Evaluación de la incidencia de bloqueos en la estimación cuantitativa de precipitación presente en el radar meteorológico de Barrancabermeja

dc.contributor.advisorPiña Fulano, Adriana Patricia
dc.contributor.authorRamírez Tamayo, Jorge Iván
dc.contributor.researchgroupHydrodynamics of the Natural Media (HYDS)spa
dc.date.accessioned2024-03-01T15:52:15Z
dc.date.available2024-03-01T15:52:15Z
dc.date.issued2023-12-01
dc.descriptionilustraciones, diagramas, fotografías, mapasspa
dc.description.abstractLa variabilidad espacial de la precipitación es difícil de medir debido a la falta de estaciones pluviométricas y automáticas en tierra. Como resultado, los radares meteorológicos se han convertido en fuentes de información cruciales para estimar campos de precipitación. Sin embargo, los bloqueos, que se refieren a factores externos de la naturaleza que afectan la calidad de los datos del radar, plantean un desafío importante y contribuyen a errores e incertidumbres en la estimación cuantitativa de precipitación. Este trabajo tiene como enfoque principal analizar el impacto de los bloqueos en el radar meteorológico de banda C de Barrancabermeja, ubicado entre las Cordilleras Oriental y Central de los Andes colombianos, específicamente para la estimación cuantitativa de precipitación (QPE). El análisis de bloqueos se realizó utilizando información de radar recopilada entre 2019 y 2020. Para identificar zonas de bloqueo, se identificaron los días sin lluvia que fueron insumo para un análisis de frecuencia de la reflectividad, que tuvo una alta correlación con las interferencias topográficas causadas por los rangos circundantes del radar. Posteriormente, se calculó el índice de calidad del radar (RQI) para condiciones de lluvia, teniendo en cuenta factores como el mapa de frecuencia de bloqueos, el bloqueo parcial del haz, los efectos de la pérdida de resolución por la distancia, el ruido del radar y la atenuación. La evaluación reveló un área de bloqueos aproximada del 50% para el barrido más bajo de 0.5°, principalmente asociada con las interferencias topográficas, lo que indica un impacto directo de las cordilleras en la calidad de los datos del radar. Posteriormente, se analizaron eventos de precipitación específicos (mayores a 10 mm por evento) para determinar los parámetros de tres relaciones reflectividad – precipitación (metodologías de Marshall & Palmer, Seliga & Bringi, y Sachidananda & Zrinc) para el radar de Barrancabermeja, utilizando datos de 91 estaciones automáticas disponibles en el área de influencia del radar. Al emplear estas relaciones, se calcularon mapas de incertidumbre de la estimación de lluvia, obteniendo valores de incertidumbre cercanos al 65%. En general, se destaca la influencia de los bloqueos en la estimación de los campos de precipitación del radar de Barrancabermeja y la importancia de tener en cuenta las interferencias topográficas en la interpretación de datos de radar, como elemento fundamental para la estimación cuantitativa de la precipitación en la región Andina. (Texto tomado de la fuente)spa
dc.description.abstractThe spatial variability of rainfall is difficult to measure due to the lack of ground weather rain gauges. As a result, meteorological radars have become crucial sources of information for estimating precipitation fields. However, radar cluttering, which refers to external factors of nature that affect radar data quality, poses a significant challenge, and contributes to errors and uncertainties in the estimation process. In this study, we focused on analyzing the impact of cluttering on the Barrancabermeja C-band weather radar, situated between the Eastern and Central Ranges in the Colombian Andes, specifically for the Quantitative Precipitation Estimation (QPE). The analysis was conducted using radar information collected between 2019 and 2020. To identify cluttering areas, rainless days were identified that were input for a frequency analysis of reflectivity, which had a high interference with topographic interferences caused by the surrounding radar ranges. Subsequently, we calculated the radar quality index (RQI) for both rainy conditions, considering factors such as clutter frequency map, partial beam blockage, effects of range distance quality, radar noise, and attenuation. The evaluation revealed an approximate clutter area of 50% in a beam elevation of 0.5°, primarily associated with the topographical interferences, indicating a direct impact of the Andean region on radar data quality. Subsequently, we focused on intense rainfall events (greater than 10mm per event) to determine the parameters of three reflectivity-rainfall intensity relationships (Marshall & Palmer, Seliga & Bringi, and Sachidananda & Zrinc methodologies) for the Barrancabermeja radar, utilizing data from 91 available rain gauges. By employing these relationships, we calculated uncertainty maps of the quantitative precipitation estimation, obtaining an uncertainty of 65% from cluttering in the Quantitative Precipitation Estimation of the meteorological radar. Overall, our findings emphasize the significant role of cluttering in the estimation of precipitation fields from the Barrancabermeja radar. The study underscores the importance of addressing cluttering effects and accounting for the topographical interferences in radar data interpretation to enhance the accuracy of quantitative precipitation estimates in the Andean region.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Recursos Hidráulicosspa
dc.description.researchareaHidrología y Meteorologíaspa
dc.format.extent138 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85752
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Recursos Hidráulicosspa
dc.relation.referencesAlfieri, L., Claps, P., & Laio, F. (2010). Time-dependent Z-R relationships for estimating rainfall fields from radar measurements. Natural Hazards and Earth System Sciences, 10, 149–158. www.nat-hazards-earth-syst-sci.net/10/149/2010/spa
dc.relation.referencesAlku, L., Moisseev, D., Aittomäki, T., & Chandrasekar, V. (2015). Identification and Suppression of Nonmeteorological Echoes Using Spectral Polarimetric Processing. IEEE Transactions on Geoscience and Remote Sensing, 53(7), 3628–3638. https://doi.org/10.1109/TGRS.2014.2380476spa
dc.relation.referencesAmerican Meteorological Socety. (2020). Glossary of Meteorology. https://glossary.ametsoc.org/wiki/Welcomespa
dc.relation.referencesAnagnostou, E. N., Krajewski, W. F., & Smith, J. (1998). Uncertainty Quantification of Mean-Areal Radar-Rainfall Estimates. Journal of Atmospheric and Oceanic Technology, 16, 206–215. https://doi.org/https://doi.org/10.1175/1520-0426(1999)016<0206:UQOMAR>2.0.CO;2spa
dc.relation.referencesAtlas, D. (1990). Radar in Meteorology (1st ed.). American Meteorological Socety.spa
dc.relation.referencesAustin, P. M. (1986). Relation between Measured Radar Reflectivity and Surface Rainfall. Monthly Weather Review, 115, 1053–1070. https://doi.org/https://doi.org/10.1175/1520-0493(1987)115<1053:RBMRRA>2.0.CO;2spa
dc.relation.referencesBattan. L. J. (1973). Radar Observation of the Atmosphere. Univ. of Chicago Press. .spa
dc.relation.referencesBech, J., & Bebbington, D. (2003). The Sensitivity of Single Polarization Weather Radar Beam Blockage Correction to Variability in the Vertical Refractivity Gradient. Journal of Atmospheric and Oceanic Technology, 20, 845–855. https://doi.org/https://doi.org/10.1175/1520-0426(2003)020<0845:TSOSPW>2.0.CO;2spa
dc.relation.referencesBech, J., Gjertsen, U., & Haase, G. (2007). Modelling weather radar beam propagation and topographical blockage at northern high latitudes. Quarterly Journal of the Royal Meteorological Society, 133(626 A), 1191–1204. https://doi.org/10.1002/qj.98spa
dc.relation.referencesBerenguer, M., Sempere-Torres, D., Corral, C., & Sánchez-Diezma, R. (2006). A Fuzzy Logic Technique for Identifying Nonprecipitating Echoes in Radar Scans. Journal of Atmospheric and Oceanic Technology , 23, 1157–1180. https://doi.org/https://doi.org/10.1175/JTECH1914.1spa
dc.relation.referencesBergström, S., & Graham, L. P. (1998). On the scale problem in hydrological modelling. Journal of Hydrology, 211(1–4), 253–265. https://doi.org/10.1016/S0022-1694(98)00248-0spa
dc.relation.referencesBerne, A., & Krajewski, W. F. (2013). Radar for hydrology: Unfulfilled promise or unrecognized potential? Advances in Water Resources, 51, 357–366. https://doi.org/10.1016/j.advwatres.2012.05.005spa
dc.relation.referencesBohórquez, C. (2023). Caracterización de la convección atmosférica nocturna en el Magdalena Medio. Universidad Nacional de Colombia.spa
dc.relation.referencesBøvith, T. (2008). Detection of Weather Radar Clutter [Technical University of Denmark]. www.imm.dtu.dkspa
dc.relation.referencesBowman, K. P., Collier, J. C., North, G. R., Wu, Q., Ha, E., & Hardin, J. (2005). Diurnal cycle of tropical precipitation in Tropical Rainfall Measuring Mission (TRMM) satellite and ocean buoy rain gauge data. Journal of Geophysical Research Atmospheres, 110(21), 1–14. https://doi.org/10.1029/2005JD005763spa
dc.relation.referencesCanfield, H. E., & Goodrich, D. C. (2003). Studies of Scale and Processes in Hydrologic Modeling on the Lucky Hills Watershed. Proc. 1st Interagency Conf. on Research in the Watersheds. 27-30 de Octubre.spa
dc.relation.referencesCasallas Garcia, A. (2020). Estudio de eventos de convección profunda asociados a vientos del Oeste en superficie en la Sabana de Bogotá. Universidad Nacional de Colombia.spa
dc.relation.referencesCasallas-García, A., Hernández-Deckers, D., & Mora-Páez, H. (2023). Understanding convective storms in a tropical, high-altitude location with in-situ meteorological observations and GPS-derived water vapor. Atmosfera, 36(2), 225–238. https://doi.org/10.20937/ATM.53051spa
dc.relation.referencesCiach, G. J., & Krajewski, W. F. (1999). Radar-Rain Gauge Comparisons under Observational Uncertainties. Journal of Applied Meteorology, 38, 1519–1525. https://doi.org/https://doi.org/10.1175/1520-0450(1999)038<1519:RRGCUO>2.0.CO;2spa
dc.relation.referencesCopete Ríos, J. (2009). Herramientas matemáticas e informaticas aplicables en la calibración y funcionamiento de un radar meteorológico concebido para el estudio del drenaje urbano de la ciudad de bogotá. Universidad Nacional de Colombia.spa
dc.relation.referencesCopete Ríos, J. (2013). Determinación de los parámetros en la relación Z-R de reflectividad e intensidad de precipitación para la ciudad de Bogotá apoyado en obsrvables de Disdrómetros y Pluviografos. Pontificia Universidad Javeriana.spa
dc.relation.referencesCreutin, J. D., Delrieu, G., & Lebel. T. (1988). Rain Measurement by Raingage-Radar Combination: A Geostatistical Approach. Journal of Atmospheric and Oceanic Technology, 5(1), 102–115. https://doi.org/https://doi.org/10.1175/1520-0426(1988)005<0102:RMBRRC>2.0.CO;2spa
dc.relation.referencesDANE. (2021). Pobreza monetaria y grupos de ingreso en Colombia: RESULTADOS 2021.spa
dc.relation.referencesdo Amaral, L. M. C., Barbieri, S., Vila, D., Puca, S., Vulpiani, G., Panegrossi, G., Biscaro, T., Sanò, P., Petracca, M., Marra, A. C., Gosset, M., & Dietrich, S. (2018). Assessment of ground-reference data and validation of the H-SAF precipitation products in Brazil. Remote Sensing, 10(11). https://doi.org/10.3390/rs10111743spa
dc.relation.referencesDoviak, R., & Zrnic, D. (1984). Doppler Radar and Weather Observations (1st ed., Vol. 1). Academic Press, Inc.spa
dc.relation.referencesDufton, D. R. L., & Collier, C. G. (2015). Fuzzy logic filtering of radar reflectivity to remove non-meteorological echoes using dual polarization radar moments. Atmospheric Measurement Techniques, 8(10), 3985–4000. https://doi.org/10.5194/amt-8-3985-2015spa
dc.relation.referencesFattorelli, S., Casale, R., Borga, M., & Da Ros, D. (1996). Integrating radar and remote sensing techniques of rainfall estimation in hydrological applications for flood hazard mitigation (1st ed.). Associazione Italiana di Idronomia (A.I.D.I.).spa
dc.relation.referencesFigueroa, A., & Rodríguez, E. (2016, September 30). Análisis temporal de la precipitación en una microcuenca urbana densamente instrumentada. XXVII Congreso Latinoamericano de Hidráulicaspa
dc.relation.referencesFigueroa Ortiz, C. A. (2016). Caracterización del campo de precipitación sobre la microcuenca urbana del campus Universidad Nacional de Colombia - sede Bogotá. Universidad Nacional de Colombiaspa
dc.relation.referencesFriedrich, K., Hagen, M., & Einfalt, T. (2006). A Quality Control Concept for Radar Reflectivity, Polarimetric Parameters, and Doppler Velocity. Journal of Applied Meteorology and Climatology, 23(10), 865–887.spa
dc.relation.referencesGabella, M., & Notarpietro, R. (2002). Ground clutter characterization and elimination in mountainous terrain. Proceedings of ERAD, 305–311.spa
dc.relation.referencesGiangrande, S. E., & Ryzhkov, A. V. (2008). Estimation of rainfall based on the results of polarimetric echo classification. Journal of Applied Meteorology and Climatology, 47(9), 2445–2462. https://doi.org/https://doi.org/10.1175/2008JAMC1753.1spa
dc.relation.referencesHagen, M., & Meischner, P. (2000). Estimation of Rainfall Parameters from Polarimetric Radar Measurements with POLDIRAD. Phys. Chem. Earrh (E), 25(12), 849–853. https://doi.org/https://doi.org/10.1016/S1464-1909(00)00114-3spa
dc.relation.referencesHarrison, D. L., Driscoll, S. J., & Kitchen, M. (2000). Improving precipitation estimates from weather radar using quality control and correction techniques. Meteorological Applications, 7(2), 135–144. https://doi.org/10.1017/S1350482700001468spa
dc.relation.referencesHe, X., Vejen, F., Stisen, S., Sonnenborg, T. O., & Jensen., K. H. (2011). An Operational Weather Radar-Based Quantitative Precipitation Estimation and its Application in Catchment Water Resources Modeling. Vadose Zone Journal, 10(1), 8–24. https://doi.org/10.2136/vzj2010.0034spa
dc.relation.referencesHeistermann, M., Jacobi, S., & Pfaff, T. (2013). Technical Note: An open source library for processing weather radar data (wradlib). Hydrology and Earth System Sciences, 17(2), 863–871. https://doi.org/10.5194/hess-17-863-2013spa
dc.relation.referencesHelmus, J. J., & Collis, S. M. (2016a). The Python ARM Radar Toolkit (Py-ART), a Library for Working with Weather Radar Data in the Python Programming Language. Journal of Open Research Software, 4(1), 25. https://doi.org/10.5334/jors.119spa
dc.relation.referencesHitschfield, W., & Bordan, J. (1954). Errors inherent in the radar measurement of rainfall at attenuating wavelengths. Journal of Meteorology, 11(1), 58–67. https://doi.org/https://doi.org/10.1175/1520-0469(1954)011<0058:EIITRM>2.0.CO;2spa
dc.relation.referencesHuff, F. A. (1967). Time distribution of rainfall in heavy storms. Water Resour. Res. Water Resources Research 3, 3(4), 1007–1019. https://doi.org/https://doi.org/10.1029/WR003i004p01007spa
dc.relation.referencesHuuskonen, A., & Holleman, I. (2007). Determining weather radar antenna pointing using signals detected from the sun at low antenna elevations. Journal of Atmospheric and Oceanic Technology, 24(3), 476–483. https://doi.org/10.1175/JTECH1978.1spa
dc.relation.referencesIDEAM. (2018). Red de radares del IDEAM. http://www.pronosticosyalertas.gov.co/archivos-radarspa
dc.relation.referencesIDEAM. (2019). Glosario Meteorológico. Instituto de Hidrología Meteorologia y Estudios Ambientales(IDEAM).spa
dc.relation.referencesIllingworth, A. (2004). Improved Precipitation Rates and Data Quality by Using Polarimetric Measurements. In P. Meischner (Ed.), Weather Radar: Principles and Advanced Applications (pp. 130–166). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-05202-0_5spa
dc.relation.referencesIvić, I. R., Krause, J. C., Boydstun, O. E., Daniel, A. E., Free, A. D., & Zittel, W. D. (2014). Effects of radial-based noise power estimation on spectral moment estimates. Journal of Atmospheric and Oceanic Technology, 31(12), 2671–2691. https://doi.org/10.1175/JTECH-D-14-00048.1spa
dc.relation.referencesJacobi, S., & Heistermann, M. (2016). Benchmarking attenuation correction procedures for six years of single-polarized C-band weather radar observations in South-West Germany. Geomatics, Natural Hazards and Risk, 7(6), 1785–1799. https://doi.org/10.1080/19475705.2016.1155080spa
dc.relation.referencesJoss, J., Waldvogel, A., & Collier, C. G. (1990). Precipitation Measurement and Hydrology. In D. Atlas (Ed.), Radar in Meteorology: Battan Memorial and 40th Anniversary Radar Meteorology Conference (pp. 577–606). American Meteorological Society. https://doi.org/10.1007/978-1-935704-15-7_39spa
dc.relation.referencesKite, G. W., & Haberlandt, U. (1999). Atmospheric model data for macroscale hydrology. Journal of Hydrology, 217(3–4), 303–313. https://doi.org/10.1016/S0022-1694(98)00230-3spa
dc.relation.referencesKrajewski, W. F., Kruger, A., & Nespor, V. (1998). Experimental and numerical studies of small-scale rainfall measurements and variability. Water Science and Technology, 37(11), 131–138. https://doi.org/10.1016/S0273-1223(98)00325-4spa
dc.relation.referencesKrämer, S., & Verworn, H. R. (2009). Improved radar data processing algorithms for quantitative rainfall estimation in real time. Water Science and Technology, 60(1), 175–184. https://doi.org/10.2166/wst.2009.282spa
dc.relation.referencesKrause, J. M. (2016). A simple algorithm to discriminate between meteorological and nonmeteorological radar echoes. Journal of Atmospheric and Oceanic Technology, 33(9), 1875–1885. https://doi.org/10.1175/JTECH-D-15-0239.1spa
dc.relation.referencesKrivoruchko, K. (2012). Empirical Bayesian Kriging Implemented in ArcGIS Geostatistical Analyst.spa
dc.relation.referencesKrivoruchko, K., & Gribov, A. (2014). Pragmatic bayesian kriging for non-stationary and moderately non-Gaussian data. Lecture Notes in Earth System Sciences, 0, 61–64. https://doi.org/10.1007/978-3-642-32408-6_15spa
dc.relation.referencesKrivoruchko, K., & Gribov, A. (2019). Evaluation of empirical Bayesian kriging. Spatial Statistics, 32. https://doi.org/10.1016/j.spasta.2019.100368spa
dc.relation.referencesKumjian, M. (2013). Principles and applications of dual-polarization weather radar. Part I: Description of the polarimetric radar variables. Journal of Operational Meteorology, 1(19), 226–242. https://doi.org/10.15191/nwajom.2013.0119spa
dc.relation.referencesLadino, A. (2017). Caracterización de la microfísica de la precipitación mediante información de disdrómetros y radar polarimétrico para la estimación cuantitativa de lluvia en el área metropolitana del Valle de Aburrá. Universidad Nacional de Colombia.spa
dc.relation.referencesLang, T. J., Nesbitt, S. W., & Carey, L. D. (2009). On the correction of partial beam blockage in polarimetric radar data. Journal of Atmospheric and Oceanic Technology, 26(5), 943–957. https://doi.org/10.1175/2008JTECHA1133.1spa
dc.relation.referencesLi, J., Yu, R., & Sun, W. (2013). Duration and seasonality of hourly extreme rainfall in the central eastern China. Acta Meteorologica Sinica, 27(6), 799–807. https://doi.org/10.1007/s13351-013-0604-yspa
dc.relation.referencesLiu, C., & Zipser, E. J. (2008). Diurnal cycles of precipitation, clouds, and lightning in the tropics from 9 years of TRMM observations. Geophysical Research Letters, 35(4). https://doi.org/10.1029/2007GL032437spa
dc.relation.referencesMaidment, D. R. (1993). Handbook of Hydrology (1st ed.). McGraw-Hill.spa
dc.relation.referencesMarshall, J. S., & Palmer, McK. W. (1948). The distribution of raindrop sizes. Journal of the Atmospheric Sciences, 5(4), 165–166. https://doi.org/https://doi.org/10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2spa
dc.relation.referencesMonsalve, G. (1999). Hidrología en la Ingeniería (2nd ed.). Escuela Colombiana de Ingeniería: Julio Garavito Armero.spa
dc.relation.referencesMoore, R. J., Jones, D. A., Cox, D. R., & Isham, V. S. (2000). HYREX: the HYdrological Radar Experiment. Hydrology and Earth System Sciences, 4, 523–530. https://hal.science/hal-00304682spa
dc.relation.referencesNational Oceanic and Atmospheric Administration. (2023). Radar Quality Index (RQI). https://vlab.noaa.gov/web/wdtd/-/radar-quality-index-rqi-#:~:text=The%20Radar%20Quality%20Index%20(RQI,blockage%20and%20higher%20beam%20heights.spa
dc.relation.referencesNational Weather Service. (2023). NWS Weather Radar. https://radar.weather.gov/spa
dc.relation.referencesOchoa-Rodriguez, S., Wang, L. P., Willems, P., & Onof, C. (2019). A Review of Radar-Rain Gauge Data Merging Methods and Their Potential for Urban Hydrological Applications. Water Resources Research, 55(8), 6356–6391. https://doi.org/10.1029/2018WR023332spa
dc.relation.referencesParzen, E. (1962). On Estimation of a Probability Density Function and Mode. The Annals of Mathematical Statistics, 33(3), 1065–1076. https://doi.org/10.1214/aoms/1177704472spa
dc.relation.referencesPaturel, E., Desbodes, M., & Masson, J. M. (1986). Evaluation de l`influence de la densité des réseaux pluviométriques sur la determination des lames précipitées. Informe LHM, 14–86.spa
dc.relation.referencesPoveda, G. (2004). La hidroclimatología en Colombia: Una síntesis desde la escala inter-decadal hasta la escala diurna. Revista Academia Colombiana de Ciencias, 28(107), 201–222. https://doi.org/10.18257/raccefyn.28(107).2004.1991spa
dc.relation.referencesRamírez, E. (2021). Hacia una cadena de procesamiento de datos de un radar meteorológico. Perspectivas para el radar PIUXX. Universidad De Piura.spa
dc.relation.referencesRamirez, J., Cuavas, J., Niño, G., Noel Chartano, S. V., Sacristan, D., & Rodriguez, E. (2021, September 19). REDAP UN: Una herramienta para el análisis de datos de precipitación capturados en la microcuenca urbana del campus de la Universidad Nacional de Colombia -Sede Bogotá. XXIV Seminario Nacional de Hidráulica e Hidrología.spa
dc.relation.referencesRauber, R. M., & Nesbitt, S. W. (2014). Radar Meteorology: A first Course (1st ed.). Wiley.spa
dc.relation.referencesRinehart, R. (2007). El Radar para los Meteorólogos (Knight Printing, Ed.).spa
dc.relation.referencesRinollo, A., Vulpiani, G., Puca, S., Pagliara, P., Kaňák, J., Lábó, E., Okon, L., Roulin, E., Baguis, P., Cattani, E., Laviola, S., & Levizzani, V. (2010). Definition and impact of a quality index for radar-based reference measurements in the H-SAF precipitation product validation. Natural Hazards and Earth System Sciences, 13(10), 2695–2705. https://doi.org/10.5194/nhess-13-2695-2013spa
dc.relation.referencesRodriguez, E., Camacho, L. A., Villarreal, J., Jimenez, A., Santos, A. C., & Duarte, M. del P. (2008). De La Precipitación En Una Microcuenca Urbana ,. Revista Colombiana de Geografía, 17(0121-215X), 139–153.spa
dc.relation.referencesRosenblatt, M. (1956). Remarks on Some Nonparametric Estimates of a Density Function. The Annals of Mathematical Statistics, 27(3), 832–837. https://doi.org/10.1214/aoms/1177728190spa
dc.relation.referencesSachidananda, M., & Zrinc, D. S. (1987). Rain Rate Estimates from Differential Polarization Measurements. Journal of Atmospheric and Oceanic Technology, 4(4), 588–598. https://doi.org/https://doi.org/10.1175/1520-0426(1987)004<0588:RREFDP>2.0.CO;2spa
dc.relation.referencesSahlaoui, Z., & Mordane, S. (2019). Radar rainfall estimation in Morocco: Quality control and gauge adjustment. Hydrology, 6(2). https://doi.org/10.3390/hydrology6020041spa
dc.relation.referencesSaltikoff, E., Cho, J. Y. N., Tristant, P., Huuskonen, A., Allmon, L., Cook, R., Becker, E., & Joe, P. (2016). The threat to weather radars by wireless technology. Bulletin of the American Meteorological Society, 97(7), 1159–1167. https://doi.org/10.1175/BAMS-D-15-00048.1spa
dc.relation.referencesSaltikoff, E., Friedrich, K., Soderholm, J., Lengfeld, K., Nelson, B., Becker, A., Hollmann, R., Urban, B., Heistermann, M., & Tassone, C. (2019). An overview of using weather radar for climatological studies successes, challenges, and potential. Bulletin of the American Meteorological Society, 100(9), 1739–1751. https://doi.org/10.1175/BAMS-D-18-0166.1spa
dc.relation.referencesSalvo, C., Baldassini, P., & Di Bella, C. (2021). Identificación de campos de precipitación mediante el uso de radares meteorológicos: una alternativa para mejorar las estimaciones espaciales de las lluvias. RIA. Revista de Investigaciones Agropecuarias, 47(2), 240–248.spa
dc.relation.referencesSánchez-Diezma, R., & Corral, C. (2000). Curso de Postgrado de Climatología Aplicada: El radar meteorológico y sus aplicaciones hidrológicas. Universidad Politécnica de Cataluña.spa
dc.relation.referencesSauvageot, H. (1994). Rainfall measurement by radar: a review. Atmospheric Research, 35(1), 27–54. https://doi.org/https://doi.org/10.1016/0169-8095(94)90071-Xspa
dc.relation.referencesSchilling, W., Bauwens, W., Borchardt, D., Krebs, P., Rauch, W., & Vanrolleghem, P. A. (1997). On the Relation Between Urban Wastewater Management Needs and Receiving Water Objectives.spa
dc.relation.referencesSeliga, T. A., & Bringi, V. N. (1976). Potential Use of Radar Differential Reflectivity Measurements at Orthogonal Polarizations for Measuring Precipitation. Journal of Applied Meteorology and Climatology, 15(1), 69–76. https://doi.org/https://doi.org/10.1175/1520-0450(1976)015<0069:PUORDR>2.0.CO;2spa
dc.relation.referencesSempere-Torres, D., Delrieu, G., Zawadzki, I., & Sánchez-Diezma, R. (2001). An improved methodology for ground clutter substitution based on a pre-classification of precipitation types. In American Meteorological Socety (Ed.), 30th International Conference on Radar Meteorology (pp. 271–273). https://www.researchgate.net/publication/242368835spa
dc.relation.referencesSepúlveda, J. (2015). Estimación cuantitativa de precipitación a partir de la información de Radar Meteorológico deí Area Metropolitana del Valle de Aburrá. Universidad Nacional de Colombia.spa
dc.relation.referencesShahriari, F. (2018). The Relationship between Iranian EFL Instructors’ Multiple Intelligence Ability and Reflective Teaching. Revista Romaneasca Pentru Educatie Multidimensionala, 10(1.SP), 97. https://doi.org/10.18662/rrem/39spa
dc.relation.referencesSilver, M., Svoray, T., Karnieli, A., & Fredj, E. (2020). Improving weather radar precipitation maps: A fuzzy logic approach. Atmospheric Research, 234. https://doi.org/10.1016/j.atmosres.2019.104710spa
dc.relation.referencesSkolnik, M. (1980). Introduction to radar systems. McGraw-Hill.spa
dc.relation.referencesSmith, P. L. (1998). On the Minimum Useful Elevation Angle for Weather Surveillance Radar Scans. Journal of Atmospheric and Oceanic Technology, 15(3), 841–843. https://doi.org/https://doi.org/10.1175/1520-0426(1998)015<0841:OTMUEA>2.0.CO;2spa
dc.relation.referencesSzturc, J., Ośródka, K., & Jurczyk, A. (2011). Quality index scheme for quantitative uncertainty characterization of radar-based precipitation. Meteorological Applications, 18(4), 407–420. https://doi.org/10.1002/met.230spa
dc.relation.referencesVargas, E. G. (2015). Modelo para la estimación cuantitativa de precipitación a partir de datos de radares polarimétricos. Pontificia Universidad Javeriana.spa
dc.relation.referencesVen Te Chow, David R. Maidment, & Larry W. Mays. (1988). Applied Hydrology (1st ed., Vol. 1). McGraw-Hill.spa
dc.relation.referencesVulpiani, G., Baldini, L., & Roberto, N. (2015). Characterization of Mediterranean hail-bearing storms using an operational polarimetric X-band radar. Atmospheric Measurement Techniques, 8(11), 4681–4698. https://doi.org/10.5194/amt-8-4681-2015spa
dc.relation.referencesVulpiani, G., Tabary, P., Du Chatelet, J. P., & Marzano, F. S. (2008). Comparison of advanced radar polarimetric techniques for operational attenuation correction at C band. Journal of Atmospheric and Oceanic Technology, 25(7), 1118–1135. https://doi.org/10.1175/2007JTECHA936.1spa
dc.relation.referencesWang, X., Zheng, X., He, J., & Li, X. (2012). Using fuzzy logic to discriminate convective and statiform precipitation in Doppler weather radar. 2012 9th International Conference on Fuzzy Systems and Knowledge Discovery, 623–627. https://doi.org/10.1109/FSKD.2012.6233819spa
dc.relation.referencesWood, E. F. (1998). Scale Analysis for Land Surface Hydrology. En Scale Dependence and Scale Invariance in Hydrology (G. Sposito, Ed.). Cambridge: University Cambridge Press.spa
dc.relation.referencesYang, Y., Chen, X., & Qi, Y. (2013). Classification of convective/stratiform echoes in radar reflectivity observations using a fuzzy logic algorithm. Journal of Geophysical Research Atmospheres, 118(4), 1896–1905. https://doi.org/10.1002/jgrd.50214spa
dc.relation.referencesZadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-Xspa
dc.relation.referencesZhang, G. (2019). Weather Radar Polarimetry (CRC Press, Ed.; 1st ed.).spa
dc.relation.referencesZhang, J. (2011). Radar Quality Index (RQI)-A combined measure of beam blockage and VPR effects in a national network Probabilistic Precipitation Estimates View project. https://www.researchgate.net/publication/268061344spa
dc.relation.referencesZhang, Y., Liu, L., Wen, H., Yu, B., Wang, H., & Zhang, Y. (2022). Combined Radar Quality Index for Quantitative Precipitation Estimation of Heavy Rainfall Events. Remote Sensing, 14(13). https://doi.org/10.3390/rs14133154spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.proposalRadarspa
dc.subject.proposalBloqueosspa
dc.subject.proposalEstimación Cuantitativa de Precipitaciónspa
dc.subject.proposalÍndice de Calidad del Radarspa
dc.subject.proposalPluviógrafospa
dc.subject.proposalClutteringeng
dc.subject.proposalQuantitative Precipitation Estimationeng
dc.subject.proposalRadar Quality Indexeng
dc.subject.proposalRain Gaugeeng
dc.subject.unescoControl meteorológicospa
dc.subject.unescoWeather modificationeng
dc.subject.unescoRadarspa
dc.subject.unescoRadareng
dc.titleEvaluación de la incidencia de bloqueos en la estimación cuantitativa de precipitación presente en el radar meteorológico de Barrancabermejaspa
dc.title.translatedEvaluation of the incidence of clutter in the quantitative estimation of rainfall present in the Barrancabermeja meteorological radareng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1018493841.2023.pdf
Tamaño:
8.92 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría - Ingeniería de Recursos Hidráulicos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: