Transiciones dinámicas de datos: animación de flujos de datos mediante grafos de procesos operativos

dc.contributor.advisorBranch Bedoya, John Willian
dc.contributor.authorReina Saldaña, Arley Smith
dc.contributor.orcidBranch Bedoya, John Willian [0000-00020378028X]
dc.contributor.researchgroupGidia: Grupo de Investigación YyDesarrollo en Inteligencia Artificial
dc.date.accessioned2025-11-07T14:55:01Z
dc.date.available2025-11-07T14:55:01Z
dc.date.issued2025-11-05
dc.description.abstractEl análisis de procesos industriales presenta limitaciones cuando se emplean representaciones estáticas, ya que estas no logran capturar de manera adecuada la dimensión temporal de los flujos de información. Para superar esta restricción, se diseñó e implementó un sistema de visualización dinámica basado en PM4Py y PyGame, que integra registros en formato XES con grafos animados. La interfaz desarrollada incorpora controles de reproducción y un esquema de codificación visual —basado en velocidad, tamaño y color— orientado a resaltar cuellos de botella, concentraciones de actividad y variaciones temporales. La validación del sistema se llevó a cabo mediante una encuesta a expertos, quienes compararon la animación con herramientas habitualmente utilizadas. Los resultados evidencian una valoración favorable de la representación del comportamiento del proceso (61,1 % la calificó como superior), aunque se registraron opiniones divididas en torno a la calidad visual (44,4 % favorable y 11,1 % en desacuerdo) y al costo percibido (38,9 % superior, 27,8 % inferior). La intención de adopción alcanzó una mediana de 4 (“Probablemente sí”), con un 55,6 % de disposición positiva. En síntesis, la animación potencia la comprensión de la dinámica procesal y demuestra la viabilidad de integrar minería de procesos y visualización animada en entornos abiertos. Sin embargo, persisten barreras asociadas al diseño visual, la curva de aprendizaje y la integración tecnológica, lo que señala la necesidad de ajustes futuros para consolidar su adopción en contextos industriales. (Texto tomado de la fuente)spa
dc.description.abstractIndustrial process analysis presents limitations when static representations are employed, as they fail to adequately capture the temporal dimension of information flows. To address this issue, a dynamic visualization system was designed and implemented, combining PM4Py and PyGame to integrate XES-formatted logs with animated graphs. The developed interface incorporates playback controls and a visual encoding scheme—based on speed, size, and color—designed to highlight bottlenecks, activity concentrations, and temporal variations. The system was validated through a survey of experts, who compared the animation with commonly used tools. Results indicate a favorable assessment of process behavior representation (61.1 % rated it as superior), although divided opinions were observed regarding visual quality (44.4 % favorable and 11.1 % unfavorable) and perceived cost (38.9 % superior, 27.8 % inferior). The intention to adopt the tool reached a median of 4 (“Probably yes”), with 55.6 % expressing positive willingness. In summary, animation enhances the understanding of process dynamics and demonstrates the feasibility of integrating process mining and animated visualization in open-source environments. Nevertheless, barriers remain related to visual design, learning curve, and technological integration, highlighting the need for further refinements to strengthen adoption in industrial contexts.eng
dc.description.curricularareaIngeniería De Sistemas E Informática.Sede Medellín
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Analítica
dc.format.extent1 recurso en línea (80 páginas)
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/89112
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.publisher.facultyFacultad de Minas
dc.publisher.placeMedellín, Colombia
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Analítica
dc.relation.referencesAlbo, Y., Lanir, J., Bak, P., and Rafaeli, S. (2015). Off the radar: Comparative evaluation of radial visualization solutions for composite indicators. IEEE transactions on visualization and computer graphics, 22(1):569--578. https://doi.org/10.1109/TVCG.2015.2467322.
dc.relation.referencesApply to Supply – UK Government Digital Marketplace (s.f.). Sap signavio pricing information. https://applytosupply. digitalmarketplace.service.gov.uk. Recuperado en junio de 2025
dc.relation.referencesAugusto, A., Conforti, R., Dumas, M., La Rosa, M., Maggi, F. M., Marrella, A., Mecella, M., and Soo, A. (2018). Automated discovery of process models from event logs: Review and benchmark. IEEE transactions on knowledge and data engineering, 31(4):686--705. https://doi.org/10.1109/TKDE.2018.2841877.
dc.relation.referencesAWS Marketplace (s.f.). Sap signavio process intelligence on aws. https://aws.amazon.com/marketplace. Recuperado en abril de 2025.
dc.relation.referencesAysolmaz, B., Reijers, H. A., et al. (2021). Animation as a dynamic visualization technique for improving process model comprehension. Information and Management, 58(5):1--19. https://doi.org/10.1016/j.im.2021.103478.
dc.relation.referencesBattista, G. D., Eades, P., Tamassia, R., and Tollis, I. G. (1998). Graph drawing: algorithms for the visualization of graphs. Prentice Hall PTR.
dc.relation.referencesBeck, F., Burch, M., Diehl, S., and Weiskopf, D. (2017). A taxonomy and survey of dynamic graph visualization. In Computer graphics forum, volume 36, pages 133--159. Wiley Online Library. https://doi.org/10.1111/cgf.12791.
dc.relation.referencesBerti, A., van Zelst, S., and Schuster, D. (2023). Pm4py: A process mining library for python. Software Impacts, 17:100556.
dc.relation.referencesBerti, A., Van Zelst, S. J., and van der Aalst, W. M. P. (2019). Process Mining for Python (PM4Py): Bridging the Gap Between Processand Data Science. arXiv preprint arXiv:1905.06169.
dc.relation.referencesBetancor, F. and Pérez, F. (2022). Calidad de datos en logs de eventos para minería de procesos de negocios.
dc.relation.referencesBrock, J., Kühn, A., and Dumitrescu, R. (2024). Method for the identification of process mining use cases in manufacturing. In Proceedings of the Conference on Production Systems and Logistics: CPSL 2024, pages 282--291. Hannover: publish-Ing. https://doi. org/10.15488/17720.
dc.relation.referencesBrzychczy, E., Zuber, A., and van der Aalst, W. (2024). Process mining of mining processes: Analyzing longwall coal excavation using ˙ event data. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 54(5):2723--2734. https://doi.org/10.1109/TSMC.2023. 3348496.
dc.relation.referencesBrzychczy, E., Zuber, A., and van der Aalst, W. (2024). Process mining of mining processes: Analyzing longwall coal excavation using ˙ event data. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 54(5):2723--2734. https://doi.org/10.1109/TSMC.2023. 3348496.
dc.relation.referencesBuijs, J. (2022). Receipt phase of an environmental permit application process (wabo), coselog project (version 2). https://doi.org/ 10.4121/12709127.
dc.relation.referencesBuijs, J. C., van Dongen, B. F., and van der Aalst, W. M. P. (2012). On the role of fitness, precision, generalization and simplicity in process discovery. In Meersman, R. and Panetto, H., editors, On the Move to Meaningful Internet Systems: OTM 2012 - Confederated International Conferences: CoopIS, DOA-SVI, and ODBASE 2012, Rome, Italy, September 10-14, 2012. Proceedings, Part I, volume 7565 of Lecture Notes in Computer Science, pages 305--322. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-33606-5_19.
dc.relation.referencesBurch, M., Huang, W., Wakefield, M., Purchase, H. C., Weiskopf, D., and Hua, J. (2020). The state of the art in empirical user evaluation of graph visualizations. IEEE Access, 9:4173--4198. https://doi.org/10.1109/ACCESS.2020.3047616.
dc.relation.referencesButt, N. A., Mahmood, Z., Sana, M. U., Díez, I. d. l. T., Galán, J. C., Brie, S., and Ashraf, I. (2023). Behavioral and performance analysis of a real-time case study event log: A process mining approach. Applied sciences, 13(7):4145. https://doi.org/10.3390/app13074145.
dc.relation.referencesCelonis (s.f.). Celonis process mining. https://www.celonis.com.
dc.relation.referencesChevalier, F., Dragicevic, P., and Franconeri, S. (2014). The not-so-staggering effect of staggered animated transitions on visual tracking. IEEE transactions on visualization and computer graphics, 20(12):2241--2250. https://doi.org/10.1109/TVCG.2014.2346424.
dc.relation.referencesClark, R. C. and Mayer, R. E. (2023). E-learning and the science of instruction: Proven guidelines for consumers and designers of multimedia learning. john Wiley & sons.
dc.relation.referencesCorallo, A., Lazoi, M., and Striani, F. (2020). Process mining and industrial applications: A systematic literature review. Knowledge and Process Management, 27(3):225--233. https://doi.org/10.1002/kpm.1630.
dc.relation.referencesDawes, J. (2008). Do data characteristics change according to the number of scale points used? an experiment using 5-point, 7-point and 10-point scales. International journal of market research, 50(1):61--104. https://doi.org/10.1177/147078530805000106.
dc.relation.referencesDennis, A. R., Hayes, G. S., and Daniels Jr, R. M. (1999). Business process modeling with group support systems. Journal of Management Information Systems, 15(4):115--142. https://doi.org/10.1080/07421222.1999.11518224.
dc.relation.referencesDiallo, T., Henry, S., and Ouzrout, Y. (2018). Towards a more efficient use of process and product traceability data for continuous improvement of industrial performances. arXiv. https://doi.org/10.48550/arXiv.1810.13141.
dc.relation.referencesDinçer, Ü. and Çevik, M. (2019). Improved trajectory planning of an industrial parallel mechanism by a composite polynomial consisting of bézier curves and cubic polynomials. Mechanism and Machine Theory, 132:248--263.
dc.relation.referencesDumas, M., Rosa, L. M., Mendling, J., and Reijers, A. H. (2018). Fundamentals of business process management. Springer. https: //doi.org/10.1007/978-3-662-56509-4.
dc.relation.referencesFarin, G. (2001). Curves and surfaces for CAGD: a practical guide. Elsevier.
dc.relation.referencesFreeman, E., Robson, E., Bates, B., and Sierra, K. (2004). Head First Design Patterns: A Brain-Friendly Guide. . O’Reilly Media, Inc.".
dc.relation.referencesGamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design patterns: elements of reusable object-oriented software. Pearson Deutschland GmbH. Edición en alemán.
dc.relation.referencesGansner, E. R., Koutsofios, E., North, S. C., and Vo, K.-P. (1993). A technique for drawing directed graphs. IEEE Transactions on Software Engineering, 19(3):214--230.
dc.relation.referencesGonzález, A. G., Rodríguez, L. L., Caballero, D. M., and Fonte, D. M. (2019). Herramientas para la gestión por procesos. Cuadernos Latinoamericanos de administración, 15(28). https://www.redalyc.org/articulo.oa?id=409659500003.
dc.relation.referencesGunther, Christian y Verbeek, H. (2014). Xes-standard definition.
dc.relation.referencesHarmon, P. (2019). Business process change: a business process management guide for managers and process professionals. Morgan Kaufmann
dc.relation.referencesHeer, J., Bostock, M., and Ogievetsky, V. (2010). A tour through the visualization zoo: A survey of powerful visualization techniques, from the obvious to the obscure. Queue, 8(5):20--30. https://doi.org/10.1145/1794514.1805128.
dc.relation.referencesIndulska, M., Recker, J., Rosemann, M., and Green, P. (2009). Business process modeling: Current issues and future challenges. In International Conference on Advanced Information Systems Engineering, pages 501--514. Springer. https://doi.org/10.1007/ 978-3-642-02144-2_39.
dc.relation.referencesJalali, A. (2020). Graph-based process mining. In International Conference on Process Mining, pages 273--285. Springer. https: //doi.org/10.1007/978-3-030-72693-5_21.
dc.relation.referencesJoshi, A., Kale, S., Chandel, S., and Pal, D. K. (2015). Likert scale: Explored and explained. British journal of applied science & technology, 7(4):396. https://doi.org/10.9734/BJAST/2015/14975.
dc.relation.referencesKabierski, M., Imenkamp, C., Koschmider, A., and Weidlich, M. (2024). SpeciAL4PM: Species Analysis of Event Logs for Process Mining. In Proceedings of the BPM (Demos/Resources Forum). https://ceur-ws.org/Vol-3758/paper-25.pdf.
dc.relation.referencesKesici, C. A., Ozkan, N., Ta¸skesenlioglu, S., and Erdogan, T. G. (2022). A systematic literature review of studies comparing process mining tools. International Journal of Information Technology and Computer Science, 14(5):1--14. https://doi.org/10.5815/ijitcs. 2022.05.01.
dc.relation.referencesKitchenham, B., Brereton, O. P., Budgen, D., Turner, M., Bailey, J., and Linkman, S. (2009). Systematic literature reviews in software engineering--a systematic literature review. Information and software technology, 51(1):7--15. https://doi.org/10.1016/j.infsof. 2008.09.009.
dc.relation.referencesKitchenham, B., Brereton, O. P., Budgen, D., Turner, M., Bailey, J., and Linkman, S. (2009). Systematic literature reviews in software engineering--a systematic literature review. Information and software technology, 51(1):7--15. https://doi.org/10.1016/j.infsof. 2008.09.009.
dc.relation.referencesLucchese, M., Salerno, G., and Pugliese, A. (2024). A digital twin-based approach for detecting cyber--physical attacks in ics using knowledge discovery. Applied Sciences, 14(19):8665. https://doi.org/10.3390/app14198665.
dc.relation.referencesMaslov, I. and Poelmans, S. (2024). Facilitating the comprehension of business process models for unexperienced modelers using token-based animations. Information & Management, 61(5):103967. https://doi.org/10.1016/j.im.2024.103967.
dc.relation.referencesMayer, R. E. (2022). The future of multimedia learning. The Journal of Applied Instructional Design, 11(4):69--77.
dc.relation.referencesMayer, R. E. (2024). The past, present, and future of the cognitive theory of multimedia learning. Educational Psychology Review, 36(1):8. https://doi.org/10.1007/s10648-023-09842-1.
dc.relation.referencesMedina-Garcia, S., Medina-Marin, J., Montaño-Arango, O., Gonzalez-Hernandez, M., and Hernandez-Gress, E. S. (2023). A petri net approach for business process modeling and simulation. Applied Sciences, 13(20):11192. https://doi.org/10.3390/app132011192.
dc.relation.referencesMendling, J., Recker, J., Reijers, H. A., and Leopold, H. (2019). An empirical review of the connection between model viewer characteristics and the comprehension of conceptual process models. Information Systems Frontiers, 21(5):1111--1135. https: //doi.org/10.1007/s10796-017-9823-6.
dc.relation.referencesMezhoud, H. (2024). Requirements of adopting smes for business intelligence systems: A field study in the industrial zone of setif in algeria. In Applying business intelligence and innovation to entrepreneurship, pages 125--154. IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-1846-1.ch007.
dc.relation.referencesMindzie (2023). Process mining software pricing & costs. https://www.mindzie.com/pricing/.
dc.relation.referencesMunzner, T. (2025). Visualization analysis and design. In Proceedings of the Special Interest Group on Computer Graphics and Interactive Techniques Conference Courses, pages 1--2. https://doi.org/10.1145/3721241.3733989.
dc.relation.referencesMupaikwa, E. (2024). The adoption of business intelligence as a competitive strategy among smes: A developing country study. In Data-Driven Business Intelligence Systems for Socio-Technical Organizations, pages 152--174. IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-1210-0.ch007.
dc.relation.referencesMurata, T. (2002). Petri nets: Properties, analysis and applications. Proceedings of the IEEE, 77(4):541--580. https://doi.org/10.1109/ 5.24143.
dc.relation.referencesNets, D. T. P. (2007). Petri nets for dynamic event-driven system modeling. Handbook of dynamic system modeling.
dc.relation.referencesNystrom, R. (2014). Game programming patterns. Genever Benning.
dc.relation.referencesPaas, F. and Van Merrienboer, J. J. (2020). Cognitive-load theory: Methods to manage working memory load in the learning of complex tasks. Current Directions in Psychological Science, 29(4):394--398. https://doi.org/10.1177/0963721420922183.
dc.relation.referencesPall, G. A. (1987). Quality Process Management. Prentice Hall, Englewood Cliffs, NJ.
dc.relation.referencesPark, Gyuna y van der Aalst, W. M. (2022). Action-oriented process mining: bridging the gap between insights and actions. Progress in Artificial Intelligence, pages 1--22. https://doi.org/10.1007/s13748-022-00281-7.
dc.relation.referencesPetri, C. A. (1962). Kommunikation mit automaten.
dc.relation.referencesProcess Mining, G. (2023). Running example event log. https://github.com/process-intelligence-solutions/pm4py/blob/ release/notebooks/data/running_example.csv.
dc.relation.referencesProcessMaker (s.f.). How much does process mining cost? https://www.processmaker.com/blog/ how-much-does-process-mining-cost/.
dc.relation.referencesRecker, J., Reijers, H. A., and van de Wouw, S. G. (2014). Process model comprehension: the effects of cognitive abilities, learning style, and strategy. Communications of the association for information systems, 34(1):9. https://doi.org/10.17705/1CAIS.03409.
dc.relation.referencesRehse, J. R., Pufahl, L., Grohs, M., and Klein, L. M. (2022). Process mining meets visual analytics: The case of conformance checking. https://doi.org/10.48550/arXiv.2209.09712. Preprint en arXiv.
dc.relation.referencesReijers, H., Freytag, T., Mendling, J., and Eckleder, A. (2011). Syntax highlighting in business process models. Decision Support Systems, 51(3):339--349. https://doi.org/10.1016/j.dss.2010.12.013.
dc.relation.referencesReijers, H. and Mendling, J. (2010). A study into the factors that influence the understandability of business process models. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 41(3):449--462. https://doi.org/10.1109/TSMCA.2010. 2087017.
dc.relation.referencesSaad, H., Nagarur, N., and Shamsan, A. (2021). Analysis of data mining process for improvement of production quality in industrial sector. arXiv. https://doi.org/10.48550/arXiv.2108.07615.
dc.relation.referencesScheiderer, C., Thun, T., and Meisen, T. (2019). Bézier curve based continuous and smooth motion planning for self-learning industrial robots. Procedia Manufacturing, 38:423--430.
dc.relation.referencesSchuster, D., van Zelst, S. J., and van der Aalst, W. M. P. (2021). Cortado—An Interactive Tool for Data-Driven Process Discovery and Modeling. In International Conference on Applications and Theory of Petri Nets and Concurrency, volume 12734 of Lecture Notes in Computer Science, pages 465--475. Springer International Publishing. https://doi.org/10.1007/978-3-030-76983-3_23.
dc.relation.referencesShi, Y., Zhang, N., Song, X., Li, H., and Zhu, Q. (2024). Novel approach for industrial process anomaly detection based on process mining. Journal of Process Control, 136:103165. https://doi.org/10.1016/j.jprocont.2024.103165.
dc.relation.referencesSouth, L., Saffo, D., Vitek, O., Dunne, C., and Borkin, M. A. (2022). Effective use of likert scales in visualization evaluations: A systematic review. In Computer Graphics Forum, volume 41, pages 43--55. Wiley Online Library. https://doi.org/10.1111/cgf.14521.
dc.relation.referencesSrivastava, T., Kerremans, M., and Sugden, D. (2025). Magic quadrant for process mining platforms. Gartner Report. Disponible en: https://www.gartner.com/document/5159982.
dc.relation.referencesSweller, J. (2011). Cognitive load theory. In Psychology of learning and motivation, volume 55, pages 37--76. Elsevier. https://doi.org/ 10.1016/B978-0-12-387691-1.00002-8.
dc.relation.referencesTiwari, A., Turner, C. J., and Majeed, B. (2008). A review of business process mining: State-of-the-art and future trends. Business Process Management Journal, 14(1):5--22. https://doi.org/10.1108/14637150810849373.
dc.relation.referencesTrustRadius (s.f.). Sap signavio process intelligence pricing. https://www.trustradius.com/products/ sap-signavio-process-intelligence/pricing.
dc.relation.referencesUrrea-Contreras, S. J., Flores-Rios, B. L., Astorga-Vargas, M. A., and Ibarra-Esquer, J. E. (2021). Process mining perspectives in software engineering: A systematic literature review. In 2021 Mexican International Conference on Computer Science (ENC), pages 1--8. IEEE. https://doi.org/10.1109/ENC53357.2021.9534824.
dc.relation.referencesvan der Aalst, W., Adriansyah, A., and Van Dongen, B. (2012a). Replaying history on process models for conformance checking and performance analysis. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(2):182--192.
dc.relation.referencesvan der Aalst, W. M. (2011). Discovery, conformance and enhancement of business processes. Media; Springer: Berlin/Heidelberg, Germany, 136. https://doi.org/10.1007/978-3-642-19345-3.
dc.relation.referencesvan der Aalst, W. M. (2013). Business process management: a comprehensive survey. International Scholarly Research Notices, 2013(1):507984. https://doi.org/10.1155/2013/507984.
dc.relation.referencesvan Der Aalst, W. M. (2019). A practitioner’s guide to process mining: Limitations of the directly-follows graph.
dc.relation.referencesvan Der Aalst, W. M., La Rosa, M., and Santoro, F. M. (2016). Business process management: Don’t forget to improve the process! Business & Information Systems Engineering, 58(1):1--6. https://doi.org/10.1007/s12599-015-0409-x.
dc.relation.referencesVan Der Aalst, W. M., Reijers, H. A., Weijters, A. J., van Dongen, B. F., De Medeiros, A. A., Song, M., and Verbeek, H. M. (2007). Business process mining: An industrial application. Information systems, 32(5):713--732. https://doi.org/10.1016/j.is.2006.05.003.
dc.relation.referencesvan der Aalst, W. M. P. (2016). Data Science in Action. In van der Aalst, W. M. P., editor, Process Mining: Data Science in Action, pages 3--23. Springer Berlin Heidelberg, Berlin, Heidelberg, 2 edition.
dc.relation.referencesvan der Aalst, W. M. P. (2022). Process mining: A 360 degree overview. In van der Aalst, W. M. P. and Carmona, J., editors, Process Mining Handbook, volume 448 of Lecture Notes in Business Information Processing. Springer, Cham. https://doi.org/10.1007/ 978-3-031-08848-3_1.
dc.relation.referencesvan der Aalst, W. M. P., Adriansyah, A., de Medeiros, A. K. A., Arcieri, F., Baier, T., Blickle, T., et al. (2012b). Process mining manifesto. In Daniel, F., Barkaoui, K., and Dustdar, S., editors, Business Process Management Workshops. BPM 2011, volume 99 of Lecture Notes in Business Information Processing, pages 169--194. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28108-2_19.
dc.relation.referencesvan Dongen, B. (2017). Bpi challenge 2017 (version 1). https://doi.org/10.4121/UUID:5F3067DF-F10B-45DA-B98B-86AE4C7A310B.
dc.relation.referencesvan Dongen, B. F., de Medeiros, A. K. A., Verbeek, H. M., Weijters, A. J. M. M., and van der Aalst, W. M. P. (2005). The ProM Framework: A New Era in Process Mining Tool Support. In International Conference on Application and Theory of Petri Nets, volume 3536 of Lecture Notes in Computer Science, pages 444--454, Berlin, Heidelberg. Springer Berlin Heidelberg. https://doi.org/10.1007/11494744_25.
dc.relation.referencesVan Dongen, B. F. and Shabani, S. (2015). Relational xes: data management for process mining
dc.relation.referencesVehlow, C., Beck, F., and Weiskopf, D. (2017). Visualizing group structures in graphs: A survey. In Computer Graphics Forum, volume 36, pages 201--225. Wiley Online Library. https://doi.org/10.1111/cgf.12872.
dc.relation.referencesVendr (2024). Celonis pricing guide. https://www.vendr.com/blog/celonis-pricing.
dc.relation.referencesWeske, M. (2012). Business process management architectures. In Business process management: Concepts, languages, architectures, pages 333--371. Springer. https://doi.org/10.1007/978-3-642-28616-2_7.
dc.relation.referencesWeske, M. (2024). Process modelling languages. In Business Process Management: Concepts, Languages, Architectures, pages 129--265. Springer. https://doi.org/10.1007/978-3-662-69518-0_4.
dc.relation.referencesXES Working Group (2016). IEEE Standard for eXtensible Event Stream (XES) for Achieving Interoperability in Event Logs and Event Streams. https://doi.org/10.1109/IEEESTD.2016.7740858.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::003 - Sistemas
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::003 - Sistemas
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
dc.subject.lembTeoría de grafos
dc.subject.lembRedes de petri
dc.subject.lembAdministración industrial
dc.subject.proposalMinería de procesosspa
dc.subject.proposalGrafos dirigidosspa
dc.subject.proposalVisualización dinámicaspa
dc.subject.proposalAnimaciónspa
dc.subject.proposalHerramientas de código abiertospa
dc.subject.proposalProcess miningeng
dc.subject.proposalDirected graphseng
dc.subject.proposalDynamic visualizationeng
dc.subject.proposalAnimationeng
dc.subject.wikidataMinería de procesos
dc.titleTransiciones dinámicas de datos: animación de flujos de datos mediante grafos de procesos operativosspa
dc.title.translatedDynamic transitions of data: animation of data flows in operational process graphseng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentInvestigadores
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis de Maestría en Ingeniería - Analítica.pdf
Tamaño:
4.08 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: