Preparación de carbón activado conformado a partir de hydrochar de borra de café
dc.contributor.advisor | García-Cardona, Pilar de la Cruz | spa |
dc.contributor.advisor | Sánchez-Pino, Astrid Elena | spa |
dc.contributor.author | Orozco-Castro, Leidy Rocío | spa |
dc.contributor.corporatename | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.contributor.researchgroup | PROBIOM | spa |
dc.date.accessioned | 2020-05-04T17:18:44Z | spa |
dc.date.available | 2020-05-04T17:18:44Z | spa |
dc.date.issued | 2020-04-27 | spa |
dc.description.abstract | The current agroindustrial development is characterized by generating high volumes of waste, mainly waste lignocellulosic biomass. These are mainly used for composting and for generating heat by combustion, and alternately used for the production of activated carbon. A carbonization option for biomass with high moisture content is hydrotreatment at subcritical water conditions (𝑇𝑐𝐻2𝑂 = 374 ° 𝐶). The solid thus obtained is called hydrochar which is used as a precursor of activated carbon. In this research activated carbon is prepared from spend ground coffee hydrochar formed and unformed. carboxymethylcellulose was used as a binder for preparing shaped before activation. In this investigation it was considered to start from hydrochar because the hydrotreatment procedure through which it is prepared is appropriate for biomass with high moisture content, as with spend group coffee, also because the particle size of the bean is well adjusted for this procedure. Hydrothermal treatment conditions to prepare the hydrochar were 220 ° C and 240 ° C for times of 12 to 48 h and ratio g borra / mL water 1/10 and 3/10. The chemical characterization by FTIR and Raman, textural by SEM and gas adsorption (N2 at -196 ° C and CO2 at 0 ° C) and the proximate analysis of the hydrochar, indicated that the hydrotreatment resulted in a carbonaceous structure with more graphite character and less structural disorder due to the presence of heterogeneous groups such as aliphatic, C-O-C, -OH, the higher the temperature and the time of hydrotreatment. Likewise, it was determined that the spend group coffee / water ratio affected the properties of the hydrochar. Since the temperatures of obtaining hydrochar are relatively low to stabilize the structure of the biomass for subsequent activation, it was decided to choose the hydrochar that had the greatest graphite character and less heteroatoms, since the presence of such defects can affect the mass yields of activated carbon to be obtained. This is how the hydrochar prepared at 240 ° C, 48 h and the ratio of g / l water / mL = 1/10 was selected for subsequent activation. Activation is made by the physical method, with steam at temperatures between 600 and 800 ° C; and by the chemical method, with H3PO4, between 400 and 600 ° C; and in all cases 1 and 2 h of activation. Chemical activation area it not developed, while the physical activation developed surface area between 360 m2 g-1 to 730 m2 g-1, and essentially mesoporous porosity, compared with direct activation of the batt that essentially developed microporosity. The results show that as hydrotreating prior to activation step is an alternative for obtaining porous materials with favorable yields in mass, and the porosity which can develop is essentially mesoporous. The hydrothermal treatment, prior to the activation step takes advantage of the spend grounds coffee high humidity and particle size that is generated, so that processes conditioning biomásico precursor, such as drying and grinding, are eliminated factors determinants for energy savings. The porosity of activated carbon from hydrochar of spend group coffee allows to modulate the porosity towards the conformation of mesoporos, while the activation of spend group coffee, using as a previous step the pyrolysis, develops essentially a microporous structure. In general, the preparation of activated carbon from hydrochar of spend grounds coffee, can assess this waste generated in high volumes, with moisture content and particle size, important characteristics for the hydrothermal procedure. | spa |
dc.description.abstract | El desarrollo agroindustrial actual se caracteriza por generar altos volúmenes de residuos, principalmente residuos biomásicos lignocelulósicos. Estos se emplean mayoritariamente para compostaje y para la generación de calor por medio de combustión, y alternativamente se utilizan para la producción de carbón activado. Una opción de carbonización para biomasas con alto contenido de humedad es el hidrotratamiento a condiciones subcríticas del agua (𝑇𝑐𝐻2𝑂=374°𝐶 y presión ~22Mpa). El sólido así obtenido se denomina hydrochar el cual es utilizado como precursor de carbón activado. En esta investigación se preparó carbón activado, a partir de hydrochar de borra de café conformado y sin conformar. Para la preparación de los conformados antes de activación, se utilizó carboximetilcelulosa como aglomerante. En esta investigación se consideró partir de hydrochar porque el procedimiento de hidrotratamiento a través del cual este se prepara es apropiado para biomasa con alto contenido de humedad, como ocurre con la borra de café, además porque el tamaño de partícula de la borra se ajusta bien para este procedimiento. Las condiciones del tratamiento hidrotermal para preparar el hydrochar fueron 220 °C y 240 °C por tiempos de 12 a 48 h y relación masaborra (g)/volumen agua (mL) 1/10 y 3/10. La caracterización química por FTIR y Raman, textural por SEM y por adsorción de gases (N2 a -196 °C y CO2 a 0 °C) y el análisis próximo del hydrochar, indicaron que el hidrotratamiento dio lugar a un estructura carbonosa con carácter más grafítico y menos desorden estructural por la presencia de grupos como alifáticos, C-O-C, -OH, cuanto mayor fue la temperatura y el tiempo de hidrotratamiento. Así mismo, se pudo determinar que la relación masa borra (g)/volumen agua (mL) incidió en las propiedades del hydrochar. Dado que las temperaturas de obtención de hydrochar son relativamente bajas para estabilizar la estructura de la biomasa para la posterior activación, se optó por seleccionar el hydrochar que presentara el mayor carácter grafítico y menos heteroátomos, ya que la presencia de tales defectos puede incidir en los rendimientos en masa del carbón activado a obtener. Fue así como el hydrochar preparado a 240 °C, 48 h y relación borra/agua=1/10 fue el seleccionado para posterior activación. La activación se hizo por el método físico, con vapor de H2O a temperaturas entre 600 °C y 800 °C; y por el método químico, con H3PO4, entre 400 °C y 600 °C; y con tiempos para ambos tipos de activación de 1 y 2 h. La activación química no desarrolló área, mientras que la activación física desarrolló áreas superficiales entre 360 m2 g-1 - 730 m2 g-1, y porosidad esencialmente mesoporosa, en comparación con la activación directa de la borra que desarrolló esencialmente microporosidad. Los resultados obtenidos muestran que, el hidrotratamiento como paso previo a la activación es una alternativa que permite obtener materiales porosos con rendimientos en masa favorables, y que la porosidad que puede desarrollarse es esencialmente mesoporosa. El tratamiento hidrotermal, como paso previo a la activación, permite aprovechar de la borra de café la alta humedad y el tamaño de partícula con que se genera, de tal forma que se eliminan procesos de acondicionamiento del precursor biomásico, como secado y molienda, factores determinantes para un ahorro energético. La porosidad del carbón activado a partir de hydrochar de borra permite modular la porosidad hacia la conformación de mesoporos, mientras que la activación de la borra, usando como paso previo la pirólisis, desarrolla esencialmente una estructura microporosa. En general, la preparación de carbón activado a partir de hydrochar de borra de café, permite valorar este residuo que se genera en altos volúmenes, con su humedad y su tamaño de partícula, características importantes para el procedimiento hidrotermal. | spa |
dc.description.degreelevel | Maestría | spa |
dc.format.extent | 150 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/77471 | |
dc.language.iso | spa | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.department | Escuela de química | spa |
dc.publisher.program | Medellín - Ciencias - Maestría en Ciencias - Química | spa |
dc.relation.references | P. Basu, “Biomass Characteristics,” in Biomass Gasification, Pyrolysis and Torrefaction, 2013, pp. 47–86 | spa |
dc.relation.references | P. E. Patiño Martínez, “Biomasa residual vegetal: tecnologías de transformación y estado actual,” Innovaciencia Fac. Ciencias Exactas, Físicas y Nat., vol. 2, no. 1, p. 45, 2014. | spa |
dc.relation.references | H. Escalante Hernandez, J. Orduz Prada, H. J. Zapata Lesmes, M. C. Cardona Ruiz, and M. Duarte Ortega, Atlas del Potencial Energético de la Biomasa Residual en Colombia. 2010 | spa |
dc.relation.references | Y. Piñeros Castro, Aprovechamiento de biomasa lignocelulósica, algunas experiencias de investigacion en Colombia, Primera. Bogotá, 2014. | spa |
dc.relation.references | International coffee Organization, “Domestic consumption by all exporting countries In thousand 60kg bags Domestic consumption by all exporting countries In thousand 60kg bags,” International Coffee Organization, 2018. [Online]. Available: http://www.ico.org/historical/1990 onwards/PDF/1b-domesticconsumption.pdf. | spa |
dc.relation.references | International coffee Organization, “Total production by all exporting countries In thousand 60kg bags Total production by all exporting countries In thousand 60kg bags,” 2018 | spa |
dc.relation.references | Karifala Kantea; Cesar Nieto-Delgado; J. ReneRangel-Mendez; Teresa J.Bandosz, “Spent coffee-based activated carbon: Specific surface features and their importance for H2S separation process,” J. Hazard. Mater., vol. 201–202, pp. 141–147, Jan. 2012. | spa |
dc.relation.references | A. Uribarrí et al., “Evaluación del potencial de la borra de café como materia prima para la producción de biodiesel,” Multiciencias, vol. 14, no. 2, pp. 129–139, 2014. | spa |
dc.relation.references | D. Valencia Rodríguez, Nelson Zambrano Franco, “Los subproductos del café: fuente de energía renovable,” Cenicafé, no. 3, p. 8, 2010. | spa |
dc.relation.references | Yanwen Shen; Laura Jarboe; Robert Brown; Zhiyou Wen, “A thermochemical– biochemical hybrid processing of lignocellulosic biomass for producing fuels and chemicals,” Biotechnol. Adv., vol. 33, no. 8, pp. 1799–1813, Dec. 2015. | spa |
dc.relation.references | R. García, C. Pizarro, A. G. Lavín, and J. L. Bueno, “Biomass sources for thermal conversion . Techno-economical overview,” vol. 195, no. x, pp. 182–189, 2017. | spa |
dc.relation.references | K. Tekin, S. Karagöz, and S. Bektaş, “A review of hydrothermal biomass processing,” Renew. Sustain. Energy Rev., vol. 40, pp. 673–687, 2014 | spa |
dc.relation.references | S. K. Hoekman, A. Broch, and C. Robbins, “Hydrothermal carbonization (HTC) of lignocellulosic biomass,” Energy and Fuels, vol. 25, no. 4, pp. 1802–1810, 2011. | spa |
dc.relation.references | L. Yang, L. Nazari, Z. Yuan, K. Corscadden, C. (Charles) Xu, and Q. (Sophia) He, “Hydrothermal liquefaction of spent coffee grounds in water medium for bio-oil production,” Biomass and Bioenergy, vol. 86, pp. 191–198, Mar. 2016. | spa |
dc.relation.references | G. Alberto, T. Luca, S. Francesca, P. Alessandro Antonio, and G. Gabriele Di, “Hydrothermal carbonization of Biomass: New experimental procedures for improving the industrial Processes,” Bioresour. Technol., vol. 244, pp. 160–165, Nov. 2017 | spa |
dc.relation.references | S. Román, J. M. Valente Nabais, B. Ledesma, J. F. González, C. Laginhas, and M. M. Titirici, “Production of low-cost adsorbents with tunable surface chemistry by conjunction of hydrothermal carbonization and activation processes,” Microporous Mesoporous Mater., vol. 165, pp. 127–133, 2013 | spa |
dc.relation.references | C. Junmeng et al., “Review of physicochemical properties and analytical characterization of lignocellulosic biomass,” Renew. Sustain. Energy Rev., vol. 76, pp. 309–322, Sep. 2017. | spa |
dc.relation.references | J. L. Míguez Tabarés, Procesos termoquímicos para la obtención de energía a partir de la fitomasa residual (combustión, gasificación, pirólisis). 2007. | spa |
dc.relation.references | O. Ioannidou and A. Zabaniotou, “Agricultural residues as precursors for activated carbon production-A review,” Renew. Sustain. Energy Rev., vol. 11, no. 9, pp. 1966–2005, 2007 | spa |
dc.relation.references | Z. Wang,Shurong Dai,Gongxin Yang,Haiping Luo, “Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review,” Prog. Energy Combust. Sci., vol. 62, pp. 33–86, Sep. 2017 | spa |
dc.relation.references | E. Romero-uscanga, G. Montero-alpírez, L. Toscano-palomar, L. Pérez-pelayo, R. Torres-ramos, and M. T. Beleño-cabarcas, “Determinación de los principales componentes de la biomasa ligonocelulósica ; celulosa , hemicelulosa y lignina de ...,” no. October, 2014. | spa |
dc.relation.references | ] W. Y.,Li L.W.,Zhou R.Z., “Urban biomass and methods of estimating municipal biomass resources,” Renew. Sustain. Energy Rev., vol. 80, pp. 1017–1030, Dec. 2017. | spa |
dc.relation.references | H. Hongyan,Chen Jinbao,Liu Xing,Chang Daming,Chen Yuan,Xue Ping,Liu Hualin,Lin Sheng, “A review on the pretreatment of lignocellulose for high-value chemicals,” Fuel Process. Technol., vol. 160, pp. 196–206, Jun. 2017 | spa |
dc.relation.references | S. Karagöz, T. Tay, S. Ucar, and M. Erdem, “Activated carbons from waste biomass by sulfuric acid activation and their use on methylene blue adsorption,” Bioresour. Technol., vol. 99, no. 14, pp. 6214–6222, 2008 | spa |
dc.relation.references | P.González-García, “Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications,” Renew. Sustain. Energy Rev., vol. 82, no. August 2017, pp. 1393–1414, 2017 | spa |
dc.relation.references | P. T. Williams and J. Onwudili, “Composition of products from the supercritical water gasification of glucose: A model biomass compound,” Ind. Eng. Chem. Res., vol. 44, no. 23, pp. 8739–8749, 2005. | spa |
dc.relation.references | P. Prinsen, “Composición química de diversos materiales lignocelulósicos de interés industrial y análisis estructural de sus ligninas,” 2010. | spa |
dc.relation.references | M. Sevilla, J. A. Maciá-Agulló, and A. B. Fuertes, “Hydrothermal carbonization of biomass as a route for the sequestration of CO 2: Chemical and structural properties of the carbonized products,” Biomass and Bioenergy, vol. 35, no. 7, pp. 3152–3159, 2011. | spa |
dc.relation.references | H. Laksaci, A. Khelifi, M. Trari, and A. Addoun, “Synthesis and characterization of microporous activated carbon from coffee grounds using potassium hydroxides,” J. Clean. Prod., vol. 147, pp. 254–262, Mar. 2017 | spa |
dc.relation.references | Zhong Wang et al., “The influence and mechanism of different acid treatment to activated carbon used as air-breathing cathode catalyst of microbial fuel cell,” Electrochim. Acta, vol. 246, pp. 830–840, Aug. 2017 | spa |
dc.relation.references | J. A. Solís Fuentes, M. Morales Téllez, R. C. Ayala Tirado, and M. D. C. Durán de Bazúa, “Obtención de carbón activado a partir de residuos agroindustriales y su evaluación en la remoción de color del jugo de caña Activated carbon from agroindustrial wastes for color removal from sugarcane juice,” Tecnol. Cienc., vol. 27, no. 1, pp. 36–48, 2012 | spa |
dc.relation.references | M. G. Volpe et al., “Manufacturing pellets with different binders: Effect on water stability and feeding response in juvenile Cherax albidus,” Aquaculture, vol. 324– 325, pp. 104–110, 2012. | spa |
dc.relation.references | J. Chen, L. Zhang, G. Yang, Q. Wang, and R. Li, “Preparation and Characterization of Activated Carbon from Hydrochar by Phosphoric Acid Activation and its Adsorption Performance in Prehydrolysis Liquor,” vol. 12, no. Bergius 1913, pp. 5928–5941, 2017 | spa |
dc.relation.references | E. Atallah, W. Kwapinski, M. N. Ahmad, J. J. Leahy, and J. Zeaiter, “Effect of water-sludge ratio and reaction time on the hydrothermal carbonization of olive oil mill wastewater treatment : Hydrochar characterization,” J. Water Process Eng., vol. 31, no. April, p. 100813, 2019. | spa |
dc.relation.references | R. Zhang et al., “Preparation of hierarchical porous carbons from sodium carboxymethyl cellulose via halloysite template strategy coupled with KOHactivation for efficient removal of chloramphenicol,” J. Taiwan Inst. Chem. Eng., vol. 80, pp. 424–433, 2017 | spa |
dc.relation.references | A. Duque, P. Manzanares, and M. Ballesteros, “Extrusion as a pretreatment for lignocellulosic biomass: Fundamentals and applications,” Renew. Energy, vol. 114, pp. 1427–1441, Dec. 2017. | spa |
dc.relation.references | P. Miguel Angel,Gonzalez-Salazar Mirko,Morini Michele,Pinelli Pier Ruggero,Spina Mauro,Venturini Matthias,Finkenrath Witold-Roger, “Methodology for estimating biomass energy potential and its application to Colombia,” Appl. Energy, vol. 136, pp. 781–796, Dec. 2014 | spa |
dc.relation.references | M. Wagner, Thermal Analysis in Practice : Fundamental Aspects, First Edit. Carl Hanser Verlag GmbH & Co. KG, 2017 | spa |
dc.relation.references | M. A. Mohamed, J. Jaafar, A. F. Ismail, M. H. D. Othman, and M. A. Rahman, “Fourier Transform Infrared (FTIR) Spectroscopy,” in Membrane Characterization, Elsevier B.V., 2017, pp. 3–29. | spa |
dc.relation.references | M. Pawlyta, J. N. Rouzaud, and S. Duber, “Raman microspectroscopy characterization of carbon blacks: Spectral analy | spa |
dc.relation.references | V. Sorrivas de Lozano, A. Morales, and M. J. Yañez, Principios y Práctica de la Microscoía Electrónica, Primera. 2014. | spa |
dc.relation.references | A. Shaji and A. K. Zachariah, Surface Area Analysis of Nanomaterials. Elsevier Inc., 2017. | spa |
dc.relation.references | H. D. Choi, M. C. Shin, D. H. Kim, C. S. Jeon, and K. Baek, “Removal characteristics of reactive black 5 using surfactant-modified activated carbon,” Desalination, 2008. | spa |
dc.relation.references | X. Li, V. Strezov, and T. Kan, “Journal of Analytical and Applied Pyrolysis Energy recovery potential analysis of spent coffee grounds pyrolysis products,” J. Anal. Appl. Pyrolysis, vol. 110, pp. 79–87, 2014. | spa |
dc.relation.references | A. Cuesta, P. Dhamelincourt, J. Laureyns, A. Martínez-Alonso, and J. M. D. Tascón, “Raman microprobe studies on carbon materials,” Carbon N. Y., vol. 32, no. 8, pp. 1523–1532, 1994 | spa |
dc.relation.references | X. Li, J. ichiro Hayashi, and C. Z. Li, “FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal,” Fuel, vol. 85, no. 12–13, pp. 1700–1707, 2006. | spa |
dc.relation.references | N. Jing, Q. Xue, C. Ling, M. Shan, and T. Zhang, “Effect of defects on Young ’ s modulus of graphene sheets : a molecular dynamics simulation,” RSC Adv., no. Mm, pp. 9124–9129, 2012 | spa |
dc.relation.references | M. Szybowicz, A. B. Nowicka, and A. Dychalska, Characterization of Carbon Nanomaterials by Raman Spectroscopy. 2018. | spa |
dc.relation.references | L. Bokobza, J. L. Bruneel, and M. Couzi, “Raman spectroscopic investigation of carbon-based materials and their composites. Comparison between carbon nanotubes and carbon black,” Chem. Phys. Lett., vol. 590, pp. 153–159, 2013 | spa |
dc.relation.references | M. T. Samadi, H. Zolghadrnasab, K. Godini, A. Poormohammadi, M. Ahmadian, and S. Shanesaz, “Kinetic and adsorption studies of reactive black 5 removal using multi -walled carbon nanotubes from aqueous solution,” Der Pharma Chem., vol. 7, no. 5, pp. 267–274, 2015. | spa |
dc.relation.references | M. Shirzad-siboni, S. Javad, O. Giahi, I. Kim, S. Lee, and J. Yang, “Removal of acid blue 113 and reactive black 5 dye from aqueous solutions by activated red mud,” J. Ind. Eng. Chem., vol. 20, no. 4, pp. 1432–1437, 2014. | spa |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.spa | Acceso abierto | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.proposal | Borra de café | spa |
dc.subject.proposal | Spend coffee ground | eng |
dc.subject.proposal | Hydrotreatment | eng |
dc.subject.proposal | Hidrotratamiento | spa |
dc.subject.proposal | Hydrochar | eng |
dc.subject.proposal | Pirólisis | spa |
dc.subject.proposal | Carbón activado | spa |
dc.subject.proposal | Pyrolysis | eng |
dc.subject.proposal | Activated carbon | eng |
dc.title | Preparación de carbón activado conformado a partir de hydrochar de borra de café | spa |
dc.title.alternative | Preparation shaped activated carbon from hydrochar to spend coffee ground | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1106307814.2020.pdf
- Tamaño:
- 6.36 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Química
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 3.9 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: