Regularized Gaussian functional connectivity network with Post-Hoc interpretation for improved EEG-based motor imagery-BCI classification

dc.contributor.advisorÁlvarez Meza, Andrés Marino
dc.contributor.advisorCastellanos Domínguez, César Germán
dc.contributor.authorGarcia Murillo, Daniel Guillermo
dc.contributor.googlescholarDG García-Murillospa
dc.contributor.researchgroupGrupo de Control y Procesamiento Digital de Señalesspa
dc.date.accessioned2024-10-09T16:37:13Z
dc.date.available2024-10-09T16:37:13Z
dc.date.issued2024
dc.descriptiongraficas, ilustraciones, tablasspa
dc.description.abstractConditions such as amyotrophic lateral sclerosis, brain strokes, and spinal injuries can cause significant disruptions in the brain's communication pathways, affecting voluntary muscle control and interactions with one's environment. Brain-computer interfaces (BCIs) are computer-based systems utilized to address these challenges; they interpret brain signals and have seen extensive applications in medical technology, rehabilitation, and entertainment industries. Particularly in BCI studies, motor imagery (MI), a widely researched paradigm, holds the potential for reviving motor functionality. Integrating MI-BCIs with skilled therapists has yielded positive outcomes in sensory and motor rehabilitation processes, proving to be beneficial for individuals with neurological disorders. Additionally, MI-BCI systems are not limited to clinical applications; they also find relevance in non-clinical settings like virtual reality, gaming, and skill acquisition. Brain signals in MI-BCI systems are often analyzed using electroencephalography (EEG), which is advantageous due to its high temporal resolution, affordability, and portability. These features make it a viable method for capturing short-evolving events and temporal neuronal activity patterns. Nonetheless, decoding EEG signals is complex due to their high sampling rate and the high number of electrodes involved, which results in an overwhelming amount of data points. Several promising methodologies, leveraging the concept of event-related synchronization (ERS) and event-related desynchronization (ERD), have been developed to ease the extraction of relevant features for decoding EEG into sensorimotor rhythm (SMR) patterns. While noteworthy, single-channel features tend to oversimplify overall phenomena since they need to consider the interactions of different brain regions. Considering the complex activations and communications within multiple brain areas during the execution or imagination of simple motor tasks, multi-channel feature extraction approaches are more accurate. For instance, the Common Spatial Patterns (CSP) method has demonstrated its significance in MI-BCI, promoting the extraction of highly discriminative features by maximizing the separability of SMR features. Brain connectivity (BC), a key determinant in this approach, describes interactions within and between brain regions and correlates to synchronization mechanisms within oscillatory modulations. BC can be divided into structural/anatomical connectivity (SC), effective connectivity (EC), and functional connectivity (FC), each with distinct characteristics. SC focuses on physical connections and is context-independent, while EC and FC, suitable for EEG-based MI-BCI systems, decode fast-evolving cognitive states where FC is particularly suited to MI-BCI applications due to its simplicity, low computational demands, and lack of rigid prior assumptions. This thesis addresses three prevailing challenges experienced with FC EEG-based MI-BCI systems. Firstly, performance deficits in MI classification tasks are often a result of high noise levels present in EEG signals. Secondly, relying on expert knowledge for feature extraction often presents a barrier. Lastly, there is a necessity for increased transparency within these models. The study delivers key contributions toward a single-trial FC in MI-BCI systems in response to these challenges. This improvement is achieved by utilizing a novel approach grounded on the kernel cross-spectral approximation afforded by extending Bochner's theorem. This new single-trial kernel cross-spectral (KCS) FC estimator tackles noise issues, spurious connections, and inter-subject variability, significantly improving accuracy. Moreover, an end-to-end approach, KCS-FCnet, has been conceptualized to enhance automatic EEG representation for MI-BCI. This approach is pivotal in reducing artifacts and accurately identifying relevant connections. In addition, it assists in the extraction of critical spectral, temporal, and spatial EEG representations. Acknowledging the necessity for model transparency, this study proposed a strategy for improving model transparency and interpretability, named interpretable regularized KCS-FCnet (IRKCS-FCnet). Capitalizing on the potential of regularization, the model's interpretability is strengthened by minimizing nonrelevant connections. This is further made possible by maximizing the cross-information potential using Renyi's entropy measured at $\alpha=2$, alongside a cross-entropy function. To supplement these enhancements, Layer-CAM and last layer weight strategies have been employed to provide both post-hoc and intrinsic interpretability, respectively. The average drop concept further supports these strategies, enhancing the system's transparency and understanding. The results show that the proposed KCS-FC achieves higher performance accuracy than classical FC estimators and has competitive accuracy against more complex FC-based strategies, reaching the second place in DBI\footnote{BCI2a~\url{http://www.bbci.de/competition/iv/index.html}} with an accuracy of $81.92\%$ and first place with $74.12\%$ in DBIII\footnote{Giga Motor Imager~\url{http://gigadb.org/dataset/100295}}, both binary motor imagery classification tasks. Moreover, the KCS-FCnet shows $76.4\%$ on DBIII while keeping the architecture with $4245$ trainable parameters, making it the highest against the compared DL models. Lastly, the IRKCS-FCnet shows better performance, increasing $2$ percentage points for low-performing individuals, and showed better localization and interpretations, demonstrating that when removing $5\%$ of the most important features, the average accuracy drop score goes to $22.46$, $5$ percentage points higher than the version without the regularization. Furthermore, the contralateral pattern can be seen in the topoplot interpretation for both the right and left hand. This study opens the path for using more FC estimators within DL frameworks, and future work can extend and improve some of the existing issues, for instance, including multivariate measuring strategies and not relying only on pairwise measures, as well as implementing a time-lag method to reduce the impact of volume conduction problems. Finally, measuring FC matrices with more appropriate distances that account for the inner links between different channels, like in the Riemann geometry, could help to better decode MI signals hindered in the intricate EEG recordings (Texto tomado de la fuente)eng
dc.description.abstractCondiciones como la esclerosis lateral amiotrófica, los derrames cerebrales y las lesiones de la médula espinal pueden causar interrupciones significativas en las vías de comunicación del cerebro, afectando el control muscular voluntario y la interacción con el entorno. Las interfaces cerebro-computadora (BCIs) son sistemas basados en computadoras que se utilizan para abordar estos desafíos; interpretan las señales cerebrales y han sido usadas en aplicaciones médicas, de rehabilitación y de entretenimiento. Particularmente en el campo de BCI, la Imaginación Motora (MI), un paradigma ampliamente investigado, posee un enorme potencial para la recuperación de la funcionalidad motora. La integración de MI-BCIs con terapeutas especializados ha dado resultados positivos en los procesos de rehabilitación sensorial y motora, demostrando ser beneficioso para las personas con trastornos neurológicos. Sin embargo, los sistemas MI-BCI no se limitan a aplicaciones clínicas; también son de gran relevancia en entornos no clínicos como la realidad virtual, los juegos y la adquisición de habilidades motoras. Usualmente, las señales cerebrales en los sistemas MI-BCI \changes{son} recolectada usando electroencefalografía (EEG) debido a su alta resolución temporal, asequibilidad y portabilidad. Estas características lo convierten en un método viable para capturar eventos de corta duración y patrones de actividad neuronal temporal. No obstante, la decodificación de las señales de EEG es compleja debido a su alta tasa de muestreo y al elevado número de electrodos involucrados, lo que resulta en una cantidad abrumadora de datos. Varias metodologías prometedoras, aprovechando el concepto de sincronización relacionada de eventos (ERS) y desincronización relacionada de eventos (ERD), se han desarrollado para facilitar la extracción de características pertinentes y así decodificar EEG en patrones del area sensoriomotora (SMR). Aunque son importantes, las características de un solo canal tienden a simplificar demasiado los fenómenos generales ya que no consideran las interacciones de las distintas regiones cerebrales. Teniendo en cuenta las activaciones y comunicaciones complejas dentro de varias áreas cerebrales durante la ejecución o la imaginación de tareas motoras sencillas, los enfoques de extracción de características de múltiples canales son más precisos. Por ejemplo, el método de Patrones Espaciales Comunes (CSP) ha demostrado su importancia en MI-BCI, promoviendo la extracción de características altamente discriminativas al maximizar la separabilidad de las características SMR. La conectividad cerebral (BC), un factor clave en estos enfoques, describe las interacciones dentro y entre las regiones cerebrales y se correlaciona con los mecanismos de sincronización dentro de las modulaciones oscilatorias. BC se puede dividir en conectividad estructural/anatómica (SC), conectividad efectiva (EC) y conectividad funcional (FC), cada una con características distintas. SC se centra en conexiones físicas y es independiente del contexto, mientras que EC y FC, adecuados para sistemas MI-BCI basados en EEG, decodifican estados cognitivos de evolución rápida donde FC es particularmente adecuado para aplicaciones de MI-BCI debido a su simplicidad, baja demanda computacional y falta de supuestos previos rígidos. Esta tesis aborda tres desafíos predominantes en los sistemas MI-BCI basados en FC EEG. En primer lugar, los déficits de rendimiento en las tareas de clasificación de MI son a menudo producto de los altos niveles de ruido presentes en las señales de EEG. En segundo lugar, depender del conocimiento experto para la extracción de características a menudo presenta una barrera. Por último, existe una necesidad de mayor transparencia de dichos modelos. El estudio aporta contribuciones hacia \changes{las FC single-trial} en los sistemas MI-BCI en respuesta a estos desafíos. Esta mejora se logra utilizando un enfoque novedoso basado en la aproximación espectral de kernel cruzado proporcionada por la extensión del teorema de Bochner. Este nuevo estimador de FC de kernel cruzado espectral (KCS) aborda problemas de ruido, conexiones espurias y variabilidad inter-sujeto, mejorando significativamente la precisión. Además, se ha conceptualizado un enfoque end-to-end, KCS-FCnet, para mejorar la representación automática del EEG para MI-BCI. Este enfoque es fundamental para reducir los artefactos e identificar con precisión las conexiones relevantes. Además, ayuda en la extracción de características espectrales, temporales y espaciales del EEG. Reconociendo la necesidad de transparencia del modelo, este estudio propuso una estrategia para mejorar la transparencia e interpretabilidad del modelo, denominada KCS-FCnet regularizada e interpretable (IRKCS-FCnet). Capitalizando el potencial de la regularización, la interpretabilidad del modelo se fortalece minimizando las conexiones no relevantes. Esto se realiza maximizando el potencial de información cruzada utilizando la entropía de Renyi medida en $\alpha=2$, junto con una función de entropía cruzada. Para complementar estas mejoras, se han empleado las estrategias de pesos en la última capa y Layer-CAM para proporcionar interpretabilidad intrínseca y post-hoc, respectivamente. El concepto de caída promedio respalda aún más esta estrategia, mejorando la transparencia y la comprensión del sistema. Los resultados muestran que el KCS-FC propuesto logra un incremento en el rendimiento que los estimadores clásicos de FC y tiene una precisión competitiva contra estrategias más complejas basadas en FC, alcanzando el segundo lugar en DBI\footnote{BCI2a~\url{http://www.bbci.de/competition/iv/index.html}} con una precisión del $81.92\%$ y el primer lugar con $74.12\%$ en DBIII\footnote{Giga Motor Imagery~\url{http://gigadb.org/dataset/100295}}, ambas tareas de clasificación binaria de MI. Además, el KCS-FCnet muestra un rendimiento $76.4\%$ en DBIII manteniendo la arquitectura con $4245$ parámetros entrenables, lo que lo convierte en el mejor en comparación con los modelos DL comparados. Por último, el IRKCS-FCnet muestra un mejor rendimiento, aumentando $2$ puntos porcentuales para individuos con bajo rendimiento, y muestra una mejor localización e interpretaciones, demostrando que al eliminar el $5\%$ de las características más importantes, la puntuación promedio de caída de precisión cae $22.46$, $5$ puntos porcentuales más alta que la versión sin regularización. Además, se puede ver el patrón contralateral en la interpretación de topoplot para ambas manos, la derecha y la izquierda. Este estudio abre el camino para usar más estimadores de FC dentro de los marcos de DL, y los trabajos futuros pueden extender y mejorar algunos de los problemas existentes, por ejemplo, incluyendo estrategias de medición multivariante y no dependiendo solo de medidas por pares, así como implementar un método de tiempo de retraso para reducir el impacto de los problemas de conducción de volumen. Finalmente, medir las matrices de FC con distancias más apropiadas que tengan en cuenta los enlaces internos entre diferentes canales, como en la geometría de Riemann, podría ayudar a decodificar mejor las señales de MI escondidas en las intrincadas grabaciones de EEG.spa
dc.description.curricularareaEléctrica, Electrónica, Automatización Y Telecomunicaciones.Sede Manizalesspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.researchareaDeep learningspa
dc.description.sponsorship“Alianza científica con enfoque comunitario para mitigar brechas de atención y manejo de trastornos mentales y epilepsia en Colombia (ACEMATE).” (Code 111091991908, Hermes Code 56118 ) funded by MINCIENCIAS, and “ Sistema de visión artificial para el monitoreo y seguimiento de efectos analgésicos y anestésicos administrados vía neuroaxial epidural en población obstétrica durante labores de parto para el fortalecimiento de servicios de salud materna del Hospital Universitario de Caldas - SES HUC.” (Hermes Code 57661 ), funded by Universidad Nacional de Colombia.spa
dc.format.extent134 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86921
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.facultyFacultad de Ingeniería y Arquitecturaspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Automáticaspa
dc.relation.references[Abdulkarim & Al-Faiz, 2021] Abdulkarim, H. & Al-Faiz, M. Z.: , 2021; Online multiclass EEG feature extraction and recognition using modified convolutional neural network method; International Journal of Electrical and Computer Engineering (IJECE); 11 (5): 4016–4026.spa
dc.relation.references[Abhang et al., 2016] Abhang, P. A.; Gawali, B. W. & Mehrotra, S. C.: , 2016; Chapter 3 - technical aspects of brain rhythms and speech parameters; en Introduction to EEG- and Speech-Based Emotion Recognition (Editado por Abhang, P. A.; Gawali, B. W. & Mehrotra, S. C.); Academic Press; ISBN 978-0-12-804490-2; págs. 51–79; doi:https://doi.org/10.1016/ B978-0-12-804490-2.00003-8; URL https://www.sciencedirect.com/science/article/pii/B9780128044902000038.spa
dc.relation.references[Abiri et al., 2019] Abiri, R.; Borhani, S.; Sellers, E. W.; Jiang, Y. & Zhao, X.: , 2019; A comprehensive review of EEG-based brain–computer interface paradigms; Journal of Neural Engineering; 16 (1): 011001.spa
dc.relation.references[Ahani et al., 2014] Ahani, A.; Wahbeh, H.; Nezamfar, H.; Miller, M.; Erdogmus, D. & Oken, B.: , 2014; Quantitative change of EEG and respiration signals during mindfulness meditation; Journal of neuroengineering and rehabilitation; 11 (1): 1–11.spa
dc.relation.references[Ahirwal et al., 2014] Ahirwal, M. K.; Kumar, A. & Singh, G. K.: , 2014; Adaptive filtering of EEG/ERP through bounded range artificial bee colony (BR-ABC) algorithm; Digital Signal Processing; 25: 164–172.spa
dc.relation.references[Ahn et al., 2014] Ahn, M.; Lee, M.; Choi, J. & Jun, S. C.: , 2014; A review of brain-computer interface games and an opinion survey from researchers, developers and users; Sensors; 14 (8): 14601–14633.spa
dc.relation.references[Ai et al., 2019] Ai, Q.; Chen, A.; Chen, K.; Liu, Q.; Zhou, T.; Xin, S. & Ji, Z.: , 2019; Feature extraction of four-class motor imagery EEG signals based on functional brain network; Journal of Neural Engineering; 16 (2): 026032.spa
dc.relation.references[Akella et al., 2021] Akella, A.; Singh, A. K.; Leong, D.; Lal, S.; Newton, P.; Clifton-Bligh, R.; Mclachlan, C. S.; Gustin, S. M.; Maharaj, S.; Lees, T. et al.: , 2021; Classifying multi-level stress responses from brain cortical EEG in nurses and non-health professionals using machine learning auto encoder; IEEE Journal of Translational Engineering in Health and Medicine; 9: 1–9.spa
dc.relation.references[Akuthota et al., 2023] Akuthota, S.; Rajkumar, K. & Ravichander, J.: , 2023; Eeg based motor imagery bci using four class iterative filtering & four class filter bank common spatial pattern; en 2023 International Conference on Advances in Electronics, Communication, Computing and Intelligent Information Systems (ICAECIS); IEEE; págs. 429–434.spa
dc.relation.references[Al-Fahad et al., 2020] Al-Fahad, R.; Yeasin, M. & Bidelman, G. M.: , 2020; Decoding of single-trial EEG reveals unique states of functional brain connectivity that drive rapid speech categorization decisions; Journal of Neural Engineering; 17 (1): 016045.spa
dc.relation.references[Al-Nafjan et al., 2017] Al-Nafjan, A.; Hosny, M.; Al-Ohali, Y. & Al-Wabil, A.: , 2017; Review and classification of emotion recognition based on EEG brain-computer interface system research: a systematic review; Applied Sciences; 7 (12): 1239.spa
dc.relation.references[Al Nazi et al., 2021] Al Nazi, Z.; Hossain, A. A. & Islam, M. M.: , 2021; Motor imagery EEG classification using random subspace ensemble network with variable length features; International Journal Bioautomation; 25 (1): 13.spa
dc.relation.references[Al-Saegh et al., 2021] Al-Saegh, A.; Dawwd, S. A. & Abdul-Jabbar, J. M.: , 2021; Deep learning for motor imagery EEG-based classification: A review; Biomedical Signal Processing and Control; 63: 102172.spa
dc.relation.references[Al-Shargie et al., 2020] Al-Shargie, F. M.; Hassanin, O.; Tariq, U. & Al-Nashash, H.: , 2020; EEG-based semantic vigilance level classification using directed connectivity patterns and graph theory analysis; IEEE Access; 8: 115941–115956.spa
dc.relation.references[Alazrai et al., 2019] Alazrai, R.; Abuhijleh, M.; Alwanni, H. & Daoud, M. I.: , 2019; A deep learning framework for decoding motor imagery tasks of the same hand using eeg signals; IEEE Access; 7: 109612–109627.spa
dc.relation.references[Aldayel et al., 2020] Aldayel, M.; Ykhlef, M. & Al-Nafjan, A.: , 2020; Deep learning for EEG-based preference classification in neuromarketing; Applied Sciences; 10 (4): 1525.spa
dc.relation.references[Ali et al., 2018] Ali, H. T.; Kammoun, A. & Couillet, R.: , 2018; Random matrix-improved kernels for large dimensional spectral clustering; en 2018 IEEE Statistical Signal Processing Workshop (SSP); IEEE; págs. 453–457.spa
dc.relation.references[Alizadeh et al., 2023] Alizadeh, N.; Afrakhteh, S. & Mosavi, M.: , 2023; Multi-task eeg signal classification using correlation-based imf selection and multi-class csp; IEEE Access.spa
dc.relation.references[Alsharif et al., 2020] Alsharif, A.; Salleh, N.; Baharun, R. & Safaei, M.: , 2020; Neuromarketing approach: An overview and future research directions; Journal of Theoretical and Applied Information Technology; 98 (7): 991–1001.spa
dc.relation.references[Altaheri et al., 2023] Altaheri, H.; Muhammad, G.; Alsulaiman, M.; Amin, S. U.; Altuwaijri, G. A.; Abdul, W.; Bencherif, M. A. & Faisal, M.: , 2023; Deep learning techniques for classification of electroencephalogram (eeg) motor imagery (mi) signals: A review; Neural Computing and Applications; 35 (20): 14681–14722.spa
dc.relation.references[Álvarez-Meza et al., 2014a] Álvarez-Meza, A.; Cárdenas-Peña, D. & Castellanos-Dominguez, G.: , 2014a; Unsupervised kernel function building using maximization of information potential variability; en Iberoamerican Congress on Pattern Recognition; Springer; págs. 335–342.spa
dc.relation.references[Alvarez-Meza et al., 2017] Alvarez-Meza, A.; Orozco-Gutierrez, A. & Castellanos-Dominguez, G.: , 2017; Kernel-based relevance analysis with enhanced interpretability for detection of brain activity patterns; Frontiers in neuroscience; 11: 550.spa
dc.relation.references[Álvarez-Meza et al., 2014b] Álvarez-Meza, A. M.; Cárdenas-Pena, D. & Castellanos-Dominguez, G.: , 2014b; Unsupervised kernel function building using maximization of information potential variability; en Iberoamerican Congress on Pattern Recognition; Springer; págs. 335–342.spa
dc.relation.references[Alwasiti et al., 2020] Alwasiti, H.; Yusoff, M. Z. & Raza, K.: , 2020; Motor imagery classification for brain computer interface using deep metric learning; IEEE Access; 8: 109949–109963.spa
dc.relation.references[Amin et al., 2019] Amin, S. U.; Alsulaiman, M.; Muhammad, G.; Mekhtiche, M. A. & Hossain, M. S.: , 2019; Deep learning for eeg motor imagery classification based on multi-layer cnns feature fusion; Future Generation computer systems; 101: 542–554.spa
dc.relation.references[Amir et al., 2020] Amir, J.; Amir, R.; Ednaldo Birgante, P. & Md Kafiul, I.: , 2020; Classification of emotions induced by horror and relaxing movies using single-channel EEG recordings.spa
dc.relation.references[Ang et al., 2008] Ang, K. K.; Chin, Z. Y.; Zhang, H. & Guan, C.: , 2008; Filter bank common spatial pattern (fbcsp) in brain- computer interface; en 2008 IEEE international joint conference on neural networks (IEEE world congress on computational intelligence); IEEE; págs. 2390–2397.spa
dc.relation.references[Anowar et al., 2021] Anowar, F.; Sadaoui, S. & Selim, B.: , 2021; Conceptual and empirical comparison of dimensionality reduction algorithms (PCA, KPCA, LDA, MDS, SVD, LLE, ISOMAP, LE, ICA, t-SNE); Computer Science Review ; 40: 100378.spa
dc.relation.references[Antonakakis et al., 2020] Antonakakis, M.; Schrader, S.; Aydin, Ü.; Khan, A.; Gross, J.; Zervakis, M.; Rampp, S. & Wolters, C. H.: , 2020; Inter-subject variability of skull conductivity and thickness in calibrated realistic head models; Neuroimage; 223: 117353.spa
dc.relation.references[Anupallavi & MohanBabu, 2020] Anupallavi, S. & MohanBabu, G.: , 2020; A novel approach based on BSPCI for quantifying functional connectivity pattern of the brain’s region for the classification of epileptic seizure; Journal of Ambient Intelligence and Humanized Computing: 1–11.spa
dc.relation.references[Apicella et al., 2021] Apicella, A.; Arpaia, P.; Frosolone, M. & Moccaldi, N.: , 2021; High-wearable EEG-based distraction detection in motor rehabilitation; Scientific Reports; 11 (1): 1–9.spa
dc.relation.references[Apicella et al., 2022] Apicella, A.; Isgrò, F.; Pollastro, A. & Prevete, R.: , 2022; Toward the application of xai methods in eeg-based systems; arXiv preprint arXiv:2210.06554.spa
dc.relation.references[Arrieta et al., 2020] Arrieta, A. B.; Díaz-Rodríguez, N.; Del Ser, J.; Bennetot, A.; Tabik, S.; Barbado, A.; García, S.; Gil-López, S.; Molina, D.; Benjamins, R. et al.: , 2020; Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities and challenges toward responsible ai; Information fusion; 58: 82–115.spa
dc.relation.references[Arvaneh et al., 2011] Arvaneh, M.; Guan, C.; Ang, K. K. & Quek, C.: , 2011; Optimizing the channel selection and classification accuracy in EEG-based BCI; IEEE Transactions on Biomedical Engineering; 58 (6): 1865–1873.spa
dc.relation.references[Bakhshali et al., 2020] Bakhshali, M.; Khademi, M.; Ebrahimi, A. & Moghimi, S.: , 2020; Eeg signal classification of imagined speech based on riemannian distance of correntropy spectral density; Biomedical Signal Processing and Control; 59: 101899.spa
dc.relation.references[Bakhshayesh et al., 2019] Bakhshayesh, H.; Fitzgibbon, S. P.; Janani, A. S.; Grummett, T. S. & Pope, K. J.: , 2019; Detecting synchrony in eeg: A comparative study of functional connectivity measures; Computers in biology and medicine; 105: 1–15spa
dc.relation.references[Bang & Lee, 2022] Bang, J.-S. & Lee, S.-W.: , 2022; Interpretable convolutional neural networks for subject-independent motor imagery classification; en 2022 10th International Winter Conference on Brain-Computer Interface (BCI); IEEE; págs. 1–5.spa
dc.relation.references[Baniqued et al., 2021] Baniqued, P. D. E.; Stanyer, E. C.; Awais, M.; Alazmani, A.; Jackson, A. E.; Mon-Williams, M. A.; Mushtaq, F. & Holt, R. J.: , 2021; Brain–computer interface robotics for hand rehabilitation after stroke: a systematic review; Journal of NeuroEngineering and Rehabilitation; 18 (1): 1–25.spa
dc.relation.references[Barachant et al., 2013] Barachant, A.; Bonnet, S.; Congedo, M. & Jutten, C.: , 2013; Classification of covariance matrices using a riemannian-based kernel for BCI applications; Neurocomputing; 112: 172–178.spa
dc.relation.references[Barios et al., 2019] Barios, J. A.; Ezquerro, S.; Bertomeu-Motos, A.; Nann, M.; Badesa, F. J.; Fernandez, E.; Soekadar, S. R. & Garcia-Aracil, N.: , 2019; Synchronization of slow cortical rhythms during motor imagery-based brain–machine interface control; International journal of neural systems; 29 (05): 1850045.spa
dc.relation.references[Bastos & Schoffelen, 2016] Bastos, A. M. & Schoffelen, J.-M.: , 2016; A tutorial review of functional connectivity analysis methods and their interpretational pitfalls; Frontiers in systems neuroscience; 9: 175.spa
dc.relation.references[Batres-Mendoza et al., 2016] Batres-Mendoza, P.; Montoro-Sanjose, C. R.; Guerra-Hernandez, E. I.; Almanza-Ojeda, D. L.; Rostro-Gonzalez, H.; Romero-Troncoso, R. J. & Ibarra-Manzano, M. A.: , 2016; Quaternion-based signal analysis for motor imagery classification from electroencephalographic signals; Sensors; 16 (3): 336.spa
dc.relation.references[Battaglia & Brovelli, 2020] Battaglia, D. & Brovelli, A.: , 2020; Functional connectivity and neuronal dynamics: insights from computational methods; The Cognitive Neurosciences.spa
dc.relation.references[Belwafi et al., 2020] Belwafi, K.; Gannouni, S. & Aboalsamh, H.: , 2020; An effective zeros-time windowing strategy to detect sensorimotor rhythms related to motor imagery eeg signals; IEEE Access; 8: 152669–152679.spa
dc.relation.references[Benzy et al., 2020] Benzy, V.; Vinod, A.; Subasree, R.; Alladi, S. & Raghavendra, K.: , 2020; Motor imagery hand movement direction decoding using brain computer interface to aid stroke recovery and rehabilitation; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 28 (12): 3051–3062.spa
dc.relation.references[Betzel et al., 2019] Betzel, R. F.; Bertolero, M. A.; Gordon, E. M.; Gratton, C.; Dosenbach, N. U. & Bassett, D. S.: , 2019; The community structure of functional brain networks exhibits scale-specific patterns of inter-and intra-subject variability; Neuroimage; 202: 115990.spa
dc.relation.references[Billinger et al., 2013] Billinger, M.; Brunner, C. & Müller-Putz, G. R.: , 2013; Single-trial connectivity estimation for classification of motor imagery data; Journal of neural engineering; 10 (4): 046006.spa
dc.relation.references[Bishop, 2006] Bishop, C. M.: , 2006; Pattern recognition and machine learning; springer.spa
dc.relation.references[Bochner, 2020] Bochner, S.: , 2020; Harmonic analysis and the theory of probability; University of California press.spa
dc.relation.references[Bonci et al., 2021] Bonci, A.; Fiori, S.; Higashi, H.; Tanaka, T. & Verdini, F.: , 2021; An introductory tutorial on brain–computer interfaces and their applications; Electronics; 10 (5): 560.spa
dc.relation.references[Borra et al., 2019] Borra, D.; Fantozzi, S. & Magosso, E.: , 2019; Eeg motor execution decoding via interpretable sinc-convolutional neural networks; en Mediterranean Conference on Medical and Biological Engineering and Computing; Springer; págs. 1113– 1122.spa
dc.relation.references[Borra et al., 2020] Borra, D.; Fantozzi, S. & Magosso, E.: , 2020; Interpretable and lightweight convolutional neural network for EEG decoding: application to movement execution and imagination; Neural Networks; 129: 55–74.spa
dc.relation.references[Braga-Neto & Dougherty, 2004] Braga-Neto, U. M. & Dougherty, E. R.: , 2004; Is cross-validation valid for small-sample microarray classification?; Bioinformatics; 20 (3): 374–380.spa
dc.relation.references[Bramhall et al., 2020] Bramhall, S.; Horn, H.; Tieu, M. & Lohia, N.: , 2020; Qlime-a quadratic local interpretable model-agnostic explanation approach; SMU Data Science Review ; 3 (1): 4.spa
dc.relation.references[Brockmeier et al., 2014] Brockmeier, A.; Choi, J.; Kriminger, E.; Francis, J. & Principe, J.: , 2014; Neural decoding with kernel-based metric learning; Neural computation; 26 (6): 1080–1107.spa
dc.relation.references[Bromiley et al., 2004] Bromiley, P.; Thacker, N. & Bouhova-Thacker, E.: , 2004; Shannon entropy, renyi entropy, and information; statistics and inf; Series (2004-004).spa
dc.relation.references[Brunner et al., 2008] Brunner, C.; Leeb, R.; Müller-Putz, G.; Schlögl, A. & Pfurtscheller, G.: , 2008; Bci competition 2008–graz data set a; Institute for Knowledge Discovery (Laboratory of Brain-Computer Interfaces), Graz University of Technology; 16: 1–6.spa
dc.relation.references[Brunner et al., 2015] Brunner, C.; Birbaumer, N.; Blankertz, B.; Guger, C.; Kübler, A.; Mattia, D.; Millán, J. d. R.; Miralles, F.; Nijholt, A.; Opisso, E. et al.: , 2015; Bnci horizon 2020: towards a roadmap for the bci community; Brain- computer interfaces; 2 (1): 1–10.spa
dc.relation.references[Brusini et al., 2021] Brusini, L.; Stival, F.; Setti, F.; Menegatti, E.; Menegaz, G. & Storti, S. F.: , 2021; A systematic review on motor-imagery brain-connectivity-based computer interfaces; IEEE Transactions on Human-Machine Systems; 51 (6): 725–733.spa
dc.relation.references[Buchanan et al., 2021] Buchanan, D. M.; Ros, T. & Nahas, R.: , 2021; Elevated and slowed EEG oscillations in patients with post-concussive syndrome and chronic pain following a motor vehicle collision; Brain Sciences; 11 (5): 537.spa
dc.relation.references[Bullmore & Sporns, 2009] Bullmore, E. & Sporns, O.: , 2009; Complex brain networks: graph theoretical analysis of structural and functional systems; Nature reviews neuroscience; 10 (3): 186–198.spa
dc.relation.references[Cai et al., 2021] Cai, Q.; Gong, W.; Deng, Y. & Wang, H.: , 2021; Single-trial EEG classification via common spatial patterns with mixed lp-and lq-norms; Mathematical Problems in Engineering; 2021.spa
dc.relation.references[Caicedo-Acosta et al., 2021] Caicedo-Acosta, J.; Castaño, G. A.; Acosta-Medina, C.; Alvarez-Meza, A. & Castellanos- Dominguez, G.: , 2021; Deep neural regression prediction of motor imagery skills using EEG functional connectivity indicators; Sensors; 21 (6): 1932.spa
dc.relation.references[Cao et al., 2022a] Cao, J.; Zhao, Y.; Shan, X.; Wei, H.-l.; Guo, Y.; Chen, L.; Erkoyuncu, J. A. & Sarrigiannis, P. G.: , 2022a; Brain functional and effective connectivity based on electroencephalography recordings: A review; Human brain mapping; 43 (2): 860–879.spa
dc.relation.references[Cao et al., 2022b] Cao, L.; Wang, W.; Huang, C.; Xu, Z.; Wang, H.; Jia, J.; Chen, S.; Dong, Y.; Fan, C. & de Albuquerque, V. H. C.: , 2022b; An effective fusing approach by combining connectivity network pattern and temporal-spatial analysis for eeg-based bci rehabilitation; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 30: 2264–2274.spa
dc.relation.references[Cárdenas-Peña et al., 2017] Cárdenas-Peña, D.; Collazos-Huertas, D. & Castellanos-Dominguez, G.: , 2017; Enhanced data representation by kernel metric learning for dementia diagnosis; Frontiers in neuroscience; 11: 413.spa
dc.relation.references[Carrara & Papadopoulo, 2023] Carrara, I. & Papadopoulo, T.: , 2023; Classification of bci-eeg based on augmented covariance matrix; arXiv preprint arXiv:2302.04508.spa
dc.relation.references[Casimo et al., 2017] Casimo, K.; Weaver, K. E.; Wander, J. & Ojemann, J. G.: , 2017; Bci use and its relation to adaptation in cortical networks; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 25 (10): 1697–1704.spa
dc.relation.references[Cattai et al., 2021] Cattai, T.; Colonnese, S.; Corsi, M.-C.; Bassett, D. S.; Scarano, G. & Fallani, F. D. V.: , 2021; Phase/amplitude synchronization of brain signals during motor imagery bci tasks; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 29: 1168–1177.spa
dc.relation.references[Cattan et al., 2018] Cattan, G.; Mendoza, C.; Andreev, A. & Congedo, M.: , 2018; Recommendations for integrating a p300-based brain computer interface in virtual reality environments for gaming; Computers; 7 (2): 34.spa
dc.relation.references[Chaddad et al., 2023] Chaddad, A.; Peng, J.; Xu, J. & Bouridane, A.: , 2023; Survey of explainable ai techniques in healthcare; Sensors; 23 (2): 634.spa
dc.relation.references[Chakraborty et al., 2017] Chakraborty, S.; Tomsett, R.; Raghavendra, R.; Harborne, D.; Alzantot, M.; Cerutti, F.; Srivastava, M.; Preece, A.; Julier, S.; Rao, R. M. et al.: , 2017; Interpretability of deep learning models: A sur- vey of results; en 2017 IEEE smartworld, ubiquitous intelligence & computing, advanced & trusted computed, scalable computing & communications, cloud & big data computing, Internet of people and smart city innovation (smartworld/SCAL- COM/UIC/ATC/CBDcom/IOP/SCI); IEEE; págs. 1–6.spa
dc.relation.references[Chamola et al., 2020] Chamola, V.; Vineet, A.; Nayyar, A. & Hossain, E.: , 2020; Brain-computer interface-based humanoid control: A review; Sensors; 20 (13): 3620.spa
dc.relation.references[Chao & Liu, 2020] Chao, H. & Liu, Y.: , 2020; Emotion recognition from multi-channel EEG signals by exploiting the deep belief-conditional random field framework; IEEE Access; 8: 33002–33012.spa
dc.relation.references[Chattopadhay et al., 2018] Chattopadhay, A.; Sarkar, A.; Howlader, P. & Balasubramanian, V. N.: , 2018; Grad-cam++: Generalized gradient-based visual explanations for deep convolutional networks; en 2018 IEEE winter conference on applications of computer vision (WACV); IEEE; págs. 839–847.spa
dc.relation.references[Chen et al., 2020] Chen, Y.; Hang, W.; Liang, S.; Liu, X.; Li, G.; Wang, Q.; Qin, J. & Choi, K.-S.: , 2020; A novel transfer support matrix machine for motor imagery-based brain computer interface; Frontiers in Neuroscience; 14.spa
dc.relation.references[Chen et al., 2021] Chen, Y. Y.; Lambert, K. J.; Madan, C. R. & Singhal, A.: , 2021; Mu oscillations and motor imagery performance: A reflection of intra-individual success, not inter-individual ability; Human Movement Science; 78: 102819.spa
dc.relation.references[Chen et al., 2019] Chen, Z.; Ji, J. & Liang, Y.: , 2019; Convolutional neural network with an element-wise filter to classify dynamic functional connectivity; en 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM); IEEE; págs. 643–646.spa
dc.relation.references[Chevallier et al., 2024] Chevallier, S.; Carrara, I.; Aristimunha, B.; Guetschel, P.; Sedlar, S.; Lopes, B.; Velut, S.; Khazem, S. & Moreau, T.: , 2024; The largest eeg-based bci reproducibility study for open science: the moabb benchmark; arXiv preprint arXiv:2404.15319.spa
dc.relation.references[Chiarion et al., 2023] Chiarion, G.; Sparacino, L.; Antonacci, Y.; Faes, L. & Mesin, L.: , 2023; Connectivity analysis in eeg data: A tutorial review of the state of the art and emerging trends; Bioengineering; 10 (3): 372.spa
dc.relation.references[Cho et al., 2017] Cho, H.; Ahn, M.; Ahn, S.; Kwon, M. & Jun, S.: , 2017; EEG datasets for motor imagery brain–computer interface; GigaScience; 6 (7): gix034.spa
dc.relation.references[Choi & Kim, 2021] Choi, I. & Kim, W. C.: , 2021; Detecting and analyzing politically-themed stocks using text mining techniques and transfer entropy—focus on the republic of korea’s case; Entropy; 23 (6): 734.spa
dc.relation.references[Clark et al., 2020] Clark, S. V.; King, T. Z. & Turner, J. A.: , 2020; Cerebellar contributions to proactive and reactive control in the stop signal task: A systematic review and meta-analysis of functional magnetic resonance imaging studies; Neuropsychology review : 1–24.spa
dc.relation.references[Coelho et al., 2012] Coelho, G. P.; Barbante, C. C.; Boccato, L.; Attux, R. R.; Oliveira, J. R. & Von Zuben, F. J.: , 2012; Automatic feature selection for BCI: an analysis using the davies-bouldin index and extreme learning machines; en The 2012 International Joint Conference on Neural Networks (IJCNN); IEEE; págs. 1–8.spa
dc.relation.references[Cohen, 1998] Cohen, L.: , 1998; The generalization of the wiener-khinchin theorem; en Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP’98 (Cat. No. 98CH36181), tomo 3; IEEE; págs. 1577–1580.spa
dc.relation.references[Collazos-Huertas et al., 2020] Collazos-Huertas, D.; Álvarez-Meza, A.; Acosta-Medina, C.; Castaño-Duque, G. & Castellanos-Dominguez, G.: , 2020; CNN-based framework using spatial dropping for enhanced interpretation of neural activity in motor imagery classification; Brain Informatics; 7 (1): 1–13.spa
dc.relation.references[Collazos-Huertas et al., 2021] Collazos-Huertas, D. F.; Velasquez-Martinez, L. F.; Perez-Nastar, H. D.; Alvarez-Meza, A. M. & Castellanos-Dominguez, G.: , 2021; Deep and wide transfer learning with kernel matching for pooling data from electroencephalography and psychological questionnaires; Sensors; 21 (15): 5105.spa
dc.relation.references[Collazos-Huertas et al., 2023] Collazos-Huertas, D. F.; Álvarez-Meza, A. M.; Cárdenas-Peña, D. A.; Castaño-Duque, G. A. & Castellanos-Domínguez, C. G.: , 2023; Posthoc interpretability of neural responses by grouping subject motor imagery skills using cnn-based connectivity; Sensors; 23 (5): 2750.spa
dc.relation.references[Congedo et al., 2017a] Congedo, M.; Barachant, A. & Bhatia, R.: , 2017a; Riemannian geometry for EEG-based brain-computer interfaces; a primer and a review; Brain-Computer Interfaces; 4 (3): 155–174.spa
dc.relation.references[Congedo et al., 2017b] Congedo, M.; Barachant, A. & Koopaei, E. K.: , 2017b; Fixed point algorithms for estimating power means of positive definite matrices; IEEE Transactions on Signal Processing; 65 (9): 2211–2220.spa
dc.relation.references[Congedo et al., 2017c] Congedo, M.; Rodrigues, P. L. C.; Bouchard, F.; Barachant, A. & Jutten, C.: , 2017c; A closed-form unsupervised geometry-aware dimensionality reduction method in the riemannian manifold of SPD matrices; en 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); IEEE; págs. 3198–3201.spa
dc.relation.references[Craik et al., 2019] Craik, A.; He, Y. & Contreras-Vidal, J. L.: , 2019; Deep learning for electroencephalogram (EEG) classification tasks: a review; Journal of Neural Engineering; 16 (3): 031001.spa
dc.relation.references[Dai et al., 2020] Dai, H.; Su, S.; Zhang, Y. & Jian, W.: , 2020; Effect of spatial filtering and channel selection on motor imagery BCI; en Proceedings of the 2020 Conference on Artificial Intelligence and Healthcare; págs. 270–274.spa
dc.relation.references[Dai et al., 2019] Dai, M.; Zheng, D.; Na, R.; Wang, S. & Zhang, S.: , 2019; Eeg classification of motor imagery using a novel deep learning framework; Sensors; 19 (3): 551.spa
dc.relation.references[Daly et al., 2012] Daly, I.; Nasuto, S. J. & Warwick, K.: , 2012; Brain computer interface control via functional connectivity dynamics; Pattern recognition; 45 (6): 2123–2136.spa
dc.relation.references[Darvish Ghanbar et al., 2021] Darvish Ghanbar, K.; Yousefi Rezaii, T.; Farzamnia, A. & Saad, I.: , 2021; Correlation-based common spatial pattern (ccsp): A novel extension of csp for classification of motor imagery signal; Plos one; 16 (3): e0248511.spa
dc.relation.references[De La Pava Panche et al., 2019] De La Pava Panche, I.; Alvarez-Meza, A. & Orozco-Gutierrez, A.: , 2019; A data-driven measure of effective connectivity based on renyi’s α-entropy; Frontiers in neuroscience; 13: 1277.spa
dc.relation.references[Demir et al., 2022] Demir, A.; Koike-Akino, T.; Wang, Y. & Erdoğmuş, D.: , 2022; Eeg-gat: graph attention networks for classification of electroencephalogram (eeg) signals; en 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC); IEEE; págs. 30–35.spa
dc.relation.references[Deng et al., 2020] Deng, Y.; Li, Z.; Wang, H.; Lu, X. & Fan, H.: , 2020; Local temporal joint recurrence common spatial patterns for MI-based BCI; en 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), tomo 1; IEEE; págs. 813–816.spa
dc.relation.references[Desbois et al., 2021] Desbois, A.; Cattai, T.; Corsi, M.-C. & de Vico Fallani, F.: , 2021; Functional connectivity for bci: Openvibe implementation; en JJC-ICON’2021-Journée Jeunes Chercheurs en Interfaces Cerveau-Ordinateur et Neurofeedback.spa
dc.relation.references[Ding et al., 2023] Ding, X.; Yang, L. & Li, C.: , 2023; Study of mi-bci classification method based on the riemannian transform of personalized eeg spatiotemporal features; Mathematical Biosciences and Engineering; 20 (7): 12454–12471.spa
dc.relation.references[Dose et al., 2018] Dose, H.; Møller, J. S.; Iversen, H. K. & Puthusserypady, S.: , 2018; An end-to-end deep learning approach to mi-eeg signal classification for bcis; Expert Systems with Applications; 114: 532–542.spa
dc.relation.references[Duan et al., 2014] Duan, L.; Zhong, H.; Miao, J.; Yang, Z.; Ma, W. & Zhang, X.: , 2014; A voting optimized strategy based on ELM for improving classification of motor imagery BCI data; Cognitive Computation; 6 (3): 477–483.spa
dc.relation.references[Duan et al., 2020] Duan, L.; Duan, H.; Qiao, Y.; Sha, S.; Qi, S.; Zhang, X.; Huang, J.; Huang, X. & Wang, C.: , 2020; Machine learning approaches for MDD detection and emotion decoding using EEG signals; Frontiers in Human Neuroscience; 14.spa
dc.relation.references[Duan et al., 2021] Duan, S.; Yu, S. & Príncipe, J. C.: , 2021; Modularizing deep learning via pairwise learning with kernels; IEEE Transactions on Neural Networks and Learning Systems.spa
dc.relation.references[Duclos et al., 2021] Duclos, C.; Maschke, C.; Mahdid, Y.; Berkun, K.; da Silva Castanheira, J.; Tarnal, V.; Picton, P.; Vanini, G.; Golmirzaie, G.; Janke, E. et al.: , 2021; Differential classification of states of consciousness using envelope-and phase-based functional connectivity; NeuroImage; 237: 118171.spa
dc.relation.references[Eichert et al., 2021] Eichert, N.; Watkins, K. E.; Mars, R. B. & Petrides, M.: , 2021; Morphological and functional variability in central and subcentral motor cortex of the human brain; Brain Structure and Function; 226 (1): 263–279.spa
dc.relation.references[EPMoghaddam et al., 2022] EPMoghaddam, D.; Sheth, S. A.; Haneef, Z.; Gavvala, J. & Aazhang, B.: , 2022; Epileptic seizure prediction using spectral width of the covariance matrix; Journal of Neural Engineering; 19 (2): 026029.spa
dc.relation.references[Fagerholm et al., 2020] Fagerholm, E. D.; Moran, R. J.; Violante, I. R.; Leech, R. & Friston, K. J.: , 2020; Dynamic causal modelling of phase-amplitude interactions; NeuroImage; 208: 116452.spa
dc.relation.references[Fahimi et al., 2020] Fahimi, F.; Dosen, S.; Ang, K. K.; Mrachacz-Kersting, N. & Guan, C.: , 2020; Generative adversarial networks-based data augmentation for brain–computer interface; IEEE transactions on neural networks and learning systems; 32 (9): 4039–4051.spa
dc.relation.references[Fan et al., 2021] Fan, F.-L.; Xiong, J.; Li, M. & Wang, G.: , 2021; On interpretability of artificial neural networks: A survey; IEEE Transactions on Radiation and Plasma Medical Sciences; 5 (6): 741–760.spa
dc.relation.references[Fauzi et al., 2019] Fauzi, H.; Azzam, M. A.; Shapiai, M. I.; Kyoso, M.; Khairuddin, U. & Komura, T.: , 2019; Energy extraction method for EEG channel selection; Telkomnika; 17 (5): 2561–2571.spa
dc.relation.references[Feng et al., 2020] Feng, Z.; Qian, L.; Hu, H. & Sun, Y.: , 2020; Functional connectivity for motor imaginary recognition in brain-computer interface; en 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC); IEEE; págs. 3678–3682.spa
dc.relation.references[Fine & Scheinberg, 2001] Fine, S. & Scheinberg, K.: , 2001; Efficient SVM training using low-rank kernel representations; Journal of Machine Learning Research; 2 (Dec): 243–264.spa
dc.relation.references[Fogelson et al., 2013] Fogelson, N.; Li, L.; Li, Y.; Fernandez-del Olmo, M.; Santos-Garcia, D. & Peled, A.: , 2013; Functional connectivity abnormalities during contextual processing in schizophrenia and in parkinson’s disease; Brain and cognition; 82 (3): 243–253.spa
dc.relation.references[Fong & Vedaldi, 2017] Fong, R. C. & Vedaldi, A.: , 2017; Interpretable explanations of black boxes by meaningful perturbation; en Proceedings of the IEEE international conference on computer vision; págs. 3429–3437.spa
dc.relation.references[Frau-Pascual et al., 2019] Frau-Pascual, A.; Fogarty, M.; Fischl, B.; Yendiki, A.; Aganj, I.; Initiative, A. D. N. et al.: , 2019; Quantification of structural brain connectivity via a conductance model; NeuroImage; 189: 485–496.spa
dc.relation.references[Freer et al., 2019] Freer, D.; Deligianni, F. & Yang, G.-Z.: , 2019; Adaptive riemannian bci for enhanced motor imagery training protocols; en 2019 IEEE 16th International Conference on Wearable and Implantable Body Sensor Networks (BSN); IEEE; págs. 1–4.spa
dc.relation.references[Friston, 2002] Friston, K.: , 2002; Functional integration and inference in the brain; Progress in neurobiology; 68 (2): 113–143.spa
dc.relation.references[Friston et al., 2013] Friston, K.; Moran, R. & Seth, A. K.: , 2013; Analysing connectivity with granger causality and dynamic causal modelling; Current opinion in neurobiology; 23 (2): 172–178.spa
dc.relation.references[Friston, 2011] Friston, K. J.: , 2011; Functional and effective connectivity: a review; Brain connectivity; 1 (1): 13–36.spa
dc.relation.references[Frolov et al., 2019] Frolov, N.; Maksimenko, V.; Lüttjohann, A.; Koronovskii, A. & Hramov, A.: , 2019; Feed-forward artificial neural network provides data-driven inference of functional connectivity; Chaos: An Interdisciplinary Journal of Nonlinear Science; 29 (9): 091101.spa
dc.relation.references[Fu et al., 2020] Fu, R.; Han, M.; Tian, Y. & Shi, P.: , 2020; Improvement motor imagery EEG classification based on sparse common spatial pattern and regularized discriminant analysis; Journal of Neuroscience Methods; 343: 108833.spa
dc.relation.references[Ganin et al., 2013] Ganin, I. P.; Shishkin, S. L. & Kaplan, A. Y.: , 2013; A p300-based brain-computer interface with stimuli on moving objects: four-session single-trial and triple-trial tests with a game-like task design; PloS one; 8 (10): e77755.spa
dc.relation.references[Gao et al., 2024] Gao, H.; Wang, X.; Chen, Z.; Wu, M.; Cai, Z.; Zhao, L.; Li, J. & Liu, C.: , 2024; Graph convolutional network with connectivity uncertainty for eeg-based emotion recognition; IEEE Journal of Biomedical and Health Informatics.spa
dc.relation.references[Gao et al., 2022] Gao, S.; Yang, J.; Shen, T. & Jiang, W.: , 2022; A parallel feature fusion network combining gru and cnn for motor imagery eeg decoding; Brain Sciences; 12 (9): 1233.spa
dc.relation.references[Gao et al., 2021] Gao, Z.; Dang, W.; Wang, X.; Hong, X.; Hou, L.; Ma, K. & Perc, M.: , 2021; Complex networks and deep learning for EEG signal analysis; Cognitive Neurodynamics; 15 (3): 369–388.spa
dc.relation.references[García-Murillo et al., 2021] García-Murillo, D. G.; Alvarez-Meza, A. & Castellanos-Dominguez, G.: , 2021; Single-trial kernel-based functional connectivity for enhanced feature extraction in motor-related tasks; Sensors; 21 (8): 2750.spa
dc.relation.references[Garg et al., 2023] Garg, D.; Verma, G. K. & Singh, A. K.: , 2023; A review of deep learning based methods for affect analysis using physiological signals; Multimedia Tools and Applications: 1–46.spa
dc.relation.references[Gaur et al., 2021a] Gaur, P.; Gupta, H.; Chowdhury, A.; McCreadie, K.; Pachori, R. & Wang, H.: , 2021a; A sliding window common spatial pattern for enhancing motor imagery classification in eeg-bci; IEEE Transactions on Instrumentation and Measurement; 70: 1–9.spa
dc.relation.references[Gaur et al., 2021b] Gaur, P.; Gupta, H.; Chowdhury, A.; McCreadie, K.; Pachori, R. B. & Wang, H.: , 2021b; A sliding window common spatial pattern for enhancing motor imagery classification in eeg-bci; IEEE Transactions on Instrumentation and Measurement; 70: 1–9.spa
dc.relation.references[Gaur et al., 2021c] Gaur, P.; McCreadie, K.; Pachori, R. B.; Wang, H. & Prasad, G.: , 2021c; An automatic subject specific channel selection method for enhancing motor imagery classification in EEG-BCI using correlation; Biomedical Signal Processing and Control; 68: 102574.spa
dc.relation.references[Gaxiola-Tirado et al., 2017] Gaxiola-Tirado, J. A.; Salazar-Varas, R. & Gutiérrez, D.: , 2017; Using the partial directed coherence to assess functional connectivity in electroencephalography data for brain–computer interfaces; IEEE Transactions on Cognitive and Developmental Systems; 10 (3): 776–783.spa
dc.relation.references[Georgiadis et al., 2018] Georgiadis, K.; Laskaris, N.; Nikolopoulos, S. & Kompatsiaris, I.: , 2018; Exploiting the heightened phase synchrony in patients with neuromuscular disease for the establishment of efficient motor imagery bcis; Journal of neuroengineering and rehabilitation; 15 (1): 1–18.spa
dc.relation.references[Georgiadis et al., 2019] Georgiadis, K.; Laskaris, N.; Nikolopoulos, S. & Kompatsiaris, I.: , 2019; Connectivity steered graph fourier transform for motor imagery bci decoding; Journal of neural engineering; 16 (5): 056021.spa
dc.relation.references[Géron, 2022] Géron, A.: , 2022; Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow ; " O’Reilly Media, Inc.".spa
dc.relation.references[Ghanbar et al., 2021] Ghanbar, K. D.; Rezaii, T. Y.; Farzamnia, A. & Saad, I.: , 2021; Correlation-based common spatial pattern (ccsp): A novel extension of csp for classification of motor imagery signal; PLoS One; 16 (3): 1–18.spa
dc.relation.references[Ghane & Hossain, 2020] Ghane, P. & Hossain, G.: , 2020; Learning patterns in imaginary vowels for an intelligent brain computer interface (BCI) design; arXiv preprint arXiv:2010.12066.spa
dc.relation.references[Giraldo et al., 2014] Giraldo, L. G. S.; Rao, M. & Principe, J. C.: , 2014; Measures of entropy from data using infinitely divisible kernels; IEEE Transactions on Information Theory; 61 (1): 535–548.spa
dc.relation.references[Golugula et al., 2011] Golugula, A.; Lee, G. & Madabhushi, A.: , 2011; Evaluating feature selection strategies for high dimensional, small sample size datasets; en 2011 Annual International conference of the IEEE engineering in medicine and biology society; IEEE; págs. 949–952.spa
dc.relation.references[Gonuguntla et al., 2016] Gonuguntla, V.; Wang, Y. & Veluvolu, K. C.: , 2016; Event-related functional network identification: application to EEG classification; IEEE journal of selected topics in signal processing; 10 (7): 1284–1294.spa
dc.relation.references[Gonzalez-Astudillo et al., 2020] Gonzalez-Astudillo, J.; Cattai, T.; Bassignana, G.; Corsi, M.-C. & Fallani, F. D. V.: , 2020; Network-based brain computer interfaces: principles and applications; Journal of Neural Engineering.spa
dc.relation.references[Gonzalez-Astudillo et al., 2021] Gonzalez-Astudillo, J.; Cattai, T.; Bassignana, G.; Corsi, M.-C. & Fallani, F. D. V.: , 2021; Network-based brain–computer interfaces: principles and applications; Journal of neural engineering; 18 (1): 011001.spa
dc.relation.references[Gramfort & Clerc, 2007] Gramfort, A. & Clerc, M.: , 2007; Low dimensional representations of MEG/EEG data using laplacian eigenmaps; en 2007 Joint Meeting of the 6th International Symposium on Noninvasive Functional Source Imaging of the Brain and Heart and the International Conference on Functional Biomedical Imaging; IEEE; págs. 169–172.spa
dc.relation.references[Graña & Morais-Quilez, 2023] Graña, M. & Morais-Quilez, I.: , 2023; A review of graph neural networks for electroencephalography data analysis; Neurocomputing: 126901.spa
dc.relation.references[Grigorev et al., 2021] Grigorev, N. A.; Savosenkov, A. O.; Lukoyanov, M. V.; Udoratina, A.; Shusharina, N. N.; Kaplan, A. Y.; Hramov, A. E.; Kazantsev, V. B. & Gordleeva, S.: , 2021; A bci-based vibrotactile neurofeedback training improves motor cortical excitability during motor imagery; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 29: 1583–1592.spa
dc.relation.references[Grilo et al., 2019] Grilo, M.; Ribeiro, L.; Moraes, C.; Melo, C.; Fantinato, D.; Sampaio, L.; Neves, A. & Ramos, R.: , 2019; Artifact removal in EEG based emotional signals through linear and nonlinear methods; en 2019 E-Health and Bioengineering Conference (EHB); IEEE; págs. 1–4.spa
dc.relation.references[Gu et al., 2023] Gu, H.; Wang, J. & Han, Y.: , 2023; Decoding of brain functional connections underlying natural grasp task using time-frequency cross mutual information; IEEE Access.spa
dc.relation.references[Gu et al., 2021a] Gu, J.; Wei, M.; Guo, Y. & Wang, H.: , 2021a; Common spatial pattern with l21-norm; Neural Processing Letters: 1–20.spa
dc.relation.references[Gu et al., 2020a] Gu, L.; Yu, Z.; Ma, T.; Wang, H.; Li, Z. & Fan, H.: , 2020a; EEG-based classification of lower limb motor imagery with brain network analysis; Neuroscience; 436: 93–109.spa
dc.relation.references[Gu et al., 2020b] Gu, L.; Yu, Z.; Ma, T.; Wang, H.; Li, Z. & Fan, H.: , 2020b; Random matrix theory for analysing the brain functional network in lower limb motor imagery; en 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC); IEEE; págs. 506–509.spa
dc.relation.references[Gu et al., 2021b] Gu, X.; Cao, Z.; Jolfaei, A.; Xu, P.; Wu, D.; Jung, T.-P. & Lin, C.-T.: , 2021b; Eeg-based brain-computer interfaces (bcis): A survey of recent studies on signal sensing technologies and computational intelligence approaches and their applications; IEEE/ACM transactions on computational biology and bioinformatics; 18 (5): 1645–1666.spa
dc.relation.references[Guillot & Debarnot, 2019] Guillot, A. & Debarnot, U.: , 2019; Benefits of motor imagery for human space flight: a brief review of current knowledge and future applications; Frontiers in Physiology; 10: 396.spa
dc.relation.references[Gunawardena et al., 2023] Gunawardena, R.; Sarrigiannis, P. G.; Blackburn, D. J. & He, F.: , 2023; Kernel-based nonlinear manifold learning for eeg-based functional connectivity analysis and channel selection with application to alzheimer’s disease; Neuroscience.spa
dc.relation.references[Guo et al., 2020] Guo, Y.; Zhang, Y.; Chen, Z.; Liu, Y. & Chen, W.: , 2020; Eeg classification by filter band component regularized common spatial pattern for motor imagery; Biomedical Signal Processing and Control; 59: 101917.spa
dc.relation.references[Gupta et al., 2015] Gupta, A.; Agrawal, R. & Kaur, B.: , 2015; Performance enhancement of mental task classification using EEG signal: a study of multivariate feature selection methods; Soft Computing; 19 (10): 2799–2812.spa
dc.relation.references[Haddad et al., 2019] Haddad, A.; Shamsi, F.; Ghovanloo, M. & Najafizadeh, L.: , 2019; Early decoding of tongue-hand movement from EEG recordings using dynamic functional connectivity graphs; en 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER); IEEE; págs. 373–376.spa
dc.relation.references[Haghanifar et al., 2022] Haghanifar, A.; Majdabadi, M. M.; Choi, Y.; Deivalakshmi, S. & Ko, S.: , 2022; Covid-cxnet: Detecting covid-19 in frontal chest x-ray images using deep learning; Multimedia Tools and Applications; 81 (21): 30615–30645.spa
dc.relation.references[Hamedi et al., 2014] Hamedi, M.; Salleh, S.-H.; Noor, A. M. & Mohammad-Rezazadeh, I.: , 2014; Neural network-based three-class motor imagery classification using time-domain features for bci applications; en 2014 IEEE region 10 symposium; IEEE; págs. 204–207.spa
dc.relation.references[Hamedi et al., 2016] Hamedi, M.; Salleh, S.-H. & Noor, A. M.: , 2016; Electroencephalographic motor imagery brain connectivity analysis for BCI: a review; Neural computation; 28 (6): 999–1041.spa
dc.relation.references[Han et al., 2023] Han, S.; Zhang, C.; Lei, J.; Han, Q.; Du, Y.; Wang, A.; Bai, S. & Zhang, M.: , 2023; Cepstral analysis based artifact detection, recognition and removal for prefrontal eeg; IEEE Transactions on Circuits and Systems II: Express Briefs.spa
dc.relation.references[Hang et al., 2020] Hang, W.; Feng, W.; Liang, S.; Wang, Q.; Liu, X. & Choi, K.-S.: , 2020; Deep stacked support matrix machine based representation learning for motor imagery EEG classification; Computer methods and programs in biomedicine; 193: 105466.spa
dc.relation.references[Hassanpour et al., 2019] Hassanpour, A.; Moradikia, M.; Adeli, H.; Khayami, S. R. & Shamsinejadbabaki, P.: , 2019; A novel end-to-end deep learning scheme for classifying multi-class motor imagery electroencephalography signals; Expert Systems; 36 (6): e12494.spa
dc.relation.references[Hassija et al., 2023] Hassija, V.; Chamola, V.; Mahapatra, A.; Singal, A.; Goel, D.; Huang, K.; Scardapane, S.; Spinelli, I.; Mahmud, M. & Hussain, A.: , 2023; Interpreting black-box models: a review on explainable artificial intelligence; Cognitive Computation: 1–30.spa
dc.relation.references[Hata et al., 2016] Hata, M.; Kazui, H.; Tanaka, T.; Ishii, R.; Canuet, L.; Pascual-Marqui, R. D.; Aoki, Y.; Ikeda, S.; Kanemoto, H.; Yoshiyama, K. et al.: , 2016; Functional connectivity assessed by resting state eeg correlates with cognitive decline of alzheimer’s disease–an eloreta study; Clinical Neurophysiology; 127 (2): 1269–1278.spa
dc.relation.references[He et al., 2019] He, B.; Astolfi, L.; Valdés-Sosa, P. A.; Marinazzo, D.; Palva, S. O.; Bénar, C.-G.; Michel, C. M. & Koenig, T.: , 2019; Electrophysiological brain connectivity: theory and implementation; IEEE Transactions on Biomedical Engineering; 66 (7): 2115–2137.spa
dc.relation.references[He et al., 2013] He, L.; Hu, Y.; Li, Y. & Li, D.: , 2013; Channel selection by rayleigh coefficient maximization based genetic algorithm for classifying single-trial motor imagery EEG; Neurocomputing; 121: 423–433.spa
dc.relation.references[Hejazi & Motie Nasrabadi, 2019] Hejazi, M. & Motie Nasrabadi, A.: , 2019; Prediction of epilepsy seizure from multi-channel electroencephalogram by effective connectivity analysis using granger causality and directed transfer function methods; Cognitive neurodynamics; 13: 461–473.spa
dc.relation.references[Herranz-Gómez et al., 2020] Herranz-Gómez, A.; Gaudiosi, C.; Angulo-Díaz-Parreño, S.; Suso-Martí, L.; La Touche, R. & Cuenca-Martínez, F.: , 2020; Effectiveness of motor imagery and action observation on functional variables: An umbrella and mapping review with meta-meta-analysis; Neuroscience & Biobehavioral Reviews.spa
dc.relation.references[Hobson & Bishop, 2017] Hobson, H. M. & Bishop, D. V.: , 2017; The interpretation of mu suppression as an index of mirror neuron activity: past, present and future; Royal Society Open Science; 4 (3): 160662.spa
dc.relation.references[Hochberg et al., 2012] Hochberg, L. R.; Bacher, D.; Jarosiewicz, B.; Masse, N. Y.; Simeral, J. D.; Vogel, J.; Haddadin, S.; Liu, J.; Cash, S. S.; Van Der Smagt, P. et al.: , 2012; Reach and grasp by people with tetraplegia using a neurally controlled robotic arm; Nature; 485 (7398): 372–375.spa
dc.relation.references[Hossain et al., 2023] Hossain, K. M.; Islam, M. A.; Hossain, S.; Nijholt, A. & Ahad, M. A. R.: , 2023; Status of deep learning for eeg-based brain–computer interface applications; Frontiers in computational neuroscience; 16: 1006763.spa
dc.relation.references[Hosseini et al., 2020a] Hosseini, M.; Powell, M.; Collins, J.; Callahan-Flintoft, C.; Jones, W.; Bowman, H. & Wyble, B.: , 2020a; I tried a bunch of things: The dangers of unexpected overfitting in classification of brain data; Neuroscience & Biobehavioral Reviews.spa
dc.relation.references[Hosseini et al., 2020b] Hosseini, M.-P.; Hosseini, A. & Ahi, K.: , 2020b; A review on machine learning for EEG signal processing in bioengineering; IEEE reviews in biomedical engineering.spa
dc.relation.references[Hrisca-Eva & Lazar, 2021] Hrisca-Eva, O.-D. & Lazar, A. M.: , 2021; Multi-sessions outcome for EEG feature extraction and classification methods in a motor imagery task.; Traitement du Signal; 38 (2).spa
dc.relation.references[Hsu & Chen, 2020] Hsu, L. & Chen, Y.-J.: , 2020; Neuromarketing, subliminal advertising, and hotel selection: An EEG study; Australasian Marketing Journal (AMJ); 28 (4): 200–208.spa
dc.relation.references[Huang et al., 2023] Huang, G.; Zhao, Z.; Zhang, S.; Hu, Z.; Fan, J.; Fu, M.; Chen, J.; Xiao, Y.; Wang, J. & Dan, G.: , 2023; Discrepancy between inter-and intra-subject variability in eeg-based motor imagery brain-computer interface: Evidence from multiple perspectives; Frontiers in Neuroscience; 17: 1122661.spa
dc.relation.references[Huang et al., 2022] Huang, Q.; Yamada, M.; Tian, Y.; Singh, D. & Chang, Y.: , 2022; Graphlime: Local interpretable model explanations for graph neural networks; IEEE Transactions on Knowledge and Data Engineering.spa
dc.relation.references[Hurtado-Rincón et al., 2016] Hurtado-Rincón, J. V.; Martínez-Vargas, J. D.; Rojas-Jaramillo, S.; Giraldo, E. & Castellanos-Dominguez, G.: , 2016; Identification of relevant inter-channel EEG connectivity patterns: a kernel-based supervised approach; en International Conference on Brain Informatics; Springer; págs. 14–23.spa
dc.relation.references[Idowu et al., 2021] Idowu, O. P.; Ilesanmi, A. E.; Li, X.; Samuel, O. W.; Fang, P. & Li, G.: , 2021; An integrated deep learning model for motor intention recognition of multi-class EEG signals in upper limb amputees; Computer Methods and Programs in Biomedicine; 206: 106121.spa
dc.relation.references[Ismail & Karwowski, 2020] Ismail, L. E. & Karwowski, W.: , 2020; A graph theory-based modeling of functional brain connectivity based on EEG: A systematic review in the context of neuroergonomics; IEEE Access; 8: 155103–155135.spa
dc.relation.references[Iturralde et al., 2012] Iturralde, P. A.; Patrone, M.; Lecumberry, F. & Fernández, A.: , 2012; Motor intention recognition in EEG: In pursuit of a relevant feature set; en Iberoamerican Congress on Pattern Recognition; Springer; págs. 551–558.spa
dc.relation.references[Jahromy et al., 2019] Jahromy, F. Z.; Bajoulvand, A. & Daliri, M. R.: , 2019; Statistical algorithms for emo- tion classification via functional connectivity.; Journal of Integrative Neuroscience; 18 (3): 293–297; doi:10.31083/j. jin.2019.03.601; URL https://app.dimensions.ai/details/publication/pub.1121421951andhttps://jin.imrpress.com/EN/article/ downloadArticleFile.do?attachType=PDF&id=1604.spa
dc.relation.references[Jain & Zongker, 1997] Jain, A. & Zongker, D.: , 1997; Feature selection: Evaluation, application, and small sample performance; IEEE transactions on pattern analysis and machine intelligence; 19 (2): 153–158.spa
dc.relation.references[Janapati et al., 2023] Janapati, R.; Dalal, V. & Sengupta, R.: , 2023; Advances in modern eeg-bci signal processing: A review; Materials Today: Proceedings; 80: 2563–2566.spa
dc.relation.references[Jiang et al., 2021a] Jiang, P.-T.; Zhang, C.-B.; Hou, Q.; Cheng, M.-M. & Wei, Y.: , 2021a; Layercam: Exploring hierarchical class activation maps for localization; IEEE Transactions on Image Processing; 30: 5875–5888.spa
dc.relation.references[Jiang et al., 2021b] Jiang, Y.; Chen, W.; Li, M.; Zhang, T. & You, Y.: , 2021b; Synchroextracting chirplet transform-based epileptic seizures detection using EEG; Biomedical Signal Processing and Control; 68: 102699.spa
dc.relation.references[Jin et al., 2021] Jin, J.; Sun, H.; Daly, I.; Li, S.; Liu, C.; Wang, X. & Cichocki, A.: , 2021; A novel classification framework using the graph representations of electroencephalogram for motor imagery based brain-computer interface; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 30: 20–29.spa
dc.relation.references[Johnson et al., 2018] Johnson, N. N.; Carey, J.; Edelman, B. J.; Doud, A.; Grande, A.; Lakshminarayan, K. & He, B.: , 2018; Combined rtms and virtual reality brain–computer interface training for motor recovery after stroke; Journal of neural engineering; 15 (1): 016009.spa
dc.relation.references[Ju & Guan, 2023] Ju, C. & Guan, C.: , 2023; Graph neural networks on spd manifolds for motor imagery classification: A perspective from the time–frequency analysis; IEEE Transactions on Neural Networks and Learning Systems.spa
dc.relation.references[Kant et al., 2020] Kant, P.; Laskar, S. H.; Hazarika, J. & Mahamune, R.: , 2020; Cwt based transfer learning for motor imagery classification for brain computer interfaces; Journal of Neuroscience Methods; 345: 108886.spa
dc.relation.references[Kaper et al., 2004] Kaper, M.; Meinicke, P.; Grossekathoefer, U.; Lingner, T. & Ritter, H.: , 2004; BCI competition 2003-data set IIb: support vector machines for the p300 speller paradigm; IEEE Transactions on biomedical Engineering; 51 (6): 1073–1076.spa
dc.relation.references[Kawanabe et al., 2006] Kawanabe, M.; Krauledat, M. & Blankertz, B.: , 2006; A bayesian approach for adaptive BCI classification; Citeseer.spa
dc.relation.references[Khademi et al., 2023] Khademi, Z.; Ebrahimi, F. & Kordy, H. M.: , 2023; A review of critical challenges in mi-bci: From conventional to deep learning methods; Journal of Neuroscience Methods; 383: 109736.spa
dc.relation.references[Khan et al., 2021] Khan, D. M.; Yahya, N.; Kamel, N. & Faye, I.: , 2021; Effective connectivity in default mode network for alcoholism diagnosis; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 29: 796–808.spa
dc.relation.references[Khan et al., 2020] Khan, M. A.; Das, R.; Iversen, H. K. & Puthusserypady, S.: , 2020; Review on motor imagery based BCI systems for upper limb post-stroke neurorehabilitation: From designing to application; Computers in Biology and Medicine: 103843.spa
dc.relation.references[Khosla et al., 2020] Khosla, A.; Khandnor, P. & Chand, T.: , 2020; A comparative analysis of signal processing and classification methods for different applications based on EEG signals; Biocybernetics and Biomedical Engineering; 40 (2): 649–690.spa
dc.relation.references[Kim et al., 2022] Kim, S.-J.; Lee, D.-H. & Lee, S.-W.: , 2022; Rethinking cnn architecture for enhancing decoding performance of motor imagery-based eeg signals; IEEE Access; 10: 96984–96996.spa
dc.relation.references[Kim et al., 2019] Kim, Y.; Lee, S.; Kim, H.; Lee, S.; Lee, S. & Kim, D.: , 2019; Reduced burden of individual calibration process in brain-computer interface by clustering the subjects based on brain activation; en 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC); IEEE; págs. 2139–2143.spa
dc.relation.references[Kim et al., 2019] Kim, Y.; Lee, S.; Kim, H.; Lee, S.; Lee, S. & Kim, D.: , 2019; Reduced burden of individual calibration process in brain-computer interface by clustering the subjects based on brain activation; en 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC); IEEE; págs. 2139–2143.spa
dc.relation.references[Kingma, 2014] Kingma, D. P.: , 2014; Adam: A method for stochastic optimization; arXiv preprint arXiv:1412.6980.spa
dc.relation.references[Knapen, 2021] Knapen, T.: , 2021; Topographic connectivity reveals task-dependent retinotopic processing throughout the human brain; Proceedings of the National Academy of Sciences; 118 (2).spa
dc.relation.references[Köllőd et al., 2023] Köllőd, C. M.; Adolf, A.; Iván, K.; Márton, G. & Ulbert, I.: , 2023; Deep comparisons of neural networks from the eegnet family; Electronics; 12 (12): 2743.spa
dc.relation.references[Kondratyev et al., 2020] Kondratyev, A.; Schwarz, C. & Horvath, B.: , 2020; Data anonymisation, outlier detection and fighting overfitting with restricted boltzmann machines; Outlier Detection and Fighting Overfitting with Restricted Boltzmann Machines (January 27, 2020).spa
dc.relation.references[Kostiukevych et al., 2021] Kostiukevych, K.; Stirenko, S.; Gordienko, N.; Rokovyi, O.; Alienin, O. & Gordienko, Y.: , 2021; Convolutional and recurrent neural networks for physical action forecasting by brain-computer interface; en 2021 11th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), tomo 2; IEEE; págs. 973–978.spa
dc.relation.references[Kotte & Dabbakuti, 2020] Kotte, S. & Dabbakuti, J. K.: , 2020; Methods for removal of artifacts from eeg signal: A review; en Journal of Physics: Conference Series, tomo 1706; IOP Publishing; pág. 012093.spa
dc.relation.references[Kraeutner et al., 2016] Kraeutner, S. N.; MacKenzie, L. A.; Westwood, D. A. & Boe, S. G.: , 2016; Characterizing skill acquisition through motor imagery with no prior physical practice.; Journal of Experimental Psychology: Human Perception and Performance; 42 (2): 257.spa
dc.relation.references[Kuang, 2021] Kuang, P.-C.: , 2021; Measuring information flow among international stock markets: An approach of entropy-based networks on multi time-scales; Physica A: Statistical Mechanics and its Applications; 577: 126068.spa
dc.relation.references[Kübler, 2020] Kübler, A.: , 2020; The history of BCI: From a vision for the future to real support for personhood in people with locked-in syndrome; Neuroethics; 13 (2): 163–180.spa
dc.relation.references[Kulatilleke, 2023] Kulatilleke, G.: , 2023; Towards efficient graph neural networks for optimizing illicit dark web interventions.spa
dc.relation.references[Kulkarni et al., 2019] Kulkarni, P. M.; Xiao, Z.; Robinson, E. J.; Jami, A. S.; Zhang, J.; Zhou, H.; Henin, S. E.; Liu, A. A.; Osorio, R. S.; Wang, J. et al.: , 2019; A deep learning approach for real-time detection of sleep spindles; Journal of neural engineering; 16 (3): 036004.spa
dc.relation.references[Kumar et al., 2018] Kumar, S.; Reddy, T. & Behera, L.: , 2018; Eeg based motor imagery classification using instantaneous phase difference sequence; en 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC); IEEE; págs. 499–504.spa
dc.relation.references[Kumar et al., 2019] Kumar, S.; Sharma, A. & Tsunoda, T.: , 2019; Brain wave classification using long short-term memory network based OPTICAL predictor; Scientific reports; 9 (1): 1–13.spa
dc.relation.references[Kumar et al., 2021] Kumar, S.; Sharma, R. & Sharma, A.: , 2021; Optical+: a frequency-based deep learning scheme for recognizing brain wave signals; Peerj Computer Science; 7: e375.spa
dc.relation.references[Kwon et al., 2021] Kwon, B.-H.; Jeong, J.-H. & Lee, S.-W.: , 2021; Visual motion imagery classification with deep neural network based on functional connectivity; arXiv preprint arXiv:2103.02851.spa
dc.relation.references[Kwon et al., 2019] Kwon, O.-Y.; Lee, M.-H.; Guan, C. & Lee, S.-W.: , 2019; Subject-independent brain–computer interfaces based on deep convolutional neural networks; IEEE transactions on neural networks and learning systems; 31 (10): 3839–3852.spa
dc.relation.references[Ladda et al., 2021] Ladda, A. M.; Lebon, F. & Lotze, M.: , 2021; Using motor imagery practice for improving motor performance–a review; Brain and cognition; 150: 105705.spa
dc.relation.references[Lahane et al., 2019] Lahane, P.; Jagtap, J.; Inamdar, A.; Karne, N. & Dev, R.: , 2019; A review of recent trends in eeg based brain-computer interface; en 2019 International Conference on Computational Intelligence in Data Science (ICCIDS); IEEE; págs. 1–6.spa
dc.relation.references[Lakshmi et al., 2014] Lakshmi, M. R.; Prasad, T. & Prakash, D. V. C.: , 2014; Survey on EEG signal processing methods; International Journal of Advanced Research in Computer Science and Software Engineering; 4 (1).spa
dc.relation.references[Lawhern et al., 2018] Lawhern, V. J.; Solon, A. J.; Waytowich, N. R.; Gordon, S. M.; Hung, C. P. & Lance, B. J.: , 2018; Eegnet: a compact convolutional neural network for eeg-based brain–computer interfaces; Journal of neural engineering; 15 (5): 056013.spa
dc.relation.references[Le et al., 2021] Le, N. Q. K.; Kha, Q. H.; Nguyen, V. H.; Chen, Y.-C.; Cheng, S.-J. & Chen, C.-Y.: , 2021; Machine learning-based radiomics signatures for egfr and kras mutations prediction in non-small-cell lung cancer; International journal of molecular sciences; 22 (17): 9254.spa
dc.relation.references[Lebedev & Nicolelis, 2006] Lebedev, M. A. & Nicolelis, M. A.: , 2006; Brain–machine interfaces: past, present and future; TRENDS in Neurosciences; 29 (9): 536–546.spa
dc.relation.references[Ledoit & Wolf, 2004] Ledoit, O. & Wolf, M.: , 2004; A well-conditioned estimator for large-dimensional covariance matrices; Journal of multivariate analysis; 88 (2): 365–411.spa
dc.relation.references[Lee et al., 2004] Lee, F.; Scherer, R.; Leeb, R.; Schlögl, A.; Bischof, H. & Pfurtscheller, G.: , 2004; Feature mapping using PCA, locally linear embedding and isometric feature mapping for EEG-based brain computer interface; Citeseer.spa
dc.relation.references[Lee & Choi, 2019] Lee, H. K. & Choi, Y.-S.: , 2019; Application of continuous wavelet transform and convolutional neural network in decoding motor imagery brain-computer interface; Entropy; 21 (12): 1199.spa
dc.relation.references[Lee et al., 2020] Lee, M.; Yoon, J.-G. & Lee, S.-W.: , 2020; Predicting motor imagery performance from resting-state eeg using dynamic causal modeling; Frontiers in human neuroscience; 14: 321.spa
dc.relation.references[Leeuwis et al., 2021] Leeuwis, N.; Yoon, S. & Alimardani, M.: , 2021; Functional connectivity analysis in motor-imagery brain computer interfaces; Frontiers in Human Neuroscience; 15: 732946.spa
dc.relation.references[Li et al., 2021a] Li, B.; Cheng, T. & Guo, Z.: , 2021a; A review of eeg acquisition, processing and application; en Journal of Physics: Conference Series, tomo 1907; IOP Publishing; pág. 012045.spa
dc.relation.references[Li et al., 2015] Li, J.; Struzik, Z.; Zhang, L. & Cichocki, A.: , 2015; Feature learning from incomplete eeg with denoising autoencoder; Neurocomputing; 165: 23–31.spa
dc.relation.references[Li et al., 2019a] Li, J. W.; Barma, S.; Mak, P. U.; Pun, S. H. & Vai, M. I.: , 2019a; Brain rhythm sequencing using eeg signals: A case study on seizure detection; IEEE Access; 7: 160112–160124.spa
dc.relation.references[Li & Principe, 2020] Li, K. & Principe, J. C.: , 2020; Fast estimation of information theoretic learning descriptors using explicit inner product spaces; arXiv preprint arXiv:2001.00265.spa
dc.relation.references[Li & Chen, 2021] Li, M. & Chen, W.: , 2021; FFT-based deep feature learning method for EEG classification; Biomedical Signal Processing and Control; 66: 102492.spa
dc.relation.references[Li et al., 2016] Li, M.; Luo, X.; Yang, J. & Sun, Y.: , 2016; Applying a locally linear embedding algorithm for feature extraction and visualization of MI-EEG; Journal of Sensors; 2016.spa
dc.relation.references[Li et al., 2019b] Li, M.-A.; Han, J.-F. & Duan, L.-J.: , 2019b; A novel mi-eeg imaging with the location information of electrodes; IEEE Access; 8: 3197–3211.spa
dc.relation.references[Li, 2022] Li, P.: , 2022; Bayesian networks for brain-computer interfaces: A survey; arXiv preprint arXiv:2206.07487.spa
dc.relation.references[Li et al., 2019c] Li, S.; Xie, X.; Gu, Z.; Yu, Z. L. & Li, Y.: , 2019c; Motor imagery classification based on local isometric embedding of riemannian manifold; en 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA); IEEE; págs. 2368–2372.spa
dc.relation.references[Li et al., 2019d] Li, Y.; Zhang, X.-R.; Zhang, B.; Lei, M.-Y.; Cui, W.-G. & Guo, Y.-Z.: , 2019d; A channel-projection mixed- scale convolutional neural network for motor imagery EEG decoding; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 27 (6): 1170–1180.spa
dc.relation.references[Li et al., 2020] Li, Y.; Liu, Y.; Cui, W.-G.; Guo, Y.-Z.; Huang, H. & Hu, Z.-Y.: , 2020; Epileptic seizure detection in EEG signals using a unified temporal-spectral squeeze-and-excitation network; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 28 (4): 782–794.spa
dc.relation.references[Li et al., 2021b] Li, Y.; Fu, B.; Li, F.; Shi, G. & Zheng, W.: , 2021b; A novel transferability attention neural network model for EEG emotion recognition; Neurocomputing; 447: 92–101.spa
dc.relation.references[Lim et al., 2021] Lim, J.-S.; Lee, J.-J. & Woo, C.-W.: , 2021; Post-stroke cognitive impairment: pathophysiological insights into brain disconnectome from advanced neuroimaging analysis techniques; Journal of Stroke; 23 (3): 297–311.spa
dc.relation.references[Lin et al., 2021] Lin, Y.-S.; Lee, W.-C. & Celik, Z. B.: , 2021; What do you see? evaluation of explainable artificial intelligence (xai) interpretability through neural backdoors; en Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining; págs. 1027–1035.spa
dc.relation.references[Linderman & Steinerberger, 2019] Linderman, G. & Steinerberger, S.: , 2019; Clustering with t-sne, provably; SIAM Journal on Mathematics of Data Science; 1 (2): 313–332.spa
dc.relation.references[Liu & Gillies, 2016] Liu, R. & Gillies, D. F.: , 2016; Overfitting in linear feature extraction for classification of high-dimensional image data; Pattern Recognition; 53: 73–86.spa
dc.relation.references[Liu & Yang, 2021] Liu, T. & Yang, D.: , 2021; A densely connected multi-branch 3d convolutional neural network for motor imagery eeg decoding; Brain Sciences; 11 (2): 197.spa
dc.relation.references[Liu et al., 2024] Liu, W.; Guo, C. & Gao, C.: , 2024; A cross-session motor imagery classification method based on riemannian geometry and deep domain adaptation; Expert Systems with Applications; 237: 121612.spa
dc.relation.references[Llanos et al., 2013] Llanos, C.; Rodriguez, M.; Rodriguez-Sabate, C.; Morales, I. & Sabate, M.: , 2013; Mu-rhythm changes during the planning of motor and motor imagery actions; Neuropsychologia; 51 (6): 1019–1026.spa
dc.relation.references[Lopez et al., 2020] Lopez, C. A. F.; Li, G. & Zhang, D.: , 2020; Beyond technologies of electroencephalography-based brain- computer interfaces: A systematic review from commercial and ethical aspects; Frontiers in Neuroscience; 14.spa
dc.relation.references[Lotte et al., 2018] Lotte, F.; Bougrain, L.; Cichocki, A.; Clerc, M.; Congedo, M.; Rakotomamonjy, A. & Yger, F.: , 2018; A review of classification algorithms for eeg-based brain–computer interfaces: a 10 year update; Journal of neural engineering; 15 (3): 031005.spa
dc.relation.references[Lu et al., 2011] Lu, C.-F.; Teng, S.; Hung, C.-I.; Tseng, P.-J.; Lin, L.-T.; Lee, P.-L. & Wu, Y.-T.: , 2011; Reorganiza- tion of functional connectivity during the motor task using EEG time–frequency cross mutual information analysis; Clinical Neurophysiology; 122 (8): 1569–1579.spa
dc.relation.references[Luo et al., 2019] Luo, J.; Wang, J.; Xu, R. & Xu, K.: , 2019; Class discrepancy-guided sub-band filter-based common spatial pattern for motor imagery classification; Journal of neuroscience methods; 323: 98–107.spa
dc.relation.references[Luo et al., 2020] Luo, J.; Gao, X.; Zhu, X.; Wang, B.; Lu, N. & Wang, J.: , 2020; Motor imagery eeg classification based on ensemble support vector learning; Computer methods and programs in biomedicine; 193: 105464.spa
dc.relation.references[Luo et al., 2018] Luo, T.-j.; Zhou, C.-l. & Chao, F.: , 2018; Exploring spatial-frequency-sequential relationships for motor imagery classification with recurrent neural network; BMC bioinformatics; 19 (1): 1–18.spa
dc.relation.references[Luo et al., 2021] Luo, Z.; Jin, R.; Shi, H. & Lu, X.: , 2021; Research on recognition of motor imagination based on connectivity features of brain functional network; Neural plasticity; 2021.spa
dc.relation.references[Ma et al., 2023] Ma, W.; Wang, C.; Sun, X.; Lin, X. & Wang, Y.: , 2023; A double-branch graph convolutional network based on individual differences weakening for motor imagery eeg classification; Biomedical Signal Processing and Control; 84: 104684.spa
dc.relation.references[Ma et al., 2020] Ma, X.; Wang, D.; Liu, D. & Yang, J.: , 2020; Dwt and cnn based multi-class motor imagery electroencephalo- graphic signal recognition; Journal of neural engineering; 17 (1): 016073.spa
dc.relation.references[Maiseli et al., 2023] Maiseli, B.; Abdalla, A. T.; Massawe, L. V.; Mbise, M.; Mkocha, K.; Nassor, N. A.; Ismail, M.; Michael, J. & Kimambo, S.: , 2023; Brain–computer interface: trend, challenges, and threats; Brain Informatics; 10 (1): 20.spa
dc.relation.references[Maksimenko et al., 2017] Maksimenko, V. A.; Lüttjohann, A.; Makarov, V. V.; Goremyko, M. V.; Koronovskii, A. A.; Nedaivozov, V.; Runnova, A. E.; van Luijtelaar, G.; Hramov, A. E. & Boccaletti, S.: , 2017; Macroscopic and microscopic spectral properties of brain networks during local and global synchronization; Physical Review E ; 96 (1): 012316.spa
dc.relation.references[Mammone et al., 2023] Mammone, N.; Ieracitano, C.; Adeli, H. & Morabito, F. C.: , 2023; Autoencoder filter bank common spatial patterns to decode motor imagery from eeg; IEEE Journal of Biomedical and Health Informatics.spa
dc.relation.references[Martínez-Cancino et al., 2020] Martínez-Cancino, R.; Delorme, A.; Wagner, J.; Kreutz-Delgado, K.; Sotero, R. C. & Makeig, S.: , 2020; What can local transfer entropy tell us about phase-amplitude coupling in electrophysiological signals?; Entropy; 22 (11): 1262.spa
dc.relation.references[Matemba et al., 2020] Matemba, E. D.; Li, G.; Gogan, I. C. W. & Maiseli, B. J.: , 2020; Technology acceptance model: recent developments, future directions, and proposal for hypothetical extensions; International Journal of Technology Intelligence and Planning; 12 (4): 315–348.spa
dc.relation.references[McFarland & Wolpaw, 2011] McFarland, D. J. & Wolpaw, J. R.: , 2011; Brain-computer interfaces for communication and control; Communications of the ACM ; 54 (5): 60–66.spa
dc.relation.references[Meanti et al., 2020] Meanti, G.; Carratino, L.; Rosasco, L. & Rudi, A.: , 2020; Kernel methods through the roof: handling billions of points efficiently; arXiv preprint arXiv:2006.10350.spa
dc.relation.references[Meers et al., 2020] Meers, R.; Nuttall, H. E. & Vogt, S.: , 2020; Motor imagery alone drives corticospinal excitability during concurrent action observation and motor imagery; Cortex ; 126: 322–333.spa
dc.relation.references[Meng et al., 2023] Meng, J.; Zhao, Y.; Wang, K.; Sun, J.; Yi, W.; Xu, F.; Xu, M. & Ming, D.: , 2023; Rhythmic temporal prediction enhances neural representations of movement intention for brain–computer interface; Journal of Neural Engineering; 20 (6): 066004.spa
dc.relation.references[Miah et al., 2020] Miah, A. S. M.; Rahim, M. A. & Shin, J.: , 2020; Motor-imagery classification using riemannian geometry with median absolute deviation; Electronics; 9 (10): 1584.spa
dc.relation.references[Miao et al., 2020] Miao, M.; Hu, W.; Yin, H. & Zhang, K.: , 2020; Spatial-frequency feature learning and classification of motor imagery eeg based on deep convolution neural network; Computational and mathematical methods in medicine; 2020.spa
dc.relation.references[Midha et al., 2021] Midha, S.; Maior, H. A.; Wilson, M. L. & Sharples, S.: , 2021; Measuring mental workload variations in office work tasks using fnirs; International Journal of Human-Computer Studies; 147: 102580.spa
dc.relation.references[Miladinović et al., 2021] Miladinović, A.; Ajčević, M.; Jarmolowska, J.; Marusic, U.; Colussi, M.; Silveri, G.; Battaglini, P. P. & Accardo, A.: , 2021; Effect of power feature covariance shift on BCI spatial-filtering techniques: A comparative study; Computer Methods and Programs in Biomedicine; 198: 105808.spa
dc.relation.references[Miljevic et al., 2022] Miljevic, A.; Bailey, N. W.; Vila-Rodriguez, F.; Herring, S. E. & Fitzgerald, P. B.: , 2022; Electroen- cephalographic connectivity: a fundamental guide and checklist for optimal study design and evaluation; Biological Psychiatry: Cognitive Neuroscience and Neuroimaging; 7 (6): 546–554.spa
dc.relation.references[Millan & Mouriño, 2003] Millan, J. R. & Mouriño, J.: , 2003; Asynchronous BCI and local neural classifiers: an overview of the adaptive brain interface project; IEEE transactions on neural systems and rehabilitation engineering; 11 (2): 159–161.spa
dc.relation.references[Miotto et al., 2018] Miotto, R.; Wang, F.; Wang, S.; Jiang, X. & Dudley, J. T.: , 2018; Deep learning for healthcare: review, opportunities and challenges; Briefings in bioinformatics; 19 (6): 1236–1246.spa
dc.relation.references[Mirzaei & Ghasemi, 2021] Mirzaei, S. & Ghasemi, P.: , 2021; EEG motor imagery classification using dynamic connectivity patterns and convolutional autoencoder; Biomedical Signal Processing and Control; 68: 102584.spa
dc.relation.references[Mirzaei & Ghasemi, 2021] Mirzaei, S. & Ghasemi, P.: , 2021; EEG motor imagery classification using dynamic connectivity patterns and convolutional autoencoder; Biomedical Signal Processing and Control; 68: 102584.spa
dc.relation.references[Modares-Haghighi et al., 2021] Modares-Haghighi, P.; Boostani, R.; Nami, M. & Sanei, S.: , 2021; Quantification of pain severity using EEG-based functional connectivity; Biomedical Signal Processing and Control; 69: 102840.spa
dc.relation.references[Mohammadi et al., 2021] Mohammadi, L.; Einalou, Z.; Hosseinzadeh, H. & Dadgostar, M.: , 2021; Cursor movement detection in brain-computer-interface systems using the k-means clustering method and LSVM; Journal of Big Data; 8 (1): 1–15.spa
dc.relation.references[Molina-Giraldo et al., 2015] Molina-Giraldo, S.; Carvajal-González, J.; Álvarez-Meza, A. M. & Castellanos-Domínguez, G.: , 2015; Video segmentation framework based on multi-kernel representations and feature relevance analysis for object classification; en Pattern recognition applications and methods; Springer; págs. 273–283.spa
dc.relation.references[Molnar et al., 2020] Molnar, C.; Casalicchio, G. & Bischl, B.: , 2020; Interpretable machine learning–a brief history, state-of-the- art and challenges; en Joint European conference on machine learning and knowledge discovery in databases; Springer; págs. 417–431.spa
dc.relation.references[Moran et al., 2012] Moran, A.; Guillot, A.; MacIntyre, T. & Collet, C.: , 2012; Re-imagining motor imagery: Building bridges between cognitive neuroscience and sport psychology; British Journal of Psychology; 103 (2): 224–247.spa
dc.relation.references[Mridha et al., 2021] Mridha, M. F.; Das, S. C.; Kabir, M. M.; Lima, A. A.; Islam, M. R. & Watanobe, Y.: , 2021; Brain-computer interface: Advancement and challenges; Sensors; 21 (17): 5746.spa
dc.relation.references[Mumtaz et al., 2018] Mumtaz, W.; Kamel, N.; Ali, S. S. A.; Malik, A. S. et al.: , 2018; An EEG-based functional connectivity measure for automatic detection of alcohol use disorder; Artificial intelligence in medicine; 84: 79–89.spa
dc.relation.references[Musallam et al., 2021] Musallam, Y. K.; AlFassam, N. I.; Muhammad, G.; Amin, S. U.; Alsulaiman, M.; Abdul, W.; Altaheri, H.; Bencherif, M. A. & Algabri, M.: , 2021; Electroencephalography-based motor imagery classification using temporal convolutional network fusion; Biomedical Signal Processing and Control; 69: 102826.spa
dc.relation.references[Naidu et al., 2020] Naidu, R.; Ghosh, A.; Maurya, Y.; Kundu, S. S. et al.: , 2020; Is-cam: Integrated score-cam for axiomatic- based explanations; arXiv preprint arXiv:2010.03023.spa
dc.relation.references[Nentwich et al., 2020] Nentwich, M.; Ai, L.; Madsen, J.; Telesford, Q. K.; Haufe, S.; Milham, M. P. & Parra, L. C.: , 2020; Functional connectivity of eeg is subject-specific, associated with phenotype, and different from fmri; NeuroImage; 218: 117001.spa
dc.relation.references[Nguyen et al., 2021] Nguyen, H. T. T.; Cao, H. Q.; Nguyen, K. V. T. & Pham, N. D. K.: , 2021; Evaluation of explainable artificial intelligence: Shap, lime, and cam; en Proceedings of the FPT AI Conference; págs. 1–6.spa
dc.relation.references[Nicolini et al., 2020] Nicolini, C.; Forcellini, G.; Minati, L. & Bifone, A.: , 2020; Scale-resolved analysis of brain functional connectivity networks with spectral entropy; NeuroImage; 211: 116603.spa
dc.relation.references[Nisar et al., 2018] Nisar, H.; Thee, K. W.; Lim, S. H.; Yap, V. V.; Teh, P. C.; Nor, N. M. & Chow, C. M.: , 2018; Brain functional connectivity analysis using single trial EEG for understanding individual mechanisms; en 2018 IEEE 14th International Colloquium on Signal Processing & Its Applications (CSPA); IEEE; págs. 209–214.spa
dc.relation.references[Nkengfack et al., 2020] Nkengfack, L. C. D.; Tchiotsop, D.; Atangana, R.; Louis-Door, V. & Wolf, D.: , 2020; EEG signals analysis for epileptic seizures detection using polynomial transforms, linear discriminant analysis and support vector machines; Biomedical Signal Processing and Control; 62: 102141.spa
dc.relation.references[Noshadi et al., 2014] Noshadi, S.; Abootalebi, V.; Sadeghi, M. T. & Shahvazian, M. S.: , 2014; Selection of an efficient feature space for EEG-based mental task discrimination; Biocybernetics and Biomedical Engineering; 34 (3): 159–168.spa
dc.relation.references[Nunnari et al., 2021] Nunnari, F.; Kadir, M. A. & Sonntag, D.: , 2021; On the overlap between grad-cam saliency maps and explainable visual features in skin cancer images; en International Cross-Domain Conference for Machine Learning and Knowledge Extraction; Springer; págs. 241–253.spa
dc.relation.references[Oikonomou et al., 2017] Oikonomou, V. P.; Georgiadis, K.; Liaros, G.; Nikolopoulos, S. & Kompatsiaris, I.: , 2017; A comparison study on eeg signal processing techniques using motor imagery eeg data; en 2017 IEEE 30th international symposium on computer-based medical systems (CBMS); IEEE; págs. 781–786.spa
dc.relation.references[Omeiza et al., 2019] Omeiza, D.; Speakman, S.; Cintas, C. & Weldermariam, K.: , 2019; Smooth grad-CAM++: An enhanced inference level visualization technique for deep convolutional neural network models; arXiv preprint arXiv:1908.01224.spa
dc.relation.references[O’Reilly & Chanmittakul, 2021] O’Reilly, J. A. & Chanmittakul, W.: , 2021; L1 regularization-based selection of EEG spectral power and ECG features for classification of cognitive state; en 2021 9th International Electrical Engineering Congress (iEECON); IEEE; págs. 365–368.spa
dc.relation.references[Ortiz-Echeverri et al., 2019] Ortiz-Echeverri, C. J.; Salazar-Colores, S.; Rodríguez-Reséndiz, J. & Gómez-Loenzo, R. A.: , 2019; A new approach for motor imagery classification based on sorted blind source separation, continuous wavelet transform, and convolutional neural network; Sensors; 19 (20): 4541.spa
dc.relation.references[Özdenizci et al., 2019] Özdenizci, O.; Wang, Y.; Koike-Akino, T. & Erdoğmuş, D.: , 2019; Adversarial deep learning in EEG biometrics; IEEE signal processing letters; 26 (5): 710–714.spa
dc.relation.references[Padfield et al., 2019] Padfield, N.; Zabalza, J.; Zhao, H.; Masero, V. & Ren, J.: , 2019; Eeg-based brain-computer interfaces using motor-imagery: Techniques and challenges; Sensors; 19 (6): 1423.spa
dc.relation.references[Pandey & Miyapuram, 2021] Pandey, P. & Miyapuram, K. P.: , 2021; BRAIN2DEPTH: Lightweight CNN model for classification of cognitive states from EEG recordings; arXiv preprint arXiv:2106.06688.spa
dc.relation.references[Parhi & Tewfik, 2021] Parhi, M. & Tewfik, A. H.: , 2021; Classifying imaginary vowels from frontal lobe EEG via deep learning; en 2020 28th European Signal Processing Conference (EUSIPCO); IEEE; págs. 1195–1199.spa
dc.relation.references[Park et al., 2023] Park, S.; Ha, J. & Kim, L.: , 2023; Improving performance of motor imagery-based brain–computer interface in poorly performing subjects using a hybrid-imagery method utilizing combined motor and somatosensory activity; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 31: 1064–1074.spa
dc.relation.references[Park et al., 2017] Park, S.-H.; Lee, D. & Lee, S.-G.: , 2017; Filter bank regularized common spatial pattern ensemble for small sample motor imagery classification; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 26 (2): 498–505.spa
dc.relation.references[Paz-Linares et al., 2017] Paz-Linares, D.; Vega-Hernandez, M.; Rojas-Lopez, P. A.; Valdes-Hernandez, P. A.; Martinez- Montes, E. & Valdes-Sosa, P. A.: , 2017; Spatio temporal EEG source imaging with the hierarchical bayesian elastic net and elitist lasso models; Frontiers in neuroscience; 11: 635.spa
dc.relation.references[Perdikis et al., 2018] Perdikis, S.; Tonin, L.; Saeedi, S.; Schneider, C. & Millán, J. d. R.: , 2018; The cybathlon bci race: Successful longitudinal mutual learning with two tetraplegic users; PLoS biology; 16 (5): e2003787.spa
dc.relation.references[Peterson et al., 2019] Peterson, V.; Wyser, D.; Lambercy, O.; Spies, R. & Gassert, R.: , 2019; A penalized time-frequency band feature selection and classification procedure for improved motor intention decoding in multichannel EEG; Journal of Neural Engineering; 16 (1): 016019.spa
dc.relation.references[Philip et al., 2022] Philip, B. S.; Prasad, G. & Hemanth, D. J.: , 2022; Non-stationarity removal techniques in meg data: A review; Procedia Computer Science; 215: 824–833.spa
dc.relation.references[Phunruangsakao et al., 2023] Phunruangsakao, C.; Achanccaray, D.; Bhattacharyya, S.; Izumi, S.-I. & Hayashibe, M.: , 2023; Effects of visual-electrotactile stimulation feedback on brain functional connectivity during motor imagery practice; Scientific Reports; 13 (1): 17752.spa
dc.relation.references[Pope et al., 2019] Pope, P. E.; Kolouri, S.; Rostami, M.; Martin, C. E. & Hoffmann, H.: , 2019; Explainability methods for graph convolutional neural networks; en Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; págs. 10772–10781.spa
dc.relation.references[Prakash et al., ] Prakash, E. I.; Shrikumar, A. & Kundaje, A.: , ; Towards more realistic simulated datasets for benchmarking deep learning models in regulatory genomics; en Machine Learning in Computational Biology; PMLR; págs. 58–77.spa
dc.relation.references[Principe, 2010] Principe, J. C.: , 2010; Information theoretic learning: Renyi’s entropy and kernel perspectives; Springer Science & Business Media.spa
dc.relation.references[Pulgarin-Giraldo et al., 2017] Pulgarin-Giraldo, J. D.; Ruales-Torres, A.; Álvarez-Meza, A. M. & Castellanos-Dominguez, G.: , 2017; Relevant kinematic feature selection to support human action recognition in MoCap data; en International Work-Conference on the Interplay Between Natural and Artificial Computation; Springer; págs. 501–509.spa
dc.relation.references[Purves, 2001] Purves, W. K.: , c 2001.; Life, the science of biology / ; Sinauer Associates„ Sunderland, MA :; 6a edición; includes index.spa
dc.relation.references[Qian et al., 2018] Qian, X.; Loo, B. R. Y.; Castellanos, F. X.; Liu, S.; Koh, H. L.; Poh, X. W. W.; Krishnan, R.; Fung, D.; Chee, M. W.; Guan, C. et al.: , 2018; Brain-computer-interface-based intervention re-normalizes brain functional network topology in children with attention deficit/hyperactivity disorder; Translational psychiatry; 8 (1): 149.spa
dc.relation.references[Qiao et al., 2023] Qiao, R.; Zhang, H. & Tian, Y.: , 2023; Eeg cortical network reveals the temporo-spatial mechanism of visual search; Brain Research Bulletin; 203: 110758.spa
dc.relation.references[Qiumei et al., 2019] Qiumei, Z.; Dan, T. & Fenghua, W.: , 2019; Improved convolutional neural network based on fast exponentially linear unit activation function; Ieee Access; 7: 151359–151367.spa
dc.relation.references[Raeisi et al., 2020] Raeisi, K.; Mohebbi, M.; Khazaei, M.; Seraji, M. & Yoonessi, A.: , 2020; Phase-synchrony evaluation of EEG signals for multiple sclerosis diagnosis based on bivariate empirical mode decomposition during a visual task; Computers in biology and medicine; 117: 103596.spa
dc.relation.references[Raeisi et al., 2022] Raeisi, K.; Khazaei, M.; Croce, P.; Tamburro, G.; Comani, S. & Zappasodi, F.: , 2022; A graph convolutional neural network for the automated detection of seizures in the neonatal eeg; Computer methods and programs in biomedicine; 222: 106950.spa
dc.relation.references[Rahate et al., 2022] Rahate, A.; Walambe, R.; Ramanna, S. & Kotecha, K.: , 2022; Multimodal co-learning: challenges, applications with datasets, recent advances and future directions; Information Fusion; 81: 203–239.spa
dc.relation.references[Rahimi et al., 2007] Rahimi, A.; Recht, B. et al.: , 2007; Random features for large-scale kernel machines.; en NIPS, tomo 3; Citeseer; pág. 5.spa
dc.relation.references[Ramadan & Vasilakos, 2017] Ramadan, R. A. & Vasilakos, A. V.: , 2017; Brain computer interface: control signals review; Neurocomputing; 223: 26–44.spa
dc.relation.references[Ramadan et al., 2015] Ramadan, R. A.; Refat, S.; Elshahed, M. A. & Ali, R. A.: , 2015; Basics of brain computer interface; en Brain-Computer Interfaces; Springer; págs. 31–50.spa
dc.relation.references[Ras et al., 2018] Ras, G.; van Gerven, M. & Haselager, P.: , 2018; Explanation methods in deep learning: Users, values, concerns and challenges; Explainable and interpretable models in computer vision and machine learning: 19–36.spa
dc.relation.references[Rashed-Al-Mahfuz et al., 2021] Rashed-Al-Mahfuz, M.; Moni, M. A.; Uddin, S.; Alyami, S. A.; Summers, M. A. & Eapen, V.: , 2021; A deep convolutional neural network method to detect seizures and characteristic frequencies using epileptic electroencephalogram (eeg) data; IEEE journal of translational engineering in health and medicine; 9: 1–12.spa
dc.relation.references[Rasheed et al., 2021] Rasheed, M. A.; Chand, P.; Ahmed, S.; Sharif, H.; Hoodbhoy, Z.; Siddiqui, A. & Hasan, B. S.: , 2021; Use of artificial intelligence on electroencephalogram (EEG) waveforms to predict failure in early school grades in children from a rural cohort in pakistan; Plos one; 16 (2): e0246236.spa
dc.relation.references[Rashid et al., 2020] Rashid, M.; Sulaiman, N.; PP Abdul Majeed, A.; Musa, R. M.; Ab Nasir, A. F.; Bari, B. S. & Khatun, S.: , 2020; Current status, challenges, and possible solutions of eeg-based brain-computer interface: a comprehensive review; Frontiers in neurorobotics: 25.spa
dc.relation.references[Rashkov et al., 2019] Rashkov, G.; Bobe, A.; Fastovets, D. & Komarova, M.: , 2019; Natural image reconstruction from brain waves: a novel visual bci system with native feedback; BioRxiv : 787101.spa
dc.relation.references[Rathee et al., 2017] Rathee, D.; Cecotti, H. & Prasad, G.: , 2017; Single-trial effective brain connectivity patterns enhance discriminability of mental imagery tasks; Journal of neural engineering; 14 (5): 056005.spa
dc.relation.references[Ravaioli et al., 2023] Ravaioli, G.; Domingos, T. & Teixeira, R. F.: , 2023; A framework for data-driven agent-based modelling of agricultural land use; Land; 12 (4): 756.spa
dc.relation.references[Rejer & Lorenz, 2013] Rejer, I. & Lorenz, K.: , 2013; Genetic algorithm and forward method for feature selection in EEG feature space; Journal of Theoretical and Applied Computer Science; 7 (2): 72–82.spa
dc.relation.references[Rényi, 1961] Rényi, A.: , 1961; On measures of entropy and information; en Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics, tomo 4; University of California Press; págs. 547–562.spa
dc.relation.references[Reuderink et al., 2011] Reuderink, B.; Farquhar, J.; Poel, M. & Nijholt, A.: , 2011; A subject-independent brain-computer interface based on smoothed, second-order baselining; en 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society; IEEE; págs. 4600–4604.spa
dc.relation.references[Rezaei & Shalbaf, 2023] Rezaei, E. & Shalbaf, A.: , 2023; Classification of right/left hand motor imagery by effective connectivity based on transfer entropy in electroencephalogram signal; Basic and Clinical Neuroscience; 14 (2): 213.spa
dc.relation.references[Riahi et al., 2020] Riahi, N.; Vakorin, V. A. & Menon, C.: , 2020; Estimating fugl-meyer upper extremity motor score from functional-connectivity measures; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 28 (4): 860–868.spa
dc.relation.references[Rimbert et al., 2020] Rimbert, S.; Bougrain, L. & Fleck, S.: , 2020; Learning how to generate kinesthetic motor imagery using a bci-based learning environment: A comparative study based on guided or trial-and-error approaches; en 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC); IEEE; págs. 2483–2498.spa
dc.relation.references[Rodrigues et al., 2019a] Rodrigues, P.; Stefano, C.; Attux, R.; Castellano, G. & Soriano, D.: , 2019a; Space-time recurrences for functional connectivity evaluation and feature extraction in motor imagery brain-computer interfaces; Medical & biological engineering & computing; 57 (8): 1709–1725.spa
dc.relation.references[Rodrigues et al., 2020] Rodrigues, P.; Fim-Neto, A.; Sato, J.; Soriano, D. & Nasuto, S.: , 2020; Single-trial functional connectivity dynamics of event-related desynchronization for motor imagery eeg-based brain-computer interfaces; en Brazilian Congress on Biomedical Engineering; Springer; págs. 1887–1893.spa
dc.relation.references[Rodrigues et al., 2019b] Rodrigues, P. G.; Stefano Filho, C. A.; Attux, R.; Castellano, G. & Soriano, D. C.: , 2019b; Space-time recurrences for functional connectivity evaluation and feature extraction in motor imagery brain-computer interfaces; Medical & biological engineering & computing; 57 (8): 1709–1725.spa
dc.relation.references[Rodrigues et al., 2022] Rodrigues, P. G.; Filho, C. A. S.; Takahata, A. K.; Suyama, R.; Attux, R.; Castellano, G.; Sato, J. R.; Nasuto, S. J. & Soriano, D. C.: , 2022; Can dynamic functional connectivity be used to distinguish between resting-state and motor imagery in eeg-bcis?; en Complex Networks & Their Applications X: Volume 2, Proceedings of the Tenth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2021 10 ; Springer; págs. 688–699.spa
dc.relation.references[Rongrong et al., 2020] Rongrong, F.; Mengmeng, H.; Yongsheng, T. & Peiming, S.: , 2020; Improvement motor imagery eeg classification based on sparse common spatial pattern and regularized discriminant analysis; Journal of Neuroscience Methods; 343: 108833.spa
dc.relation.references[Roweis & Ghahramani, 1999] Roweis, S. & Ghahramani, Z.: , 1999; A unifying review of linear gaussian models; Neural computation; 11 (2): 305–345.spa
dc.relation.references[Roy et al., 2022] Roy, G.; Bhoi, A. & Bhaumik, S.: , 2022; A comparative approach for mi-based eeg signals classification using energy, power and entropy; IRBM ; 43 (5): 434–446.spa
dc.relation.references[Rubinov & Sporns, 2010] Rubinov, M. & Sporns, O.: , 2010; Complex network measures of brain connectivity: uses and interpre- tations; Neuroimage; 52 (3): 1059–1069.spa
dc.relation.references[Ruffino et al., 2017] Ruffino, C.; Papaxanthis, C. & Lebon, F.: , 2017; Neural plasticity during motor learning with motor imagery practice: Review and perspectives; Neuroscience; 341: 61–78.spa
dc.relation.references[Ruiz-Gómez et al., 2020] Ruiz-Gómez, S. J.; Gómez, C.; Poza, J.; Revilla-Vallejo, M.; Gutiérrez-de Pablo, V.; Rodríguez- González, V.; Maturana-Candelas, A. & Hornero, R.: , 2020; Volume conduction effects on connectivity metrics: Application of network parameters to characterize alzheimer’s disease continuum; en 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC); IEEE; págs. 30–33.spa
dc.relation.references[Saha & Baumert, 2020] Saha, S. & Baumert, M.: , 2020; Intra-and inter-subject variability in EEG-based sensorimotor brain computer interface: a review; Frontiers in computational neuroscience; 13: 87.spa
dc.relation.references[Said et al., 2017] Said, S.; Bombrun, L.; Berthoumieu, Y. & Manton, J. H.: , 2017; Riemannian gaussian distributions on the space of symmetric positive definite matrices; IEEE Transactions on Information Theory; 63 (4): 2153–2170.spa
dc.relation.references[Sakkalis, 2011] Sakkalis, V.: , 2011; Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG; Computers in biology and medicine; 41 (12): 1110–1117.spa
dc.relation.references[Samuel et al., 2017] Samuel, O. W.; Geng, Y.; Li, X. & Li, G.: , 2017; Towards efficient decoding of multiple classes of motor imagery limb movements based on eeg spectral and time domain descriptors; Journal of medical systems; 41: 1–13.spa
dc.relation.references[Sannelli et al., 2019] Sannelli, C.; Vidaurre, C.; Müller, K. & Blankertz, B.: , 2019; A large scale screening study with a smr-based bci: Categorization of bci users and differences in their smr activity; PLoS One; 14 (1): e0207351.spa
dc.relation.references[Sarin et al., 2020] Sarin, M.; Verma, A.; Mehta, D. H.; Shukla, P. K. & Verma, S.: , 2020; Automated ocular artifacts identification and removal from EEG data using hybrid machine learning methods; en 2020 7th International Conference on Signal Processing and Integrated Networks (SPIN); IEEE; págs. 1054–1059.spa
dc.relation.references[Sarraf, 2017] Sarraf, S.: , 2017; Eeg-based movement imagery classification using machine learning techniques and welch’s power spectral density estimation; American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS); 33 (1): 124–145.spa
dc.relation.references[Schirrmeister et al., 2017] Schirrmeister, R. T.; Springenberg, J. T.; Fiederer, L. D. J.; Glasstetter, M.; Eggensperger, K.; Tangermann, M.; Hutter, F.; Burgard, W. & Ball, T.: , 2017; Deep learning with convolutional neural networks for EEG decoding and visualization; Human brain mapping; 38 (11): 5391–5420.spa
dc.relation.references[Seghier & Price, 2018] Seghier, M. L. & Price, C. J.: , 2018; Interpreting and utilising intersubject variability in brain function; Trends in cognitive sciences; 22 (6): 517–530.spa
dc.relation.references[Selvaraju et al., 2016] Selvaraju, R. R.; Das, A.; Vedantam, R.; Cogswell, M.; Parikh, D. & Batra, D.: , 2016; Grad-CAM: Why did you say that?; arXiv preprint arXiv:1611.07450.spa
dc.relation.references[Selvaraju et al., 2017] Selvaraju, R. R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D. & Batra, D.: , 2017; Grad-cam: Visual explanations from deep networks via gradient-based localization; en Proceedings of the IEEE international conference on computer vision; págs. 618–626.spa
dc.relation.references[Shali & Setarehdan, 2020] Shali, R. K. & Setarehdan, S. K.: , 2020; The impact of electrode reduction in the diagnosis of dyslexia; en 2020 27th National and 5th International Iranian Conference on Biomedical Engineering (ICBME); IEEE; págs. 118–125.spa
dc.relation.references[Shamsi et al., 2020a] Shamsi, F.; Haddad, A. & Najafizadeh, L.: , 2020a; Early classification of motor tasks using dynamic functional connectivity graphs from eeg; Journal of Neural Engineering.spa
dc.relation.references[Shamsi et al., 2020b] Shamsi, F.; Haddad, A. et al.: , 2020b; Recognizing pain in motor imagery EEG recordings using dynamic functional connectivity graphs; en 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC); IEEE; págs. 2869–2872.spa
dc.relation.references[Shamsi et al., 2021] Shamsi, F.; Haddad, A. & Najafizadeh, L.: , 2021; Early classification of motor tasks using dynamic functional connectivity graphs from EEG; Journal of Neural Engineering; 18 (1): 016015.spa
dc.relation.references[Shao et al., 2020] Shao, L.; Zhang, L.; Belkacem, A. N.; Zhang, Y.; Chen, X.; Li, J. & Liu, H.: , 2020; EEG-controlled wall-crawling cleaning robot using SSVEP-based brain-computer interface; Journal of healthcare engineering; 2020.spa
dc.relation.references[Sharma et al., 2023] Sharma, N.; Sharma, M.; Singhal, A.; Vyas, R.; Malik, H.; Afthanorhan, A. & Hossaini, M. A.: , 2023; Recent trends in eeg based motor imagery signal analysis and recognition: A comprehensive review.; IEEE Access.spa
dc.relation.references[Shrikumar et al., 2017] Shrikumar, A.; Greenside, P. & Kundaje, A.: , 2017; Learning important features through propagating activation differences; en International conference on machine learning; PMLR; págs. 3145–3153.spa
dc.relation.references[Si et al., 2020] Si, Y.; Li, F.; Duan, K.; Tao, Q.; Li, C.; Cao, Z.; Zhang, Y.; Biswal, B.; Li, P.; Yao, D. et al.: , 2020; Predicting individual decision-making responses based on single-trial eeg; NeuroImage; 206: 116333.spa
dc.relation.references[Simon et al., 2013] Simon, N.; Friedman, J.; Hastie, T. & Tibshirani, R.: , 2013; A sparse-group lasso; Journal of computational and graphical statistics; 22 (2): 231–245.spa
dc.relation.references[Simonyan et al., 2013] Simonyan, K.; Vedaldi, A. & Zisserman, A.: , 2013; Deep inside convolutional networks: Visualising image classification models and saliency maps; arXiv preprint arXiv:1312.6034.spa
dc.relation.references[Singh et al., 2021] Singh, A.; Hussain, A. A.; Lal, S. & Guesgen, H. W.: , 2021; A comprehensive review on critical issues and possible solutions of motor imagery based electroencephalography brain-computer interface; Sensors; 21 (6): 2173.spa
dc.relation.references[Sisti et al., 2022] Sisti, H. M.; Beebe, A.; Bishop, M. & Gabrielsson, E.: , 2022; A brief review of motor imagery and bimanual coordination; Frontiers in Human Neuroscience; 16: 1037410.spa
dc.relation.references[Sitaram et al., 2017] Sitaram, R.; Ros, T.; Stoeckel, L.; Haller, S.; Scharnowski, F.; Lewis-Peacock, J.; Weiskopf, N.; Blefari, M. L.; Rana, M.; Oblak, E. et al.: , 2017; Closed-loop brain training: the science of neurofeedback; Nature Reviews Neuroscience; 18 (2): 86–100.spa
dc.relation.references[Siviero et al., 2023] Siviero, I.; Menegaz, G. & Storti, S. F.: , 2023; Functional connectivity and feature fusion enhance multiclass motor-imagery brain–computer interface performance; Sensors; 23 (17): 7520.spa
dc.relation.references[Smith et al., 2011] Smith, S. M.; Miller, K. L.; Salimi-Khorshidi, G.; Webster, M.; Beckmann, C. F.; Nichols, T. E.; Ramsey, J. D. & Woolrich, M. W.: , 2011; Network modelling methods for fmri; Neuroimage; 54 (2): 875–891.spa
dc.relation.references[Smola & Schölkopf, 2000] Smola, A. J. & Schölkopf, B.: , 2000; Sparse greedy matrix approximation for machine learning.spa
dc.relation.references[Smuha, 2019] Smuha, N. A.: , 2019; The eu approach to ethics guidelines for trustworthy artificial intelligence; Computer Law Review International; 20 (4): 97–106.spa
dc.relation.references[Somers et al., 2018] Somers, B.; Francart, T. & Bertrand, A.: , 2018; A generic eeg artifact removal algorithm based on the multi-channel wiener filter; Journal of neural engineering; 15 (3): 036007.spa
dc.relation.references[Sorger & Goebel, 2020] Sorger, B. & Goebel, R.: , 2020; Real-time fmri for brain-computer interfacing; Handbook of clinical neurology; 168: 289–302.spa
dc.relation.references[Souto et al., 2020] Souto, D. O.; Cruz, T. K. F.; Coutinho, K.; Julio-Costa, A.; Fontes, P. L. B. & Haase, V. G.: , 2020; Effect of motor imagery combined with physical practice on upper limb rehabilitation in children with hemiplegic cerebral palsy; NeuroRehabilitation; 46 (1): 53–63.spa
dc.relation.references[Speith, 2022] Speith, T.: , 2022; A review of taxonomies of explainable artificial intelligence (xai) methods; en 2022 ACM Conference on Fairness, Accountability, and Transparency; págs. 2239–2250.spa
dc.relation.references[Springenberg et al., 2014] Springenberg, J. T.; Dosovitskiy, A.; Brox, T. & Riedmiller, M.: , 2014; Striving for simplicity: The all convolutional net; arXiv preprint arXiv:1412.6806.spa
dc.relation.references[Stefano Filho et al., 2018] Stefano Filho, C. A.; Attux, R. & Castellano, G.: , 2018; Can graph metrics be used for EEG-BCIs based on hand motor imagery?; Biomedical Signal Processing and Control; 40: 359–365.spa
dc.relation.references[Stefano Filho et al., 2021] Stefano Filho, C. A.; Ignacio Serrano, J.; Attux, R.; Castellano, G.; Rocon, E. & del Castillo, M. D.: , 2021; Reorganization of resting-state EEG functional connectivity patterns in children with cerebral palsy following a motor imagery virtual-reality intervention; Applied Sciences; 11 (5): 2372.spa
dc.relation.references[Stephan et al., 2009] Stephan, K.; Friston, K. & Squire, L.: , 2009; Functional connectivity.spa
dc.relation.references[Stergiadis et al., 2022] Stergiadis, C.; Kostaridou, V.-D. & Klados, M. A.: , 2022; Which bss method separates better the eeg signals? a comparison of five different algorithms; Biomedical Signal Processing and Control; 72: 103292.spa
dc.relation.references[Sturm et al., 2016] Sturm, I.; Lapuschkin, S.; Samek, W. & Müller, K.-R.: , 2016; Interpretable deep neural networks for single-trial EEG classification; Journal of neuroscience methods; 274: 141–145.spa
dc.relation.references[Subasi & Gursoy, 2010] Subasi, A. & Gursoy, M. I.: , 2010; EEG signal classification using PCA, ICA, LDA and support vector machines; Expert systems with applications; 37 (12): 8659–8666.spa
dc.relation.references[Subasi et al., 2021] Subasi, A.; Tuncer, T.; Dogan, S.; Tanko, D. & Sakoglu, U.: , 2021; EEG-based emotion recognition using tunable Q wavelet transform and rotation forest ensemble classifier; Biomedical Signal Processing and Control; 68: 102648.spa
dc.relation.references[Sujatha Ravindran & Contreras-Vidal, 2023] Sujatha Ravindran, A. & Contreras-Vidal, J.: , 2023; An empirical comparison of deep learning explainability approaches for eeg using simulated ground truth; Scientific Reports; 13 (1): 17709.spa
dc.relation.references[Sun et al., 2020a] Sun, C.; Lin, K.; Huang, Y.-T.; Ching, E. S.; Lai, P.-Y. & Chan, C.: , 2020a; Directed effective connectivity and synaptic weights of in vitro neuronal cultures revealed from high-density multielectrode array recordings; bioRxiv.spa
dc.relation.references[Sun et al., 2020b] Sun, X.; Hu, B.; Zheng, X.; Yin, Y. & Ji, C.: , 2020b; Emotion classification based on brain functional connectivity network; en 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM); IEEE; págs. 2082–2089.spa
dc.relation.references[Suto & Oniga, 2018] Suto, J. & Oniga, S.: , 2018; Music stimuli recognition in electroencephalogram signal; Elektronika ir Elektrotechnika; 24 (4): 68–71.spa
dc.relation.references[Šverko et al., 2022] Šverko, Z.; Vrankić, M.; Vlahinić, S. & Rogelj, P.: , 2022; Complex pearson correlation coefficient for eeg connectivity analysis; Sensors; 22 (4): 1477.spa
dc.relation.references[Tabar & Halici, 2016] Tabar, Y. R. & Halici, U.: , 2016; A novel deep learning approach for classification of eeg motor imagery signals; Journal of neural engineering; 14 (1): 016003.spa
dc.relation.references[Tafreshi et al., 2019] Tafreshi, T. F.; Daliri, M. R. & Ghodousi, M.: , 2019; Functional and effective connectivity based features of eeg signals for object recognition; Cognitive neurodynamics; 13: 555–566.spa
dc.relation.references[Talukdar et al., 2019] Talukdar, U.; Hazarika, S. M. & Gan, J. Q.: , 2019; Motor imagery and mental fatigue: inter-relationship and eeg based estimation; Journal of computational neuroscience; 46: 55–76.spa
dc.relation.references[Tang et al., 2014] Tang, Q.; Wang, J. & Wang, H.: , 2014; L1-norm based discriminative spatial pattern for single-trial EEG classification; Biomedical Signal Processing and Control; 10: 313–321.spa
dc.relation.references[Tang et al., 2020] Tang, X.; Li, W.; Li, X.; Ma, W. & Dang, X.: , 2020; Motor imagery eeg recognition based on conditional optimization empirical mode decomposition and multi-scale convolutional neural network; Expert Systems with Applications; 149: 113285.spa
dc.relation.references[Tang et al., 2023] Tang, X.; Wang, S.; Deng, X.; Liu, K.; Tian, Y.; Wang, H. & Gao, X.: , 2023; Graph-based information separator and area convolutional network for eeg-based intention decoding; IEEE Transactions on Cognitive and Developmental Systems.spa
dc.relation.references[Tay et al., 2023] Tay, J. K.; Narasimhan, B. & Hastie, T.: , 2023; Elastic net regularization paths for all generalized linear models; Journal of statistical software; 106.spa
dc.relation.references[Tayeb et al., 2019] Tayeb, Z.; Fedjaev, J.; Ghaboosi, N.; Richter, C.; Everding, L.; Qu, X.; Wu, Y.; Cheng, G. & Conradt, J.: , 2019; Validating deep neural networks for online decoding of motor imagery movements from eeg signals; Sensors; 19 (1): 210.spa
dc.relation.references[Teo & Chew, 2014] Teo, W.-P. & Chew, E.: , 2014; Is motor-imagery brain-computer interface feasible in stroke rehabilitation?; PM&R; 6 (8): 723–728.spa
dc.relation.references[Thakur et al., 2016] Thakur, K. T.; Albanese, E.; Giannakopoulos, P.; Jette, N.; Linde, M.; Prince, M. J.; Steiner, T. J. & Dua, T.: , 2016; Neurological disorders.spa
dc.relation.references[Thiebaut de Schotten et al., 2020] Thiebaut de Schotten, M.; Foulon, C. & Nachev, P.: , 2020; Brain disconnections link structural connectivity with function and behaviour; Nature communications; 11 (1): 5094.spa
dc.relation.references[Tibrewal et al., 2022] Tibrewal, N.; Leeuwis, N. & Alimardani, M.: , 2022; Classification of motor imagery eeg using deep learning increases performance in inefficient bci users; Plos one; 17 (7): e0268880.spa
dc.relation.references[Tibshirani, 1996] Tibshirani, R.: , 1996; Regression shrinkage and selection via the lasso; Journal of the Royal Statistical Society: Series B (Methodological); 58 (1): 267–288.spa
dc.relation.references[Tjoa & Guan, 2020] Tjoa, E. & Guan, C.: , 2020; A survey on explainable artificial intelligence (xai): Toward medical xai; IEEE transactions on neural networks and learning systems; 32 (11): 4793–4813.spa
dc.relation.references[Tjoa & Guan, 2022] Tjoa, E. & Guan, C.: , 2022; Evaluating weakly supervised object localization methods right? a study on heatmap-based xai and neural backed decision tree; A Study on Heatmap-Based Xai and Neural Backed Decision Tree (November 27, 2022).spa
dc.relation.references[Tortora et al., 2020] Tortora, S.; Ghidoni, S.; Chisari, C.; Micera, S. & Artoni, F.: , 2020; Deep learning-based BCI for gait decoding from EEG with LSTM recurrent neural network; Journal of Neural Engineering; 17 (4): 046011.spa
dc.relation.references[Tuncer et al., 2021] Tuncer, T.; Dogan, S. & Acharya, U. R.: , 2021; Automated EEG signal classification using chaotic local binary pattern; Expert Systems with Applications; 182: 115175.spa
dc.relation.references[Uribe et al., 2019] Uribe, L. F. S.; Stefano Filho, C. A.; de Oliveira, V. A.; da Silva Costa, T. B.; Rodrigues, P. G.; Soriano, D. C.; Boccato, L.; Castellano, G. & Attux, R.: , 2019; A correntropy-based classifier for motor imagery brain-computer interfaces; Biomedical Physics & Engineering Express; 5 (6): 065026.spa
dc.relation.references[Van der Lubbe et al., 2021] Van der Lubbe, R. H.; Sobierajewicz, J.; Jongsma, M. L.; Verwey, W. B. & Przekoracka- Krawczyk, A.: , 2021; Frontal brain areas are more involved during motor imagery than during motor execution/preparation of a response sequence; International journal of psychophysiology; 164: 71–86.spa
dc.relation.references[Van der Maaten & Hinton, 2008] Van der Maaten, L. & Hinton, G.: , 2008; Visualizing data using t-sne.; Journal of machine learning research; 9 (11).spa
dc.relation.references[Van Der Maaten et al., 2009] Van Der Maaten, L.; Postma, E. & Van den Herik, J.: , 2009; Dimensionality reduction: a comparative; J Mach Learn Res; 10 (66-71): 13.spa
dc.relation.references[Van Der Maaten et al., 2009] Van Der Maaten, L.; Postma, E. & Van den Herik, J.: , 2009; Dimensionality reduction: a comparative; J Mach Learn Res; 10 (66-71): 13.spa
dc.relation.references[Van Mierlo et al., 2014] Van Mierlo, P.; Papadopoulou, M.; Carrette, E.; Boon, P.; Vandenberghe, S.; Vonck, K. & Marinazzo, D.: , 2014; Functional brain connectivity from eeg in epilepsy: Seizure prediction and epileptogenic focus localization; Progress in neurobiology; 121: 19–35.spa
dc.relation.references[Vaquerizo-Villar et al., 2023] Vaquerizo-Villar, F.; Gutiérrez-Tobal, G. C.; Calvo, E.; Álvarez, D.; Kheirandish-Gozal, L.; Del Campo, F.; Gozal, D. & Hornero, R.: , 2023; An explainable deep-learning model to stage sleep states in children and propose novel eeg-related patterns in sleep apnea; Computers in Biology and Medicine; 165: 107419.spa
dc.relation.references[Värbu et al., 2022] Värbu, K.; Muhammad, N. & Muhammad, Y.: , 2022; Past, present, and future of eeg-based bci applications; Sensors; 22 (9): 3331.spa
dc.relation.references[Varone et al., 2021] Varone, G.; Boulila, W.; Lo Giudice, M.; Benjdira, B.; Mammone, N.; Ieracitano, C.; Dashtipour, K.; Neri, S.; Gasparini, S.; Morabito, F. C. et al.: , 2021; A machine learning approach involving functional connectivity features to classify rest-eeg psychogenic non-epileptic seizures from healthy controls; Sensors; 22 (1): 129.spa
dc.relation.references[Varoquaux, 2018] Varoquaux, G.: , 2018; Cross-validation failure: small sample sizes lead to large error bars; Neuroimage; 180: 68–77.spa
dc.relation.references[Varsehi & Firoozabadi, 2021] Varsehi, H. & Firoozabadi, S. M. P.: , 2021; An EEG channel selection method for motor imagery based brain–computer interface and neurofeedback using granger causality; Neural Networks; 133: 193–206.spa
dc.relation.references[Veena & Anitha, 2020] Veena, N. & Anitha, N.: , 2020; A review of non-invasive bci devices; Int. J. Biomed. Eng. Technol; 34 (3): 205–233.spa
dc.relation.references[Velasquez-Martinez et al., 2020a] Velasquez-Martinez, L.; Caicedo-Acosta, J. & Castellanos-Dominguez, G.: , 2020a; Entropy-based estimation of event-related de/synchronization in motor imagery using vector-quantized patterns; Entropy; 22 (6): 703.spa
dc.relation.references[Velasquez-Martinez et al., 2020b] Velasquez-Martinez, L.; Zapata-Castano, F. & Castellanos-Dominguez, G.: , 2020b; Dynamic modeling of common brain neural activity in motor imagery tasks; Frontiers in Neuroscience; 14: 714.spa
dc.relation.references[Velásquez-Martínez et al., 2013] Velásquez-Martínez, L. F.; Álvarez-Meza, A. M. & Castellanos-Domínguez, C. G.: , 2013; Motor imagery classification for BCI using common spatial patterns and feature relevance analysis; en International Work-Conference on the Interplay Between Natural and Artificial Computation; Springer; págs. 365–374.spa
dc.relation.references[Velasquez-Martinez et al., 2020c] Velasquez-Martinez, L. F.; Zapata-Castano, F. & Castellanos-Dominguez, G.: , 2020c; Dynamic modeling of common brain neural activity in motor imagery tasks; Frontiers in Neuroscience; 14.spa
dc.relation.references[Verleysen & François, 2005] Verleysen, M. & François, D.: , 2005; The curse of dimensionality in data mining and time series prediction; en International work-conference on artificial neural networks; Springer; págs. 758–770.spa
dc.relation.references[Vidaurre et al., 2020] Vidaurre, C.; Haufe, S.; Jorajuría, T.; Müller, K.-R. & Nikulin, V. V.: , 2020; Sensorimotor functional connectivity: a neurophysiological factor related to BCI performance; Frontiers in Neuroscience; 14: 1278.spa
dc.relation.references[Vidaurre et al., 2021] Vidaurre, C.; Jorajuría, T.; Ramos-Murguialday, A.; Müller, K. R.; Gómez, M. & Nikulin, V. V.: , 2021; Improving motor imagery classification during induced motor perturbations; Journal of neural engineering; 18 (4): 0460b1.spa
dc.relation.references[Vidaurre et al., 2023] Vidaurre, C.; Gurunandan, K.; Idaji, M. J.; Nolte, G.; Gómez, M.; Villringer, A.; Müller, K.-R. & Nikulin, V. V.: , 2023; Novel multivariate methods to track frequency shifts of neural oscillations in eeg/meg recordings; NeuroImage; 276: 120178.spa
dc.relation.references[Vilela & Hochberg, 2020] Vilela, M. & Hochberg, L. R.: , 2020; Applications of brain-computer interfaces to the control of robotic and prosthetic arms; en Handbook of clinical neurology, tomo 168; Elsevier; págs. 87–99.spa
dc.relation.references[Volosyak et al., 2020] Volosyak, I.; Rezeika, A.; Benda, M.; Gembler, F. & Stawicki, P.: , 2020; Towards solving of the illiteracy phenomenon for vep-based brain-computer interfaces; Biomedical Physics & Engineering Express; 6 (3): 035034.spa
dc.relation.references[Wackernagel, 2003] Wackernagel, H.: , 2003; Multivariate geostatistics: an introduction with applications; Springer Science & Business Media.spa
dc.relation.references[Wackernagel, 2013] Wackernagel, H.: , 2013; Multivariate geostatistics: an introduction with applications; Springer Science & Business Media.spa
dc.relation.references[Wang et al., 2020a] Wang, H.; Wang, Z.; Du, M.; Yang, F.; Zhang, Z.; Ding, S.; Mardziel, P. & Hu, X.: , 2020a; Score-CAM: Score-weighted visual explanations for convolutional neural networks; en Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops; págs. 24–25.spa
dc.relation.references[Wang et al., 2020b] Wang, H.; Xu, T.; Tang, C.; Yue, H.; Chen, C.; Xu, L.; Pei, Z.; Dong, J.; Bezerianos, A. & Li, J.: , 2020b; Diverse feature blend based on filter-bank common spatial pattern and brain functional connectivity for multiple motor imagery detection; IEEE Access; 8: 155590–155601.spa
dc.relation.references[Wang et al., 2020b] Wang, H.; Xu, T.; Tang, C.; Yue, H.; Chen, C.; Xu, L.; Pei, Z.; Dong, J.; Bezerianos, A. & Li, J.: , 2020b; Diverse feature blend based on filter-bank common spatial pattern and brain functional connectivity for multiple motor imagery detection; IEEE Access; 8: 155590–155601.spa
dc.relation.references[Wang et al., 2021a] Wang, J.-G.; Shao, H.-M.; Yao, Y.; Liu, J.-L. & Ma, S.-W.: , 2021a; A personalized feature extraction and classification method for motor imagery recognition; Mobile Networks and Applications: 1–13.spa
dc.relation.references[Wang et al., 2019a] Wang, K.; Zhai, D.-H. & Xia, Y.: , 2019a; Motor imagination eeg recognition algorithm based on dwt, csp and extreme learning machine; en 2019 Chinese control conference (CCC); IEEE; págs. 4590–4595.spa
dc.relation.references[Wang et al., 2020c] Wang, K.; Xu, M.; Wang, Y.; Zhang, S.; Chen, L. & Ming, D.: , 2020c; Enhance decoding of pre-movement EEG patterns for brain–computer interfaces; Journal of Neural Engineering; 17 (1): 016033.spa
dc.relation.references[Wang et al., 2019b] Wang, M.; Hu, J. & Abbass, H. A.: , 2019b; Stable eeg biometrics using convolutional neural networks and functional connectivity.; Aust. J. Intell. Inf. Process. Syst.; 15 (3): 19–26.spa
dc.relation.references[Wang et al., 2019b] Wang, M.; Hu, J. & Abbass, H. A.: , 2019b; Stable eeg biometrics using convolutional neural networks and functional connectivity.; Aust. J. Intell. Inf. Process. Syst.; 15 (3): 19–26.spa
dc.relation.references[Wang et al., 2014] Wang, X.; Wang, A.; Zheng, S.; Lin, Y. & Yu, M.: , 2014; A multiple autocorrelation analysis method for motor imagery EEG feature extraction; en The 26th Chinese Control and Decision Conference (2014 CCDC); IEEE; págs. 3000–3004.spa
dc.relation.references[Wang et al., 2021b] Wang, Z.; Wang, F.; Liang, C. & Zhang, J.: , 2021b; A time-varying method for brain effective connectivity analysis of emotional EEG data; en 2021 IEEE 6th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA); IEEE; págs. 131–139.spa
dc.relation.references[Warrens, 2015] Warrens, M. J.: , 2015; Five ways to look at cohen’s kappa; Journal of Psychology & Psychotherapy; 5 (4): 1.spa
dc.relation.references[Wei & Luo, 2010] Wei, G. & Luo, J.: , 2010; Sport expert’s motor imagery: Functional imaging of professional motor skills and simple motor skills; Brain research; 1341: 52–62.spa
dc.relation.references[Wei et al., 2023] Wei, M.; Yang, R.; Huang, M.; Ni, J.; Wang, Z. & Liu, X.: , 2023; Sub-band cascaded csp-based deep transfer learning for cross-subject lower limb motor imagery classification; IEEE Transactions on Cognitive and Developmental Systems.spa
dc.relation.references[Willett et al., 2021] Willett, F. R.; Avansino, D. T.; Hochberg, L. R.; Henderson, J. M. & Shenoy, K. V.: , 2021; High-performance brain-to-text communication via handwriting; Nature; 593 (7858): 249–254.spa
dc.relation.references[Williams & Seeger, 2001] Williams, C. & Seeger, M.: , 2001; Using the nyström method to speed up kernel machines; en Proceedings of the 14th annual conference on neural information processing systems; CONF; págs. 682–688.spa
dc.relation.references[Wilroth et al., 2023] Wilroth, J.; Bernhardsson, B.; Heskebeck, F.; Skoglund, M. A.; Bergeling, C. & Alickovic, E.: , 2023; Improving eeg-based decoding of the locus of auditory attention through domain adaptation; Journal of Neural Engineering; 20 (6): 066022.spa
dc.relation.references[Wriessnegger et al., 2020] Wriessnegger, S. C.; Müller-Putz, G. R.; Brunner, C. & Sburlea, A. I.: , 2020; Inter-and intra-individual variability in brain oscillations during sports motor imagery; Frontiers in human neuroscience; 14: 576241.spa
dc.relation.references[Wu & Mooney, 2018] Wu, J. & Mooney, R. J.: , 2018; Faithful multimodal explanation for visual question answering; arXiv preprint arXiv:1809.02805.spa
dc.relation.references[Wu et al., 2020a] Wu, J.; Zhou, T. & Li, T.: , 2020a; Detecting epileptic seizures in EEG signals with complementary ensemble empirical mode decomposition and extreme gradient boosting; Entropy; 22 (2): 140.spa
dc.relation.references[Wu et al., 2019] Wu, X.; Zheng, W.-L. & Lu, B.-L.: , 2019; Identifying functional brain connectivity patterns for EEG-based emotion recognition; en 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER); IEEE; págs. 235–238.spa
dc.relation.references[Wu et al., 2020b] Wu, X.; Zheng, W.-L. & Lu, B.-L.: , 2020b; Investigating EEG-based functional connectivity patterns for multimodal emotion recognition; arXiv preprint arXiv:2004.01973.spa
dc.relation.references[Xiao et al., 2018] Xiao, C.; Choi, E. & Sun, J.: , 2018; Opportunities and challenges in developing deep learning models using electronic health records data: a systematic review; Journal of the American Medical Informatics Association; 25 (10): 1419–1428.spa
dc.relation.references[Xie et al., 2019] Xie, J.; Liu, F.; Wang, K. & Huang, X.: , 2019; Deep kernel learning via random fourier features; arXiv preprint arXiv:1910.02660.spa
dc.relation.references[Xie et al., 2018] Xie, X.; Yu, Z. L.; Gu, Z.; Zhang, J.; Cen, L. & Li, Y.: , 2018; Bilinear regularized locality preserving learning on riemannian graph for motor imagery BCI; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 26 (3): 698–708.spa
dc.relation.references[Xie & Oniga, 2020] Xie, Y. & Oniga, S.: , 2020; A review of processing methods and classification algorithm for EEG signal.; Carpathian Journal of Electronic & Computer Engineering; 12 (3).spa
dc.relation.references[Xiong et al., 2020] Xiong, X.; Yu, Z.; Ma, T.; Luo, N.; Wang, H.; Lu, X. & Fan, H.: , 2020; Weighted brain network metrics for decoding action intention understanding based on EEG; Frontiers in Human Neuroscience; 14: 232.spa
dc.relation.references[Xu et al., 2018] Xu, B.; Zhang, L.; Song, A.; Wu, C.; Li, W.; Zhang, D.; Xu, G.; Li, H. & Zeng, H.: , 2018; Wavelet transform time-frequency image and convolutional network-based motor imagery eeg classification; Ieee Access; 7: 6084–6093.spa
dc.relation.references[Xu et al., 2020a] Xu, J.; Grosse-Wentrup, M. & Jayaram, V.: , 2020a; Tangent space spatial filters for interpretable and efficient riemannian classification; Journal of Neural Engineering; 17 (2): 026043.spa
dc.relation.references[Xu et al., 2020b] Xu, J.; Zheng, H.; Wang, J.; Li, D. & Fang, X.: , 2020b; Recognition of eeg signal motor imagery intention based on deep multi-view feature learning; Sensors; 20 (12): 3496.spa
dc.relation.references[Xu et al., 2020c] Xu, M.; Yao, J.; Zhang, Z.; Li, R.; Yang, B.; Li, C.; Li, J. & Zhang, J.: , 2020c; Learning eeg topographical representation for classification via convolutional neural network; Pattern Recognition; 105: 107390.spa
dc.relation.references[Yang et al., 2021a] Yang, J.; Ma, Z. & Shen, T.: , 2021a; Multi-time and multi-band csp motor imagery eeg feature classification algorithm; Applied Sciences; 11 (21): 10294.spa
dc.relation.references[Yang et al., 2021b] Yang, J.; Yu, H.; Shen, T.; Song, Y. & Chen, Z.: , 2021b; 4-class mi-eeg signal generation and recognition with cvae-gan; Applied Sciences; 11 (4): 1798.spa
dc.relation.references[Yang et al., 2021c] Yang, L.; Song, Y.; Ma, K.; Su, E. & Xie, L.: , 2021c; A novel motor imagery eeg decoding method based on feature separation; Journal of Neural Engineering; 18 (3): 036022.spa
dc.relation.references[Yao et al., 2020] Yao, Y.; Ding, Y.; Zhong, S. & Cui, Z.: , 2020; EEG-based epilepsy recognition via multiple kernel learning; Computational and Mathematical Methods in Medicine; 2020.spa
dc.relation.references[Yeh et al., 2021] Yeh, C.-H.; Jones, D. K.; Liang, X.; Descoteaux, M. & Connelly, A.: , 2021; Mapping structural connectivity using diffusion MRI: Challenges and opportunities; Journal of Magnetic Resonance Imaging; 53 (6): 1666–1682.spa
dc.relation.references[Yeh et al., 2012] Yeh, Y.-R.; Lin, T.-C.; Chung, Y.-Y. & Wang, Y.-C. F.: , 2012; A novel multiple kernel learning framework for heterogeneous feature fusion and variable selection; IEEE Transactions on multimedia; 14 (3): 563–574.spa
dc.relation.references[Yen et al., 2023] Yen, C.; Lin, C.-L. & Chiang, M.-C.: , 2023; Exploring the frontiers of neuroimaging: a review of recent advances in understanding brain functioning and disorders; Life; 13 (7): 1472.spa
dc.relation.references[Yilmaz et al., 2018] Yilmaz, C. M.; Kose, C. & Hatipoglu, B.: , 2018; A quasi-probabilistic distribution model for eeg signal classification by using 2-d signal representation; Computer methods and programs in biomedicine; 162: 187–196.spa
dc.relation.references[Yu & Yu, 2021] Yu, J. & Yu, Z. L.: , 2021; Cross-correlation based discriminant criterion for channel selection in motor imagery BCI systems; Journal of Neural Engineering.spa
dc.relation.references[Yu et al., 2019] Yu, S.; Giraldo, L. G. S.; Jenssen, R. & Principe, J. C.: , 2019; Multivariate extension of matrix-based rényi’s α-order entropy functional; IEEE transactions on pattern analysis and machine intelligence; 42 (11): 2960–2966.spa
dc.relation.references[Yu et al., 2020] Yu, Z.; Ma, T.; Fang, N.; Wang, H.; Li, Z. & Fan, H.: , 2020; Local temporal common spatial patterns modulated with phase locking value; Biomedical Signal Processing and Control; 59: 101882.spa
dc.relation.references[Yuan et al., 2021] Yuan, K.; Chen, C.; Wang, X.; Chu, W. C.-w. & Tong, R. K.-y.: , 2021; Bci training effects on chronic stroke correlate with functional reorganization in motor-related regions: A concurrent eeg and fmri study; Brain sciences; 11 (1): 56.spa
dc.relation.references[Yuksel & Olmez, 2015] Yuksel, A. & Olmez, T.: , 2015; A neural network-based optimal spatial filter design method for motor imagery classification; PloS one; 10 (5): e0125039.spa
dc.relation.references[Zapała et al., 2020] Zapała, D.; Zabielska-Mendyk, E.; Augustynowicz, P.; Cudo, A.; Jaśkiewicz, M.; Szewczyk, M.; Kopiś, N. & Francuz, P.: , 2020; The effects of handedness on sensorimotor rhythm desynchronization and motor-imagery bci control; Scientific reports; 10 (1): 2087.spa
dc.relation.references[Zeiler & Fergus, 2014] Zeiler, M. D. & Fergus, R.: , 2014; Visualizing and understanding convolutional networks; en Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part I 13 ; Springer; págs. 818–833.spa
dc.relation.references[Zhang et al., 2021a] Zhang, A.; Lipton, Z. C.; Li, M. & Smola, A. J.: , 2021a; Dive into deep learning; arXiv preprint arXiv:2106.11342.spa
dc.relation.references[Zhang et al., 2020a] Zhang, B.; Yan, G.; Yang, Z.; Su, Y.; Wang, J. & Lei, T.: , 2020a; Brain functional networks based on resting-state EEG data for major depressive disorder analysis and classification; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 29: 215–229.spa
dc.relation.references[Zhang et al., 2021b] Zhang, C.; Kim, Y.-K. & Eskandarian, A.: , 2021b; Eeg-inception: an accurate and robust end-to-end neural network for eeg-based motor imagery classification; Journal of Neural Engineering; 18 (4): 046014.spa
dc.relation.references[Zhang et al., 2020b] Zhang, D.; Chen, K.; Jian, D. & Yao, L.: , 2020b; Motor imagery classification via temporal attention cues of graph embedded eeg signals; IEEE journal of biomedical and health informatics; 24 (9): 2570–2579.spa
dc.relation.references[Zhang et al., 2020c] Zhang, K.; Xu, G.; Han, Z.; Ma, K.; Zheng, X.; Chen, L.; Duan, N. & Zhang, S.: , 2020c; Data augmentation for motor imagery signal classification based on a hybrid neural network; Sensors; 20 (16): 4485.spa
dc.relation.references[Zhang et al., 2021c] Zhang, K.; Robinson, N.; Lee, S.-W. & Guan, C.: , 2021c; Adaptive transfer learning for eeg motor imagery classification with deep convolutional neural network; Neural Networks; 136: 1–10.spa
dc.relation.references[Zhang et al., 2017] Zhang, L.; Chen, Y.; Tan, X.; He, C. & Zhang, L.: , 2017; An improved self-training algorithm for classifying motor imagery electroencephalography in brain-computer interface; Journal of Medical Imaging and Health Informatics; 7 (2): 330–337.spa
dc.relation.references[Zhang et al., 2018a] Zhang, R.; Xiao, X.; Liu, Z.; Jiang, W.; Li, J.; Cao, Y.; Ren, J.; Jiang, D. & Cui, L.: , 2018a; A new motor imagery EEG classification method FB-TRCSP+ RF based on CSP and random forest; IEEE Access; 6: 44944–44950.spa
dc.relation.references[Zhang et al., 2019] Zhang, R.; Li, X.; Wang, Y.; Liu, B.; Shi, L.; Chen, M.; Zhang, L. & Hu, Y.: , 2019; Using brain network features to increase the classification accuracy of MI-BCI inefficiency subject; IEEE Access; 7: 74490–74499.spa
dc.relation.references[Zhang et al., 2021d] Zhang, R.; Zong, Q.; Dou, L.; Zhao, X.; Tang, Y. & Li, Z.: , 2021d; Hybrid deep neural network using transfer learning for eeg motor imagery decoding; Biomedical Signal Processing and Control; 63: 102144.spa
dc.relation.references[Zhang et al., 2021e] Zhang, T.; Han, Z.; Chen, X. & Chen, W.: , 2021e; Subbands and cumulative sum of subbands based nonlinear features enhance the performance of epileptic seizure detection; Biomedical Signal Processing and Control; 69: 102827.spa
dc.relation.references[Zhang et al., 2018b] Zhang, W.; Tan, C.; Sun, F.; Wu, H. & Zhang, B.: , 2018b; A review of EEG-based brain-computer interface systems design; Brain Science Advances; 4 (2): 156–167.spa
dc.relation.references[Zhang et al., 2021f] Zhang, W.; Liang, Z. & Liu, Z.: , 2021f; Combination of variational mode decomposition for feature extraction and deep belief network for feature classification in motor imagery electroencephalogram recognition.; Sensors & Materials; 33.spa
dc.relation.references[Zhang et al., 2020d] Zhang, X.; Lu, D.; Shen, J.; Gao, J.; Huang, X. & Wu, M.: , 2020d; Spatial-temporal joint optimization network on covariance manifolds of electroencephalography for fatigue detection; en 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM); IEEE; págs. 893–900.spa
dc.relation.references[Zhang et al., 2021g] Zhang, X.; Yao, L.; Wang, X.; Monaghan, J.; Mcalpine, D. & Zhang, Y.: , 2021g; A survey on deep learning-based non-invasive brain signals: recent advances and new frontiers; Journal of neural engineering; 18 (3): 031002.spa
dc.relation.references[Zhang et al., 2018c] Zhang, Y.; Nam, C.; Zhou, G.; Jin, J.; Wang, X. & Cichocki, A.: , 2018c; Temporally constrained sparse group spatial patterns for motor imagery BCI; IEEE transactions on cybernetics; 49 (9): 3322–3332.spa
dc.relation.references[Zhao et al., 2021a] Zhao, N.; Zhang, H.; Liu, T.; Liu, J.; Xiang, Y.; Shu, G.; Li, C.; Xie, J. & Chen, L.: , 2021a; Neuromodulatory effect of sensorimotor network functional connectivity of temporal three-needle therapy for ischemic stroke patients with motor dysfunction: Study protocol for a randomized, patient-assessor blind, controlled, neuroimaging trial; Evidence-Based Complementary and Alternative Medicine; 2021.spa
dc.relation.references[Zhao et al., 2019a] Zhao, X.; Zhang, H.; Zhu, G.; You, F.; Kuang, S. & Sun, L.: , 2019a; A multi-branch 3d convolutional neural network for eeg-based motor imagery classification; IEEE transactions on neural systems and rehabilitation engineering; 27 (10): 2164–2177.spa
dc.relation.references[Zhao et al., 2019b] Zhao, Y.; Zhao, Y.; Durongbhan, P.; Chen, L.; Liu, J.; Billings, S.; Zis, P.; Unwin, Z. C.; De Marco, M.; Venneri, A. et al.: , 2019b; Imaging of nonlinear and dynamic functional brain connectivity based on EEG recordings with the application on the diagnosis of alzheimer’s disease; IEEE transactions on medical imaging; 39 (5): 1571–1581.spa
dc.relation.references[Zhao et al., 2020] Zhao, Z.; Zhao, P. & Zhou, Q.: , 2020; A hierarchical stacking extreme learning machine for multi-classification; en 2020 Chinese Automation Congress (CAC); IEEE; págs. 4176–4181.spa
dc.relation.references[Zhao et al., 2021b] Zhao, Z.; Li, J.; Niu, Y.; Wang, C.; Zhao, J.; Yuan, Q.; Ren, Q.; Xu, Y. & Yu, Y.: , 2021b; Classification of schizophrenia by combination of brain effective and functional connectivity; Frontiers in Neuroscience; 15: 552.spa
dc.relation.references[Zhu et al., 2020] Zhu, L.; Su, C.; Zhang, J.; Cui, G.; Cichocki, A.; Zhou, C. & Li, J.: , 2020; EEG-based approach for recognizing human social emotion perception; Advanced Engineering Informatics; 46: 101191.spa
dc.relation.references[Zhuang et al., 2020] Zhuang, M.; Wu, Q.; Wan, F. & Hu, Y.: , 2020; State-of-the-art non-invasive brain–computer interface for neural rehabilitation: A review; Journal of Neurorestoratology; 8 (1): 12–25.spa
dc.relation.references[Zoumpourlis & Patras, 2022] Zoumpourlis, G. & Patras, I.: , 2022; Covmix: Covariance mixing regularization for motor imagery decoding; en 2022 10th International Winter Conference on Brain-Computer Interface (BCI); IEEE; págs. 1–7.spa
dc.relation.references[Zuk et al., 2020] Zuk, N. J.; Teoh, E. S. & Lalor, E. C.: , 2020; Eeg-based classification of natural sounds reveals specialized responses to speech and music; NeuroImage; 210: 116558.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computaciónspa
dc.subject.proposalFunctional connectivityeng
dc.subject.proposalDeep learningeng
dc.subject.proposalKernel methodseng
dc.subject.proposalRenyi’s entropyeng
dc.subject.proposalBCI inefficiencyeng
dc.subject.proposalcross-spectral densityeng
dc.subject.proposalBochner’s theoremeng
dc.subject.proposalConectividad funcionalspa
dc.subject.proposalAprendizaje profundospa
dc.subject.proposalMétodos de kernelspa
dc.subject.proposalEntropía de Renyispa
dc.subject.proposalIneficiencia de BCIspa
dc.subject.proposalDensidad espectral cruzadaspa
dc.subject.proposalTeorema de Bochnerspa
dc.subject.unescoInterfaces cerebro-computadora (BCI)
dc.subject.unescoConectividad funcional
dc.titleRegularized Gaussian functional connectivity network with Post-Hoc interpretation for improved EEG-based motor imagery-BCI classificationeng
dc.title.translatedRed de conectividad funcional Gaussiana regularizada con interpretación Post-Hoc para mejorar la clasificación de imaginación motora en BCI basado en EEGspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleSistema de visión artificial para el monitoreo y seguimiento de efectos analgésicos y anestésicos administrados vía neuroaxial epidural en población obstétrica durante labores de parto para el fortalecimiento de servicios de salud materna del Hospital Universitario de Caldas - SES HUC.spa
oaire.awardtitleAlianza científica con enfoque comunitario para mitigar brechas de atención y manejo de trastornos mentales y epilepsia en Colombia (ACEMATE).spa
oaire.fundernameMINCIENCIAS,spa
oaire.fundernameUniversidad Nacional de Colombiaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1053839441 2024.pdf
Tamaño:
40.83 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Automática

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: