Estudio del potencial antiproliferativo de extractos obtenidos de residuos frutícolas desde las perspectivas de la química verde y la alimentómica

dc.contributor.advisorParada Alfonso, Fabiánspa
dc.contributor.advisorCifuentes Gallego, Alejandrospa
dc.contributor.authorBallesteros Vivas, Diegospa
dc.contributor.researchgroupGRUPO DE INVESTIGACIÓN EN QUÍMICA DE ALIMENTOSspa
dc.date.accessioned2020-08-12T22:41:58Zspa
dc.date.available2020-08-12T22:41:58Zspa
dc.date.issued2020-05-28spa
dc.description.abstractEn este trabajo se presenta una estrategia multianalítica para la valorización de subproductos de frutas, entre los que se incluyen la almendra de la semilla de mango (Mangifera indica L.), el cáliz de uchuva (Physalis peruviana L.) y las semillas de curuba (Passiflora mollissima (Kunth) L. H. Bailey). La plataforma propuesta está basada en la combinación de (i) herramientas de modelamiento (parámetros de solubilidad de Hansen) para guiar los procesos de extracción; (ii) extracción verde con fluidos comprimidos, como la extracción con líquidos presurizados (PLE) y el fraccionamiento supercrítico antisolvente (SAF); (iii) la determinación de contenidos totales de fenoles y de flavonoides, así como la determinación in vitro de la actividad antioxidante; (iv) la obtención del perfil fitoquímico de los extractos empleando cromatografía líquida/gaseosa acoplada a espectrometría de masas de alta resolución; y (v) y la evaluación de la actividad antiproliferativa contra células humanas de cancer de colon (células HT-29). Adicionalmente, estudios alimentómicos exhaustivos fueron llevados a cabo para investigar los cambios inducidos a niveles de la expresión génica y metabólica en células HT-29 luego del tratamiento con los extractos de mayor potencial antiproliferativo. La extracción con PLE en dos etapas permitió obtener fracciones no polares (lípidos y ácidos grasos) y polares (polifenoles) a partir de la almendra de M. indica y de las semillas de P. mollissima. n-Heptano (20 min a 100 °C) y ciclohexano (20 min a 100 °C) fueron los solventes más apropiados para el proceso de desengrasado de la almendra de M. indica y de las semillas de P. mollissima, respectivamente. Los extractos polares obtenidos en condiciones óptimas a partir de la almendra de M. indica (100% EtOH a 150 °C), de las semillas de P. mollissima (100% EtOH a 150 °C), y del cáliz de P. peruviana (75:25 EtOH:EtOAc v/v a 125 ºC) mostraron rendimientos de extracción satisfactorios y adecuada actividad antioxidante con concentraciones notables de compuestos bioactivos. Los compuestos bioactivos más abundantes en el extracto de M. indica fueron xantonas, ácidos fenólicos, flavonoides, derivados de ácido gálico y galotaninos; en el extracto de P. mollissima fueron flavanoles, dímeros y trímeros de proantocianidinas; mientras que en el extracto de P. peruviana fueron witanólidos, ésteres de sacarosa y flavonoides. Los extractos PLE óptimos exhibieron actividad antiproliferativa contra células HT-29: almendra de M. indica (IC50 = 28.67 g/mL a 72 h), semillas de P. mollissima (IC50 = 39.29 g/mL a 48 h), y cálix de P. peruviana (IC50 = 6.17 g/mL a 48 h). La actividad antiproliferativa del extracto PLE de mango fue mejorada mediante un proceso SAF logrando un incremento del efecto inhibitorio sobre la proliferación celular (70.51%) al mismo valor de IC50. Los estudios alimentómios mostraron cambios a nivel de la expresión transcriptómica y metabólica de las células HT-29 tratadas con los extractos PLE. El extracto de P. mollissima alteró genes, como MAD2L1, involucrados en el metabolismo del glutatión y de las poliaminas, o la inactivación del factor de transcripción NUPR1 que podría estar relacionado con la alteración de los niveles intracelulares de ceramidas en respuesta al estrés del retículo endoplasmático. Por otra parte, el extracto de P. peruviana alteró procesos metabólicos importantes, sugiriendo la inactivación de la ruta del aminoacil-tRNA cargado, disfunción en el sistema de carnitina y de la beta-oxidación de ácidos grasos y deterioro de la interconversión de ribonucleótidos de pirimidina.spa
dc.description.abstractA multi-analytical strategy for the valorisation of fruit by-products including mango seed kernel (Mangifera indica L.), goldenberry calyx (Physalis peruviana L.), and banana passion fruit seeds (Passiflora mollissima (Kunth) L. H. Bailey) is presented in this work. The proposed platform is based on the combination of (i) modelling tools (Hansen Solubility Parameters) for guiding extraction process; (ii) green compressed fluids extraction, such as Pressurized liquid extraction (PLE) and Supercritical antisolvent fractionation (SAF); (iii) determination of total phenolic content and total flavonoids, as well as the in vitro evalution of antioxidant activity; (iv) liquid chromatography/gas chromatography coupled to high resolution mass spectrometry for phytochemical profiling of the extracts; and (v) antiproliferative activity against human colon cancer cells (HT-29 cells). In addition, comprehensive Foodomics studies were carried out to investigate the changes induced at gene and metabolite expression levels on HT-29 cells upon treatment with the extracts with greater antiproliferative potential. Two steps PLE process allowed to recover the non-polar fraction (fatty acids and lipids) and the polar fraction (polyphenols) from M. indica kernel and P. mollissima seeds. n-Heptane (20 min at 100 °C) and cyclohexane (20 min at 100 °C) were the most suitable solvents for the defatting processes of M. indica kernel and P. mollissima seeds, respectively. The polar extracts obtained under optimal PLE conditions from M. indica kernel (100% EtOH at 150 °C), P. mollissima seeds (100% EtOH at 150 °C) and P. peruviana calyx (75:25 EtOH:EtOA v/v at 125 ºC) showed satisfactory extraction yields and good antioxidant activity with notably concentrations of bioactive compounds. The most abundant compounds in M. indica extract were xanthones, phenolic acids, flavonoids, gallate derivatives and gallotannins; while in P. mollissima extract they were flavanols, proanthocyanidins dimers and trimers; and in P. peruviana extract they were withanolides, sucrose esters and flavonoids. The optimum-PLE extracts exhibited antiproliferative activity against HT-29 cells, as follows: M. indica kernel (IC50 = 28.67 g/mL at 72 h), P. mollissima seeds (IC50 = 39.29 g/mL at 48 h), and P. peruviana calyx (IC50 = 6.17 g/mL at 48 h). The antiproliferative activity of mango PLE-extract was enhanced by a SAF process increasing the inhibitory cell proliferation effect (70.51%) at the same IC50 value. The foodomics studies showed the molecular changes induced at transcript and metabolite expression levels on HT-29 human cells treated with PLE-extracts. P. mollissima extract altered genes, such as MAD2L1, involved in the polyamine and glutathione metabolism, or the inactivation of the NUPR1 transcription factor, that might be related with the alteration of the intracellular ceramide levels in response to endoplasmic reticulum stress. On the other hand, P. peruviana extract exerted alteration on relevant metabolic processes, suggesting inactivation of aminoacyl tRNA charging pathway, dysfunction on carnitine shuttle and beta-oxidation of fatty acids, and pyrimidine ribonucleotide interconversion impairment.spa
dc.description.additionalDoctorado en Ciencias – Químicaspa
dc.description.degreelevelDoctoradospa
dc.description.projectEstudio de la actividad antiproliferativa de extractos obtenidos a partir de residuos frutícolasspa
dc.description.sponsorshipProyecto COOPA20145 Programa de Cooperación Científica para el Desarrollo I-COOP+ del Consejo Superior de Investigaciones Científicas-CSIC, Españaspa
dc.format.extent302spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationBallesteros Vivas, D. (2020). Estudio del potencial antiproliferativo de extractos obtenidos de residuos frutícolas desde las perspectivas de la Química Verde y la Alimentómica. (Doctorado). Universidad Nacional de Colombiaspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78010
dc.language.isoengspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Químicaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Químicaspa
dc.relation1. D. Ballesteros-Vivas, G. Alvarez-Rivera, C. León, S.J. Morantes, E. Ibánez, F. Parada-Alfonso, A. Cifuentes, A. Valdés, Foodomics evaluation of the anti-proliferative potential of Passiflora mollissima seeds, Food Res Int, 130 (2020).spa
dc.relation2. D. Ballesteros-Vivas, G. Álvarez-Rivera, S.J. Morantes, A.d.P. Sánchez-Camargo, E. Ibáñez, F. Parada-Alfonso, A. Cifuentes, An integrated approach for the valorization of mango seed kernel: Efficient extraction solvent selection, phytochemical profiling and antiproliferative activity assessment, Food Res Int, 126 (2019).spa
dc.relation3. D. Ballesteros-Vivas, G. Alvarez-Rivera, A.F. García Ocampo, S.J. Morantes, A.d.P. Sánchez Camargo, A. Cifuentes, F. Parada-Alfonso, E. Ibánez, Supercritical antisolvent fractionation as a tool for enhancing antiproliferative activity of mango seed kernel extracts against colon cancer cells, J. Supercrit. Fluids, 152 (2019).spa
dc.relation4. D. Ballesteros-Vivas, G. Álvarez-Rivera, A. del Pilar Sánchez-Camargo, E. Ibáñez, F. Parada-Alfonso, A. Cifuentes, A multi-analytical platform based on pressurized-liquid extraction, in vitro assays and liquid chromatography/gas chromatography coupled to high resolution mass spectrometry for food by-products valorisation. Part 1: Withanolides-rich fractions from goldenberry (Physalis peruviana L.) calyces obtained after extraction optimization as case study, J. Chromatogr. A, 1584 (2019) 155-164.spa
dc.relation5. D. Ballesteros-Vivas, G. Alvarez-Rivera, E. Ibanez, F. Parada-Alfonso, A. Cifuentes, A multi-analytical platform based on pressurized-liquid extraction, in vitro assays and liquid chromatography/gas chromatography coupled to high resolution mass spectrometry for food by-products valorisation. Part 2: Characterization of bioactive compounds from goldenberry (Physalis peruviana L.) calyx extracts using hyphenated techniques, J. Chromatogr. A, 1584 (2019) 144-154.spa
dc.relation6. D. Ballesteros-Vivas, G. Alvarez-Rivera, C. León, S.J. Morantes, E. Ibánez, F. Parada-Alfonso, A. Cifuentes, A. Valdés, Anti-proliferative bioactivity against HT-29 colon cancer cells of a withanolides-rich extract from golden berry (Physalis peruviana L.) calyx investigated by Foodomics, J. Funct. Foods, 63 (2019).spa
dc.relation7. D. Ballesteros-Vivas, G. Alvarez-Rivera, E. Ibanez, F. Parada-Alfonso, A. Cifuentes, Integrated strategy for the extraction and profiling of bioactive metabolites from Passiflora mollissima seeds combining pressurized-liquid extraction and gas/liquid chromatography-high resolution mass spectrometry, J. Chromatogr. A, 1595 (2019) 144-157.spa
dc.relation8. Ballesteros-Vivas, D., Alvarez-Rivera, G., Ibánez, E., Parada-Alfonso, F., & Cifuentes, A. B. T.-R. M. in F. S. (2020). Foodomics of Bioactive Compounds From Tropical Fruits By-Products. Elsevier.spa
dc.relation.references[1] A.P. Da Fonseca Machado, M. Rueda, G.F. Barbero, Á. Martín, M.J. Cocero, J. Martínez, Co-Precipitation of Anthocyanins of the Extract Obtained From Blackberry Residues By Pressurized Antisolvent Process, J. Supercrit. Fluids, 137 (2018) 81-92.spa
dc.relation.references[2] N. Conde-Martínez, D.C. Sinuco, C. Osorio, Chemical studies on curuba (Passiflora mollissima (Kunth) L. H. Bailey) fruit flavour, Food Chem., 157 (2014) 356-363.spa
dc.relation.references[3] D. Ballesteros-Vivas, G. Alvarez-Rivera, E. Ibanez, F. Parada-Alfonso, A. Cifuentes, Integrated strategy for the extraction and profiling of bioactive metabolites from Passiflora mollissima seeds combining pressurized-liquid extraction and gas/liquid chromatography-high resolution mass spectrometry, J. Chromatogr. A, 1595 (2019) 144-157.spa
dc.relation.references[4] P.M. Aron, J.A. Kennedy, Flavan-3-ols: nature, occurrence and biological activity, Mol Nutr Food Res, 52 (2008) 79-104.spa
dc.relation.references[5] V. Knaze, R. Zamora-Ros, L. Lujan-Barroso, I. Romieu, A. Scalbert, N. Slimani, E. Riboli, C.T. van Rossum, H.B. Bueno-de-Mesquita, A. Trichopoulou, V. Dilis, K. Tsiotas, G. Skeie, D. Engeset, J.R. Quiros, E. Molina, J.M. Huerta, F. Crowe, E. Wirfal, U. Ericson, P.H. Peeters, R. Kaaks, B. Teucher, G. Johansson, I. Johansson, R. Tumino, H. Boeing, D. Drogan, P. Amiano, A. Mattiello, K.T. Khaw, R. Luben, V. Krogh, E. Ardanaz, C. Sacerdote, S. Salvini, K. Overvad, A. Tjonneland, A. Olsen, M.C. Boutron-Ruault, G. Fagherazzi, F. Perquier, C.A. Gonzalez, Intake estimation of total and individual flavan-3-ols, proanthocyanidins and theaflavins, their food sources and determinants in the European Prospective Investigation into Cancer and Nutrition (EPIC) study, Br J Nutr, 108 (2012) 1095-1108.spa
dc.relation.references[6] M. Rossi, E. Negri, R. Talamini, C. Bosetti, M. Parpinel, P. Gnagnarella, S. Franceschi, L. Dal Maso, M. Montella, A. Giacosa, C. La Vecchia, Flavonoids and colorectal cancer in Italy, Cancer Epidemiol Biomarkers Prev, 15 (2006) 1555-1558.spa
dc.relation.references[7] L. Lei, Y. Yang, H. He, E. Chen, L. Du, J. Dong, J. Yang, Flavan-3-ols consumption and cancer risk: a meta-analysis of epidemiologic studies, Oncotarget, 7 (2016) 73-92.spa
dc.relation.references[8] B. Benarba, A. Pandiella, Colorectal cancer and medicinal plants: Principle findings from recent studies, Biomed Pharmacother, 107 (2018) 408-423.spa
dc.relation.references[9] D. Hang, A.D. Joshi, X. He, A.T. Chan, M. Jovani, M.K. Gala, S. Ogino, P. Kraft, C. Turman, U. Peters, S.A. Bien, Y. Lin, Z. Hu, H. Shen, K. Wu, E.L. Giovannucci, M. Song, Colorectal cancer susceptibility variants and risk of conventional adenomas and serrated polyps: results from three cohort studies, Int J Epidemiol, (2019).spa
dc.relation.references[10] S. Gothai, K. Muniandy, C. Gnanaraj, I.A.A. Ibrahim, N. Shahzad, S.S. Al-Ghamdi, N. Ayoub, V.P. Veeraraghavan, S.S. Kumar, N.M. Esa, P. Arulselvan, Pharmacological insights into antioxidants against colorectal cancer: A detailed review of the possible mechanisms, Biomed Pharmacother, 107 (2018) 1514-1522.spa
dc.relation.references[11] IARC. Cancer, Cancer Today: Colorectal cancer, in, World of Health Organization, 2019. https://gco.iarc.fr/today/data/factsheets/cancers/10_8_9-Colorectum-fact-sheet.pdf. Accessed 25 January 2019.spa
dc.relation.references[12] J. Kaur, G. Kaur, An insight into the role of citrus bioactives in modulation of colon cancer, J. Funct. Foods, 13 (2015) 239-261.spa
dc.relation.references[13] M. Asif, A. Shafaei, A.S. Abdul Majid, M.O. Ezzat, S.S. Dahham, M.B.K. Ahamed, C.E. Oon, A.M.S. Abdul Majid, Mesua ferrea stem bark extract induces apoptosis and inhibits metastasis in human colorectal carcinoma HCT 116 cells, through modulation of multiple cell signalling pathways, Chin. J. Nat. Med., 15 (2017) 505-514.spa
dc.relation.references[14] V. Graziani, M. Scognamiglio, V. Belli, A. Esposito, B. D'Abrosca, A. Chambery, R. Russo, M. Panella, A. Russo, F. Ciardiello, T. Troiani, N. Potenza, A. Fiorentino, Metabolomic approach for a rapid identification of natural products with cytotoxic activity against human colorectal cancer cells, Sci. Rep., 8 (2018) 1-11.spa
dc.relation.references[15] Y. Frion-Herrera, D. Gabbia, A. Diaz-Garcia, O. Cuesta-Rubio, M. Carrara, Chemosensitizing activity of Cuban propolis and nemorosone in doxorubicin resistant human colon carcinoma cells, Fitoterapia, 136 (2019) 104173.spa
dc.relation.references[16] C. Ibanez, A. Valdes, V. Garcia-Canas, C. Simo, M. Celebier, L. Rocamora-Reverte, A. Gomez-Martinez, M. Herrero, M. Castro-Puyana, A. Segura-Carretero, E. Ibanez, J.A. Ferragut, A. Cifuentes, Global Foodomics strategy to investigate the health benefits of dietary constituents, J. Chromatogr. A, 1248 (2012) 139-153.spa
dc.relation.references[17] A. Valdes, V. Garcia-Canas, C. Simo, C. Ibanez, V. Micol, J.A. Ferragut, A. Cifuentes, Comprehensive foodomics study on the mechanisms operating at various molecular levels in cancer cells in response to individual rosemary polyphenols, Anal Chem, 86 (2014) 9807-9815.spa
dc.relation.references[18] A. Valdés, V. García-Cañas, E. Koçak, C. Simó, A. Cifuentes, Foodomics study on the effects of extracellular production of hydrogen peroxide by rosemary polyphenols on the anti-proliferative activity of rosemary polyphenols against HT-29 cells, Electrophoresis, 37 (2016) 1795-1804.spa
dc.relation.references[19] A. Cifuentes, Foodomics, foodome and modern food analysis, TrAC Trends Anal. Chem., 96 (2017).spa
dc.relation.references[20] A. Valdés, A. Cifuentes, C. León, Foodomics evaluation of bioactive compounds in foods, TrAC Trends Anal. Chem., 96 (2017) 2-13.spa
dc.relation.references[21] C. Ibáñez, C. Simó, M. Palazoglu, A. Cifuentes, GC-MS based metabolomics of colon cancer cells using different extraction solvents, Anal. Chim. Acta, 986 (2017) 48-56.spa
dc.relation.references[22] C. Ibáñez, C. Simó, A. Valdés, L. Campone, A.L. Piccinelli, V. García-Cañas, A. Cifuentes, Metabolomics of adherent mammalian cells by capillary electrophoresis-mass spectrometry: HT-29 cells as case study, J. Pharm. Biomed. Anal., 110 (2015) 83-92.spa
dc.relation.references[23] G.K. Smyth, limma: Linear Models for Microarray Data, in: R. Gentleman, V.J. Carey, W. Huber, R.A. Irizarry, S. Dudoit (Eds.) Bioinformatics and Computational Biology Solutions Using R and Bioconductor, Springer New York, New York, NY, 2005, pp. 397-420.spa
dc.relation.references[24] Y. Benjamini, Y. Hochberg, Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing, J R Stat Soc Series B Stat Methodol, 57 (1995) 289-300.spa
dc.relation.references[25] A. Krämer, J. Green, J. Pollard, Jr, S. Tugendreich, Causal analysis approaches in Ingenuity Pathway Analysis, Bioinformatics, 30 (2013) 523-530.spa
dc.relation.references[26] R.B. Badisa, S.F. Darling-Reed, P. Joseph, J.S. Cooperwood, L.M. Latinwo, C.B. Goodman, Selective Cytotoxic Activities of Two Novel Synthetic Drugs on Human Breast Carcinoma MCF-7 Cells, Anticancer Res., 29 (2009) 2993-2996.spa
dc.relation.references[27] M. Asif, A.H.S. Yehya, M.A. Al-Mansoub, V. Revadigar, M.O. Ezzat, M.B. Khadeer Ahamed, C.E. Oon, V. Murugaiyah, A.S. Abdul Majid, A.M.S. Abdul Majid, Anticancer attributes of Illicium verum essential oils against colon cancer, S. African J. Bot., 103 (2016) 156-161.spa
dc.relation.references[28] D. Raffa, B. Maggio, M.V. Raimondi, F. Plescia, G. Daidone, Recent discoveries of anticancer flavonoids, Eur J Med Chem, 142 (2017) 213-228.spa
dc.relation.references[29] D. Ravishankar, A.K. Rajora, F. Greco, H.M. Osborn, Flavonoids as prospective compounds for anti-cancer therapy, Int J Biochem Cell Biol, 45 (2013) 2821-2831.spa
dc.relation.references[30] G.J. Du, Z. Zhang, X.D. Wen, C. Yu, T. Calway, C.S. Yuan, C.Z. Wang, Epigallocatechin Gallate (EGCG) is the most effective cancer chemopreventive polyphenol in green tea, Nutrients, 4 (2012) 1679-1691.spa
dc.relation.references[31] S. Koosha, M.A. Alshawsh, C.Y. Looi, A. Seyedan, Z. Mohamed, An Association Map on the Effect of Flavonoids on the Signaling Pathways in Colorectal Cancer, Int J Med Sci, 13 (2016) 374-385.spa
dc.relation.references[32] X. Guo, E. Goessl, E.S.R. Collie-Duguid, J. Cassidy, W. Wang, V. O'Brien, Cell cycle perturbation and acquired 5-fluorouracil chemoresistance, Anticancer Res., 28 (2008) 9-14.spa
dc.relation.references[33] L. Ouyang, Z. Shi, S. Zhao, F.T. Wang, T.T. Zhou, B. Liu, J.K. Bao, Programmed cell death pathways in cancer: A review of apoptosis, autophagy and programmed necrosis, Cell Prolif., 45 (2012) 487-498.spa
dc.relation.references[34] O.D. Schärer, Nucleotide excision repair in eukaryotes, Cold Spring Harb Perspect Biol, 5 (2013) a012609-a012609spa
dc.relation.references[35] S. Lukasiak, C. Schiller, P. Oehlschlaeger, G. Schmidtke, P. Krause, D.F. Legler, F. Autschbach, P. Schirmacher, K. Breuhahn, M. Groettrup, Proinflammatory cytokines cause FAT10 upregulation in cancers of liver and colon, Oncogene, 27 (2008) 6068.spa
dc.relation.references[36] F. Xue, L. Zhu, Q.-W. Meng, L. Wang, X.-S. Chen, Y.-B. Zhao, Y. Xing, X.-Y. Wang, L. Cai, FAT10 is associated with the malignancy and drug resistance of non-small-cell lung cancer, Onco Targets Ther, 9 (2016) 4397-4409.spa
dc.relation.references[37] Y.C. Liu, J. Pan, C. Zhang, W. Fan, M. Collinge, J.R. Bender, S.M. Weissman, A MHC-encoded ubiquitin-like protein (FAT10) binds noncovalently to the spindle assembly checkpoint protein MAD2, Proc Natl Acad Sci U S A, 96 (1999) 4313-4318.spa
dc.relation.references[38] P. Lara-Gonzalez, Frederick G. Westhorpe, Stephen S. Taylor, The Spindle Assembly Checkpoint, Curr. Biol., 22 (2012) R966-R980.spa
dc.relation.references[39] T. Alfonso-Pérez, D. Hayward, J. Holder, U. Gruneberg, F.A. Barr, MAD1-dependent recruitment of CDK1-CCNB1 to kinetochores promotes spindle checkpoint signaling, J. Cell Biol., 218 (2019) 1108.spa
dc.relation.references[40] M. Pagano, R. Pepperkok, F. Verde, W. Ansorge, G. Draetta, Cyclin A is required at two points in the human cell cycle, EMBO J., 11 (1992) 961-971.spa
dc.relation.references[41] D. Gong, J.E. Ferrell, Jr., The roles of cyclin A2, B1, and B2 in early and late mitotic events, Mol Biol Cell, 21 (2010) 3149-3161.spa
dc.relation.references[42] W. Rozpędek, D. Pytel, B. Mucha, H. Leszczyńska, J.A. Alan Diehl, I. Majsterek, The Role of the PERK/eIF2α/ATF4/CHOP Signaling Pathway in Tumor Progression During Endoplasmic Reticulum Stress, Curr. Mol. Med., 16 (2016) 533-544.spa
dc.relation.references[43] I. Tirado-Hurtado, W. Fajardo, J.A. Pinto, DNA Damage Inducible Transcript 4 Gene: The Switch of the Metabolism as Potential Target in Cancer, Front Oncol, 8 (2018) 106.spa
dc.relation.references[44] C.E. Cano, T. Hamidi, M.J. Sandi, J.L. Iovanna, Nupr1: the Swiss-knife of cancer, J. Cell. Physiol., 226 (2011) 1439-1443.spa
dc.relation.references[45] S.-B. Su, Y. Motoo, J.L. Iovanna, M.-J. Xie, H. Mouri, K. Ohtsubo, Y. Yamaguchi, H. Watanabe, T. Okai, F. Matsubara, N. Sawabu, Expression of p8 in Human Pancreatic Cancer, Clin. Cancer Res., 7 (2001) 309.spa
dc.relation.references[46] Y. Ito, H. Yoshida, Y. Motoo, J.L. Iovanna, Y. Nakamura, K. Kakudo, T. Uruno, Y. Takamura, A. Miya, S. Noguchi, K. Kuma, A. Miyauchi, Expression of P8 Protein in Breast Carcinoma; an Inverse Relationship with Apoptosis, Anticancer Res., 25 (2005) 833-837.spa
dc.relation.references[47] M.L. Davies, C. Parr, A.J. Sanders, O. Fodstad, W.G. Jiang, The Transcript Expression and Protein Distribution Pattern in Human Colorectal Carcinoma Reveal a Pivotal Role of COM-1/p8 as a Tumour Suppressor, Cancer Genom. Proteom., 7 (2010) 75-80.spa
dc.relation.references[48] T. Hamidi, C.E. Cano, D. Grasso, M.N. Garcia, M.J. Sandi, E.L. Calvo, J.C. Dagorn, G. Lomberk, R. Urrutia, S. Goruppi, A. Carracedo, G. Velasco, J.L. Iovanna, Nupr1-aurora kinase A pathway provides protection against metabolic stress-mediated autophagic-associated cell death, Clin. Cancer Res., 18 (2012) 5234-5246.spa
dc.relation.references[49] P. Santofimia-Castaño, W. Lan, J. Bintz, O. Gayet, A. Carrier, G. Lomberk, J.L. Neira, A. González, R. Urrutia, P. Soubeyran, J. Iovanna, Inactivation of NUPR1 promotes cell death by coupling ER-stress responses with necrosis, Sci. Rep., 8 (2018) 16999.spa
dc.relation.references[50] N. Ohoka, S. Yoshii, T. Hattori, K. Onozaki, H. Hayashi, TRB3, a novel ER stress-inducible gene, is induced via ATF4-CHOP pathway and is involved in cell death, EMBO J, 24 (2005) 1243-1255.spa
dc.relation.references[51] M. Gabay, Y. Li, D.W. Felsher, MYC activation is a hallmark of cancer initiation and maintenance, Cold Spring Harb Perspect Med, 4 (2014) a014241.spa
dc.relation.references[52] R. Zhao, B.Y. Choi, M.-H. Lee, A.M. Bode, Z. Dong, Implications of Genetic and Epigenetic Alterations of CDKN2A (p16(INK4a)) in Cancer, EBioMedicine, 8 (2016) 30-39.spa
dc.relation.references[53] R.A. Casero, T. Murray Stewart, A.E. Pegg, Polyamine metabolism and cancer: treatments, challenges and opportunities, Nat. Rev. Cancer, 18 (2018) 681-695.spa
dc.relation.references[54] T.R. Murray-Stewart, P.M. Woster, R.A. Casero, Jr., Targeting polyamine metabolism for cancer therapy and prevention, Biochem. J, 473 (2016) 2937-2953.spa
dc.relation.references[55] Jia M. Loo, A. Scherl, A. Nguyen, Fung Y. Man, E. Weinberg, Z. Zeng, L. Saltz, Philip B. Paty, Sohail F. Tavazoie, Extracellular Metabolic Energetics Can Promote Cancer Progression, Cell, 160 (2015) 393-406.spa
dc.relation.references[56] J.F. Leal, I. Ferrer, C. Blanco-Aparicio, J. Hernandez-Losa, Y.C.S. Ramon, A. Carnero, M.E. Lleonart, S-adenosylhomocysteine hydrolase downregulation contributes to tumorigenesis, Carcinogenesis, 29 (2008) 2089-2095.spa
dc.relation.references[57] T. Chujo, T. Suzuki, Trmt61B is a methyltransferase responsible for 1-methyladenosine at position 58 of human mitochondrial tRNAs, RNA, 18 (2012) 2269-2276.spa
dc.relation.references[58] M.L. Circu, T.Y. Aw, Glutathione and apoptosis, Free Radic Res, 42 (2008) 689-706.spa
dc.relation.references[59] M.L. Circu, T.Y. Aw, Glutathione and modulation of cell apoptosis, Biochim Biophys Acta, 1823 (2012) 1767-1777.spa
dc.relation.references[60] D. Prochazkova, I. Bousova, N. Wilhelmova, Antioxidant and prooxidant properties of flavonoids, Fitoterapia, 82 (2011) 513-523.spa
dc.relation.references[61] H. Nakagawa, K. Hasumi, J.T. Woo, K. Nagai, M. Wachi, Generation of hydrogen peroxide primarily contributes to the induction of Fe(II)-dependent apoptosis in Jurkat cells by (-)-epigallocatechin gallate, Carcinogenesis, 25 (2004) 1567-1574.spa
dc.relation.references[62] M. Fenech, P. Baghurst, W. Luderer, J. Turner, S. Record, M. Ceppi, S. Bonassi, Low intake of calcium, folate, nicotinic acid, vitamin E, retinol, beta-carotene and high intake of pantothenic acid, biotin and riboflavin are significantly associated with increased genome instability-results from a dietary intake and micronucleus index survey in South Australia, Carcinogenesis, 26 (2005) 991-999.spa
dc.relation.references[63] U. Wenzel, A. Nickel, H. Daniel, Increased carnitine-dependent fatty acid uptake into mitochondria of human colon cancer cells induces apoptosis, J. Nutr., 135 (2005) 1510-1514.spa
dc.relation.references[64] C.B. Newgard, Interplay between lipids and branched-chain amino acids in development of insulin resistance, Cell metabolism, 15 (2012) 606-614.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc540 - Química y ciencias afinesspa
dc.subject.ddc634 - Huertos, frutas, silviculturaspa
dc.subject.ddc616 - Enfermedadesspa
dc.subject.proposalColon cancereng
dc.subject.proposalCáncer de colonspa
dc.subject.proposalFruit by-products valorisationeng
dc.subject.proposalValorización de residuos frutícolasspa
dc.subject.proposalMangifera indica Leng
dc.subject.proposalMangifera indica Lspa
dc.subject.proposalPhysalis peruviana Lspa
dc.subject.proposalPhysalis peruviana Leng
dc.subject.proposalPassiflora mollissimaeng
dc.subject.proposalPassiflora mollissimaspa
dc.subject.proposalPressurized liquid extractioneng
dc.subject.proposalExtracción con líquidos presurizadosspa
dc.subject.proposalActividad antiproliferativaspa
dc.subject.proposalAntiproliferative activityeng
dc.subject.proposalFoodomicseng
dc.subject.proposalAlimentómicaspa
dc.subject.proposalTranscriptómicaspa
dc.subject.proposalTranscriptomicseng
dc.subject.proposalMetabolómicaspa
dc.subject.proposalMetabolomicseng
dc.titleEstudio del potencial antiproliferativo de extractos obtenidos de residuos frutícolas desde las perspectivas de la química verde y la alimentómicaspa
dc.title.alternativeStudy of the antiproliferative potential of fruit by-product extracts from the perspectives of Green Chemistry and Foodomicsspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
80829289.2020.pdf
Tamaño:
13.29 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: