En 21 día(s), 14 hora(s) y 49 minuto(s): El Repositorio Institucional UNAL informa a la comunidad universitaria que, con motivo del periodo de vacaciones colectivas, el servicio de publicación estará suspendido: Periodo de cierre: Del 20 de diciembre al 18 de enero de 2026. Sobre los depósitos: Durante este tiempo, los usuarios podrán continuar realizando el depósito respectivo de sus trabajos en la plataforma. Reanudación: Una vez reiniciadas las actividades administrativas, los documentos serán revisados y publicados en orden de llegada.

Detección y Aislamiento de Fallas en una Red de Termopares Mediante Técnicas Basadas en Datos

dc.contributor.advisorSofrony Esmeral, Jorge
dc.contributor.authorVelandia Cardenas, Diego Alexander
dc.contributor.cvlacVelandia Cárdenas, Diego Alexanderspa
dc.contributor.googlescholar364MrlgAAAAJspa
dc.contributor.orcid0000-0003-4835-1996spa
dc.contributor.researchgateDiego_Velandiaspa
dc.contributor.subjectmatterexpertLópez Pulgarín, Erwin José
dc.date.accessioned2022-12-13T21:41:54Z
dc.date.available2022-12-13T21:41:54Z
dc.date.issued2022-12-07
dc.descriptionilustraciones, diagramasspa
dc.description.abstractEn el presente documento se explica el proceso de desarrollo de un modelo para detección y aislamiento de fallos (FDI ) en una red de termopares mediante técnicas basadas en datos. El documento inicia describiendo generalidades del funcionamiento de la planta, conceptos básicos sobre termopares, definición de FDI, su relevancia en la planta y el modo en que este se desarrolla actualmente, lo cual abre paso a la identificación del problema y el planteamiento de los objetivos. El desarrollo del proyecto se divide en 4 etapas, iniciando con el reconocimiento del conjunto de datos disponibles, seguido de un estudio de métricas obtenidas a partir del conjunto de datos y su relación con estados de fallo o normalidad en los termopares, establecimiento de una metodología para el entrenamiento de modelos basados en datos y los resultados obtenidos de su aplicación. El documento finaliza con la determinación de parámetros para la construcción un modelo basado en datos que muestra una precisión superior al 76 %, según pruebas de validación aplicadas, entre otras conclusiones obtenidas del desarrollo del presente proyecto. (Texto tomado de la fuente)spa
dc.description.abstractThe present document explains the development process of a fault detection and isolation (FDI) model for a thermocouple network by data-driven techniques. The begins by describing plant’s functioning generals, thermocouples’ basic concepts, FDI definition, its relevance for the plant and how it is currently performed, which allows the problem’s identification and objectives definition. The project’s development divides into 4 stages, starting by a reconnaissance of available data, followed by a study of metrics obtained from the data set and their linkage to thermocouple’s in fail or normality statuses, establishment of a methodology for training data-driven models and its results. The document finalizes by determining the parameters for the constructions of a data-driven model showing an accuracy over 76 %, according to applied validation tests, among other conclusions from the development of the present project.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Automatización Industrialspa
dc.description.notesEl presente trabajo fue realizado dentro del marco de la colaboración entre la Universidad Nacional de Colombia y Cerro Matoso S.A, financiada por el Ministerio Colombiano de Ciencia mediante la convocatoria 786: “Convocatoria para el registro de proyectos que aspiran a obtener beneficios tributarios por inversi´on en CTel“. La totalidad de los registros empleados en el presente proyecto son de carácter privado y pertenecen a Cerro Matoso S.A. Dichos registros no pueden ser publicados, compartidos o reproducidos total o parcialmente sin el conocimiento y expresa autorización de Cerro Matoso S.A.spa
dc.format.extentix, 130 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82862
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Automatización Industrialspa
dc.relation.referencesCMSA, PR032018OP - Manual del Sistema de Control Estructural del Horno Eléctrico 412-FC-01, 02 ed., 2017.spa
dc.relation.referencesL. Shen, Z. Jiang, W. Gui, C. Yang, Y. Wang, and B. Sun, “Modelling of inner surface temperature field of blast furnace wall based on inverse heat conduction problems,” IFAC-PapersOnLine, vol. 52, pp. 78–83, 2019.spa
dc.relation.referencesD. A. Tibaduiza, J. León, L. Bonilla, B. Rueda, O. Zurita, J. C. Forero, J. Vitola, D. Segura, E. Forero, and M. Anaya, “GAP MONITORING IN REFURBISHMENT TASKS IN a FERRONICKEL FURNACE AT CERRO MATOSO SA,” in XI International Conference on Structural Dynamics, EASD, 2020.spa
dc.relation.referencesD. A. Tibaduiza, J. X. Leon-Medina, R. Gomez, J. Ricardo, B. Rueda, O. Zurita, and J. C. Forero, “Structural health monitoring system for furnace refractory wall thickness measurements at cerro matoso sa,” in European Workshop on Structural Health Monitoring (P. Rizzo and A. Milazzo, eds.), (Cham), pp. 414–423, Springer International Publishing, 2021.spa
dc.relation.referencesB. Zhou, H. Ye, H. Zhang, and M. Li, “Process monitoring of iron-making process in a blast furnace with PCA-based methods,” Control Engineering Practice, vol. 47, no. February 2016, pp. 1–14, 2016.spa
dc.relation.referencesA. Van Herwaarden and P. Sarro, “Thermal sensors based on the seebeck effect,” in Sensors and Actuators, vol. 10, pp. 321–346, 1986.spa
dc.relation.referencesI. E. Comission, “IEC 60584-1:2013 - Thermocouples - Part 1: EMF specifications and tolerances,” International Standard, International Electrotechnical Commission, 08 2013.spa
dc.relation.referencesR. X. Guo, K. Guo, and J. K. Dong, “Fault diagnosis for sensors in a class of nonlinear systems,” IMA Journal of Mathematical Control and Information, vol. 35, no. 2, pp. 375–391, 2018.spa
dc.relation.referencesT. Zhang, H. Ye, W.Wang, and H. Zhang, “Fault diagnosis for blast furnace ironmaking process based on two-stage principal component analysis,” ISIJ International, vol. 54, no. 10, pp. 2334–2341, 2014.spa
dc.relation.referencesP. A. Samara, G. N. Fouskitakis, J. S. Sakallariou, and S. D. Fassois, “A statistical method for the detection of sensor abrupt faults in aircraft control systems,” IEEE Transactions on Control Systems Technology, vol. 16, no. 4, pp. 789–798, 2008.spa
dc.relation.referencesY. Wang, Y. Yan, and Q. Wang, “Wavelet-Based Feature Extraction in Fault Diagnosis for Biquad High-Pass Filter Circuit,” Mathematical Problems in Engineering, vol. 2016, 2016.spa
dc.relation.referencesX. Dai, F. Qin, Z. Gao, K. Pan, and K. Busawon, “Model-based on-line sensor fault detection in Wireless Sensor Actuator Networks,” Proceeding - 2015 IEEE International Conference on Industrial Informatics, INDIN 2015, no. 1, pp. 556–561, 2015.spa
dc.relation.referencesP. R. J, “Using Analytical Redundancy,” Computing & Control Engineering, vol. 8, no. May, pp. 127–136, 1991.spa
dc.relation.referencesR. Shahnazi and Q. Zhao, “Adaptive Fuzzy Descriptor Sliding Mode Observer-based Sensor Fault Estimation for Uncertain Nonlinear Systems,” Asian Journal of Control, vol. 18, no. 4, pp. 1478–1488, 2016.spa
dc.relation.referencesA. S. Willsky and H. L. Jones, “A Generalized Likelihood Ratio Approach to the Detection and Estimation of Jumps in Linear Systems,” IEEE Transactions on Automatic Control, vol. 21, no. 1, pp. 108–112, 1976.spa
dc.relation.referencesM. A. Djeziri, A. Aitouche, and B. O. Bouamama, “Sensor fault detection of energetic system using modified parity space approach,” Proceedings of the IEEE Conference on Decision and Control, pp. 2578–2583, 2007.spa
dc.relation.referencesH. Tolouei and M. A. Shoorehdeli, “Nonlinear parity approach to sensor fault detection in pH neutralization system,” 2017 25th Iranian Conference on Electrical Engineering, ICEE 2017, no. Icee, pp. 889–894, 2017.spa
dc.relation.referencesY. Cheng, M. D’Arpino, and G. Rizzoni, “Fault diagnosis in lithium-ion battery of hybrid electric aircraft based on structural analysis,” in 2022 IEEE Transportation Electrification Conference & Expo (ITEC), pp. 997–1004, 2022.spa
dc.relation.referencesH. Shahnazari, P. Mhaskar, J. House, and T. Salsbury, “Fault diagnosis design for heating, ventilation and air conditioning systems,” in 2018 Annual American Control Conference (ACC), pp. 5787–5792, 2018.spa
dc.relation.referencesD. Chakraborty and H. Elzarka, “Early detection of faults in HVAC systems using an XGBoost model with a dynamic threshold,” Energy and Buildings, vol. 185, pp. 326–344, 2019.spa
dc.relation.referencesK. Pal and J. A. Campbell, “An Application of Rule-Based and Case-Based Reasoning within a Single Legal Knowledge- Based System,” Data Base for Advances in Information Systems, vol. 28, no. 4, pp. 48–63, 1997.spa
dc.relation.referencesZ. Dong, J. Zhao, J. Duan, M. Wang, and H. Wang, “Research on Agricultural Machinery Fault Diagnosis System Based on Expert System,” Proceedings of 2018 2nd IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference, IMCEC 2018, no. Imcec, pp. 2057–2060, 2018.spa
dc.relation.referencesL. A. Zadeh, “Fuzzy Probabilisties and Their Role in Decision Analysis.,” IFAC Proceedings Volumes, vol. 15, no. 1, pp. 15–21, 1982.spa
dc.relation.referencesK. Raja and R. Leichombam, “Distributed Fault Node Detection and Classification using Fuzzy Logic and Management Scheme for Wireless Sensor Networks,” 2018 10th International Conference on Advanced Computing, ICoAC 2018, pp. 292–298, 2018.spa
dc.relation.referencesW. He, P. L. Qiao, Z. J. Zhou, G. Y. Hu, Z. C. Feng, and H. Wei, “A New Belief-Rule-Based Method for Fault Diagnosis of Wireless Sensor Network,” IEEE Access, vol. 6, pp. 9404–9419, 2018.spa
dc.relation.referencesJian-Bo Yang, Jun Liu, Jin Wang, How-Sing Sii, and Hong-Wei Wang, “Belief rule-base inference methodology using the evidential reasoning approach-rimer,” IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, vol. 36, no. 2, pp. 266–285, 2006.spa
dc.relation.referencesX. Yuan, M. J. Liebelt, P. Shi, and B. J. Phillips, “Development of Rule-Based Agents for Autonomous Parking Systems by Association Rules Mining,” Proceedings - International Conference on Machine Learning and Cybernetics, vol. 2019-July, pp. 1–6, 2019.spa
dc.relation.referencesMaciol, Andrzej, Jedrusik, Stanislaw, and Palinski, Andrzej, “How to increase effectiveness of inference in rule-based systems,” Proceedings - 2019 2nd International Conference on Artificial Intelligence for Industries, AI4I 2019, pp. 107–110, 2019.spa
dc.relation.referencesZ. Wang, Y. Zhou, and G. Li, “Anomaly detection by using streaming k-means and batch k-means,” in 2020 5th IEEE International Conference on Big Data Analytics (ICBDA), pp. 11–17, 2020.spa
dc.relation.referencesK. Tutuncu, I. Cinar, R. Kursun, and M. Koklu, “Edible and poisonous mushrooms classification by machine learning algorithms,” in 2022 11th Mediterranean Conference on Embedded Computing (MECO), pp. 1–4, 2022.spa
dc.relation.referencesT. Badriyah, N. Sakinah, I. Syarif, and D. R. Syarif, “Machine learning algorithm for stroke disease classification,” in 2020 International Conference on Electrical, Communication, and Computer Engineering (ICECCE), pp. 1–5, 2020.spa
dc.relation.referencesY. S¨onmez, T. Tuncer, H. G¨okal, and E. Avci, “Phishing web sites features classification based on extreme learning machine,” in 2018 6th International Symposium on Digital Forensic and Security (ISDFS), pp. 1–5, 2018.spa
dc.relation.referencesK. Pal and B. V. Patel, “Automatic multiclass document classification of hindi poems using machine learning techniques,” in 2020 International Conference for Emerging Technology (INCET), pp. 1–5, 2020.spa
dc.relation.referencesM. N. Hasan and I. Koo, “Machine learning-based sensor drift fault classification using discrete cosine transform,” in 2021 International Conference on Electronics, Communications and Information Technology (ICECIT), pp. 1–4, 2021.spa
dc.relation.referencesM. Kubat, An introduction to machine learning. Springer International Publishing, 2017.spa
dc.relation.referencesJ. Verbraeken, M. Wolting, J. Katzy, J. Kloppenburg, T. Verbelen, and J. S. Rellermeyer, “A survey on distributed machine learning,” ACM Computing Surveys, vol. 53, 6 2020.spa
dc.relation.referencesG. Batista, R. C. Prati, and M. C. Monard, “A study of the behavior of several methods for balancing machine learning training data,” ACM SIGKDD Explorations Newsletter, pp. 20–29, 6 2004.spa
dc.relation.referencesN. Japkowicz and S. Stephen, “The class imbalance problem: A systematic study,” Intelligent data analysis, vol. 6, no. 5, pp. 429–449, 2002.spa
dc.relation.referencesK. Pal and B. V. Patel, “Data classification with k-fold cross validation and holdout accuracy estimation methods with 5 different machine learning techniques,” in 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC), pp. 83–87, 2020.spa
dc.relation.referencesF. K. Alarfaj, I. Malik, H. U. Khan, N. Almusallam, M. Ramzan, and M. Ahmed, “Credit card fraud detection using state-of-the-art machine learning and deep learning algorithms,” IEEE Access, vol. 10, pp. 39700–39715, 2022.spa
dc.relation.referencesG. M. Suhas Jain, N. Rakesh, K. Pranavi, and L. Bale, “A novel approach in credit card fraud detection system using machine learning techniques,” in 2021 International Conference on Forensics, Analytics, Big Data, Security (FABS), vol. 1, pp. 1–5, 2021.spa
dc.relation.referencesC. Srinilta and S. Kanharattanachai, “Application of natural neighbor-based algorithm on oversampling smote algorithms,” in 2021 7th International Conference on Engineering, Applied Sciences and Technology (ICEAST), pp. 217–220, 2021.spa
dc.relation.referencesS. Sehra, D. Flores, and G. D. Montañez, “Undecidability of underfitting in learning algorithms,” in 2021 2nd International Conference on Computing and Data Science (CDS), pp. 591–594, 2021.spa
dc.relation.referencesJ. Camacho-Olarte, J. E. S. Torres, D. A. G. Jimenez, J. X. L. Medina, R. C. G. Vargas, D. A. V. Cardenas, C. Gutierrez-Osorio, B. Rueda, W. Vargas, D. A. T. Burgos, C. A. P. Bonilla, J. S. Esmeral, and F. Restrepo-Calle, “A data cleaning approach for a structural health monitoring system in a 75 mw electric arc ferronickel furnace,” Engineering Proceedings, vol. 2, no. 1, 2020.spa
dc.relation.referencesU. N. de Colombia, “Producto 2.6 informe técnico del análisis de correlación y redundancia física de los waffle coolers y plate coolers del horno línea 1 fc01,” Informe Técnico 2.6, Universidad Nacional de Colombia, 2020.spa
dc.relation.referencesR. Cao, Y. Chen, M. Shen, J. Chen, J. Zhou, C. Wang, and W. Yang, “A simple method to improve the quality of ndvi time-series data by integrating spatiotemporal information with the savitzky-golay filter,” Remote Sensing of Environment, vol. 217, pp. 244–257, 2018.spa
dc.relation.referencesJ. Chen, P. J¨onsson, M. Tamura, Z. Gu, B. Matsushita, and L. Eklundh, “A simple method for reconstructing a high-quality ndvi time-series data set based on the savitzky-golay filter,” Remote Sensing of Environment, vol. 91, pp. 332–344, 6 2004.spa
dc.relation.referencesS. Mandal, B. Santhi, S. Sridhar, K. Vinolia, and P. Swaminathan, “Minor fault detection of thermocouple sensor in nuclear power plants using time series analysis,” Annals of Nuclear Energy, vol. 134, pp. 383–389, 2019.spa
dc.relation.referencesV. N. Vapnik, Statistical learning theory. Wiley, 1998.spa
dc.relation.referencesL. Breiman, “Bagging predictors,” in Machine Learning, vol. 24, pp. 123–140, Springer Nature, 1996.spa
dc.relation.referencesL. Breiman, “Random forests,” in Machine Learning, vol. 45, pp. 5–32, Springer Nature, 2001.spa
dc.relation.referencesP. Mekha and N. Teeyasuksaet, “Image classification of rice leaf diseases using random forest algorithm,” in 2021 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunication Engineering, pp. 165–169, 2021.spa
dc.relation.referencesS. Li and Y. Yan, “Fault arc detection based on time and frequency domain analysis and radom forest,” in 2021 International Conference on Computer Network, Electronic and Automation (ICCNEA), pp. 248–252, 2021.spa
dc.relation.referencesQ. Yao, J. Wang, L. Yang, H. Su, and G. Zhang, “A fault diagnosis method of engine rotor based on random forests,” in 2016 IEEE International Conference on Prognostics and Health Management (ICPHM), pp. 1–4, 2016.spa
dc.relation.referencesR. Fezai, K. Dhibi, M. Mansouri, M. Trabelsi, M. Hajji, K. Bouzrara, H. Nounou, and M. Nounou, “Effective random forest-based fault detection and diagnosis for wind energy conversion systems,” IEEE Sensors Journal, vol. 21, no. 5, pp. 6914–6921, 2021.spa
dc.relation.referencesJ. X. Leon-Medina, J. Camacho-Olarte, B. Rueda, W. Vargas, L. Bonilla, J. Ruiz, J. Sofrony, J. A. Guerra-Gomez, F. Restrepo-Calle, and D. A. Tibaduiza, “Monitoring of the refractory lining in a shielded electric arc furnace: An online multitarget regression trees approach,” Structural Control and Health Monitoring, vol. 29, Nov. 2021.spa
dc.relation.referencesA. N. Warrier and S. Amuru, “How to choose a neural network architecture? - a modulation classification example,” in 2020 IEEE 3rd 5G World Forum (5GWF), pp. 413–417, 2020.spa
dc.relation.referencesR. Kanagaraj, E. Elakiya, N. Rajkumar, K. Srinivasan, and S. Sriram, “Fuzzy neural network classification model for multi labeled electricity consumption data set,” in 2022 4th International Conference on Smart Systems and Inventive Technology (ICSSIT), pp. 1037–1041, 2022.spa
dc.relation.referencesD. Prabhu, M. Abedin, W. Winfree, and E. Madaras, “Disbond detection through ultrasonic signal classification using an artificial neural network,” in IJCNN-91-Seattle International Joint Conference on Neural Networks, vol. ii, pp. 906 vol.2–, 1991.spa
dc.relation.referencesF. A. U¸ckun, H. ¨ Ozer, E. Nurbas, and E. Onat, “Direction finding using convolutional neural networks and convolutional recurrent neural networks,” in 2020 28th Signal Processing and Communications Applications Conference (SIU), pp. 1–4, 2020.spa
dc.relation.referencesR. Xin, J. Zhang, and Y. Shao, “Complex network classification with convolutional neural network,” Tsinghua Science and Technology, vol. 25, no. 4, pp. 447–457, 2020.spa
dc.relation.referencesJ. X. León-Medina, J. Camacho, C. Gutierrez-Osorio, J. E. Salomón, B. Rueda, W. Vargas, J. Sofrony, F. Restrepo-Calle, C. Pedraza, and D. Tibaduiza, “Temperature prediction using multivariate time series deep learning in the lining of an electric arc furnace for ferronickel production,” Sensors, vol. 21, no. 20, 2021.spa
dc.relation.referencesD. F. Godoy-Rojas, J. X. Leon-Medina, B. Rueda, W. Vargas, J. Romero, C. Pedraza, F. Pozo, and D. A. Tibaduiza, “Attention-based deep recurrent neural network to forecast the temperature behavior of an electric arc furnace side-wall,” Sensors, vol. 22, no. 4, 2022.spa
dc.relation.referencesC. Cortes, V. Vapnik, and L. Saitta, “Support-vector networks,” Machine Leaming, vol. 20, pp. 273–297, 1995spa
dc.relation.referencesL. Devroye, L. Györfi, and G. Lugosi, Vapnik-Chervonenkis Theory, pp. 187–213. New York, NY: Springer New York, 1996.spa
dc.relation.referencesG. Xu, Z. Cao, B.-G. Hu, and J. C. Principe, “Robust support vector machines based on the rescaled hinge loss function,” Pattern Recognition, vol. 63, pp. 139–148, 2017.spa
dc.relation.referencesZ. Chen, L. Hong, Y. Gu, M. Wu, and Z. Yan, “A novel support vector machine multiclassification strategy for power transformer fault diagnosis,” in 2022 IEEE 5th International Electrical and Energy Conference (CIEEC), pp. 3368–3373, 2022.spa
dc.relation.referencesX. Zhang, S. Wang, and Y. Zhao, “Application of support vector machine and least squares vector machine to freight volume forecast,” in 2011 International Conference on Remote Sensing, Environment and Transportation Engineering, pp. 104–107, 2011.spa
dc.relation.referencesJ. Wang, L. Yu, H. Liu, and Y. Pang, “Analysis of power quality disturbance based on improved hht and bpso-svm,” in 2022 IEEE 5th International Electrical and Energy Conference (CIEEC), pp. 748–753, 2022.spa
dc.relation.referencesR. Kumar, C. M. Sharma, V. M. Chariar, S. Hooda, and R. Beri, “Emotion analysis of news and social media text for stock price prediction using svm-lstm-gru composite model,” in 2022 International Conference on Computational Intelligence and Sustainable Engineering Solutions (CISES), pp. 329–333, 2022.spa
dc.relation.referencesT. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16, (New York, NY, USA), pp. 785–794, Association for Computing Machinery, 2016.spa
dc.relation.referencesJ. H. Friedman, “Greedy function approximation: A gradient boosting machine,” The Annals of Statistics, vol. 29, no. 5, pp. 1189–1232, 2001.spa
dc.relation.referencesL. Jidong and Z. Ran, “Dynamic weighting multi factor stock selection strategy based on xgboost machine learning algorithm,” in 2018 IEEE International Conference of Safety Produce Informatization (IICSPI), pp. 868–872, 2018.spa
dc.relation.referencesJ. Bao, “Multi-features based arrhythmia diagnosis algorithm using xgboost,” in 2020 International Conference on Computing and Data Science (CDS), pp. 454–457, 2020.spa
dc.relation.referencesZ. Zheng, S. Pan, H. Luo, and Z. Guo, “Porosity prediction based on gs+ga-xgboost,” in 2020 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom), pp. 1014–1020, 2020.spa
dc.relation.referencesD. Zhang, L. Qian, B. Mao, C. Huang, B. Huang, and Y. Si, “A data-driven design for fault detection of wind turbines using random forests and xgboost,” IEEE Access, vol. 6, pp. 21020–21031, 2018.spa
dc.relation.referencesB. Liu, X. Wang, K. Sun, J. Zhao, and L. Li, “Fault diagnosis of photovoltaic array based on xgboost method,” in 2021 IEEE Sustainable Power and Energy Conference (iSPEC), pp. 3733–3738, 2021.spa
dc.relation.referencesC. Mart´ınez Bencardino, Estad´ıstica y muestreo, p. 308. Colombia: ECOE Ediciones Ltda, 13 ed., 2012.spa
dc.relation.referencesM. Kubat, Performance Evaluation, pp. 211–228. Springer International Publishing, 2 ed., 2017.spa
dc.relation.referencesL. Prechelt, Early Stopping — But When?, pp. 53–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.spa
dc.relation.referencesA. A. Ozdemir, P. Seiler, and G. J. Balas, “Wind turbine fault detection using counterbased residual thresholding,” IFAC Proceedings Volumes (IFAC-PapersOnline), vol. 44, pp. 8289–8294, 2011.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.subject.ddc600 - Tecnología (Ciencias aplicadas)spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generalesspa
dc.subject.lembProcesamiento de datosspa
dc.subject.lembData processingeng
dc.subject.proposalAprendizaje supervisadospa
dc.subject.proposalData-drivenspa
dc.subject.proposalDetecciónspa
dc.subject.proposalFallasspa
dc.subject.proposalFDIspa
dc.subject.proposalMachine Learningspa
dc.subject.proposalSensorspa
dc.subject.proposalTermoparspa
dc.subject.proposalXGBoostspa
dc.subject.proposalSupervised learningeng
dc.subject.proposalData-driveneng
dc.subject.proposalDetectioneng
dc.subject.proposalFailureseng
dc.subject.proposalMachine Learningeng
dc.subject.proposalSensoreng
dc.subject.proposalThermocoupleeng
dc.titleDetección y Aislamiento de Fallas en una Red de Termopares Mediante Técnicas Basadas en Datosspa
dc.title.translatedFault detection and isolation in a thermocouple network by data-driven techniqueseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_71e4c1898caa6e32spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1019054912_2022.pdf
Tamaño:
13.7 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Automatización Industrial

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: