico, muchos de estos cultivos se ven amenazados. Dentro de estos se encuentra el cultivo de gulupa o fruta de la pasión (Passiflora edulis Sims f. edulis), fruta cuya exportación ha crecido considerablemente en la última década, generándole entradas económicas al país anuales alrededor de los 35 millones de dólares. Este cultivo al verse enfrentado a cambios en las condiciones de riego puede reducir su crecimiento y comprometer su producción, es por eso que realizar estudios sobre su respuesta frente al estrés por déficit hídrico es necesario, además de seguir profundizando en los mecanismos de respuesta de las plantas frente a la escasez de agua en búsqueda de posibles soluciones. Es por esto por lo que se planteó el objetivo de analizar la respuesta fisiológica y transcriptómica de gulupa frente al déficit hídrico. Se midieron variables fisiológicas como: conductancia estomática (gs), temperatura foliar (Tf), contenido de fotopigmentos, fluorescencia de la clorofila a y reflectancia foliar, de donde se encontró una respuesta con rasgos de evitación, así como con rasgos de tolerancia, en donde en búsqueda de mantener las condiciones hídricas se sacrifican procesos como el crecimiento. Por otra parte, y con ayudas de herramientas de secuenciación de nueva generación, se obtuvo una lista de genes diferencialmente expresados de las plantas sometidas a déficit. Los cambios en la expresión que se generan participan en la modulación de distintos procesos en toda la planta, principalmente relacionados con señalización mediada por ABA, crecimiento, el sistema antioxidante. Estos procesos se reportan dentro de los rasgos asociados a la tolerancia al estrés. Entender los distintos mecanismos de respuesta y poder integrar los distintos niveles, moleculares, bioquímicos y fisiológicos, es una propuesta actualmente muy utilizada para alimentar las bases de los programas de mejoramiento, de esta manera protegiendo la seguridad alimentaria. (Texto tomado de la fuente)spa
dc.description.abstractClimate change, especially water scarcity, has had some devastating consequences for agriculture in the last 50 years, directly threatening the food security of communities involved in food production and other consumers. For the 21st century, an increase in drought is expected in different areas of the world, because of an increase in evapotranspiration, accompanied by a reduction in precipitation. In the Andean zone, its effect has been seen mainly in the accelerated retreat of glaciers, which provide water to the surrounding agricultural systems, so a decrease in the water supply capacity of Andean communities and their agricultural systems is expected. Colombia is a country that is trying to position itself in agricultural exports, but due to climatic events such as the water deficit, many of these crops are threatened, including the gulupa or passion fruit (Passiflora edulis Sims f. edulis), a fruit whose export has grown considerably in the last decade, generating annual economic income for the country of around US$35 million. This crop, when faced with changes in irrigation conditions, can reduce its growth and compromise its production, which is why it is necessary to conduct studies on its response to water stress, as well as to continue delving into the mechanisms of plant response to water scarcity in search of possible solutions. For this reason, the objective was to analyze the physiological and transcriptomic response of gulupa to water deficit. Physiological variables such as stomatal conductance (gs), leaf temperature (Tf), photopigment content, chlorophyll fluorescence, and leaf reflectance were measured, from which a response with avoidance traits was found, as well as tolerance traits, where processes such as growth are sacrificed in the search to maintain water conditions. On the other hand, a list of differentially expressed genes of plants subjected to deficit was obtained with the aid of new-generation sequencing tools. The change in expression participates in the modulation of different processes in the whole plant, mainly related to ABA-mediated signaling, growth, and the antioxidant system. These processes are reported within the traits associated with stress tolerance. Understanding the different response mechanisms and being able to integrate the different molecular, biochemical, and physiological levels is a widely used breeding program approached, thus protecting food security.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMaestría en ciencias - Biologíaspa
dc.description.researchareaFisiología del estrésspa
dc.description.researchareaTranscriptomicaspa
dc.format.extent111 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83364
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Biologíaspa
dc.relation.referencesNakashima, K., Ito, Y., & Yamaguchi-Shinozaki, K. (2009). Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiology, 149(1), 88–95. https://doi.org/10.1104/PP.108.129791spa
dc.relation.referencesNakayama, S., Moncrief, N. D., & Kretsinger, R. H. (1992). Evolution of EF-hand calcium-modulated proteins. II. Domains of several subfamilies have diverse evolutionary histories. Journal of Molecular Evolution, 34(5), 416–448. https://doi.org/10.1007/BF00162998spa
dc.relation.referencesNaramoto, S., Kleine-Vehn, J., Robert, S., Fujimoto, M., Dainobu, T., Paciorek, T., Ueda, T., Nakano, A., van Montagu, M. C. E., Fukuda, H., & Friml, J. (2010). ADP-ribosylation factor machinery mediates endocytosis in plant cells. Proceedings of the National Academy of Sciences of the United States of America, 107(50), 21890–21895. https://doi.org/10.1073/PNAS.1016260107/-/DCSUPPLEMENTALspa
dc.relation.referencesNezhadahmadi, A., Prodhan, Z. H., & Faruq, G. (2013). Drought tolerance in wheat. TheScientificWorldJournal, 2013. https://doi.org/10.1155/2013/610721spa
dc.relation.referencesNiu, J., Zhang, S., Liu, S., Ma, H., Chen, J., Shen, Q., Ge, C., Zhang, X., Pang, C., & Zhao, X. (2018). The compensation effects of physiology and yield in cotton after drought stress. Journal of Plant Physiology, 224–225, 30–48. https://doi.org/10.1016/J.JPLPH.2018.03.001spa
dc.relation.referencesNoodén, L. D. (2004). Plant cell death processes. 392.spa
dc.relation.referencesOcampo Pérez, J., & Wyckhuys, K. (2012). Tecnología para el cultivo de la gulupa en Colombia. :(Passiflora edulis f. edulis sims). Centro de Bio-Sistemas de la Universidad Jorge Tadeo Lozano, Centro Internacional de Agricultura Tropical - CIAT y Ministerio de Agricultura y Desarrollo Rural, República de Colombia. https://repository.agrosavia.co/handle/20.500.12324/13557?locale-attribute=esspa
dc.relation.referencesOstberg, S., Schewe, J., Childers, K., & Frieler, K. (2018). Changes in crop yields and their variability at different levels of global warming. Earth System Dynamics, 9(2), 479–496. https://doi.org/10.5194/ESD-9-479-2018spa
dc.relation.referencesOukarroum, A., Bras, S., Perreault, F., & Popovic, R. (2012). Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliella tertiolecta. Ecotoxicology and Environmental Safety, 78, 80–85. https://doi.org/10.1016/J.ECOENV.2011.11.012spa
dc.relation.referencesPassioura, J. B. (2002). ‘Soil conditions and plant growth.’ Plant, Cell & Environment, 25(2), 311–318. https://doi.org/10.1046/J.0016-8025.2001.00802.Xspa
dc.relation.referencesPeñuelas, J., & Inoue, Y. (1999). Reflectance Indices Indicative of Changes in Water and Pigment Contents of Peanut and Wheat Leaves. Photosynthetica 1999 36:3, 36(3), 355–360. https://doi.org/10.1023/A:1007033503276spa
dc.relation.referencesPenuelas, J., Pinol, J., Ogaya, R., & Filella, I. (2010). Estimation of plant water concentration by the reflectance Water Index WI (R900/R970). Http://Dx.Doi.Org/10.1080/014311697217396, 18(13), 2869–2875. https://doi.org/10.1080/014311697217396spa
dc.relation.referencesPerea Dallos, M., Matallana Ramirez, L., & Tirado Perea, A. (2010). Biotecnologia aplicada al mejoramiento de los cultivos de frutas tropicales. Universidad Nacional de Colombiaspa
dc.relation.referencesPerez Martinez, L. V., & Melgarejo, L. M. (2015). Photosynthetic performance and leaf water potential og gulupa (Passiflora edulis Sims, Passifloraceae) in the reproductive phase in three locations in the Colombian Andes. Acta Biológica Colombiana, 20(1), 183–194. https://doi.org/10.15446/ABC.V20N1.42196spa
dc.relation.referencesPierre, Y., Breyton, C., Kramer, D., & Popot, J. L. (1995). Purification and characterization of the cytochrome b6 f complex from Chlamydomonas reinhardtii. Journal of Biological Chemistry, 270(49), 29342–29349. https://doi.org/10.1074/jbc.270.49.29342spa
dc.relation.referencesPinheiro, C., & Chaves, M. M. (2011). Photosynthesis and drought: can we make metabolic connections from available data? Journal of Experimental Botany, 62(3), 869–882. https://doi.org/10.1093/jxb/erq340spa
dc.relation.referencesPinter, P. J., Hatfield, J. L., Schepers, J. S., Barnes, E. M., Moran, M. S., Daughtry, C. S. T., & Upchurch, D. R. (2003). Remote sensing for crop management. Photogrammetric Engineering and Remote Sensing, 69(6), 647–664. https://doi.org/10.14358/PERS.69.6.647spa
dc.relation.referencesPnueli, L., Hallak-Herr, E., Rozenberg, M., Cohen, M., Goloubinoff, P., Kaplan, A., & Mittler, R. (2002). Molecular and biochemical mechanisms associated with dormancy and drought tolerance in the desert legume Retama raetam. The Plant Journal, 31(3), 319–330. https://doi.org/10.1046/J.1365-313X.2002.01364.Xspa
dc.relation.referencesPolosoro, A., Enggarini, W., & Ohmido, N. (2019). Global epigenetic changes of histone modification under environmental stresses in rice root. Chromosome Research, 27(4), 287–298. https://doi.org/10.1007/S10577-019-09611-3/FIGURES/5spa
dc.relation.referencesPonce, C. (2020). Intra-seasonal climate variability and crop diversification strategies in the Peruvian Andes: A word of caution on the sustainability of adaptation to climate change. World Development, 127. https://doi.org/10.1016/j.worlddev.2019.104740spa
dc.relation.referencesPosada, C. C., & Posada, C. C. (2007). La adaptación al cambio climático en Colombia. Revista de Ingeniería, 0(26), 74–80. https://doi.org/10.16924/riua.v0i26.298spa
dc.relation.referencesQi, J., Song, C. P., Wang, B., Zhou, J., Kangasjärvi, J., Zhu, J. K., & Gong, Z. (2018). Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack. Journal of Integrative Plant Biology, 60(9), 805–826. https://doi.org/10.1111/JIPB.12654spa
dc.relation.referencesQiu, W., Su, W., Cai, Z., Dong, L., Li, C., Xin, M., Fang, W., Liu, Y., Wang, X., Huang, Z., Ren, H., & Wu, Z. (2020). Combined analysis of transcriptome and metabolome reveals the potential mechanism of coloration and fruit quality in yellow and purple Passiflora edulis sims. Journal of Agricultural and Food Chemistry, 68(43), 12096–12106. https://doi.org/10.1021/acs.jafc.0c03619spa
dc.relation.referencesRaja, V., Majeed, U., Kang, H., Andrabi, K. I., & John, R. (2017). Abiotic stress: Interplay between ROS, hormones and MAPKs. Environmental and Experimental Botany, 137, 142–157. https://doi.org/10.1016/J.ENVEXPBOT.2017.02.010spa
dc.relation.referencesRallo, G., Minacapilli, M., Ciraolo, G., & Provenzano, G. (2014). Detecting crop water status in mature olive groves using vegetation spectral measurements. Biosystems Engineering, 128, 52–68. https://doi.org/10.1016/J.BIOSYSTEMSENG.2014.08.012spa
dc.relation.referencesRazi, K., & Muneer, S. (2021). Drought stress-induced physiological mechanisms, signaling pathways and molecular response of chloroplasts in common vegetable crops. Https://Doi.Org/10.1080/07388551.2021.1874280, 41(5), 669–691. https://doi.org/10.1080/07388551.2021.1874280spa
dc.relation.referencesReddy, A. S. N. (2001). Calcium: silver bullet in signaling. Plant Science, 160(3), 381–404. https://doi.org/10.1016/S0168-9452(00)00386-1spa
dc.relation.referencesRedillas, M. C. F. R., Kim, J.-K., Strasser, R. J., Jeong, J. S., & Kim, Y.-S. (2011). The use of JIP test to evaluate drought-tolerance of transgenic rice overexpressing OsNAC10. Plant Biotechnology Reports, 5(2), 169–175.spa
dc.relation.referencesRivas-Ubach, A., Sardans, J., Peŕez-Trujillo, M., Estiarte, M., & Penũelas, J. (2012). Strong relationship between elemental stoichiometry and metabolome in plants. Proceedings of the National Academy of Sciences of the United States of America, 109(11), 4181–4186.spa
dc.relation.referencesRobinson, M. D., McCarthy, D. J., & Smyth, G. K. (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1), 139–140. https://doi.org/10.1093/BIOINFORMATICS/BTP616spa
dc.relation.referencesRodrigues, D. L., Viana, A. P., Vieira, H. D., Santos, E. A., de Lima e Silva, F. H., & Santos, C. L. (2017). Contribution of production and seed variables to the genetic divergence in passion fruit under different nutrient availabilities. Pesquisa Agropecuária Brasileira, 52(8), 607–614. https://doi.org/10.1590/S0100-204X2017000800006spa
dc.relation.referencesRodríguez, N., Armenteras, D., & Retana, J. (2015). National ecosystems services priorities for planning carbon and water resource management in Colombia. Land Use Policy, 42, 609–618. https://doi.org/10.1016/J.LANDUSEPOL.2014.09.013spa
dc.relation.referencesRolly, N. K., Mun, B. G., & Yun, B. W. (2021a). Insights into the Transcriptional Regulation of Branching Hormonal Signaling Pathways Genes under Drought Stress in Arabidopsis. Genes, 12(2), 1–17. https://doi.org/10.3390/GENES12020298spa
dc.relation.referencesRolly, N. K., Mun, B.-G., & Yun, B.-W. (2021b). Insights into the Transcriptional Regulation of Branching Hormonal Signaling Pathways Genes under Drought Stress in Arabidopsis. Genes 2021, Vol. 12, Page 298, 12(2), 298. https://doi.org/10.3390/GENES12020298spa
dc.relation.referencesSafriel, U., Lead, Z. A., Niemeijer, D., Puigdefabregas, J., White, R., Lal, R., Winslow, M., Ziedler, J., Prince, S., Archer, E., King, C., Shapiro, B., Wessels, K., Nielsen, T., Portnov, B., Reshef, I., Thonell, J., Lachman, E., & Mcnab, D. (2005). Dryland Systems. In M. El-Kassas & E. Ezcurra (Eds.), Millennium Ecosystem Assessment – Ecosystems and Human well-being. . World Resources Institute.spa
dc.relation.referencesSalehi-Lisar, S. Y., & Bakhshayeshan-Agdam, H. (2016). Drought Stress in Plants: Causes, Consequences, and Tolerance BT - Drought Stress Tolerance in Plants, Vol 1: Physiology and Biochemistry. 1–16. https://doi.org/10.1007/978-3-319-28899-4_1spa
dc.relation.referencesSchulze, E. D. (2003). Carbon Dioxide and Water Vapor Exchange in Response to Drought in the Atmosphere and in the Soil. Annual Review of Plant Physiology, 37(1), 247–274. https://doi.org/10.1146/ANNUREV.PP.37.060186.001335spa
dc.relation.referencesSeo, P. J., Lee, S. B., Suh, M. C., Park, M. J., & Park, C. M. (2011). The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in arabidopsis. Plant Cell, 23(3), 1138–1152. https://doi.org/10.1105/tpc.111.083485spa
dc.relation.referencesShinozaki, K., & Yamaguchi-Shinozaki, K. (2007). Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany, 58(2), 221–227. https://doi.org/10.1093/JXB/ERL164spa
dc.relation.referencesSousa, A., Souza, M., Melo, C., & Sodré, G. (2015). ISSR markers in wild species of Passiflora L. (Passifloraceae) as a tool for taxon selection in ornamental breeding. Genetics and Molecular Research : GMR, 14(4), 18534–18545. https://doi.org/10.4238/2015.DECEMBER.23.41spa
dc.relation.referencesSouza, P. U., Lima, L. K. S., Soares, T. L., Jesus, O. N. de, Coelho Filho, M. A., & Girardi, E. A. (2018). Biometric, physiological and anatomical responses of Passiflora spp. to controlled water deficit. Scientia Horticulturae, 229, 77–90. https://doi.org/10.1016/j.scienta.2017.10.019spa
dc.relation.referencesSpang, A., Shiba, Y., & Randazzo, P. A. (2010). ArfGAPs: gatekeepers of vesicle generation. FEBS Letters, 584(12), 2646. https://doi.org/10.1016/J.FEBSLET.2010.04.005spa
dc.relation.referencesSposito, V., Faggian, R., Romeijn, H., & Downey, M. (2013). Expert Systems Modeling for Assessing Climate Change Impacts and Adaptation in Agricultural Systems at Regional Level. Open Journal of Applied Sciences, 03, 369–380. https://doi.org/10.4236/OJAPPS.2013.36047spa
dc.relation.referencesStamm, M. D., Enders, L. S., Donze-Reiner, T. J., Baxendale, F. P., Siegfried, B. D., & Heng-Moss, T. M. (2014). Transcriptional response of soybean to thiamethoxam seed treatment in the presence and absence of drought stress. BMC Genomics, 15(1), 1–13. https://doi.org/10.1186/1471-2164-15-1055/FIGURES/2spa
dc.relation.referencesSterling, A., & Melgarejo, L. M. (2020). Leaf spectral reflectance of Hevea brasiliensis in response to Pseudocercospora ulei. European Journal of Plant Pathology, 156(4), 1063–1076. https://doi.org/10.1007/S10658-020-01961-7/TABLES/4spa
dc.relation.referencesStrauss, A. J., Krüger, G. H. J., Strasser, R. J., & Heerden, P. D. R. V. (2006). Ranking of dark chilling tolerance in soybean genotypes probed by the chlorophyll a fluorescence transient O-J-I-P. Environmental and Experimental Botany, 56(2), 147–157. https://doi.org/10.1016/J.ENVEXPBOT.2005.01.011spa
dc.relation.referencesSuseela, V., Tharayil, N., Xing, B., & Dukes, J. S. (2015). Warming and drought differentially influence the production and resorption of elemental and metabolic nitrogen pools in Quercus rubra. Global Change Biology, 21(11), 4177–4195. https://doi.org/10.1111/GCB.13033spa
dc.relation.referencesSvensson, B., Svendsen, I., Poulsen, F. M., Højrup, P., Roepstorff, P., & Ludvigsen, S. (1992). Primary structure of barwin: a barley seed protein closely related to the C-terminal domain of proteins encoded by wound-induced plant genes. Biochemistry, 31(37), 8767–8770. https://doi.org/10.1021/BI00152A012spa
dc.relation.referencesTaiz, L., & Zeiger, E. (2006). FISIOLOGIA VEGETAL . www.sinauer.comspa
dc.relation.referencesTakizawa, K., Kanazawa, A., & Kramer, D. M. (2008). Depletion of stromal P(i) induces high “energy-dependent” antenna exciton quenching (q(E)) by decreasing proton conductivity at CF(O)-CF(1) ATP synthase. Plant, Cell & Environment, 31(2), 235–243. https://doi.org/10.1111/J.1365-3040.2007.01753.Xspa
dc.relation.referencesTang, S., Liang, H., Yan, D., Zhao, Y., Han, X., Carlson, J. E., Xia, X., & Yin, W. (2013). Populus euphratica: The transcriptomic response to drought stress. Plant Molecular Biology, 83(6), 539–557. https://doi.org/10.1007/S11103-013-0107-3/TABLES/4spa
dc.relation.referencesTucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8(2), 127–150. https://doi.org/10.1016/0034-4257(79)90013-0spa
dc.relation.referencesUrrutia, R., & Vuille, M. (2009). Climate change projections for the tropical Andes using a regional climate model: Temperature and precipitation simulations for the end of the 21st century. Journal of Geophysical Research Atmospheres, 114(2). https://doi.org/10.1029/2008JD011021spa
dc.relation.referencesVancostenoble, B., Blanchet, N., Langlade, N. B., & Bailly, C. (2022). Maternal drought stress induces abiotic stress tolerance to the progeny at the germination stage in sunflower. Environmental and Experimental Botany, 201, 104939. https://doi.org/10.1016/J.ENVEXPBOT.2022.104939spa
dc.relation.referencesVanwallendael, A., Soltani, A., Emery, N. C., Peixoto, M. M., Olsen, J., & Lowry, D. B. (2019). A Molecular View of Plant Local Adaptation: Incorporating Stress-Response Networks. In Annual Review of Plant Biology (Vol. 70, pp. 559–583). Annual Reviews Inc. https://doi.org/10.1146/annurev-arplant-050718-100114spa
dc.relation.referencesVicente, M. J., Martínez-Díaz, E., Martínez-Sánchez, J. J., Franco, J. A., Bañón, S., & Conesa, E. (2020). Effect of light, temperature, and salinity and drought stresses on seed germination of Hypericum ericoides, a wild plant with ornamental potential. Scientia Horticulturae, 270, 109433. https://doi.org/10.1016/J.SCIENTA.2020.109433spa
dc.relation.referencesVila, H. F., Hugalde, I. P., & di Filippo, M. L. (2011). Estimación de potencial hídrico en vid por medio de medidas termográficas y espectrales. RIA 37 (1) : 46-53 (Abril 2011). http://repositorio.inta.gob.ar:80/handle/20.500.12123/6387spa
dc.relation.referencesVitousek, P. (2015). Nutrient Cycling and Nutrient Use Efficiency. Https://Doi.Org/10.1086/283931, 119(4), 553–572. https://doi.org/10.1086/283931spa
dc.relation.referencesWang, M., Newsham, I., Wu, Y. Q., Dinh, H., Kovar, C., Santibanez, J., Sabo, A., Reid, J., Bainbridge, M., Boerwinkle, E., Albert, T., Gibbs, R., & Muzny, D. (2011). High-Throughput Next Generation Sequencing Methods and Applications. Journal of Biomolecular Techniques : JBT, 22(Suppl), S7. /pmc/articles/PMC3186667/?report=abstractspa
dc.relation.referencesWang, N., Xiao, B., & Xiong, L. (2011). Identification of a cluster of PR4-like genes involved in stress responses in rice. Journal of Plant Physiology, 168(18), 2212–2224. https://doi.org/10.1016/J.JPLPH.2011.07.013spa
dc.relation.referencesWang, S., & Gribskov, M. (2017). Comprehensive evaluation of de novo transcriptome assembly programs and their effects on differential gene expression analysis. Bioinformatics, 33(3), 327–333. https://doi.org/10.1093/BIOINFORMATICS/BTW625spa
dc.relation.referencesWang, Z., Gerstein, M., & Snyder, M. (2009). RNA-Seq: A revolutionary tool for transcriptomics. In Nature Reviews Genetics (Vol. 10, Issue 1, pp. 57–63). Nature Publishing Group. https://doi.org/10.1038/nrg2484spa
dc.relation.referencesWilke, A. B. B., Beier, J. C., & Benelli, G. (2019). Complexity of the relationship between global warming and urbanization – an obscure future for predicting increases in vector-borne infectious diseases. Current Opinion in Insect Science, 35, 1–9. https://doi.org/10.1016/J.COIS.2019.06.002spa
dc.relation.referencesWingett, S. W., & Andrews, S. (2018). FastQ Screen: A tool for multi-genome mapping and quality control. F1000Research, 7, 1338. https://doi.org/10.12688/F1000RESEARCH.15931.2spa
dc.relation.referencesWu, M., Zhang, W. H., Ma, C., & Zhou, J. Y. (2013). Changes in morphological, physiological, and biochemical responses to different levels of drought stress in chinese cork oak (Quercus variabilis Bl.) seedlings. Russian Journal of Plant Physiology 2013 60:5, 60(5), 681–692. https://doi.org/10.1134/S1021443713030151spa
dc.relation.referencesWu, Y., Tian, Q., Huang, W., Liu, J., Xia, X., Yang, X., & Mou, H. (2020). Identification and evaluation of reference genes for quantitative real-time PCR analysis in Passiflora edulis under stem rot condition. Molecular Biology Reports, 47(4), 2951–2962. https://doi.org/10.1007/s11033-020-05385-8spa
dc.relation.referencesXia, Z., Huang, D., Zhang, S., Wang, W., Ma, F., Wu, B., Xu, Y., Xu, B., Chen, D., Zou, M., Xu, H., Zhou, X., Zhan, R., & Song, S. (2021). Chromosome-scale genome assembly provides insights into the evolution and flavor synthesis of passion fruit ( Passiflora edulis Sims). Horticulture Research 2021 8:1, 8(1), 1–14. https://doi.org/10.1038/s41438-020-00455-1spa
dc.relation.referencesXiong, F., Li, X., Zheng, L., Hu, N., Cui, M., & Li, H. (2019). Characterization and antioxidant activities of polysaccharides from Passiflora edulis Sims peel under different degradation methods. Carbohydrate Polymers, 218, 46–52. https://doi.org/10.1016/j.carbpol.2019.04.069spa
dc.relation.referencesXu, J., & Scheres, B. (2005). Dissection of Arabidopsis ADP-RIBOSYLATION FACTOR 1 Function in Epidermal Cell Polarity. The Plant Cell, 17(2), 525. https://doi.org/10.1105/TPC.104.028449spa
dc.relation.referencesXu, M., Li, A., Teng, Y., & Sun, Z. (2019). Exploring the adaptive mechanism of Passiflora edulis in karst areas via an integrative analysis of nutrient elements and transcriptional profiles. BMC Plant Biology, 19(1), 1–16. https://doi.org/10.1186/s12870-019-1797-8spa
dc.relation.referencesXu, W., Cui, K., Xu, A., Nie, L., Huang, J., & Peng, S. (2015). Drought stress condition increases root to shoot ratio via alteration of carbohydrate partitioning and enzymatic activity in rice seedlings. Acta Physiologiae Plantarum, 37(2), 1–11. https://doi.org/10.1007/s11738-014-1760-0spa
dc.relation.referencesXue, F., Liu, W., Cao, H., Song, L., Ji, S., Tong, L., & Ding, R. (2021). Stomatal conductance of tomato leaves is regulated by both abscisic acid and leaf water potential under combined water and salt stress. Physiologia Plantarum, 172(4), 2070–2078. https://doi.org/10.1111/PPL.13441spa
dc.relation.referencesYang, I. S., & Kim, S. (2015). Analysis of Whole Transcriptome Sequencing Data: Workflow and Software. Genomics & Informatics, 13(4), 119. https://doi.org/10.5808/GI.2015.13.4.119spa
dc.relation.referencesYang, X., Lu, M., Wang, Y., Wang, Y., Liu, Z., & Chen, S. (2021). Response Mechanism of Plants to Drought Stress. Horticulturae 2021, Vol. 7, Page 50, 7(3), 50. https://doi.org/10.3390/HORTICULTURAE7030050spa
dc.relation.referencesYi, X. P., Zhang, Y. L., Yao, H. S., Luo, H. H., Gou, L., Chow, W. S., & Zhang, W. F. (2016). Rapid recovery of photosynthetic rate following soil water deficit and re-watering in cotton plants (Gossypium herbaceum L.) is related to the stability of the photosystems. Journal of Plant Physiology, 194, 23–34. https://doi.org/10.1016/J.JPLPH.2016.01.016spa
dc.relation.referencesYordanov, I., Velikova, V., & Tsonev, T. (2000). Plant Responses to Drought, Acclimation, and Stress Tolerance. Photosynthetica, 38(2), 171–186. https://doi.org/10.1023/A:1007201411474spa
dc.relation.referencesYoshida, T., Mogami, J., & Yamaguchi-Shinozaki, K. (2015). Omics Approaches Toward Defining the Comprehensive Abscisic Acid Signaling Network in Plants. Plant & Cell Physiology, 56(6), 1043–1052. https://doi.org/10.1093/PCP/PCV060spa
dc.relation.referencesYou, J., Zhang, Y., Liu, A., Li, D., Wang, X., Dossa, K., Zhou, R., Yu, J., Zhang, Y., Wang, L., & Zhang, X. (2019). Transcriptomic and metabolomic profiling of drought-tolerant and susceptible sesame genotypes in response to drought stress. BMC Plant Biology, 19(1), 1–16. https://doi.org/10.1186/S12870-019-1880-1/FIGURES/9spa
dc.relation.referencesZaefyzadeh, M., Quliyev, R. A., Babayeva, S. M., & Abbasov, M. A. (2009). The effect of the interaction between genotypes and drought stress on the superoxide dismutase and chlorophyll content in durum wheat landraces. Turkish Journal of Biology, 33(1), 1–7.spa
dc.relation.referencesZeng, H., Zhang, Y., Zhang, X., Pi, E., & Zhu, Y. (2017). Analysis of EF-hand proteins in soybean genome suggests their potential roles in environmental and nutritional stress signaling. Frontiers in Plant Science, 8, 877. https://doi.org/10.3389/FPLS.2017.00877/BIBTEXspa
dc.relation.referencesZhang, X., & Cheng, X. (2003). Structure of the predominant protein arginine methyltransferase PRMT1 and analysis of its binding to substrate peptides. Structure, 11(5), 509–520. https://doi.org/10.1016/S0969-2126(03)00071-6spa
dc.relation.referencesZhang, X., Lei, L., Lai, J., Zhao, H., & Song, W. (2018). Effects of drought stress and water recovery on physiological responses and gene expression in maize seedlings. BMC Plant Biology, 18(1), 1–16. https://doi.org/10.1186/S12870-018-1281-X/FIGURES/7spa
dc.relation.referencesZhang, X., Yang, Z., Li, Z., Zhang, F., & Hao, L. (2019). De novo transcriptome assembly and co-expression network analysis of Cynanchum thesioides: Identification of genes involved in resistance to drought stress. Gene, 710, 375–386. https://doi.org/10.1016/j.gene.2019.05.055spa
dc.relation.referencesZhao, P., Hou, S., Guo, X., Jia, J., Yang, W., Liu, Z., Chen, S., Li, X., Qi, D., Liu, G., & Cheng, L. (2019). A MYB-related transcription factor from sheepgrass, LcMYB2, promotes seed germination and root growth under drought stress. BMC Plant Biology, 19(1), 1–15. https://doi.org/10.1186/S12870-019-2159-2/FIGURES/9spa
dc.relation.referencesZhou, J.-J., Zhang, Y.-H., Han, Z.-M., Liu, X.-Y., Jian, Y.-F., Hu, C.-G., Dian, Y.-Y., Zhou, J.-J. ;, Zhang, Y.-H. ;, Han, Z.-M. ;, Liu, X.-Y. ;, Jian, Y.-F. ;, Hu, C.-G. ;, & Dian, Y.-Y. (2021). Evaluating the Performance of Hyperspectral Leaf Reflectance to Detect Water Stress and Estimation of Photosynthetic Capacities. Remote Sensing 2021, Vol. 13, Page 2160, 13(11), 2160. https://doi.org/10.3390/RS13112160spa
dc.relation.referencesZhu, A., Ibrahim, J. G., & Love, M. I. (2019). Heavy-tailed prior distributions for sequence count data: removing the noise and preserving large differences. Bioinformatics, 35(12), 2084–2092. https://doi.org/10.1093/BIOINFORMATICS/BTY895spa
dc.relation.referencesZhuang, J., Wang, Y., Chi, Y., Zhou, L., Chen, J., Zhou, W., Song, J., Zhao, N., & Ding, J. (2020). Drought stress strengthens the link between chlorophyll fluorescence parameters and photosynthetic traits. PeerJ, 8, e10046. https://doi.org/10.7717/PEERJ.10046/SUPP-1spa
dc.relation.referencesZivcak, M., Brestic, M., Balatova, Z., Drevenakova, P., Olsovska, K., Kalaji, H. M., Yang, X., & Allakhverdiev, S. I. (2013). Photosynthetic electron transport and specific photoprotective responses in wheat leaves under drought stress. Photosynthesis Research, 117(1–3), 529–546. https://doi.org/10.1007/S11120-013-9885-3spa
dc.relation.referencesZivcak, M., Olsovska, K., & Brestic, M. (2017). Photosynthetic responses under harmful and changing environment: Practical aspects in crop research. Photosynthesis: Structures, Mechanisms, and Applications, 203–248. https://doi.org/10.1007/978-3-319-48873-8_10spa
dc.relation.referencesZolnierowicz, S. (2000). Type 2A protein phosphatase, the complex regulator of numerous signaling pathways. Biochemical Pharmacology, 60(8), 1225–1235. https://doi.org/10.1016/S0006-2952(00)00424-Xspa
dc.relation.referencesMutz, K. O., Heilkenbrinker, A., Lönne, M., Walter, J. G., & Stahl, F. (2013). Transcriptome analysis using next-generation sequencing. In Current Opinion in Biotechnology (Vol. 24, Issue 1, pp. 22–30). Elsevier Current Trends. https://doi.org/10.1016/j.copbio.2012.09.004spa
dc.relation.referencesMorimoto, K., Mizoi, J., Qin, F., Kim, J.-S., Sato, H., Osakabe, Y., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2013). Stabilization of Arabidopsis DREB2A Is Required but Not Sufficient for the Induction of Target Genes under Conditions of Stress. PLoS ONE, 8(12), e80457. https://doi.org/10.1371/journal.pone.0080457spa
dc.relation.referencesMoreno, S. G., Vela, H. P., & Alvarez, M. O. S. (2008). La fluorescencia de la clorofila a como herramienta en la investigación de efectos tóxicos en el aparato fotosintético de plantas y algas. Revista de Educación Bioquímica, 27(4), 119–129.spa
dc.relation.referencesMohammadkhani, N., & Heidari, R. (2007). Effects of water stress on respiration, photosynthetic pigments and water content in two maize cultivars. Pakistan Journal of Biological Sciences, 10(22), 4022–4028. https://doi.org/10.3923/pjbs.2007.4022.4028spa
dc.relation.referencesMofatto, L. S., Carneiro, F. de A., Vieira, N. G., Duarte, K. E., Vidal, R. O., Alekcevetch, J. C., Cotta, M. G., Verdeil, J. L., Lapeyre-Montes, F., Lartaud, M., Leroy, T., de Bellis, F., Pot, D., Rodrigues, G. C., Carazzolle, M. F., Pereira, G. A. G., Andrade, A. C., & Marraccini, P. (2016). Identification of candidate genes for drought tolerance in coffee by high-throughput sequencing in the shoot apex of different Coffea arabica cultivars. BMC Plant Biology, 16(1), 1–18. https://doi.org/10.1186/S12870-016-0777-5/FIGURES/7spa
dc.relation.referencesMistry, J., Chuguransky, S., Williams, L., Qureshi, M., Salazar, G. A., Sonnhammer, E. L. L., Tosatto, S. C. E., Paladin, L., Raj, S., Richardson, L. J., Finn, R. D., & Bateman, A. (2021). Pfam: The protein families database in 2021. Nucleic Acids Research, 49(D1), D412–D419. https://doi.org/10.1093/NAR/GKAA913spa
dc.relation.referencesMinisterio de Agricultura. (2020). Informe Gulupa. https://www.minagricultura.gov.co/paginas/default.aspxspa
dc.relation.referencesMeza, K., Ruales, B., Maiguashca, J., & Rivadeneira, J. L. (2020). CARACTERIZACIÓN ESPECTRAL DE ESTRÉS HÍDRICO EN EL CULTIVO DE PEPINO DULCE (Solanum muricatum). Revista Geoespacial, 17(1), 14–24. https://doi.org/10.24133/geoespacial.v17i1.1492spa
dc.relation.referencesMeng, A., Wen, D., & Zhang, C. (2022). Maize Seed Germination Under Low-Temperature Stress Impacts Seedling Growth Under Normal Temperature by Modulating Photosynthesis and Antioxidant Metabolism. Frontiers in Plant Science, 13, 514. https://doi.org/10.3389/FPLS.2022.843033/BIBTEXspa
dc.relation.referencesMeneses, V. A. B., Téllez, J. M., & Velasquez, D. F. A. (2015). USO DE DRONES PARA EL ANALISIS DE IMÁGENES MULTIESPECTRALES EN AGRICULTURA DE PRECISIÓN. @limentech, Ciencia y Tecnología Alimentaria, 13(1), 28–40. https://doi.org/10.24054/16927125.V1.N1.2015.1647spa
dc.relation.referencesMelgarejo, L. M. (2011). Caracterizacion ecofisiologica de las plantas passiflora en areas arbolicolas de Colombia. Revista de Horticultura.spa
dc.relation.referencesMehta, P., Allakhverdiev, S., & Jajoo, A. (2010). Characterization of photosystem II heterogeneity in response to high salt stress in wheat leaves (Triticum aestivum). Photosynthesis Research, 105(3), 249–255. https://doi.org/10.1007/S11120-010-9588-Yspa
dc.relation.referencesMaxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescence—a practical guide. Journal of Experimental Botany, 51(345), 659–668. https://doi.org/10.1093/JEXBOT/51.345.659spa
dc.relation.referencesMashaki, K. M., Garg, V., Nasrollahnezhad Ghomi, A. A., Kudapa, H., Chitikineni, A., Nezhad, K. Z., Yamchi, A., Soltanloo, H., Varshney, R. K., & Thudi, M. (2018). RNA-Seq analysis revealed genes associated with drought stress response in kabuli chickpea (Cicer arietinum L.). PLOS ONE, 13(6), e0199774. https://doi.org/10.1371/JOURNAL.PONE.0199774spa
dc.relation.referencesMaseda, P. H., & Fernández, R. J. (2006). Stay wet or else: three ways in which plants can adjust hydraulically to their environment. Journal of Experimental Botany, 57(15), 3963–3977. https://doi.org/10.1093/JXB/ERL127spa
dc.relation.referencesMartínez-Barbáchano, R., & Solís-Miranda, G. A. (2018). Caracterización Espectral y Detección de Flecha Seca en Palma Africana en Puntarenas, Costa Rica. Revista Geográfica de América Central, 2(61), 349–377. https://doi.org/10.15359/RGAC.61-2.13spa
dc.relation.referencesMarcińska, I., Czyczyło-Mysza, I., Skrzypek, E., Filek, M., Grzesiak, S., Grzesiak, M. T., Janowiak, F., Hura, T., Dziurka, M., Dziurka, K., Nowakowska, A., & Quarrie, S. A. (2013). Impact of osmotic stress on physiological and biochemical characteristics in drought-susceptible and drought-resistant wheat genotypes. Acta Physiologiae Plantarum, 35(2), 451–461. https://doi.org/10.1007/S11738-012-1088-6/TABLES/2spa
dc.relation.referencesManivannan, P., Jaleel, C. A., Sankar, B., Kishorekumar, A., Somasundaram, R., Lakshmanan, G. M. A., & Panneerselvam, R. (2007). Growth, biochemical modifications and proline metabolism in Helianthus annuus L. as induced by drought stress. Colloids and Surfaces B: Biointerfaces, 59(2), 141–149. https://doi.org/10.1016/J.COLSURFB.2007.05.002spa
dc.relation.referencesMangena, P. (2019). Phytocystatins and their Potential Application in the Development of Drought Tolerance Plants in Soybeans (Glycine max L.). Protein & Peptide Letters, 27(2), 135–144. https://doi.org/10.2174/0929866526666191014125453spa
dc.relation.referencesMa, P., Bai, T. hui, & Ma, F. wang. (2015). Effects of progressive drought on photosynthesis and partitioning of absorbed light in apple trees. Journal of Integrative Agriculture, 14(4), 681–690. https://doi.org/10.1016/S2095-3119(14)60871-6spa
dc.relation.referencesMa, D., Dong, S., Zhang, S., Wei, X., Xie, Q., Ding, Q., Xia, R., & Zhang, X. (2021). Chromosome-level reference genome assembly provides insights into aroma biosynthesis in passion fruit (Passiflora edulis). Molecular Ecology Resources, 21(3), 955–968. https://doi.org/10.1111/1755-0998.13310spa
dc.relation.referencesLu, T., Lu, G., Fan, D., Zhu, C., Li, W., Zhao, Q., Feng, Q., Zhao, Y., Guo, Y., Li, W., Huang, X., & Han, B. (2010). Function annotation of the rice transcriptome at single-nucleotide resolution by RNA-seq. Genome Research, 20(9), 1238–1249. https://doi.org/10.1101/GR.106120.110spa
dc.relation.referencesLozano-Povis, A., Alvarez-Montalván, C. E., & Moggiano, N. (2021). Climate change in the Andes and its impact on agriculture: a systematic review. In Scientia Agropecuaria (Vol. 12, Issue 1, pp. 101–108). Universidad Nacional de Trujillo. https://doi.org/10.17268/SCI.AGROPECU.2021.012spa
dc.relation.referencesLozano-Montaña, P. A., Sarmiento, F., Mejía-Sequera, L. M., Álvarez-Flórez, F., & Melgarejo, L. M. (2021). Physiological, biochemical and transcriptional responses of Passiflora edulis Sims f. edulis under progressive drought stress. Scientia Horticulturae, 275, 109655. https://doi.org/10.1016/j.scienta.2020.109655spa
dc.relation.referencesLove, M. I., Huber, W., & Anders, S. (2014b). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12). https://doi.org/10.1186/S13059-014-0550-8spa
dc.relation.referencesLove, M. I., Huber, W., & Anders, S. (2014a). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 2014 15:12, 15(12), 1–21. https://doi.org/10.1186/S13059-014-0550-8spa
dc.relation.referencesLove, M. I. (2021). Statistical Modeling of High Dimensional Counts. Methods in Molecular Biology, 2284, 97–134. https://doi.org/10.1007/978-1-0716-1307-8_7spa
dc.relation.referencesLópez-Hidalgo, C., Meijón, M., Lamelas, L., & Valledor, L. (2021). The rainbow protocol: A sequential method for quantifying pigments, sugars, free amino acids, phenolics, flavonoids and MDA from a small amount of sample. Plant, Cell & Environment, 44(6), 1977–1986. https://doi.org/10.1111/PCE.14007spa
dc.relation.referencesLobos, G. A., & Hancock, J. F. (2015). Breeding blueberries for a changing global environment: A review. Frontiers in Plant Science, 6(SEPTEMBER), 782. https://doi.org/10.3389/FPLS.2015.00782/XML/NLMspa
dc.relation.referencesLiu, S., Li, A., Chen, C., Cai, G., Zhang, L., Guo, C., & Xu, M. (2017). De novo transcriptome sequencing in Passiflora edulis sims to identify genes and signaling pathways involved in cold tolerance. Forests, 8(11), 435. https://doi.org/10.3390/f8110435spa
dc.relation.referencesLissina, E., Young, B., Urbanus, M. L., Guan, X. L., Lowenson, J., Hoon, S., Baryshnikova, A., Riezman, I., Michaut, M., Riezman, H., Cowen, L. E., Wenk, M. R., Clarke, S. G., Giaever, G., & Nislow, C. (2011). A Systems Biology Approach Reveals the Role of a Novel Methyltransferase in Response to Chemical Stress and Lipid Homeostasis. PLOS Genetics, 7(10), e1002332. https://doi.org/10.1371/JOURNAL.PGEN.1002332spa
dc.relation.referencesLichtenthaler, H. K., Gitelson, A., & Lang, M. (1996). Non-Destructive Determination of Chlorophyll Content of Leaves of a Green and an Aurea Mutant of Tobacco by Reflectance Measurements. Journal of Plant Physiology, 148(3–4), 483–493. https://doi.org/10.1016/S0176-1617(96)80283-5spa
dc.relation.referencesLichtenthaler, H. K. (1987). Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. Methods in Enzymology, 148(C), 350–382. https://doi.org/10.1016/0076-6879(87)48036-1spa
dc.relation.referencesLi, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics, 25(14), 1754–1760. https://doi.org/10.1093/BIOINFORMATICS/BTP324spa
dc.relation.referencesLi, B., & Dewey, C. N. (2011). RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 2011 12:1, 12(1), 1–16. https://doi.org/10.1186/1471-2105-12-323spa
dc.relation.referencesLawlor, D. W., & Cornic, G. (2002). Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell and Environment, 25(2), 275–294. https://doi.org/10.1046/J.0016-8025.2001.00814.Xspa
dc.relation.referencesLauriano, J. A., Ramalho, J. C., Lidon, F. C., & do Céu Matos, M. (2006). Mechanisms of energy dissipation in peanut under water stress. Photosynthetica 2006 44:3, 44(3), 404–410. https://doi.org/10.1007/S11099-006-0043-4spa
dc.relation.referencesLangmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods 2012 9:4, 9(4), 357–359. https://doi.org/10.1038/nmeth.1923spa
dc.relation.referencesLamers, J., der Meer, T. van, & Testerink, C. (2020). How plants sense and respond to stressful environments. Plant Physiology, 182(4), 1624–1635. https://doi.org/10.1104/PP.19.01464spa
dc.relation.referencesKusvuran, S., & Dasgan, H. Y. (2017). Drought induced physiological and biochemical responses in solanum lycopersicum genotypes differing to tolerance. Acta Scientiarum Polonorum, Hortorum Cultus, 16(6), 19–27. https://doi.org/10.24326/ASPHC.2017.6.2spa
dc.relation.referencesKukurba, K. R., & Montgomery, S. B. (2015). RNA Sequencing and Analysis. Cold Spring Harbor Protocols, 2015(11), 951. https://doi.org/10.1101/PDB.TOP084970spa
dc.relation.referencesKoramutla, M. K., Negi, M., & Ayele, B. T. (2021). Roles of Glutathione in Mediating Abscisic Acid Signaling and Its Regulation of Seed Dormancy and Drought Tolerance. Genes 2021, Vol. 12, Page 1620, 12(10), 1620. https://doi.org/10.3390/GENES12101620spa
dc.relation.referencesKohzuma, K., Cruz, J. A., Akashi, K., Hoshiyasu, S., Munekage, Y. N., Yokota, A., & Kramer, D. M. (2009). The long-term responses of the photosynthetic proton circuit to drought. Plant, Cell & Environment, 32(3), 209–219. https://doi.org/10.1111/J.1365-3040.2008.01912.Xspa
dc.relation.referencesKim, Y., Chung, Y. S., Lee, E., Tripathi, P., Heo, S., & Kim, K. H. (2020). Root Response to Drought Stress in Rice (Oryza sativa L.). International Journal of Molecular Sciences 2020, Vol. 21, Page 1513, 21(4), 1513. https://doi.org/10.3390/IJMS21041513spa
dc.relation.referencesKautsky, H., & Hirsch, A. (1931). Neue Versuche zur Kohlensäureassimilation. Naturwissenschaften 1931 19:48, 19(48), 964–964. https://doi.org/10.1007/BF01516164spa
dc.relation.referencesKatz, J. E., Dlakić, M., & Clarke, S. (2003). Automated identification of putative methyltransferases from genomic open reading frames. Molecular & Cellular Proteomics : MCP, 2(8), 525–540. https://doi.org/10.1074/mcp.M300037-MCP200spa
dc.relation.referencesKalaji, H. M., Jajoo, A., Oukarroum, A., Brestic, M., Zivcak, M., Samborska, I. A., Cetner, M. D., Łukasik, I., Goltsev, V., & Ladle, R. J. (2016). Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiologiae Plantarum, 38(4), 1–11. https://doi.org/10.1007/S11738-016-2113-Y/FIGURES/2spa
dc.relation.referencesJoshi, R., Wani, S. H., Singh, B., Bohra, A., Dar, Z. A., Lone, A. A., Pareek, A., & Singla-Pareek, S. L. (2016). Transcription factors and plants response to drought stress: Current understanding and future directions. Frontiers in Plant Science, 7(2016JULY), 1029. https://doi.org/10.3389/FPLS.2016.01029/BIBTEXspa
dc.relation.referencesJoshi, R., Ramanarao, M. V., Lee, S., Kato, N., & Baisakh, N. (2014). Ectopic expression of ADP ribosylation factor 1 (SaARF1) from smooth cordgrass (Spartina alterniflora Loisel) confers drought and salt tolerance in transgenic rice and Arabidopsis. Plant Cell, Tissue and Organ Culture, 117(1), 17–30. https://doi.org/10.1007/S11240-013-0416-X/FIGURES/9spa
dc.relation.referencesJiménez, A. M., Sierra, C. A., Rodríguez-Pulido, F. J., González-Miret, M. L., Heredia, F. J., & Osorio, C. (2011). Physicochemical characterisation of gulupa (Passiflora edulis Sims. fo edulis) fruit from Colombia during the ripening. Food Research International, 44(7), 1912–1918. https://doi.org/10.1016/j.foodres.2010.11.007spa
dc.relation.referencesJiang, Y., & Carrow, R. N. (2007). Broadband Spectral Reflectance Models of Turfgrass Species and Cultivars to Drought Stress. Crop Science, 47(4), 1611–1618. https://doi.org/10.2135/CROPSCI2006.09.0617spa
dc.relation.referencesJiang, C., Song, J., Huang, R., Huang, M., & Xu, L. (2013). Cloning and expression analysis of Chitinase genes from Populus canadensis. Russian Journal of Plant Physiology 2013 60:3, 60(3), 396–403. https://doi.org/10.1134/S1021443713030072spa
dc.relation.referencesJia, H., Wang, C., Wang, F., Liu, S., Li, G., & Guo, X. (2015). GhWRKY68 reduces resistance to salt and drought in transgenic Nicotiana benthamiana. PLoS ONE, 10(3). https://doi.org/10.1371/JOURNAL.PONE.0120646spa
dc.relation.referencesHussain, S., Rao, M. J., Anjum, M. A., Ejaz, S., Zakir, I., Ali, M. A., Ahmad, N., & Ahmad, S. (2019). Oxidative stress and antioxidant defense in plants under drought conditions. Plant Abiotic Stress Tolerance: Agronomic, Molecular and Biotechnological Approaches, 207–219. https://doi.org/10.1007/978-3-030-06118-0_9/TABLES/3spa
dc.relation.referencesHurtado-Salazar, A., Silva, D. F. P. da, Ceballos-Aguirre, N., Ocampo, J., & Bruckner, C. H. (2020). Promissory Passiflora species (Passifloraceae) for its tolerance to water-salt stress. Revista Colombiana de Ciencias Hortícolas, 14(1), 44–49. https://doi.org/10.17584/rcch.2020v14i1.10574spa
dc.relation.referencesHurtado-Salazar, A., Pereira, D. F., Silva, D. A., Ceballos-Aguirre, N., Ocampo-Pérez, J., & Bruckner, C. H. (2020). Promissory Passiflora L. species (Passifloraceae) for tolerance to water-salt stress. Revista Colombiana de Ciencias Hortícolas, 14(1), 44–49. https://doi.org/10.17584/RCCH.2020V14I1.10574spa
dc.relation.referencesHuete, A. R., Liu, H. Q., Batchily, K., & van Leeuwen, W. (1997). A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sensing of Environment, 59(3), 440–451. https://doi.org/10.1016/S0034-4257(96)00112-5spa
dc.relation.referencesHuber, W., Carey, V. J., Gentleman, R., Anders, S., Carlson, M., Carvalho, B. S., Bravo, H. C., Davis, S., Gatto, L., Girke, T., Gottardo, R., Hahne, F., Hansen, K. D., Irizarry, R. A., Lawrence, M., Love, M. I., MaCdonald, J., Obenchain, V., Oles̈, A. K., … Morgan, M. (2015). Orchestrating high-throughput genomic analysis with Bioconductor. Nature Methods 2015 12:2, 12(2), 115–121. https://doi.org/10.1038/nmeth.3252spa
dc.relation.referencesHuang, S. H., Zhang, J. Y., Wang, L. H., & Huang, L. Q. (2013). Effect of abiotic stress on the abundance of different vitamin B6 vitamers in tobacco plants. Plant Physiology and Biochemistry, 66, 63–67. https://doi.org/10.1016/J.PLAPHY.2013.02.010spa
dc.relation.referencesHu, H., Dai, M., Yao, J., Xiao, B., Li, X., Zhang, Q., & Xiong, L. (2006). Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proceedings of the National Academy of Sciences of the United States of America, 103(35), 12987–12992. https://doi.org/10.1073/PNAS.0604882103/SUPPL_FILE/04882FIG8.PDFspa
dc.relation.referencesHoekstra, F. A., Golovina, E. A., & Buitink, J. (2001). Mechanisms of plant desiccation tolerance. Trends in Plant Science, 6(9), 431–438. https://doi.org/10.1016/S1360-1385(01)02052-0spa
dc.relation.referencesHoekstra, A. Y., & Mekonnen, M. M. (2012). The water footprint of humanity. Proceedings of the National Academy of Sciences of the United States of America, 109(9), 3232–3237. https://doi.org/10.1073/PNAS.1109936109/SUPPL_FILE/PNAS.1109936109_SI.PDFspa
dc.relation.referencesHernández, A. (2003). ). Revision taxonomica de Passiflora, subgénero Decaloba (Passifloraceae) en Colombia [Tesis Pregrado]. Universidad Nacional de Colombia.spa
dc.relation.referencesHe, Y., Zhang, Y., Pereira, A., Gómez, A., & Wang, J. (2005). Nondestructive Determination of Tomato Fruit Quality Characteristics Using Vis/NIR Spectroscopy Technique. International Journal of Information Technology, 11(11), 97–108. https://www.researchgate.net/publication/242488503_Nondestructive_Determination_of_Tomato_Fruit_Quality_Characteristics_Using_VisNIR_Spectroscopy_Techniquespa
dc.relation.referencesHarb, A., Krishnan, A., Ambavaram, M. M. R., & Pereira, A. (2010). Molecular and Physiological Analysis of Drought Stress in Arabidopsis Reveals Early Responses Leading to Acclimation in Plant Growth. Plant Physiology, 154(3), 1254–1271. https://doi.org/10.1104/pp.110.161752spa
dc.relation.referencesHansatech. (2006). Handy PEA+ - Hansatech Instruments Ltd. http://www.hansatech-instruments.com/product/handy-pea/spa
dc.relation.referencesGupta, A., Rico-Medina, A., & Caño-Delgado, A. I. (2020). The physiology of plant responses to drought. Science, 368(6488), 266–269. https://doi.org/10.1126/SCIENCE.AAZ7614/ASSET/85DF5D35-16C3-4F44-A8B6-6FBF05AF8557/ASSETS/GRAPHIC/368_266_F4.JPEGspa
dc.relation.referencesGuha, A., Sengupta, D., Kumar Rasineni, G., & Ramachandra Reddy, A. (2010). An integrated diagnostic approach to understand drought tolerance in mulberry (Morus indica L.). Flora: Morphology, Distribution, Functional Ecology of Plants, 205(2), 144–151. https://doi.org/10.1016/j.flora.2009.01.004spa
dc.relation.referencesGreenham, K., Guadagno, C. R., Gehan, M. A., Mockler, T. C., Weinig, C., Ewers, B. E., & McClung, C. R. (2017). Temporal network analysis identifies early physiological and transcriptomic indicators of mild drought in brassica rapa. ELife, 6. https://doi.org/10.7554/eLife.29655spa
dc.relation.referencesGonzález-Fernández, A. B., Rodríguez-Pérez, J. R., Marcelo, V., & Valenciano, J. B. (2015). Using field spectrometry and a plant probe accessory to determine leaf water content in commercial vineyards. Agricultural Water Management, 156, 43–50. https://doi.org/10.1016/j.agwat.2015.03.024spa
dc.relation.referencesGomes, M. T. G., da Luz, A. C., dos Santos, M. R., do Carmo Pimentel Batitucci, M., Silva, D. M., & Falqueto, A. R. (2012). Drought tolerance of passion fruit plants assessed by the OJIP chlorophyll a fluorescence transient. Scientia Horticulturae, 142, 49–56. https://doi.org/10.1016/J.SCIENTA.2012.04.026spa
dc.relation.referencesGitelson, A. A., Gritz, Y., & Merzlyak, M. N. (2003). Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. Journal of Plant Physiology, 160(3), 271–282. https://doi.org/10.1078/0176-1617-00887spa
dc.relation.referencesGioppato, H. A., da Silva, M. B., Carrara, S., Palermo, B. R. Z., de Souza Moraes, T., & Dornelas, M. C. (2019). Genomic and transcriptomic approaches to understand Passiflora physiology and to contribute to passionfruit breeding. Theoretical and Experimental Plant Physiology, 31(1), 173–181. https://doi.org/10.1007/s40626-018-0134-1spa
dc.relation.referencesGilbert, G., & McLeman, R. (2010). Household access to capital and its effects on drought adaptation and migration: A case study of rural Alberta in the 1930s. Population and Environment, 32(1), 3–26. https://doi.org/10.1007/S11111-010-0112-2/TABLES/4spa
dc.relation.referencesGehring, W. J. (1992). The homeobox in perspective. Trends in Biochemical Sciences, 17(8), 277–280. https://doi.org/10.1016/0968-0004(92)90434-Bspa
dc.relation.referencesGarcía-Castro, A., Volder, A., Restrepo-Diaz, H., Starman, T. W., & Lombardini, L. (2017). Evaluation of different drought stress regimens on growth, leaf gas exchange properties, and carboxylation activity in purple passionflower plants. Journal of the American Society for Horticultural Science, 142(1), 57–64. https://doi.org/10.21273/JASHS03961-16spa
dc.relation.referencesGao, R., Liu, P., Yong, Y., & Wong, S.-M. (2016). Genome-wide transcriptomic analysis reveals correlation between higher WRKY61 expression and reduced symptom severity in Turnip crinkle virus infected Arabidopsis thaliana. Scientific Reports, 6. https://doi.org/10.1038/SREP24604spa
dc.relation.referencesGamon, J. A., Serrano, L., & Surfus, J. S. (1997). The photochemical reflectance index: an optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels. Oecologia 1997 112:4, 112(4), 492–501. https://doi.org/10.1007/S004420050337spa
dc.relation.referencesGallino, J. P., Ruibal, C., Casaretto, E., Fleitas, A. L., Bonnecarrère, V., Borsani, O., & Vidal, S. (2018). A dehydration-induced eukaryotic translation initiation factor iso4G identified in a slow wilting soybean cultivar enhances abiotic stress tolerance in Arabidopsis. Frontiers in Plant Science, 9, 262. https://doi.org/10.3389/FPLS.2018.00262/BIBTEXspa
dc.relation.referencesGallie, D. R. (2016). Eukaryotic initiation factor eIFiso4G1 and eIFiso4G2 are isoforms exhibiting distinct functional differences in supporting translation in arabidopsis. Journal of Biological Chemistry, 291(3), 1501–1513. https://doi.org/10.1074/jbc.M115.692939spa
dc.relation.referencesFujita, Y., Fujita, M., Satoh, R., Maruyama, K., Parvez, M. M., Seki, M., Hiratsu, K., Ohme-Takagi, M., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2005). AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell, 17(12), 3470–3488. https://doi.org/10.1105/tpc.105.035659spa
dc.relation.referencesFrank, H. A., & Brudvig, G. W. (2004). Redox functions of carotenoids in photosynthesis. Biochemistry, 43(27), 8607–8615. https://doi.org/10.1021/BI0492096spa
dc.relation.referencesFlach, J., Pilet, P. E., & Jollès, P. (1992). What’s new in chitinase research? Experientia, 48(8), 701–716. https://doi.org/10.1007/BF02124285spa
dc.relation.referencesFilichkin, S. A., Priest, H. D., Givan, S. A., Shen, R., Bryant, D. W., Fox, S. E., Wong, W. K., & Mockler, T. C. (2010). Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome Research, 20(1), 45–58. https://doi.org/10.1101/GR.093302.109spa
dc.relation.referencesFernandes, A. M., Fortini, E. A., Müller, L. A. de C., Batista, D. S., Vieira, L. M., Silva, P. O., Amaral, C. H. do, Poethig, R. S., & Otoni, W. C. (2020). Leaf development stages and ontogenetic changes in passionfruit (Passiflora edulis Sims.) are detected by narrowband spectral signal. Journal of Photochemistry and Photobiology B: Biology, 209, 111931. https://doi.org/10.1016/J.JPHOTOBIOL.2020.111931spa
dc.relation.referencesFarooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. M. A. (2009). Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development 2009 29:1, 29(1), 185–212. https://doi.org/10.1051/AGRO:2008021spa
dc.relation.referencesFang, H., & Gough, J. (2013b). A domain-centric solution to functional genomics via dcGO Predictor. BMC Bioinformatics, 14(SUPPL.3), 1–11. https://doi.org/10.1186/1471-2105-14-S3-S9/FIGURES/3spa
dc.relation.referencesFang, H., & Gough, J. (2013a). dcGO: database of domain-centric ontologies on functions, phenotypes, diseases and more. Nucleic Acids Research, 41(Database issue), D536. https://doi.org/10.1093/NAR/GKS1080spa
dc.relation.referencesFàbregas, N., & Fernie, A. R. (2019). The metabolic response to drought. Journal of Experimental Botany, 70(4), 1077–1085. https://doi.org/10.1093/JXB/ERY437spa
dc.relation.referencesEmerson, R., & Arnold, W. (1932). THE PHOTOCHEMICAL REACTION IN PHOTOSYNTHESIS. Journal of General Physiology, 16(2), 191–205. https://doi.org/10.1085/JGP.16.2.191spa
dc.relation.referencesDubois, M., & Inzé, D. (2020). Plant growth under suboptimal water conditions: early responses and methods to study them. Journal of Experimental Botany, 71(5), 1706–1722. https://doi.org/10.1093/JXB/ERAA037spa
dc.relation.referencesDubey, A. K., Kumar, N., & Sanyal, I. (2022). Targets of NO in plastids. Nitric Oxide in Plant Biology: An Ancient Molecule with Emerging Roles, 331–344. https://doi.org/10.1016/B978-0-12-818797-5.00032-7spa
dc.relation.referencesDrewke, C., & Leistner, E. (2001). Biosynthesis of vitamin B6 and structurally related derivatives. Vitamins and Hormones, 61, 121–155. https://doi.org/10.1016/S0083-6729(01)61004-5spa
dc.relation.referencesde Brito, G. G., Sofiatti, V., de Andrade Lima, M. M., de Carvalho, L. P., & Filho, J. L. da S. (2011). Traços fisiológicos para fenotipagem de algodoeiro sob seca. Acta Scientiarum - Agronomy, 33(1), 117–125. https://doi.org/10.4025/ACTASCIAGRON.V33I1.9839spa
dc.relation.referencesDay, I. S., Reddy, V. S., Shad Ali, G., & Reddy, A. (2002). Analysis of EF-hand-containing proteins in Arabidopsis. Genome Biology 2002 3:10, 3(10), 1–24. https://doi.org/10.1186/GB-2002-3-10-RESEARCH0056spa
dc.relation.referencesDavies, G., & Henrissat, B. (1995). Structures and mechanisms of glycosyl hydrolases. Structure (London, England : 1993), 3(9), 853–859. https://doi.org/10.1016/S0969-2126(01)00220-9spa
dc.relation.referencesDatt, B. (1999). A New Reflectance Index for Remote Sensing of Chlorophyll Content in Higher Plants: Tests using Eucalyptus Leaves. Journal of Plant Physiology, 154(1), 30–36. https://doi.org/10.1016/S0176-1617(99)80314-9spa
dc.relation.referencesDalal, M., Sahu, S., Tiwari, S., Rao, A. R., & Gaikwad, K. (2018). Transcriptome analysis reveals interplay between hormones, ROS metabolism and cell wall biosynthesis for drought-induced root growth in wheat. Plant Physiology and Biochemistry, 130, 482–492. https://doi.org/10.1016/J.PLAPHY.2018.07.035spa
dc.relation.referencesConesa, A., Madrigal, P., Tarazona, S., Gomez-Cabrero, D., Cervera, A., McPherson, A., Szcześniak, M. W., Gaffney, D. J., Elo, L. L., Zhang, X., & Mortazavi, A. (2016). A survey of best practices for RNA-seq data analysis. Genome Biology 2016 17:1, 17(1), 1–19. https://doi.org/10.1186/S13059-016-0881-8spa
dc.relation.referencesComstock, J. P. (2002). Hydraulic and chemical signalling in the control of stomatal conductance and transpiration. Journal of Experimental Botany, 53(367), 195–200. https://doi.org/10.1093/JEXBOT/53.367.195spa
dc.relation.referencesÇiçek, N., Pekcan, V., Arslan, Ö., Çulha Erdal, Ş., Balkan Nalçaiyi, A. S., Çil, A. N., Şahin, V., Kaya, Y., & Ekmekçi, Y. (2019). Assessing drought tolerance in field-grown sunflower hybrids by chlorophyll fluorescence kinetics. Revista Brasileira de Botanica, 42(2), 249–260. https://doi.org/10.1007/S40415-019-00534-1/FIGURES/5spa
dc.relation.referencesChuvieco-Salinero, E. (2010). Teledetección ambiental : la observación de la tierra desde el espacio (Ariel, Ed.; 1st ed.). https://bibliotecadigital.uchile.cl/discovery/fulldisplay?vid=56UDC_INST:56UDC_INST&search_scope=MyInst_and_CI&tab=Everything&docid=alma991001205769703936&lang=es&context=L&adaptor=Local%20Search%20Engine&query=any,contains,the%20new%20nature%20of%20maps&facet=library,include,56UDC_INSTAQ06&offset=0spa
dc.relation.referencesChen, Y.-C. (2020). Introductory Chapter: Gene Expression and Phenotypic Traits. Gene Expression and Phenotypic Traits. https://doi.org/10.5772/INTECHOPEN.89863spa
dc.relation.referencesChen, P., Ran, S., Li, R., Huang, Z., Qian, J., Yu, M., & Zhou, R. (2014). Transcriptome de novo assembly and differentially expressed genes related to cytoplasmic male sterility in kenaf (Hibiscus cannabinus L.). Molecular Breeding, 34(4), 1879–1891. https://doi.org/10.1007/s11032-014-0146-8spa
dc.relation.referencesChen, D., He, L., Lin, M., Jing, Y., Liang, C., Liu, H., Gao, J., Zhang, W., & Wang, M. (2021). A ras-related small GTP-binding protein, RabE1c, regulates stomatal movements and drought stress responses by mediating the interaction with ABA receptors. Plant Science, 306, 110858. https://doi.org/10.1016/J.PLANTSCI.2021.110858spa
dc.relation.referencesCaturegli, L., Matteoli, S., Gaetani, M., Grossi, N., Magni, S., Minelli, A., Corsini, G., Remorini, D., & Volterrani, M. (2020). Effects of water stress on spectral reflectance of bermudagrass. Scientific Reports 2020 10:1, 10(1), 1–12. https://doi.org/10.1038/s41598-020-72006-6spa
dc.relation.referencesCastillo, N. C. R., Wu, X., Chacón, M. I., Melgarejo, L. M., & Blair, M. W. (2021). Genetic Diversity of Purple Passion Fruit, Passiflora edulis f. edulis, Based on Single-Nucleotide Polymorphism Markers Discovered through Genotyping by Sequencing. Diversity 2021, Vol. 13, Page 144, 13(4), 144. https://doi.org/10.3390/D13040144spa
dc.relation.referencesCarr, M. K. V. (2013). The water relations and irrigation requirements of passion fruit (passiflora edulis sims): A review. In Experimental Agriculture (Vol. 49, Issue 4, pp. 585–596). https://doi.org/10.1017/S0014479713000240spa
dc.relation.referencesCardoso, A. A., Gori, A., Da-Silva, C. J., & Brunetti, C. (2020). Abscisic Acid Biosynthesis and Signaling in Plants: Key Targets to Improve Water Use Efficiency and Drought Tolerance. Applied Sciences 2020, Vol. 10, Page 6322, 10(18), 6322. https://doi.org/10.3390/APP10186322spa
dc.relation.referencesCao, S., Wang, Y., Li, Z., Shi, W., Gao, F., Zhou, Y., Zhang, G., & Feng, J. (2019). Genome-Wide Identification and Expression Analyses of the Chitinases under Cold and Osmotic Stress in Ammopiptanthus nanus. Genes 2019, Vol. 10, Page 472, 10(6), 472. https://doi.org/10.3390/GENES10060472spa
dc.relation.referencesCai, W., Zhang, C., Suen, H. P., Ai, S., Bai, Y., Bao, J., Chen, B., Cheng, L., Cui, X., Dai, H., Di, Q., Dong, W., Dou, D., Fan, W., Fan, X., Gao, T., Geng, Y., Guan, D., Guo, Y., … Gong, P. (2021). The 2020 China report of the Lancet Countdown on health and climate change. The Lancet Public Health, 6(1), e64–e81. https://doi.org/10.1016/S2468-2667(20)30256-5spa
dc.relation.referencesCaballero, M., Lozano, S., & Ortega, B. (2007). Efecto invernadero, cambio climático, calentamiento global. (Vol. 8). Revista Digital Universitaria.spa
dc.relation.referencesBrowning, K. S., & Bailey-Serres, J. (2015). Mechanism of Cytoplasmic mRNA Translation. The Arabidopsis Book / American Society of Plant Biologists, 13, e0176. https://doi.org/10.1199/TAB.0176spa
dc.relation.referencesBoman, A. L., & Kahn, R. A. (1995). Arf proteins: the membrane traffic police? Trends in Biochemical Sciences, 20(4), 147–150. https://doi.org/10.1016/S0968-0004(00)88991-4spa
dc.relation.referencesBolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114–2120. https://doi.org/10.1093/BIOINFORMATICS/BTU170spa
dc.relation.referencesBodner, G., Nakhforoosh, A., & Kaul, H. P. (2015). Management of crop water under drought: a review. Agronomy for Sustainable Development, 35(2), 401–442. https://doi.org/10.1007/S13593-015-0283-4/FIGURES/5spa
dc.relation.referencesBhargava, S., & Sawant, K. (2013). Drought stress adaptation: metabolic adjustment and regulation of gene expression. Plant Breeding, 132(1), 21–32. https://doi.org/10.1111/PBR.12004spa
dc.relation.referencesBasu, S., & Rabara, R. (2017). Abscisic acid — An enigma in the abiotic stress tolerance of crop plants. Plant Gene, 11, 90–98. https://doi.org/10.1016/J.PLGENE.2017.04.008spa
dc.relation.referencesBarba, M., Czosnek, H., & Hadidi, A. (2014). Historical Perspective, Development and Applications of Next-Generation Sequencing in Plant Virology. Viruses 2014, Vol. 6, Pages 106-136, 6(1), 106–136. https://doi.org/10.3390/V6010106spa
dc.relation.referencesBano, H., Athar, H. ur R., Zafar, Z. U., Kalaji, H. M., & Ashraf, M. (2021). Linking changes in chlorophyll a fluorescence with drought stress susceptibility in mung bean [Vigna radiata (L.) Wilczek]. Physiologia Plantarum, 172(2), 1244–1254. https://doi.org/10.1111/PPL.13327spa
dc.relation.referencesBanks, J. M. (2017). Continuous excitation chlorophyll fluorescence parameters: a review for practitioners. Tree Physiology, 37(8), 1128–1136. https://doi.org/10.1093/TREEPHYS/TPX059spa
dc.relation.referencesBaker, N. R. (2008). Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual Review of Plant Biology, 59, 89–113. https://doi.org/10.1146/ANNUREV.ARPLANT.59.032607.092759spa
dc.relation.referencesASOHOFRUCOL. (2020). Cartilla Producción Hortofrutícola . https://www.asohofrucol.com.co/biblioteca?paginalib=2#librosspa
dc.relation.referencesAshraf, M., & Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2), 206–216. https://doi.org/10.1016/J.ENVEXPBOT.2005.12.006spa
dc.relation.referencesArslan, Balkan Nalçaiyi, A. S., Çulha Erdal, Pekcan, V., Kaya, Y., Çiçek, N., & Ekmekçi, Y. (2020). Special issue in honour of Prof. Reto J. Strasser – Analysis of drought response of sunflower inbred lines by chlorophyll a fluorescence induction kinetics. Http://Ps.Ueb.Cas.Cz/Doi/10.32615/Ps.2019.171.Html, 58(SPECIAL ISSUE), 348–357. https://doi.org/10.32615/PS.2019.171spa
dc.relation.referencesApel, K., & Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, 373–399. https://doi.org/10.1146/ANNUREV.ARPLANT.55.031903.141701spa
dc.relation.referencesAnjum, S. A., Wang, L. C., Farooq, M., Hussain, M., Xue, L. L., & Zou, C. M. (2011). Brassinolide Application Improves the Drought Tolerance in Maize Through Modulation of Enzymatic Antioxidants and Leaf Gas Exchange. Journal of Agronomy and Crop Science, 197(3), 177–185. https://doi.org/10.1111/j.1439-037X.2010.00459.xspa
dc.relation.referencesAnjum, S. A., Ashraf, U., Zohaib, A., Tanveer, M., Naeem, M., Ali, I., Tabassum, T., & Nazir, U. (2017). Growth and developmental responses of crop plants under drought stress: a review. Zemdirbyste-Agriculture, 104(3), 267–276. https://doi.org/10.13080/z-a.2017.104.034spa
dc.relation.referencesAnders, S., & Huber, W. (2010). Differential expression analysis for sequence count data. Genome Biology 2010 11:10, 11(10), 1–12. https://doi.org/10.1186/GB-2010-11-10-R106spa
dc.relation.referencesAmrhein, N., Apel, K., Baginsky, S., Buchmann, N., Geisler, M., Keller, F., Körner, C., Martinoia, E., Merbold, L., Müller, C., Paschke, M., & Schmid, B. (2013). Plant response to stress. https://doi.org/10.3929/ETHZ-A-009779047spa
dc.relation.referencesAli, S., Hayat, K., Iqbal, A., & Xie, L. (2020). Implications of Abscisic Acid in the Drought Stress Tolerance of Plants. Agronomy 2020, Vol. 10, Page 1323, 10(9), 1323. https://doi.org/10.3390/AGRONOMY10091323spa
dc.relation.referencesAlborzi, S. Z., Devignes, M. D., & Ritchie, D. W. (2017). Associating gene ontology terms with pfam protein domains. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10209 LNCS, 127–138. https://doi.org/10.1007/978-3-319-56154-7_13/TABLES/2spa
dc.relation.referencesAlam Khan, M., Iqbal, M., Jameel, M., Nazeer, W., Shakir, S., Aslam, M. T., & Iqbal, B. (2013). Potentials of molecular based breeding to enhance drought tolerance in wheat (Triticum aestivum L.). African Journal of Biotechnology, 10(55), 11340–11344. https://doi.org/10.4314/ajb.v10i55.spa
dc.relation.referencesAhmad, Z., Anjum, S., Waraich, E. A., Ayub, M. A., Ahmad, T., Tariq, R. M. S., Ahmad, R., & Iqbal, M. A. (2018). Growth, physiology, and biochemical activities of plant responses with foliar potassium application under drought stress – a review. Https://Doi.Org/10.1080/01904167.2018.1459688, 41(13), 1734–1743. https://doi.org/10.1080/01904167.2018.1459688spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/spa
dc.subject.ddc570 - Biología::575 - Partes específicas de y sistemas fisiológicos en plantasspa
dc.subject.ddc570 - Biología::571 - Fisiología y temas relacionadosspa
dc.subject.lembSeguridad alimenticiaspa
dc.subject.lembFood securityeng
dc.subject.lembProducción alimenticiaspa
dc.subject.lembFood productioneng
dc.subject.proposalDéficit hídricospa
dc.subject.proposalConductancia estomáticaspa
dc.subject.proposalExpresión diferencialspa
dc.subject.proposalABAspa
dc.subject.proposalROSspa
dc.subject.proposalStomatal conductanceeng
dc.subject.proposalDifferential expressioneng
dc.subject.proposalABAeng
dc.subject.proposalROSeng
dc.titleDinámicas transcripcionales y fisiológicas de la respuesta a déficit hídrico progresivo en gulupaspa
dc.title.translatedTranscriptional and physiological dynamics of the response to progressive water deficit in gulupaeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleRecursos bioinformáticos para el cultivo de gulupa en la postpandemia: Ensamblaje de novo del transcriptoma de Passiflora edulis Sims f. edulis durante la respuesta temprana ante el estrés por déficit hídrico.”spa
oaire.fundernameDIEBspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis MSc Paula Andrea Lozano Montaña.pdf
Tamaño:
1.47 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Biología

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: