Evaluación del impacto en la calidad del aire generado por los incendios forestales de la región amazónica en algunas ciudades de América del Sur

dc.contributor.advisorBelalcázar Cerón , Luis Carlos
dc.contributor.advisorCasallas García, Alejandro
dc.contributor.authorMedina González , Hasbleidy Tatiana
dc.contributor.cvlacMedina González, Hasbleidy Tatiana [0002043874]
dc.contributor.researchgroupCalidad del Aire
dc.date.accessioned2026-01-23T16:53:05Z
dc.date.available2026-01-23T16:53:05Z
dc.date.issued2025
dc.descriptiongraficas, mapas, tablasspa
dc.description.abstractEvaluación del impacto en la calidad del aire generado por los incendios forestales de la región amazónica en algunas ciudades de América del Sur El presente trabajo evalúa el impacto de los incendios forestales en la calidad del aire de la región amazónica y su influencia sobre ciudades de Sudamérica durante el periodo 2019–2023. Para alcanzar este objetivo, se integraron datos satelitales de focos térmicos, reanálisis atmosférico y mediciones de superficie en nueve ciudades seleccionadas. La validación estadística de los productos de reanálisis frente a observaciones in situ mostró desempeños variables: para PM2.5 se observó una tendencia a la sobreestimación con RMSE superiores a 15 μg·m-3 en varias ciudades, mientras que para O3 las correlaciones superaron 0.6 en la mayoría de los casos, indicando una representación aceptable de la variabilidad temporal. Además, el análisis de trayectorias lagrangianas permitió identificar plumas de contaminación originadas en la Amazonía que alcanzaron ciudades andinas y costeras a distancias superiores a 3 000 km, con orientaciones predominantes hacia el suroeste y sur. Las mayores contribuciones de PM2.5 se detectaron en Leticia, con incrementos de hasta 55 μg·m-3, y en ciudades andinas como Bogotá y Quito, donde se observaron aumentos entre 20–60 μg·m-3durante la temporada SON. En contraste, en ciudades como Lima se identificaron episodios más puntuales, con valores de 5.6–57 μg·m-3. Por su parte, las mayores contribuciones de O3 se evidenciaron en Leticia (77 μg·m-3), Lima (74.4 μg·m-3) y Bogotá (72.5 μg·m-3) en las temporadas de JJA y SON. Así, estos resultados confirman que el transporte transfronterizo derivado de incendios amazónicos constituye un factor determinante de episodios críticos de contaminación atmosférica en la región. De esta manera, la combinación de reanálisis, validación observacional y herramientas de aproximación lagrangianas ofrece una perspectiva robusta para comprender la dinámica espaciotemporal de estas emisiones, subrayando la necesidad de estrategias regionales de gestión de calidad del aire y políticas de cooperación transnacional (Texto tomado de la fuente).spa
dc.description.abstractThis study evaluates the impact of Amazonian wildfires on air quality and their influence on South American cities during the period 2019–2023. To achieve this objective, satellite-based fire hotspot data, atmospheric reanalysis, and ground-based measurements were integrated for nine selected cities. The statistical validation of reanalysis products against in situ observations showed variable performance: for PM2.5, a tendency toward overestimation was identified, with RMSE values exceeding 15 μg·m-3 in several cities, whereas for O3, correlations were generally above 0.6, indicating an acceptable representation of temporal variability. In addition, Lagrangian trajectory analysis identified pollution plumes originating in the Amazon that reached Andean and coastal cities at distances greater than 3 000 km, with predominant southwesterly and southerly transport pathways. The largest PM2.5 contributions were detected in Leticia, with increases of up to 55 μg·m-3, and in Andean cities such as Bogotá and Quito, where increases between 20–60 μg·m-3 were observed during the SON season. In contrast, more isolated episodes were identified in Lima, with values ranging from 5.6 to 57 μg·m-3. The highest O3 contributions were observed in Leticia (77 μg·m-3), Lima (74.4 μg·m-3), and Bogotá (72.5 μg·m-3) during the JJA and SON seasons. These results confirm that transboundary transport derived from Amazonian wildfires constitutes a key driver of severe air pollution episodes in the region. Accordingly, the combination of reanalysis data, observational validation, and Lagrangian-based approaches provides a robust framework for understanding the spatiotemporal dynamics of these emissions, underscoring the need for regional air quality management strategies and transnational cooperation policies.eng
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Ingeniería Ambiental
dc.description.researchareaCalidad del aire
dc.format.extentxvi, 118 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/89308
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Ambiental
dc.relation.referencesAkimoto, H., & Tanimoto, H. (Eds.). (2023). Handbook of air quality and climate change. Springer Nature.
dc.relation.referencesAlvarado, S. T., & Hantson, S. (2022). Dinámica espacio-temporal de incendios forestales en la región de Los Llanos en Colombia y Venezuela. Ciencia e Investigación, Universidad de los Llanos. https://cici.unillanos.edu.co/media/archivos/2023/02/01/ID5609.pdf
dc.relation.referencesAragão, L. E. O. C. (2008). Interactions between rainfall, deforestation and fires during recent years in the Brazilian Amazon. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1498), 1779–1785. https://doi.org/10.1098/rstb.2007.0026
dc.relation.referencesAragão, L. E. O. C., & Shimabukuro, Y. E. (2010). The incidence of fire in Amazonian forests with implications for REDD. Science, 328(5983), 1275–1278. https://doi.org/10.1126/science.1186925
dc.relation.referencesAragão, L. E. O. C., Anderson, L. O., Fonseca, M. G., Rosan, T. M., Vedovato, L. B., Wagner, F. H., … Saatchi, S. (2018). 21st century drought-related fires in Amazonia. Nature Communications, 9, 1–12. https://doi.org/10.1038/s41467-017-02771-y
dc.relation.referencesArmenteras, D., Rodríguez, N., & Retana, J. (2013). Landscape dynamics in northwestern Amazonia: An assessment of pastures, fire and illicit crops as drivers of tropical deforestation. PLOS ONE, 8(1), e54310. https://doi.org/10.1371/journal.pone.0054310
dc.relation.referencesArtaxo, P. (2013). Atmospheric aerosols in Amazonia and land use change: From natural biogenic to biomass burning conditions. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371(2002), 20120006. https://doi.org/10.1098/rsta.2012.0006
dc.relation.referencesArtaxo, P., Rizzo, L. V., Brito, J. F., Barbosa, H. M. J., Arana, A., Sena, E. T., … Rosário, N. E. (2013). Atmospheric aerosols in Amazonia and land use change: From natural biogenic to biomass burning conditions. Faraday Discussions, 165, 203–235. https://doi.org/10.1039/c3fd00052d
dc.relation.referencesBallesteros-González, K., Sullivan, A. P., & Morales-Betancourt, R. (2020). Estimating the air quality and health impacts of biomass burning in northern South America using a chemical transport model. Science of the Total Environment, 739, 139755. https://doi.org/10.1016/j.scitotenv.2020.139755
dc.relation.referencesBarlow, J., Berenguer, E., Carmenta, R., & França, F. (2019). Clarifying Amazonia’s burning crisis. Global Change Biology, 26(1), 319–321. https://doi.org/10.1111/gcb.14872
dc.relation.referencesBarlow, J. B. (2020). Clarifying Amazonia’s burning crisis. Global Change Biology,, 26(1), 319-321. doi:https://doi.org/10.1111/gcb.14872
dc.relation.referencesCasallas, A., Cabrera, A., Guevara-Luna, M.-A., Tompkins, A., Gonzalez, Y., Aranda, J., . . . Ferro, C. (2024). Air pollution analysis in Northwestern South America: A new Lagrangian framework. (P. K. Hopke, Ed.) Science of The Total Environment, 1-19. Obtenido de https://www.sciencedirect.com/science/article/pii/S0048969723059776
dc.relation.referencesCasallas, A., Castillo-Camacho, M. P., Sanchez, E. R., González, Y., Celis, N., Mendez Espinosa, J. F., . . . Ferro, C. (2023a). Surface, satellite ozone variations in Northern South America during low anthropogenic emission conditions: a machine learning approach. Air Qual Atmos. Health, págs. 16, 745–764. doi:https://doi.org/10.1007/s11869-023-01303-6
dc.relation.referencesCasallas, A., Córdoba, T., Sanchez-Cardenas, L., Guevara-Luna, M. A., & Belalcázar, L. C. (2023b). Understanding the atmospheric characteristics of high polluted events in a tropical megacity. Rev. EIA Esc. Ing, págs. 107, 53–65. doi:https://doi.org/10.17533/udea.redin.20220682
dc.relation.referencesCelis, N., Casallas, A., López-Barrera, E. A., Martinez, H., Rincón, C. A. P., Arenas, R., & Ferro, C. (2022). Design of an early alert system for PM2. 5 through a stochastic method and machine learning models. Environmental Science & Policy, 127, 241-252.
dc.relation.referencesCGIAR. (2023). Indígenas de Suramérica tienen el doble de probabilidades de sufrir graves consecuencias sobre su salud debido a incendios forestales. Obtenido de https://alliancebioversityciat.org/es/stories/indigenas-suramerica-tienen-sufrir-graves-consecuencias-salud-debido-incendios-forestales
dc.relation.referencesChacón Rivera, L. M. (2015). Efecto de los Incendios forestales sobre la calidad del aire en dos ciudades colombianas. Repositorio Institucional , 1-8. Obtenido de https://repositorio.unal.edu.co/handle/unal/57067
dc.relation.referencesChai, T., Kim, H. C., Lee, P., Tong, D., Pan, L., Tang, Y., ... & Stajner, I. (2013). Evaluation of the United States National Air Quality Forecast Capability experimental real-time predictions in 2010 using Air Quality System ozone and NO 2 measurements. Geoscientific Model Development, 6(5), 1831-1850.
dc.relation.referencesChen, Y., Morton, D. C., Jin, Y., Collatz, G. J., Kasibhatla, P. S., & Van der Werf, G. R. (2013). Long-term trends and interannual variability of forest, savanna and agricultural fires in South America. Obtenido de https://www.tandfonline.com/doi/full/10.4155/cmt.13.61
dc.relation.referencesChen, Y. R. (2011). Predicting fire season severity in the Amazon based on sea surface temperature anomalies. Science, 334(6052), 787-791. doi:10.1126/science.1209472
dc.relation.referencesChen, Y., Morton, D. C., Andela, N., Giglio, L., & Randerson, J. T. (2017). How much global burned area can be forecast on seasonal time scales using sea surface temperatures? Environmental Research Letters, 12(9), 094023. https://doi.org/10.1088/1748-9326/aa7e2e
dc.relation.referencesCoakley Jr, J. A., & Yang, P. (2014). Atmospheric radiation: a primer with illustrative solutions. John Wiley & Sons.
dc.relation.referencesCoelho, C. A., Cavalcanti, I. F., Costa, S. M., Freitas, S. R., Ito, E. R., Luz, G., … Nobre, P. (2012). Climate diagnostics of three major drought events in the Amazon and illustrations of their seasonal precipitation predictions. Meteorological Applications, 19(2), 237–255. https://doi.org/10.1002/met.1324
dc.relation.referencesCochrane, M. A. (2003). Fire science for rainforests. Nature, 421(6926), 913–919. https://doi.org/10.1038/nature01437
dc.relation.referencesCochrane, M. A. (2009). Climate change, human land use and future fires in the Amazon. Global Environmental Change, 19(4), 343–352. doi:10.1111/j.1365-2486.2008.01786.x
dc.relation.referencesCochrane, M. A., & Laurance, W. F. (2002). Fire as a large-scale edge effect in Amazonian forests. Journal of Tropical Ecology, 18(3), 311–325. https://doi.org/10.1017/S0266467402002237
dc.relation.referencesCONAMA. (2020). Informe Nacional de Calidad del Aire en Chile. Obtenido de Comisión Nacional del Medio Ambiente, Chile.: https://sinia.mma.gob.cl/wp-content/uploads/2022/06/IEMA-2020.pdf
dc.relation.referencesCooper, O. R., Parrish, D. D., Ziemke, J., Balashov, N. V., Cupeiro, M., Galbally, I. E., Gilge, S., Horowitz, L., Jensen, N. R., Lamarque, J. F., Naik, V., Oltmans, S. J., Schwab, J., Shindell, D. T., Thompson, A. M., Thouret, V., Wang, Y., & Zbinden, R. M. (2014). Global distribution and trends of tropospheric ozone: An observation-based review. Elementa: Science of the Anthropocene, 2, 000029. https://doi.org/10.12952/journal.elementa.000029
dc.relation.referencesCrippa, M., Solazzo, E., Huang, G., Guizzardi, D., Koffi, E., & Marletta, L. (2023). Biomass burning emissions and their role in air quality and climate. Atmospheric Environment. 295, 119517. Obtenido de doi:10.1016/j.atmosenv.2023.119517
dc.relation.referencesCusworth, D. H., Mickley, L. J., Sulprizio, M. P., Liu, T., Marlier, M. E., DeFries, R. S., ... & Gupta, P. (2018). Quantifying the influence of agricultural fires in northwest India on urban air pollution in Delhi, India. Environmental Research Letters, 13(4), 044018
dc.relation.referencesEPA. (2020). Air Quality Monitoring Methods. Obtenido de United States Environmental Protection Agency.
dc.relation.referencesEuropea, C. (2015). Copernicus: Europe's Eyes on Earth. Obtenido de https://www.copernicus.eu
dc.relation.referencesFernandes, K. F. (2011). Changes in rain seasonality in the Amazon basin resulting from 2005 and 2010 drought events. Geophysical Research Letters, 38(13. doi:https://doi.org/10.1073/pnas.1302584110
dc.relation.referencesFrąckiewicz, M. (2023). The use of satellites in detecting and monitoring changes in ocean acidity levels. Obtenido de IAEA: https://news-oceanacidification-icc.org/2023/04/05/the-use-of-satellites-in-detecting-and-monitoring-changes-in-ocean-acidity-levels/
dc.relation.referencesGarcía, J. G. (2007). Evaluación del Riesgo por Contaminantes Criterio y Formaldehído en la Ciudad de México. Int. Contam. Ambient, 23(4), 169-175.
dc.relation.referencesGarreaud, R. D., Vuille, M., Compagnucci, R., & Marengo, J. (2009). Present-Day South American Climate. Palaeogeogr. Palaeoclimatol. Palaeoecol. Obtenido de https://doi.org/10.1016/j.palaeo.2007.10.032.
dc.relation.referencesHernández, A. J. (2019). Assessment of the impact of biomass burning on air quality in the Colombian Orinoco River Basin. Recuperado de: https://repositorio.unal.edu.co/handle/unal/76979
dc.relation.referencesIARC. (4 de Febrero de 2020). International Agency for Research on Cancer . Obtenido de World Cancer Report: Cancer Research for Cancer Prevention: https://www.iarc.who.int/featured-news/new-world-cancer-report/
dc.relation.referencesIDEAM. (2019). Estado de la Calidad del Aire en Colombia. . Obtenido de Instituto de Hidrología, Meteorología y Estudios Ambientales.
dc.relation.referencesInness, A., Ades, M., Agustí-Panareda, A., Barré, J., Benedictow, A., Blechschmidt, A. M., & Suttie, M. (2019). The CAMS reanalysis of atmospheric composition. Atmospheric Chemistry and Physics, 19(6), 3515-3556.
dc.relation.referencesINPE. (2021). Monitoramento da Qualidade do Ar no Brasil. Obtenido de Instituto Nacional de Pesquisas Espaciais: https://www.gov.br/inpe/pt-br
dc.relation.referencesJacob, D., & Winner, D. (2020). Effect of climate change on air quality. Atmospheric Environment. 43(1), 51-63.
dc.relation.referencesJohnson, T., Brown, P., & Roberts, M. (2021). Remote sensing and environmental monitoring. 15(3), 78-92. Obtenido de https://doi.org/10.1016/j.jrs.2021.07.005
dc.relation.referencesJutz, S, S., & Pérez, M. (2018). Comprehensive Remote Sensing. Copernicus Program. In E. Universidad Maryland, College Park, MD (Ed.),, 150–191. doi:https://doi.org/10.1016/B978-0-12-409548-9.10317-3
dc.relation.referencesLelieveld, J., Haines, A., Burnett, R., Tonne, C., Klingmüller, K., Münzel, T., & Pozzer, A. (2023). Air pollution deaths attributable to fossil fuels: observational and modelling study. bmj, 383.
dc.relation.referencesLighty, J., Veranth, J., & Sarofim, A. F. (2000). Combustion aerosols: Factors governing their size and composition and implications to human health. Air & Waste Managment. Association.
dc.relation.referencesLobert, J. (1993). Emissions from the combustion process in vegetation. Fire in the Environment: The Ecological, ….Malhi, Y., Roberts, J. T., Betts, R. A., Killeen, T. J., Li, W., & Nobre, C. A. (2008). Climate change, deforestation, and the fate of the Amazon. Science, 319(5860), 169–172. https://doi.org/10.1126/science.1146961
dc.relation.referencesLovejoy, T. E. (2018). Amazon tipping point. Science Advances., 4(2), eat 2340. Obtenido de https://www.science.org/doi/10.1126/sciadv.aat2340
dc.relation.referencesMéndez-Espinosa, J. F., Belalcázar-Cerón, L. C., Ramírez, O., Morales-Betancourt, R., Rojas, N. Y., & Casallas, A. (2019). Surface ozone in a tropical megacity of South America: Temporal trends and its relation to NOx and meteorology. Atmospheric Environment, 218, 117016. https://doi.org/10.1016/j.atmosenv.2019.117016
dc.relation.referencesMensink, C., & Jorba, O. (Eds.). (2023). Air Pollution Modeling and its Application XXVIII. Springer Nature.
dc.relation.referencesMogollón-Sotelo, C., Casallas, A., Vidal, S., Celis, N., Ferro, C., & Belalcazar, L. (2021). A support vector machine model to forecast ground-level PM2. 5 in a highly populated city with a complex terrain. Air Quality, Atmosphere & Health, 14(3), 399-409.
dc.relation.referencesMollinedo, E. M., Krecl, P., & Targino, A. C. (2023). From lowland plains to the Altiplano: The impacts of regional transport of wildfire smoke on the air quality of Bolivian cities. Atmospheric Environment, 315, 120137.
dc.relation.referencesMorton, D. C. (2008). Agricultural intensification increases deforestation fire activity in Amazonia. Global Change Biology, 14(10), 2262–2275. doi:https://doi.org/10.1111/j.1365-2486.2008.01652.x
dc.relation.referencesNance, J., Hobbs, P., & Radke, L. (1993). Airborne measurements of gasses and particles from an Alaskan wildfire. Journal of Geophysical Research
dc.relation.referencesNASA FIRMS. (2024). Fire Information for Resource Management System. NASA’s Land, Atmosphere Near Real-Time Capability for EOS (LANCE). Disponible en: https://firms.modaps.eosdis.nasa.gov
dc.relation.referencesNepstad, D. C. (2008). Globalization of the Amazon soy and beef industries: opportunities for conservation. Conservation Biology,, 20(6), 1595–1603. doi:10.1111/j.1523-1739.2006.00510.x
dc.relation.referencesNew Hampshire Department of Environmental Services (NHDES). (s.f.). State Implementation Plans: Criteria Pollutants. https://www.des.nh.gov/air/state-implementation-plans/criteria-pollutants
dc.relation.referencesNobre, C. A., Sampaio, G., Borma, L. S., Castilla-Rubio, J. C., Silva, J. S., & Cardoso, M. (2016). Land-use and climate change risks in the Amazon and the need of a novel sustainable development paradigm. Proceedings of the National Academy of Sciences, 113(39), 10759–10768. https://doi.org/10.1073/pnas.1605516113
dc.relation.referencesOighenstein Anderson, L., Aragão, L., Gloor, M., Arai, E., Adami, M., Saatchi, S., . . . Duarte, V. (8 de Septiembre de 2015). Disentangling the contribution of multiple land covers to fire-mediated carbon emissions in Amazonia during the 2010 drought. Global Biogeochemical Cycles, 29(10), 1739–1753. Obtenido de https://agupubs.onlinelibrary.wiley.com/doi/10.1002/2014GB005008
dc.relation.referencesOMS. (2023). Organization, World Health. Obtenido de https://www.who.int/es/health-topics/air-pollution#-tab=tab_1
dc.relation.referencesPeralta, B., Sepúlveda, T., Nicolis, O., & Caro, L. (2022). Space-time prediction of PM2. 5 concentrations in Santiago de Chile using LSTM Networks. Applied Sciences, 12(22), 11317.
dc.relation.referencesPNUD. (25 de Julio de 2018). ODS en Colombia: Los retos para 2030. Obtenido de https://www.undp.org/es/colombia/publicaciones/ods-en-colombia-los-retos-para-2030
dc.relation.referencesPrigent, C., & Jimenez, C. (Mayo de 2021). An evaluation of the synergy of satellite passive microwave observations between 1.4 and 36 GHz, for vegetation characterization over the Tropics. Remote Sensing of Environment, 18(1), 30-45. Obtenido de https://www.sciencedirect.com/science/article/abs/pii/S003442572100064X?via%3Dihub
dc.relation.referencesQuintero, P., Sanchez, A., Valbuena , C., Gonzalez, Y., & Larreal, J. (2012). Forest cover and deforestation patterns in the Northern Andes (Lake Maracaibo Basin). 152-163. Obtenido de A synoptic assessment using MODIS and Landsat imagery. Applied: https://www.sciencedirect.com/science/article/abs/pii/S0143622812000719
dc.relation.referencesRay, D. M. (2005). Micrometeorological and canopy controls of fire susceptibility in a forested Amazon landscape. Ecological Applications, 15(5), 1664–1678. Obtenido de https://www.frames.gov/catalog/9845
dc.relation.referencesReddington, C. L. (16 de Septiembre de 2015). Air quality and human health improvements from reductions in deforestation-related fire in Brazil. Obtenido de Nature Geoscience: https://www.nature.com/articles/ngeo2535
dc.relation.referencesRondanelli, R., Molina, A., & Falvey, M. (2015). The atacama surface solar maximum. Bull. Am.Meteorol. Soc. Obtenido de https://doi.org/10.1175/BAMS-D-13-00175.1
dc.relation.referencesSamsonov, Y., Koutsenogii, K., Makarov, V., Ivanov , A., McRae, D., Conard, S., & Baker , S. (2005). Particulate emissions from fires in central Siberian Scots pine forest. Canadian Journal of Forest Research, Volume 35. Obtenido de https://cdnsciencepub.com/doi/10.1139/x05-199
dc.relation.referencesSDA. (2014). COMISIÓN DISTRITAL PARA LA PREVENCIÓN Y MITIGACIÓN DE INCENDIOS. Obtenido de https://www.ambientebogota.gov.co/conocimiento-del-riesgo
dc.relation.referencesSIAC. (2021). SISTEMA INFORMACION AMBIENTAL DE COLOMBIA. Obtenido de http://www.siac.gov.co/inf
dc.relation.referencesSeinfeld, J.H. and Pandis, S.N. (2016) Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. John Wiley & Sons, Hoboke
dc.relation.referencesStrassburg, B., Brooks T, T., Feltran-Barbieri, R., & al, e. (23 de March de 2017). Moment of truth for the Cerrado hotspot. Nature Ecology & Evolution. Obtenido de Nat Ecol Evol 1, 0099 (2017): https://doi.org/10.1038/s41559-017-0099
dc.relation.referencesUbilla, C., & Yohannessen, K. (Enero-Febrero de 2017). OUTDOOR AIR POLLUTION RESPIRATORY HEALTH EFFECTS IN CHILDREN. Revista Médica Clínica Las Condes, 28(1), 111–118. Obtenido de https://doi.org/10.1016/j.rmclc.2016.12.003
dc.relation.referencesVan Nes , E. H., Staal, A., Hantson , S., Holmgren, M., Pueyo, S., Bernardi, R. E., . . . Scheffer, M. (2018). Fire forbids fifty-fifty forest. PLOS ONE, 13(1). Obtenido de https://doi.org/10.1371/journal.pone.0191027
dc.relation.referencesVeefkind, J. P., Aben, I., McMullan, K., Förster, H., De Vries, J., Otter, G., ... & Levelt, P. F. (2012). TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote sensing of environment, 120, 70-83.
dc.relation.referencesWard, D. E., Susott, R., Kauffman, J. B., Babbitt, R. E., Cummings, D. L., Dias, B., ... & Setzer, A. W. (1992). Smoke and fire characteristics for cerrado and deforestation burns in Brazil: BASE‐B experiment. Journal of Geophysical Research: Atmospheres, 97(D13), 14601-14619.
dc.relation.referencesWayne, R. (2000). Ghemistry of Atmospheres. En 3rd ed.Oxford University Press. 775.
dc.relation.referencesWooster, M. J., Roberts, G. J., Giglio, L., Roy, D. P., Freeborn, P. H., Boschetti, L., & San-Miguel-Ayanz, J. (2021). Satellite remote sensing of active fires: History and current status, applications and future requirements. Remote Sensing of Environment, 267, 112694.
dc.relation.referencesXiao,B.;Tang,C. (2024). Particle dispersion in atmospheric modelling: A comprehensive review. Applied and Computational Engineering,85,33-43.
dc.relation.referencesZhang, K., & Batterman, S. (2020). Air pollution and health risks due to vehicle traffic. Science of the Total Environment, 450-451, 307-316
dc.relation.referencesZhou, W. L., Song, S. L., Hu, X., Zhang, Z. B., Li, P. J., Jiang, J., ... & Jiao, G. Q. (2022). Tropospheric delay correction of VLBI stations for the real-time trajectory determination of the Chang'E-5 spacecraft. Radio Science, 57(7), 1-14.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc360 - Problemas y servicios sociales; asociaciones::363 - Otros problemas y servicios sociales
dc.subject.proposalIncendios forestalesspa
dc.subject.proposalCalidad del airespa
dc.subject.proposalTransporte atmosféricospa
dc.subject.proposalPM2.5spa
dc.subject.proposalOzono troposféricospa
dc.subject.proposalReanálisisspa
dc.subject.proposalMétodo Lagrangianospa
dc.subject.proposalAmazoníaspa
dc.subject.proposalWildfireseng
dc.subject.proposalAir qualityeng
dc.subject.proposalAtmospheric transporteng
dc.subject.proposalTropospheric ozoneeng
dc.subject.proposalReanalysiseng
dc.subject.proposalLagrangian methodeng
dc.subject.proposalAmazoneng
dc.subject.unescoAtmósferaspa
dc.subject.unescoAtmosphereeng
dc.subject.unescoCambio climáticospa
dc.subject.unescoClimate changeeng
dc.titleEvaluación del impacto en la calidad del aire generado por los incendios forestales de la región amazónica en algunas ciudades de América del Surspa
dc.title.translatedEvaluation of the impact on air quality caused by wildfires in the Amazon region in selected cities of South Americaeng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentBibliotecarios
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleConvocatoria 15 ( CONVOCATORIA PARA LA FORMACIÓN DE CAPITAL HUMANO DE ALTO NIVEL PARA LOS DEPARTAMENTOS DE AMAZONAS, ARAUCA, BOYACÁ, CAQUETÁ CASANARE, GUAVIARE, NARIÑO, PUTUMAYO, SAN ANDRÉS, VICHADA EN EL MARCO DE LA CELEBRACIÓN DEL BICENTENARIO Y DE LA CONVOCATORIA 15 DEL PLAN BIENAL DEL FCTeI 2021-2022.)
oaire.fundernameMinciencias

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis de Maestría en Ingeniería - Ingeniería Ambiental.pdf
Tamaño:
3.2 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Ambiental

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: