Preparación de carbón activado conformado a partir de hydrochar de borra de café

dc.contributor.advisorGarcía-Cardona, Pilar de la Cruzspa
dc.contributor.advisorSánchez-Pino, Astrid Elenaspa
dc.contributor.authorOrozco-Castro, Leidy Rocíospa
dc.contributor.corporatenameUniversidad Nacional de Colombia - Sede Medellínspa
dc.contributor.researchgroupPROBIOMspa
dc.date.accessioned2020-05-04T17:18:44Zspa
dc.date.available2020-05-04T17:18:44Zspa
dc.date.issued2020-04-27spa
dc.description.abstractThe current agroindustrial development is characterized by generating high volumes of waste, mainly waste lignocellulosic biomass. These are mainly used for composting and for generating heat by combustion, and alternately used for the production of activated carbon. A carbonization option for biomass with high moisture content is hydrotreatment at subcritical water conditions (𝑇𝑐𝐻2𝑂 = 374 ° 𝐶). The solid thus obtained is called hydrochar which is used as a precursor of activated carbon. In this research activated carbon is prepared from spend ground coffee hydrochar formed and unformed. carboxymethylcellulose was used as a binder for preparing shaped before activation. In this investigation it was considered to start from hydrochar because the hydrotreatment procedure through which it is prepared is appropriate for biomass with high moisture content, as with spend group coffee, also because the particle size of the bean is well adjusted for this procedure. Hydrothermal treatment conditions to prepare the hydrochar were 220 ° C and 240 ° C for times of 12 to 48 h and ratio g borra / mL water 1/10 and 3/10. The chemical characterization by FTIR and Raman, textural by SEM and gas adsorption (N2 at -196 ° C and CO2 at 0 ° C) and the proximate analysis of the hydrochar, indicated that the hydrotreatment resulted in a carbonaceous structure with more graphite character and less structural disorder due to the presence of heterogeneous groups such as aliphatic, C-O-C, -OH, the higher the temperature and the time of hydrotreatment. Likewise, it was determined that the spend group coffee / water ratio affected the properties of the hydrochar. Since the temperatures of obtaining hydrochar are relatively low to stabilize the structure of the biomass for subsequent activation, it was decided to choose the hydrochar that had the greatest graphite character and less heteroatoms, since the presence of such defects can affect the mass yields of activated carbon to be obtained. This is how the hydrochar prepared at 240 ° C, 48 h and the ratio of g / l water / mL = 1/10 was selected for subsequent activation. Activation is made by the physical method, with steam at temperatures between 600 and 800 ° C; and by the chemical method, with H3PO4, between 400 and 600 ° C; and in all cases 1 and 2 h of activation. Chemical activation area it not developed, while the physical activation developed surface area between 360 m2 g-1 to 730 m2 g-1, and essentially mesoporous porosity, compared with direct activation of the batt that essentially developed microporosity. The results show that as hydrotreating prior to activation step is an alternative for obtaining porous materials with favorable yields in mass, and the porosity which can develop is essentially mesoporous. The hydrothermal treatment, prior to the activation step takes advantage of the spend grounds coffee high humidity and particle size that is generated, so that processes conditioning biomásico precursor, such as drying and grinding, are eliminated factors determinants for energy savings. The porosity of activated carbon from hydrochar of spend group coffee allows to modulate the porosity towards the conformation of mesoporos, while the activation of spend group coffee, using as a previous step the pyrolysis, develops essentially a microporous structure. In general, the preparation of activated carbon from hydrochar of spend grounds coffee, can assess this waste generated in high volumes, with moisture content and particle size, important characteristics for the hydrothermal procedure.spa
dc.description.abstractEl desarrollo agroindustrial actual se caracteriza por generar altos volúmenes de residuos, principalmente residuos biomásicos lignocelulósicos. Estos se emplean mayoritariamente para compostaje y para la generación de calor por medio de combustión, y alternativamente se utilizan para la producción de carbón activado. Una opción de carbonización para biomasas con alto contenido de humedad es el hidrotratamiento a condiciones subcríticas del agua (𝑇𝑐𝐻2𝑂=374°𝐶 y presión ~22Mpa). El sólido así obtenido se denomina hydrochar el cual es utilizado como precursor de carbón activado. En esta investigación se preparó carbón activado, a partir de hydrochar de borra de café conformado y sin conformar. Para la preparación de los conformados antes de activación, se utilizó carboximetilcelulosa como aglomerante. En esta investigación se consideró partir de hydrochar porque el procedimiento de hidrotratamiento a través del cual este se prepara es apropiado para biomasa con alto contenido de humedad, como ocurre con la borra de café, además porque el tamaño de partícula de la borra se ajusta bien para este procedimiento. Las condiciones del tratamiento hidrotermal para preparar el hydrochar fueron 220 °C y 240 °C por tiempos de 12 a 48 h y relación masaborra (g)/volumen agua (mL) 1/10 y 3/10. La caracterización química por FTIR y Raman, textural por SEM y por adsorción de gases (N2 a -196 °C y CO2 a 0 °C) y el análisis próximo del hydrochar, indicaron que el hidrotratamiento dio lugar a un estructura carbonosa con carácter más grafítico y menos desorden estructural por la presencia de grupos como alifáticos, C-O-C, -OH, cuanto mayor fue la temperatura y el tiempo de hidrotratamiento. Así mismo, se pudo determinar que la relación masa borra (g)/volumen agua (mL) incidió en las propiedades del hydrochar. Dado que las temperaturas de obtención de hydrochar son relativamente bajas para estabilizar la estructura de la biomasa para la posterior activación, se optó por seleccionar el hydrochar que presentara el mayor carácter grafítico y menos heteroátomos, ya que la presencia de tales defectos puede incidir en los rendimientos en masa del carbón activado a obtener. Fue así como el hydrochar preparado a 240 °C, 48 h y relación borra/agua=1/10 fue el seleccionado para posterior activación. La activación se hizo por el método físico, con vapor de H2O a temperaturas entre 600 °C y 800 °C; y por el método químico, con H3PO4, entre 400 °C y 600 °C; y con tiempos para ambos tipos de activación de 1 y 2 h. La activación química no desarrolló área, mientras que la activación física desarrolló áreas superficiales entre 360 m2 g-1 - 730 m2 g-1, y porosidad esencialmente mesoporosa, en comparación con la activación directa de la borra que desarrolló esencialmente microporosidad. Los resultados obtenidos muestran que, el hidrotratamiento como paso previo a la activación es una alternativa que permite obtener materiales porosos con rendimientos en masa favorables, y que la porosidad que puede desarrollarse es esencialmente mesoporosa. El tratamiento hidrotermal, como paso previo a la activación, permite aprovechar de la borra de café la alta humedad y el tamaño de partícula con que se genera, de tal forma que se eliminan procesos de acondicionamiento del precursor biomásico, como secado y molienda, factores determinantes para un ahorro energético. La porosidad del carbón activado a partir de hydrochar de borra permite modular la porosidad hacia la conformación de mesoporos, mientras que la activación de la borra, usando como paso previo la pirólisis, desarrolla esencialmente una estructura microporosa. En general, la preparación de carbón activado a partir de hydrochar de borra de café, permite valorar este residuo que se genera en altos volúmenes, con su humedad y su tamaño de partícula, características importantes para el procedimiento hidrotermal.spa
dc.description.degreelevelMaestríaspa
dc.format.extent150spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77471
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentEscuela de químicaspa
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.referencesP. Basu, “Biomass Characteristics,” in Biomass Gasification, Pyrolysis and Torrefaction, 2013, pp. 47–86spa
dc.relation.referencesP. E. Patiño Martínez, “Biomasa residual vegetal: tecnologías de transformación y estado actual,” Innovaciencia Fac. Ciencias Exactas, Físicas y Nat., vol. 2, no. 1, p. 45, 2014.spa
dc.relation.referencesH. Escalante Hernandez, J. Orduz Prada, H. J. Zapata Lesmes, M. C. Cardona Ruiz, and M. Duarte Ortega, Atlas del Potencial Energético de la Biomasa Residual en Colombia. 2010spa
dc.relation.referencesY. Piñeros Castro, Aprovechamiento de biomasa lignocelulósica, algunas experiencias de investigacion en Colombia, Primera. Bogotá, 2014.spa
dc.relation.referencesInternational coffee Organization, “Domestic consumption by all exporting countries In thousand 60kg bags Domestic consumption by all exporting countries In thousand 60kg bags,” International Coffee Organization, 2018. [Online]. Available: http://www.ico.org/historical/1990 onwards/PDF/1b-domesticconsumption.pdf.spa
dc.relation.referencesInternational coffee Organization, “Total production by all exporting countries In thousand 60kg bags Total production by all exporting countries In thousand 60kg bags,” 2018spa
dc.relation.referencesKarifala Kantea; Cesar Nieto-Delgado; J. ReneRangel-Mendez; Teresa J.Bandosz, “Spent coffee-based activated carbon: Specific surface features and their importance for H2S separation process,” J. Hazard. Mater., vol. 201–202, pp. 141–147, Jan. 2012.spa
dc.relation.referencesA. Uribarrí et al., “Evaluación del potencial de la borra de café como materia prima para la producción de biodiesel,” Multiciencias, vol. 14, no. 2, pp. 129–139, 2014.spa
dc.relation.referencesD. Valencia Rodríguez, Nelson Zambrano Franco, “Los subproductos del café: fuente de energía renovable,” Cenicafé, no. 3, p. 8, 2010.spa
dc.relation.referencesYanwen Shen; Laura Jarboe; Robert Brown; Zhiyou Wen, “A thermochemical– biochemical hybrid processing of lignocellulosic biomass for producing fuels and chemicals,” Biotechnol. Adv., vol. 33, no. 8, pp. 1799–1813, Dec. 2015.spa
dc.relation.referencesR. García, C. Pizarro, A. G. Lavín, and J. L. Bueno, “Biomass sources for thermal conversion . Techno-economical overview,” vol. 195, no. x, pp. 182–189, 2017.spa
dc.relation.referencesK. Tekin, S. Karagöz, and S. Bektaş, “A review of hydrothermal biomass processing,” Renew. Sustain. Energy Rev., vol. 40, pp. 673–687, 2014spa
dc.relation.referencesS. K. Hoekman, A. Broch, and C. Robbins, “Hydrothermal carbonization (HTC) of lignocellulosic biomass,” Energy and Fuels, vol. 25, no. 4, pp. 1802–1810, 2011.spa
dc.relation.referencesL. Yang, L. Nazari, Z. Yuan, K. Corscadden, C. (Charles) Xu, and Q. (Sophia) He, “Hydrothermal liquefaction of spent coffee grounds in water medium for bio-oil production,” Biomass and Bioenergy, vol. 86, pp. 191–198, Mar. 2016.spa
dc.relation.referencesG. Alberto, T. Luca, S. Francesca, P. Alessandro Antonio, and G. Gabriele Di, “Hydrothermal carbonization of Biomass: New experimental procedures for improving the industrial Processes,” Bioresour. Technol., vol. 244, pp. 160–165, Nov. 2017spa
dc.relation.referencesS. Román, J. M. Valente Nabais, B. Ledesma, J. F. González, C. Laginhas, and M. M. Titirici, “Production of low-cost adsorbents with tunable surface chemistry by conjunction of hydrothermal carbonization and activation processes,” Microporous Mesoporous Mater., vol. 165, pp. 127–133, 2013spa
dc.relation.referencesC. Junmeng et al., “Review of physicochemical properties and analytical characterization of lignocellulosic biomass,” Renew. Sustain. Energy Rev., vol. 76, pp. 309–322, Sep. 2017.spa
dc.relation.referencesJ. L. Míguez Tabarés, Procesos termoquímicos para la obtención de energía a partir de la fitomasa residual (combustión, gasificación, pirólisis). 2007.spa
dc.relation.referencesO. Ioannidou and A. Zabaniotou, “Agricultural residues as precursors for activated carbon production-A review,” Renew. Sustain. Energy Rev., vol. 11, no. 9, pp. 1966–2005, 2007spa
dc.relation.referencesZ. Wang,Shurong Dai,Gongxin Yang,Haiping Luo, “Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review,” Prog. Energy Combust. Sci., vol. 62, pp. 33–86, Sep. 2017spa
dc.relation.referencesE. Romero-uscanga, G. Montero-alpírez, L. Toscano-palomar, L. Pérez-pelayo, R. Torres-ramos, and M. T. Beleño-cabarcas, “Determinación de los principales componentes de la biomasa ligonocelulósica ; celulosa , hemicelulosa y lignina de ...,” no. October, 2014.spa
dc.relation.references] W. Y.,Li L.W.,Zhou R.Z., “Urban biomass and methods of estimating municipal biomass resources,” Renew. Sustain. Energy Rev., vol. 80, pp. 1017–1030, Dec. 2017.spa
dc.relation.referencesH. Hongyan,Chen Jinbao,Liu Xing,Chang Daming,Chen Yuan,Xue Ping,Liu Hualin,Lin Sheng, “A review on the pretreatment of lignocellulose for high-value chemicals,” Fuel Process. Technol., vol. 160, pp. 196–206, Jun. 2017spa
dc.relation.referencesS. Karagöz, T. Tay, S. Ucar, and M. Erdem, “Activated carbons from waste biomass by sulfuric acid activation and their use on methylene blue adsorption,” Bioresour. Technol., vol. 99, no. 14, pp. 6214–6222, 2008spa
dc.relation.referencesP.González-García, “Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications,” Renew. Sustain. Energy Rev., vol. 82, no. August 2017, pp. 1393–1414, 2017spa
dc.relation.referencesP. T. Williams and J. Onwudili, “Composition of products from the supercritical water gasification of glucose: A model biomass compound,” Ind. Eng. Chem. Res., vol. 44, no. 23, pp. 8739–8749, 2005.spa
dc.relation.referencesP. Prinsen, “Composición química de diversos materiales lignocelulósicos de interés industrial y análisis estructural de sus ligninas,” 2010.spa
dc.relation.referencesM. Sevilla, J. A. Maciá-Agulló, and A. B. Fuertes, “Hydrothermal carbonization of biomass as a route for the sequestration of CO 2: Chemical and structural properties of the carbonized products,” Biomass and Bioenergy, vol. 35, no. 7, pp. 3152–3159, 2011.spa
dc.relation.referencesH. Laksaci, A. Khelifi, M. Trari, and A. Addoun, “Synthesis and characterization of microporous activated carbon from coffee grounds using potassium hydroxides,” J. Clean. Prod., vol. 147, pp. 254–262, Mar. 2017spa
dc.relation.referencesZhong Wang et al., “The influence and mechanism of different acid treatment to activated carbon used as air-breathing cathode catalyst of microbial fuel cell,” Electrochim. Acta, vol. 246, pp. 830–840, Aug. 2017spa
dc.relation.referencesJ. A. Solís Fuentes, M. Morales Téllez, R. C. Ayala Tirado, and M. D. C. Durán de Bazúa, “Obtención de carbón activado a partir de residuos agroindustriales y su evaluación en la remoción de color del jugo de caña Activated carbon from agroindustrial wastes for color removal from sugarcane juice,” Tecnol. Cienc., vol. 27, no. 1, pp. 36–48, 2012spa
dc.relation.referencesM. G. Volpe et al., “Manufacturing pellets with different binders: Effect on water stability and feeding response in juvenile Cherax albidus,” Aquaculture, vol. 324– 325, pp. 104–110, 2012.spa
dc.relation.referencesJ. Chen, L. Zhang, G. Yang, Q. Wang, and R. Li, “Preparation and Characterization of Activated Carbon from Hydrochar by Phosphoric Acid Activation and its Adsorption Performance in Prehydrolysis Liquor,” vol. 12, no. Bergius 1913, pp. 5928–5941, 2017spa
dc.relation.referencesE. Atallah, W. Kwapinski, M. N. Ahmad, J. J. Leahy, and J. Zeaiter, “Effect of water-sludge ratio and reaction time on the hydrothermal carbonization of olive oil mill wastewater treatment : Hydrochar characterization,” J. Water Process Eng., vol. 31, no. April, p. 100813, 2019.spa
dc.relation.referencesR. Zhang et al., “Preparation of hierarchical porous carbons from sodium carboxymethyl cellulose via halloysite template strategy coupled with KOHactivation for efficient removal of chloramphenicol,” J. Taiwan Inst. Chem. Eng., vol. 80, pp. 424–433, 2017spa
dc.relation.referencesA. Duque, P. Manzanares, and M. Ballesteros, “Extrusion as a pretreatment for lignocellulosic biomass: Fundamentals and applications,” Renew. Energy, vol. 114, pp. 1427–1441, Dec. 2017.spa
dc.relation.referencesP. Miguel Angel,Gonzalez-Salazar Mirko,Morini Michele,Pinelli Pier Ruggero,Spina Mauro,Venturini Matthias,Finkenrath Witold-Roger, “Methodology for estimating biomass energy potential and its application to Colombia,” Appl. Energy, vol. 136, pp. 781–796, Dec. 2014spa
dc.relation.referencesM. Wagner, Thermal Analysis in Practice : Fundamental Aspects, First Edit. Carl Hanser Verlag GmbH & Co. KG, 2017spa
dc.relation.referencesM. A. Mohamed, J. Jaafar, A. F. Ismail, M. H. D. Othman, and M. A. Rahman, “Fourier Transform Infrared (FTIR) Spectroscopy,” in Membrane Characterization, Elsevier B.V., 2017, pp. 3–29.spa
dc.relation.referencesM. Pawlyta, J. N. Rouzaud, and S. Duber, “Raman microspectroscopy characterization of carbon blacks: Spectral analyspa
dc.relation.referencesV. Sorrivas de Lozano, A. Morales, and M. J. Yañez, Principios y Práctica de la Microscoía Electrónica, Primera. 2014.spa
dc.relation.referencesA. Shaji and A. K. Zachariah, Surface Area Analysis of Nanomaterials. Elsevier Inc., 2017.spa
dc.relation.referencesH. D. Choi, M. C. Shin, D. H. Kim, C. S. Jeon, and K. Baek, “Removal characteristics of reactive black 5 using surfactant-modified activated carbon,” Desalination, 2008.spa
dc.relation.referencesX. Li, V. Strezov, and T. Kan, “Journal of Analytical and Applied Pyrolysis Energy recovery potential analysis of spent coffee grounds pyrolysis products,” J. Anal. Appl. Pyrolysis, vol. 110, pp. 79–87, 2014.spa
dc.relation.referencesA. Cuesta, P. Dhamelincourt, J. Laureyns, A. Martínez-Alonso, and J. M. D. Tascón, “Raman microprobe studies on carbon materials,” Carbon N. Y., vol. 32, no. 8, pp. 1523–1532, 1994spa
dc.relation.referencesX. Li, J. ichiro Hayashi, and C. Z. Li, “FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal,” Fuel, vol. 85, no. 12–13, pp. 1700–1707, 2006.spa
dc.relation.referencesN. Jing, Q. Xue, C. Ling, M. Shan, and T. Zhang, “Effect of defects on Young ’ s modulus of graphene sheets : a molecular dynamics simulation,” RSC Adv., no. Mm, pp. 9124–9129, 2012spa
dc.relation.referencesM. Szybowicz, A. B. Nowicka, and A. Dychalska, Characterization of Carbon Nanomaterials by Raman Spectroscopy. 2018.spa
dc.relation.referencesL. Bokobza, J. L. Bruneel, and M. Couzi, “Raman spectroscopic investigation of carbon-based materials and their composites. Comparison between carbon nanotubes and carbon black,” Chem. Phys. Lett., vol. 590, pp. 153–159, 2013spa
dc.relation.referencesM. T. Samadi, H. Zolghadrnasab, K. Godini, A. Poormohammadi, M. Ahmadian, and S. Shanesaz, “Kinetic and adsorption studies of reactive black 5 removal using multi -walled carbon nanotubes from aqueous solution,” Der Pharma Chem., vol. 7, no. 5, pp. 267–274, 2015.spa
dc.relation.referencesM. Shirzad-siboni, S. Javad, O. Giahi, I. Kim, S. Lee, and J. Yang, “Removal of acid blue 113 and reactive black 5 dye from aqueous solutions by activated red mud,” J. Ind. Eng. Chem., vol. 20, no. 4, pp. 1432–1437, 2014.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.proposalBorra de caféspa
dc.subject.proposalSpend coffee groundeng
dc.subject.proposalHydrotreatmenteng
dc.subject.proposalHidrotratamientospa
dc.subject.proposalHydrochareng
dc.subject.proposalPirólisisspa
dc.subject.proposalCarbón activadospa
dc.subject.proposalPyrolysiseng
dc.subject.proposalActivated carboneng
dc.titlePreparación de carbón activado conformado a partir de hydrochar de borra de caféspa
dc.title.alternativePreparation shaped activated carbon from hydrochar to spend coffee groundspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1106307814.2020.pdf
Tamaño:
6.36 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: