Obtención de Scaffolds Compuestos Polímero-Cerámico por Estereolitografía de Mascara (MSLA) con Propiedades Magnéticas y Potencial Aplicación en Regeneración Ósea

dc.contributor.advisorGarcía García, Claudia Patricia
dc.contributor.authorOrozco Osorio, Yeison Alejandro
dc.contributor.orcidOrozco Osorio, Yeison Alejandro [0000-0002-6317-6172]spa
dc.contributor.researchgroupMateriales Cerámicos y Vítreosspa
dc.date.accessioned2024-09-18T21:40:19Z
dc.date.available2024-09-18T21:40:19Z
dc.date.issued2024
dc.description.abstractEste estudio exploró el diseño, fabricación y evaluación de scaffolds que incorporan propiedades esenciales para la regeneración ósea, incluyendo biocompatibilidad, geometría macroporosa, resistencia mecánica y capacidad de respuesta magnética. Mediante el uso de la geometría de superficies mínimas triplemente periódicas (TPMS), resinas fotopolimerizables acrílicas, óxidos de hierro sintetizados y la impresión por máscara de estereolitografía (MSLA), se diseñaron scaffolds con características geométricas precisas. Las propiedades mecánicas se mejoraron mediante el curado de resina, mientras que las partículas de magnetita, obtenidas de nanopartículas sintetizadas, se integraron para conferir propiedades magnéticas. Estos scaffolds exhibieron un equilibrio óptimo entre rigidez, porosidad y capacidad de respuesta magnética. Se obtuvieron scaffolds de resina con óxidos de hierro sintetizados con una resistencia máxima a la compresión entre 4.8 MPa y 9.2 MPa, módulo de Young entre 58 MPa y 174 MPa. Se midieron propiedades magnéticas para los scaffolds sintéticos, como coercitividad magnética de 293 Oe, remanencia magnética entre 11.3 emu/g y 12.3 emu/g, y saturación magnética entre 29.4 emu/g y 37.1 emu/g. Se midió la viscosidad de las mezclas utilizadas para imprimir los scaffolds entre 350 mPa-s y 380 mPa-s, valores adecuados para una impresión 3D correcta, y se obtuvieron medidas del ángulo de contacto entre 90° y 110°. Las mejores propiedades entre los scaffolds fabricados fueron exhibidas por aquellos con un porcentaje en peso del 1%. La evaluación de la biocompatibilidad de los scaffolds sugirió su potencial para futuros ensayos clínicos, respaldado por su capacidad para mantener la viabilidad celular. (Tomado de la fuente)spa
dc.description.abstractThis study explored the design, fabrication, and evaluation of scaffolds that incorporate essential properties for bone regeneration, including biocompatibility, macroporous geometry, mechanical strength, and magnetic responsiveness. Using triply periodic minimal surfaces (TPMS) geometry, acrylic photopolymerizable resins, synthesized iron oxides, and masked stereolithography (MSLA) printing, scaffolds with precise geometric characteristics were designed. Mechanical properties were enhanced through resin curing, while magnetite particles obtained from synthesized nanoparticles were integrated to confer magnetic properties. These scaffolds exhibited an optimal balance between stiffness, porosity, and magnetic responsiveness. Resin scaffolds with synthesized iron oxides achieved maximum compressive strength between 4.8 MPa and 9.2 MPa, Young’s modulus between 58 MPa and 174 MPa. Magnetic properties were measured for the synthetic scaffolds, including magnetic coercivity of 293 Oe, magnetic remanence between 11.3 emu/g and 12.3 emu/g, and magnetic saturation between 29.4 emu/g and 37.1 emu/g. The viscosity of the mixtures used for printing the scaffolds was measured between 350 mPa-s and 380 mPa-s, values suitable for proper 3D printing, and contact angle measurements were obtained between 90° and 110°. The best properties among the manufactured scaffolds were exhibited by those with a 1% weight percentage. The biocompatibility evaluation of the scaffolds suggested their potential for future clinical trials, supported by their ability to maintain cell viability.eng
dc.description.curricularareaFísica.Sede Medellínspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería Físicaspa
dc.description.methodsDiseño de experimentos y caracterización de materiales principalmente.spa
dc.description.researchareaDiseño de biomaterialesspa
dc.description.sponsorshipAgradezco principalmente al proyecto que hizo posible la realización de este trabajo, proyecto titulado “Desarrollo y evaluación in vitro de un prototipo de scaffold de matriz polimérica con adición de partículas magnéticas, funcionalizado con proteínas morfogenéticas BMP-2 producido por manufactura aditiva para regeneración ósea.” Código Hermes 53992. SEGUNDA CONVOCATORIA CONJUNTA DE PROYECTOS DE I+D+i EN EL MARCO DE LA AGENDA REGIONAL DE I+D -> Ispa
dc.format.extent142 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86844
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias - Maestría en Ingeniería Físicaspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesTim D. White, Pieter A. Folkens (2005) The Human Bone Manual., 1st ed. Elsevier Academic Pressspa
dc.relation.referencesCourt-Brown CM, Caesar B (2006) Epidemiology of adult fractures: A review. Injury 37:691–697. https://doi.org/10.1016/j.injury.2006.04.130spa
dc.relation.referencesDimitriou R, Jones E, McGonagle D, Giannoudis PV (2011) Bone regeneration: current concepts and future directions. BMC Med 9:66. https://doi.org/10.1186/1741-7015-9-66spa
dc.relation.referencesPark S-Y, Kim K-H, Kim S, et al (2019) BMP-2 Gene Delivery-Based Bone Regeneration in Dentistry. Pharmaceutics 11:393. https://doi.org/10.3390/pharmaceutics11080393spa
dc.relation.referencesEgido-Moreno S, Valls-Roca-Umbert J, Céspedes-Sánchez JM, et al (2021) Clinical Efficacy of Mesenchymal Stem Cells in Bone Regeneration in Oral Implantology. Systematic Review and Meta-Analysis. IJERPH 18:894. https://doi.org/10.3390/ijerph18030894spa
dc.relation.referencesTan SHS, Wong JRY, Sim SJY, et al (2020) Mesenchymal stem cell exosomes in bone regenerative strategies—a systematic review of preclinical studies. Materials Today Bio 7:100067. https://doi.org/10.1016/j.mtbio.2020.100067spa
dc.relation.referencesIaquinta MR, Mazzoni E, Bononi I, et al (2019) Adult Stem Cells for Bone Regeneration and Repair. Front Cell Dev Biol 7:268. https://doi.org/10.3389/fcell.2019.00268spa
dc.relation.referencesBourdón-Santoyo M, Quiñones-Uriostegui I, Martínez-López V, et al Preliminary study of an in vitro development of new tissue applying mechanical stimulation with a bioreactor as an alternative for ligament reconstructionspa
dc.relation.referencesFan J, Lee C-S, Kim S, et al (2020) Generation of Small RNA-Modulated Exosome Mimetics for Bone Regeneration. ACS Nano 14:11973–11984. https://doi.org/10.1021/acsnano.0c05122spa
dc.relation.referencesPereira HF, Cengiz IF, Silva FS, et al (2020) Scaffolds and coatings for bone regeneration. J Mater Sci: Mater Med 31:27. https://doi.org/10.1007/s10856-020-06364-yspa
dc.relation.referencesBattafarano G, Rossi M, De Martino V, et al (2021) Strategies for Bone Regeneration: From Graft to Tissue Engineering. IJMS 22:1128. https://doi.org/10.3390/ijms22031128spa
dc.relation.referencesDong Z, Zhao X (2021) Application of TPMS structure in bone regeneration. Engineered Regeneration 2:154–162. https://doi.org/10.1016/j.engreg.2021.09.004spa
dc.relation.referencesAmbu R, Morabito A (2018) Porous Scaffold Design Based on Minimal Surfaces: Development and Assessment of Variable Architectures. Symmetry 10:361. https://doi.org/10.3390/sym10090361spa
dc.relation.referencesAbbasi N, Hamlet S, Love RM, Nguyen N-T (2020) Porous scaffolds for bone regeneration. Journal of Science: Advanced Materials and Devices 5:1–9. https://doi.org/10.1016/j.jsamd.2020.01.007spa
dc.relation.referencesOwen R, Sherborne C, Evans R, et al (2020) Combined Porogen Leaching and Emulsion Templating to produce Bone Tissue Engineering Scaffolds. IJB 6:265. https://doi.org/10.18063/ijb.v6i2.265spa
dc.relation.referencesCoogan KR, Stone PT, Sempertegui ND, Rao SS (2020) Fabrication of micro-porous hyaluronic acid hydrogels through salt leaching. European Polymer Journal 135:109870. https://doi.org/10.1016/j.eurpolymj.2020.109870spa
dc.relation.referencesRuiz-Aguilar C, Olivares-Pinto U, Drew RAL, et al (2021) Porogen Effect on Structural and Physical Properties of β-TCP Scaffolds for Bone Tissue Regeneration. IRBM 42:302–312. https://doi.org/10.1016/j.irbm.2020.05.007spa
dc.relation.referencesSantos-Rosales V, Ardao I, Goimil L, et al (2021) Solvent-Free Processing of Drug-Loaded Poly(ε-Caprolactone) Scaffolds with Tunable Macroporosity by Combination of Supercritical Foaming and Thermal Porogen Leaching. Polymers 13:159. https://doi.org/10.3390/polym13010159spa
dc.relation.referencesMoon JY, Lee J, Hwang TI, et al (2021) A multifunctional, one-step gas foaming strategy for antimicrobial silver nanoparticle-decorated 3D cellulose nanofiber scaffolds. Carbohydrate Polymers 273:118603. https://doi.org/10.1016/j.carbpol.2021.118603spa
dc.relation.referencesManavitehrani I, Le TYL, Daly S, et al (2019) Formation of porous biodegradable scaffolds based on poly(propylene carbonate) using gas foaming technology. Materials Science and Engineering: C 96:824–830. https://doi.org/10.1016/j.msec.2018.11.088spa
dc.relation.referencesChen Y, Xu W, Shafiq M, et al (2021) Three-dimensional porous gas-foamed electrospun nanofiber scaffold for cartilage regeneration. Journal of Colloid and Interface Science 603:94–109. https://doi.org/10.1016/j.jcis.2021.06.067spa
dc.relation.referencesDu X, Dehghani M, Alsaadi N, et al (2022) A femoral shape porous scaffold bio-nanocomposite fabricated using 3D printing and freeze-drying technique for orthopedic application. Materials Chemistry and Physics 275:125302. https://doi.org/10.1016/j.matchemphys.2021.125302spa
dc.relation.referencesIzadyari Aghmiuni A, Heidari Keshel S, Sefat F, AkbarzadehKhiyavi A (2021) Fabrication of 3D hybrid scaffold by combination technique of electrospinning-like and freeze-drying to create mechanotransduction signals and mimic extracellular matrix function of skin. Materials Science and Engineering: C 120:111752. https://doi.org/10.1016/j.msec.2020.111752spa
dc.relation.referencesGrenier J, Duval H, Barou F, et al (2019) Mechanisms of pore formation in hydrogel scaffolds textured by freeze-drying. Acta Biomaterialia 94:195–203. https://doi.org/10.1016/j.actbio.2019.05.070spa
dc.relation.referencesKordjamshidi A, Saber-Samandari S, Ghadiri Nejad M, Khandan A (2019) Preparation of novel porous calcium silicate scaffold loaded by celecoxib drug using freeze drying technique: Fabrication, characterization and simulation. Ceramics International 45:14126–14135. https://doi.org/10.1016/j.ceramint.2019.04.113spa
dc.relation.referencesXie X, Chen Y, Wang X, et al (2020) Electrospinning nanofiber scaffolds for soft and hard tissue regeneration. Journal of Materials Science & Technology 59:243–261. https://doi.org/10.1016/j.jmst.2020.04.037spa
dc.relation.referencesWang Z, Wang H, Xiong J, et al (2021) Fabrication and in vitro evaluation of PCL/gelatin hierarchical scaffolds based on melt electrospinning writing and solution electrospinning for bone regeneration. Materials Science and Engineering: C 128:112287. https://doi.org/10.1016/j.msec.2021.112287spa
dc.relation.referencesMaharjan B, Kaliannagounder VK, Jang SR, et al (2020) In-situ polymerized polypyrrole nanoparticles immobilized poly(ε-caprolactone) electrospun conductive scaffolds for bone tissue engineering. Materials Science and Engineering: C 114:111056. https://doi.org/10.1016/j.msec.2020.111056spa
dc.relation.referencesAmeer, Pr, Kasoju (2019) Strategies to Tune Electrospun Scaffold Porosity for Effective Cell Response in Tissue Engineering. JFB 10:30. https://doi.org/10.3390/jfb10030030spa
dc.relation.referencesHan Y, Lian M, Wu Q, et al (2021) Effect of Pore Size on Cell Behavior Using Melt Electrowritten Scaffolds. Front Bioeng Biotechnol 9:629270. https://doi.org/10.3389/fbioe.2021.629270spa
dc.relation.referencesSaidy NT, Shabab T, Bas O, et al (2020) Melt Electrowriting of Complex 3D Anatomically Relevant Scaffolds. Front Bioeng Biotechnol 8:793. https://doi.org/10.3389/fbioe.2020.00793spa
dc.relation.referencesKade JC, Dalton PD (2021) Polymers for Melt Electrowriting. Adv Healthcare Materials 10:2001232. https://doi.org/10.1002/adhm.202001232spa
dc.relation.referencesVarma MV, Kandasubramanian B, Ibrahim SM (2020) 3D printed scaffolds for biomedical applications. Materials Chemistry and Physics 255:123642. https://doi.org/10.1016/j.matchemphys.2020.123642spa
dc.relation.referencesYadav LR, Chandran SV, Lavanya K, Selvamurugan N (2021) Chitosan-based 3D-printed scaffolds for bone tissue engineering. International Journal of Biological Macromolecules 183:1925–1938. https://doi.org/10.1016/j.ijbiomac.2021.05.215spa
dc.relation.referencesKanwar S, Vijayavenkataraman S (2021) Design of 3D printed scaffolds for bone tissue engineering: A review. Bioprinting 24:e00167. https://doi.org/10.1016/j.bprint.2021.e00167spa
dc.relation.referencesWang Z, Wang Y, Yan J, et al (2021) Pharmaceutical electrospinning and 3D printing scaffold design for bone regeneration. Advanced Drug Delivery Reviews 174:504–534. https://doi.org/10.1016/j.addr.2021.05.007spa
dc.relation.referencesWang P, Sun Y, Shi X, et al (2021) 3D printing of tissue engineering scaffolds: a focus on vascular regeneration. Bio-des Manuf 4:344–378. https://doi.org/10.1007/s42242-020-00109-0spa
dc.relation.referencesZimmerling A, Yazdanpanah Z, Cooper DML, et al (2021) 3D printing PCL/nHA bone scaffolds: exploring the influence of material synthesis techniques. Biomater Res 25:3. https://doi.org/10.1186/s40824-021-00204-yspa
dc.relation.referencesSu X, Wang T, Guo S (2021) Applications of 3D printed bone tissue engineering scaffolds in the stem cell field. Regenerative Therapy 16:63–72. https://doi.org/10.1016/j.reth.2021.01.007spa
dc.relation.referencesBahraminasab M (2020) Challenges on optimization of 3D-printed bone scaffolds. BioMed Eng OnLine 19:69. https://doi.org/10.1186/s12938-020-00810-2spa
dc.relation.referencesLiu X, Chen M, Luo J, et al (2021) Immunopolarization-regulated 3D printed-electrospun fibrous scaffolds for bone regeneration. Biomaterials 276:121037. https://doi.org/10.1016/j.biomaterials.2021.121037spa
dc.relation.referencesZhang Q, Wang X, Kuang G, et al (2022) Photopolymerized 3D Printing Scaffolds with Pt(IV) Prodrug Initiator for Postsurgical Tumor Treatment. Research 2022:2022/9784510. https://doi.org/10.34133/2022/9784510spa
dc.relation.referencesChung JJ, Im H, Kim SH, et al (2020) Toward Biomimetic Scaffolds for Tissue Engineering: 3D Printing Techniques in Regenerative Medicine. Front Bioeng Biotechnol 8:586406. https://doi.org/10.3389/fbioe.2020.586406spa
dc.relation.referencesRogers HB, Zhou LT, Kusuhara A, et al (2021) Dental resins used in 3D printing technologies release ovo-toxic leachates. Chemosphere 270:129003. https://doi.org/10.1016/j.chemosphere.2020.129003spa
dc.relation.referencesLin C-H, Lin Y-M, Lai Y-L, Lee S-Y (2020) Mechanical properties, accuracy, and cytotoxicity of UV-polymerized 3D printing resins composed of Bis-EMA, UDMA, and TEGDMA. The Journal of Prosthetic Dentistry 123:349–354. https://doi.org/10.1016/j.prosdent.2019.05.002spa
dc.relation.referencesHuang J, Qin Q, Wang J (2020) A Review of Stereolithography: Processes and Systems. Processes 8:1138. https://doi.org/10.3390/pr8091138spa
dc.relation.referencesLiu Y, Lin Y, Jiao T, et al (2019) Photocurable modification of inorganic fillers and their application in photopolymers for 3D printing. Polym Chem 10:6350–6359. https://doi.org/10.1039/C9PY01445Dspa
dc.relation.referencesFu S, Liu W, Liu S, et al (2018) 3D printed porous β-Ca 2 SiO 4 scaffolds derived from preceramic resin and their physicochemical and biological properties. Science and Technology of Advanced Materials 19:495–506. https://doi.org/10.1080/14686996.2018.1471653spa
dc.relation.referencesYu B, Fu S, Kang Z, et al (2020) Enhanced bone regeneration of 3D printed β-Ca2SiO4 scaffolds by aluminum ions solid solution. Ceramics International 46:7783–7791. https://doi.org/10.1016/j.ceramint.2019.11.282spa
dc.relation.referencesFu S, Hu H, Chen J, et al (2020) Silicone resin derived larnite/C scaffolds via 3D printing for potential tumor therapy and bone regeneration. Chemical Engineering Journal 382:122928. https://doi.org/10.1016/j.cej.2019.122928spa
dc.relation.referencesKang Z, Yu B, Fu S, et al (2019) Three-dimensional printing of CaTiO3 incorporated porous β-Ca2SiO4 composite scaffolds for bone regeneration. Applied Materials Today 16:132–140. https://doi.org/10.1016/j.apmt.2019.05.005spa
dc.relation.referencesDokuz ME, Aydın M, Uyaner M (2021) Production of Bioactive Various Lattices as an Artificial Bone Tissue by Digital Light Processing 3D Printing. J of Materi Eng and Perform 30:6938–6948. https://doi.org/10.1007/s11665-021-06067-7spa
dc.relation.referencesChen X, Xin Q, Min Z, et al (2017) Hydroxyapatite Whisker-reinforced Composite Scaffolds Through 3D Printing for Bone Repair. Journal of Inorganic Materials 32:837. https://doi.org/10.15541/jim20160628spa
dc.relation.referencesTeotia AK, Dienel K, Qayoom I, et al (2020) Improved Bone Regeneration in Rabbit Bone Defects Using 3D Printed Composite Scaffolds Functionalized with Osteoinductive Factors. ACS Appl Mater Interfaces 12:48340–48356. https://doi.org/10.1021/acsami.0c13851spa
dc.relation.referencesGuillaume O, Geven MA, Sprecher CM, et al (2017) Surface-enrichment with hydroxyapatite nanoparticles in stereolithography-fabricated composite polymer scaffolds promotes bone repair. Acta Biomaterialia 54:386–398. https://doi.org/10.1016/j.actbio.2017.03.006spa
dc.relation.referencesAbreu MCD, Ponzoni D, Langie R, et al (2016) Effects of a buried magnetic field on cranial bone reconstruction in rats. J Appl Oral Sci 24:162–170. https://doi.org/10.1590/1678-775720150336spa
dc.relation.referencesKim E-C, Leesungbok R, Lee S-W, et al (2015) Effects of moderate intensity static magnetic fields on human bone marrow-derived mesenchymal stem cells: Effects of SMFs on Human MSCs. Bioelectromagnetics 36:267–276. https://doi.org/10.1002/bem.21903spa
dc.relation.referencesZhang J, Meng X, Ding C, Shang P (2018) Effects of static magnetic fields on bone microstructure and mechanical properties in mice. Electromagnetic Biology and Medicine 37:76–83. https://doi.org/10.1080/15368378.2018.1458626spa
dc.relation.referencesYang J, Zhang J, Ding C, et al (2018) Regulation of Osteoblast Differentiation and Iron Content in MC3T3-E1 Cells by Static Magnetic Field with Different Intensities. Biol Trace Elem Res 184:214–225. https://doi.org/10.1007/s12011-017-1161-5spa
dc.relation.referencesAydin N, Bezer M (2011) The effect of an intramedullary implant with a static magnetic field on the healing of the osteotomised rabbit femur. International Orthopaedics (SICOT) 35:135–141. https://doi.org/10.1007/s00264-009-0932-9spa
dc.relation.referencesGujjalapudi M (2016) Effect of Magnetic Field on Bone Healing around Endosseous Implants – An In-vivo Study. JCDR. https://doi.org/10.7860/JCDR/2016/21509.8666spa
dc.relation.referencesZhao P-P, Ge Y-W, Liu X-L, et al (2020) Ordered arrangement of hydrated GdPO4 nanorods in magnetic chitosan matrix promotes tumor photothermal therapy and bone regeneration against breast cancer bone metastases. Chemical Engineering Journal 381:122694. https://doi.org/10.1016/j.cej.2019.122694spa
dc.relation.referencesSingh RK, Patel KD, Lee JH, et al (2014) Potential of Magnetic Nanofiber Scaffolds with Mechanical and Biological Properties Applicable for Bone Regeneration. PLoS ONE 9:e91584. https://doi.org/10.1371/journal.pone.0091584spa
dc.relation.referencesRusso A, Bianchi M, Sartori M, et al (2018) Bone regeneration in a rabbit critical femoral defect by means of magnetic hydroxyapatite macroporous scaffolds. J Biomed Mater Res 106:546–554. https://doi.org/10.1002/jbm.b.33836spa
dc.relation.referencesZhang J, Zhao S, Zhu M, et al (2014) 3D-printed magnetic Fe 3 O 4 /MBG/PCL composite scaffolds with multifunctionality of bone regeneration, local anticancer drug delivery and hyperthermia. J Mater Chem B 2:7583–7595. https://doi.org/10.1039/C4TB01063Aspa
dc.relation.referencesPerez RA, Patel KD, Kim H-W (2015) Novel magnetic nanocomposite injectables: calcium phosphate cements impregnated with ultrafine magnetic nanoparticles for bone regeneration. RSC Adv 5:13411–13419. https://doi.org/10.1039/C4RA12640Hspa
dc.relation.referencesTampieri A, Landi E, Valentini F, et al (2011) A conceptually new type of bio-hybrid scaffold for bone regeneration. Nanotechnology 22:015104. https://doi.org/10.1088/0957-4484/22/1/015104spa
dc.relation.referencesCourt-Brown CM, Caesar B (2006) Epidemiology of adult fractures: A review. Injury 37:691–697. https://doi.org/10.1016/j.injury.2006.04.130spa
dc.relation.referencesWubneh A, Tsekoura EK, Ayranci C, Uludağ H (2018) Current state of fabrication technologies and materials for bone tissue engineering. Acta Biomaterialia 80:1–30. https://doi.org/10.1016/j.actbio.2018.09.031spa
dc.relation.referencesSabir MI, Xu X, Li L (2009) A review on biodegradable polymeric materials for bone tissue engineering applications. J Mater Sci 44:5713–5724. https://doi.org/10.1007/s10853-009-3770-7spa
dc.relation.referencesRau JV, Antoniac I, Cama G, et al (2016) Bioactive Materials for Bone Tissue Engineering. BioMed Research International 2016:1–3. https://doi.org/10.1155/2016/3741428spa
dc.relation.referencesGujjalapudi M (2016) Effect of Magnetic Field on Bone Healing around Endosseous Implants – An In-vivo Study. JCDR. https://doi.org/10.7860/JCDR/2016/21509.8666spa
dc.relation.referencesMohammadi Zerankeshi M, Bakhshi R, Alizadeh R (2022) Polymer/metal composite 3D porous bone tissue engineering scaffolds fabricated by additive manufacturing techniques: A review. Bioprinting 25:e00191. https://doi.org/10.1016/j.bprint.2022.e00191spa
dc.relation.referencesDimitriou R, Jones E, McGonagle D, Giannoudis PV (2011) Bone regeneration: current concepts and future directions. BMC Med 9:66. https://doi.org/10.1186/1741-7015-9-66spa
dc.relation.referencesAbbasi N, Hamlet S, Love RM, Nguyen N-T (2020) Porous scaffolds for bone regeneration. Journal of Science: Advanced Materials and Devices 5:1–9. https://doi.org/10.1016/j.jsamd.2020.01.007spa
dc.relation.referencesBattafarano G, Rossi M, De Martino V, et al (2021) Strategies for Bone Regeneration: From Graft to Tissue Engineering. IJMS 22:1128. https://doi.org/10.3390/ijms22031128spa
dc.relation.referencesEscobar Ivirico J (2008) Síntesis, caracterización y aplicaciones biomédicas de redes de copolímeros basados en poliésteres. Maestría, Universidad Politécnica de Valenciaspa
dc.relation.referencesZhou J, Zhang Z, Joseph J, et al (2021) Biomaterials and nanomedicine for bone regeneration: Progress and future prospects. Exploration 1:20210011. https://doi.org/10.1002/EXP.20210011spa
dc.relation.referencesGiannoudis PV, Dinopoulos H, Tsiridis E (2005) Bone substitutes: An update. Injury 36:S20–S27. https://doi.org/10.1016/j.injury.2005.07.029spa
dc.relation.referencesVelioglu ZB, Pulat D, Demirbakan B, et al (2019) 3D-printed poly(lactic acid) scaffolds for trabecular bone repair and regeneration: scaffold and native bone characterization. Connective Tissue Research 60:274–282. https://doi.org/10.1080/03008207.2018.1499732spa
dc.relation.referencesJones JR, Hench LL (2003) Regeneration of trabecular bone using porous ceramics. Current Opinion in Solid State and Materials Science 7:301–307. https://doi.org/10.1016/j.cossms.2003.09.012spa
dc.relation.referencesGoldstein SA (1987) The mechanical properties of trabecular bone: Dependence on anatomic location and function. Journal of Biomechanics 20:1055–1061. https://doi.org/10.1016/0021-9290(87)90023-6spa
dc.relation.referencesBehrens JC, Walker PS, Shoji H (1974) Variations in strength and structure of cancellous bone at the knee. Journal of Biomechanics 7:201–207. https://doi.org/10.1016/0021-9290(74)90010-4spa
dc.relation.referencesLindahl O (1976) Mechanical Properties of Dried Defatted Spongy Bone. Acta Orthopaedica Scandinavica 47:11–19. https://doi.org/10.3109/17453677608998966spa
dc.relation.referencesWilliams JL, Lewis JL (1982) Properties and an Anisotropic Model of Cancellous Bone From the Proximal Tibial Epiphysis. Journal of Biomechanical Engineering 104:50–56. https://doi.org/10.1115/1.3138303spa
dc.relation.referencesGoldstein SA, Wilson DL, Sonstegard DA, Matthews LS (1983) The mechanical properties of human tibial trabecular bone as a function of metaphyseal location. Journal of Biomechanics 16:965–969. https://doi.org/10.1016/0021-9290(83)90097-0spa
dc.relation.referencesHvid I, Hansen SL (1985) Trabecular bone strength patterns at the proximal tibial epiphysis. Journal of Orthopaedic Research 3:464–472. https://doi.org/10.1002/jor.1100030409spa
dc.relation.referencesCiarelli M, Goldstein S, Dickie D, et al (1986) Experimental determination of the orthogonal mechanical properties, density, and distribution of human trabecular bone from the major metaphyseal regions utilizing materials testing and computed tomography. Transactions of the Orthopedic Research Society 42:spa
dc.relation.referencesPugh JW, Rose RM, Radin EL (1973) Elastic and viscoelastic properties of trabecular bone: Dependence on structure. Journal of Biomechanics 6:475–485. https://doi.org/10.1016/0021-9290(73)90006-7spa
dc.relation.referencesDucheyne P, Heymans L, Martens M, et al (1977) The mechanical behaviour of intracondylar cancellous bone of the femur at different loading rates. Journal of Biomechanics 10:747–762. https://doi.org/10.1016/0021-9290(77)90089-6spa
dc.relation.referencesmg hardinge (1949) Determination of the strength of the cancellous bone in the head and neck of the femur. Surgery, Gynecology & Obstetrics 89:439–441spa
dc.relation.referencesEvans FG, King AI (1961) Regional differences in some physical properties of human spongy bone. Biomechanical studies of the musculo-skeletal system 49:spa
dc.relation.referencesSchoenfeld CM, Lautenschlager EP, Meyer PR (1974) Mechanical properties of human cancellous bone in the femoral head. Medical and biological engineering 12:313–317. https://doi.org/10.1007/BF02477797spa
dc.relation.referencesBrown TD, Ferguson AB (1980) Mechanical Property Distributions in the Cancellous Bone of the Human Proximal Femur. Acta Orthopaedica Scandinavica 51:429–437. https://doi.org/10.3109/17453678008990819spa
dc.relation.referencesMartens M, Audekercke RV, Delport P, et al (1983) The mechanical characteristics of cancellous bone at the upper femoral region. Journal of Biomechanics 16:971–983. https://doi.org/10.1016/0021-9290(83)90098-2spa
dc.relation.referencesWEAVER JK, CHALMERS J (1966) Cancellous Bone: Its Strength and Changes with Aging and an Evaluation of Some Methods for Measuring Its Mineral Content: I. AGE CHANGES IN CANCELLOUS BONE. JBJS 48:spa
dc.relation.referencesGalante J, Rostoker W, Ray RD (1970) Physical properties of trabecular bone. Calcified Tissue Research 5:236–246. https://doi.org/10.1007/BF02017552spa
dc.relation.referencesJW M (1970) Mechanical properties of cranial bone. J Biomech 3:497spa
dc.relation.referencesStruhl S, Goldstein S, Dickie D, et al (1987) The distribution of mechanical properties of trabecular bone within vertebral bodies and iliac crest: correlation with computed tomography density. Transactions of the Orthopedic Research Society 198:262spa
dc.relation.referencesAshman R, Turner C, Cowin S (1986) Ultrasonic technique for the measurement of the structural elastic modulus of cancellous bone. Trans Orthop Res Soc 43:spa
dc.relation.referencesKELLER TS, HANSSON TH, ABRAM AC, et al (1989) Regional Variations in the Compressive Properties of Lumbar Vertebral Trabeculae: Effects of Disc Degeneration. Spine 14:spa
dc.relation.referencesTownsend PR, Raux P, Rose RM, et al (1975) The distribution and anisotropy of the stiffness of cancellous bone in the human patella. Journal of Biomechanics 8:363–367. https://doi.org/10.1016/0021-9290(75)90071-8spa
dc.relation.referencesJ.M Anderson (2012) Polymers in Biology and Medicine. Elsevier Sciencespa
dc.relation.referencesChen H, Yuan L, Song W, et al (2008) Biocompatible polymer materials: Role of protein–surface interactions. Progress in Polymer Science 33:1059–1087. https://doi.org/10.1016/j.progpolymsci.2008.07.006spa
dc.relation.referencesAsghari F, Samiei M, Adibkia K, et al (2017) Biodegradable and biocompatible polymers for tissue engineering application: a review. Artificial Cells, Nanomedicine, and Biotechnology 45:185–192. https://doi.org/10.3109/21691401.2016.1146731spa
dc.relation.referencesAsri RIM, Harun WSW, Samykano M, et al (2017) Corrosion and surface modification on biocompatible metals: A review. Materials Science and Engineering: C 77:1261–1274. https://doi.org/10.1016/j.msec.2017.04.102spa
dc.relation.referencesSaptaji K, Gebremariam MA, Azhari MABM (2018) Machining of biocompatible materials: a review. Int J Adv Manuf Technol 97:2255–2292. https://doi.org/10.1007/s00170-018-1973-2spa
dc.relation.referencesKiradzhiyska DD, Mantcheva RD (2019) Overview of Biocompatible Materials and Their Use in Medicine. Folia Medica 61:34–40. https://doi.org/10.2478/folmed-2018-0038spa
dc.relation.referencesHaider A, Haider S, Rao Kummara M, et al (2020) Advances in the scaffolds fabrication techniques using biocompatible polymers and their biomedical application: A technical and statistical review. Journal of Saudi Chemical Society 24:186–215. https://doi.org/10.1016/j.jscs.2020.01.002spa
dc.relation.referencesCao Y, Uhrich KE (2019) Biodegradable and biocompatible polymers for electronic applications: A review. Journal of Bioactive and Compatible Polymers 34:3–15. https://doi.org/10.1177/0883911518818075spa
dc.relation.referencesShastri V (2003) Non-Degradable Biocompatible Polymers in Medicine: Past, Present and Future. CPB 4:331–337. https://doi.org/10.2174/1389201033489694spa
dc.relation.referencesHöland W (1997) Biocompatible and bioactive glass-ceramics — state of the art and new directions. Journal of Non-Crystalline Solids 219:192–197. https://doi.org/10.1016/S0022-3093(97)00329-3spa
dc.relation.referencesBedair TM, Heo Y, Ryu J, et al (2021) Biocompatible and functional inorganic magnesium ceramic particles for biomedical applications. Biomater Sci 9:1903–1923. https://doi.org/10.1039/D0BM01934Hspa
dc.relation.referencesBallouze R, Marahat MH, Mohamad S, et al (2021) Biocompatible MAGNESIUM‐DOPED biphasic calcium phosphate for bone regeneration. J Biomed Mater Res 109:1426–1435. https://doi.org/10.1002/jbm.b.34802spa
dc.relation.referencesBallouze R, Marahat MH, Mohamad S, et al (2021) Biocompatible MAGNESIUM‐DOPED biphasic calcium phosphate for bone regeneration. J Biomed Mater Res 109:1426–1435. https://doi.org/10.1002/jbm.b.34802spa
dc.relation.referencesGautam C, Joyner J, Gautam A, et al (2016) Zirconia based dental ceramics: structure, mechanical properties, biocompatibility and applications. Dalton Trans 45:19194–19215. https://doi.org/10.1039/C6DT03484Espa
dc.relation.referencesHamidi MFFA, Harun WSW, Samykano M, et al (2017) A review of biocompatible metal injection moulding process parameters for biomedical applications. Materials Science and Engineering: C 78:1263–1276. https://doi.org/10.1016/j.msec.2017.05.016spa
dc.relation.referencesAbdel-Hady Gepreel M, Niinomi M (2013) Biocompatibility of Ti-alloys for long-term implantation. Journal of the Mechanical Behavior of Biomedical Materials 20:407–415. https://doi.org/10.1016/j.jmbbm.2012.11.014spa
dc.relation.referencesAsri RIM, Harun WSW, Samykano M, et al (2017) Corrosion and surface modification on biocompatible metals: A review. Materials Science and Engineering: C 77:1261–1274. https://doi.org/10.1016/j.msec.2017.04.102spa
dc.relation.referencesVariola F, Vetrone F, Richert L, et al (2009) Improving Biocompatibility of Implantable Metals by Nanoscale Modification of Surfaces: An Overview of Strategies, Fabrication Methods, and Challenges. Small 5:996–1006. https://doi.org/10.1002/smll.200801186spa
dc.relation.referencesManam NS, Harun WSW, Shri DNA, et al (2017) Study of corrosion in biocompatible metals for implants: A review. Journal of Alloys and Compounds 701:698–715. https://doi.org/10.1016/j.jallcom.2017.01.196spa
dc.relation.referencesHan WB, Yang SM, Rajaram K, Hwang S (2022) Materials and Fabrication Strategies for Biocompatible and Biodegradable Conductive Polymer Composites toward Bio‐Integrated Electronic Systems. Advanced Sustainable Systems 6:2100075. https://doi.org/10.1002/adsu.202100075spa
dc.relation.referencesPinto AM, Gonçalves IC, Magalhães FD (2013) Graphene-based materials biocompatibility: A review. Colloids and Surfaces B: Biointerfaces 111:188–202. https://doi.org/10.1016/j.colsurfb.2013.05.022spa
dc.relation.referencesTahmasebi E, Alam M, Yazdanian M, et al (2020) Current biocompatible materials in oral regeneration: a comprehensive overview of composite materials. Journal of Materials Research and Technology 9:11731–11755. https://doi.org/10.1016/j.jmrt.2020.08.042spa
dc.relation.referencesTihan TG, Ionita MD, Popescu RG, Iordachescu D (2009) Effect of hydrophilic–hydrophobic balance on biocompatibility of poly(methyl methacrylate) (PMMA)–hydroxyapatite (HA) composites. Materials Chemistry and Physics 118:265–269. https://doi.org/10.1016/j.matchemphys.2009.03.019spa
dc.relation.referencesInzana JA, Olvera D, Fuller SM, et al (2014) 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials 35:4026–4034. https://doi.org/10.1016/j.biomaterials.2014.01.064spa
dc.relation.referencesMarques CF, Diogo GS, Pina S, et al (2019) Collagen-based bioinks for hard tissue engineering applications: a comprehensive review. J Mater Sci: Mater Med 30:32. https://doi.org/10.1007/s10856-019-6234-xspa
dc.relation.referencesFu S, Du X, Zhu M, et al (2019) 3D printing of layered mesoporous bioactive glass/sodium alginate-sodium alginate scaffolds with controllable dual-drug release behaviors. Biomed Mater 14:065011. https://doi.org/10.1088/1748-605X/ab4166spa
dc.relation.referencesIlhan E, Cesur S, Guler E, et al (2020) Development of Satureja cuneifolia-loaded sodium alginate/polyethylene glycol scaffolds produced by 3D-printing technology as a diabetic wound dressing material. International Journal of Biological Macromolecules 161:1040–1054. https://doi.org/10.1016/j.ijbiomac.2020.06.086spa
dc.relation.referencesLiu Y, Tang T, Duan S, et al (2020) Effects of sodium alginate and rice variety on the physicochemical characteristics and 3D printing feasibility of rice paste. LWT 127:109360. https://doi.org/10.1016/j.lwt.2020.109360spa
dc.relation.referencesWei Q, Zhou J, An Y, et al (2023) Modification, 3D printing process and application of sodium alginate based hydrogels in soft tissue engineering: A review. International Journal of Biological Macromolecules 232:123450. https://doi.org/10.1016/j.ijbiomac.2023.123450spa
dc.relation.referencesRajabi M, McConnell M, Cabral J, Ali MA (2021) Chitosan hydrogels in 3D printing for biomedical applications. Carbohydrate Polymers 260:117768. https://doi.org/10.1016/j.carbpol.2021.117768spa
dc.relation.referencesSuo H, Zhang J, Xu M, Wang L (2021) Low-temperature 3D printing of collagen and chitosan composite for tissue engineering. Materials Science and Engineering: C 123:111963. https://doi.org/10.1016/j.msec.2021.111963spa
dc.relation.referencesWu Q, Therriault D, Heuzey M-C (2018) Processing and Properties of Chitosan Inks for 3D Printing of Hydrogel Microstructures. ACS Biomater Sci Eng 4:2643–2652. https://doi.org/10.1021/acsbiomaterials.8b00415spa
dc.relation.referencesSommer MR, Schaffner M, Carnelli D, Studart AR (2016) 3D Printing of Hierarchical Silk Fibroin Structures. ACS Appl Mater Interfaces 8:34677–34685. https://doi.org/10.1021/acsami.6b11440spa
dc.relation.referencesWang Q, Han G, Yan S, Zhang Q (2019) 3D Printing of Silk Fibroin for Biomedical Applications. Materials 12:504. https://doi.org/10.3390/ma12030504spa
dc.relation.referencesKim SH, Yeon YK, Lee JM, et al (2018) Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing. Nat Commun 9:1620. https://doi.org/10.1038/s41467-018-03759-yspa
dc.relation.referencesMu X, Sahoo JK, Cebe P, Kaplan DL (2020) Photo-Crosslinked Silk Fibroin for 3D Printing. Polymers 12:2936. https://doi.org/10.3390/polym12122936spa
dc.relation.referencesNoh I, Kim N, Tran HN, et al (2019) 3D printable hyaluronic acid-based hydrogel for its potential application as a bioink in tissue engineering. Biomater Res 23:3. https://doi.org/10.1186/s40824-018-0152-8spa
dc.relation.referencesShie M-Y, Chang W-C, Wei L-J, et al (2017) 3D Printing of Cytocompatible Water-Based Light-Cured Polyurethane with Hyaluronic Acid for Cartilage Tissue Engineering Applications. Materials 10:136. https://doi.org/10.3390/ma10020136spa
dc.relation.referencesOuyang L, Highley CB, Rodell CB, et al (2016) 3D Printing of Shear-Thinning Hyaluronic Acid Hydrogels with Secondary Cross-Linking. ACS Biomater Sci Eng 2:1743–1751. https://doi.org/10.1021/acsbiomaterials.6b00158spa
dc.relation.referencesPetta D, D’Amora U, Ambrosio L, et al (2020) Hyaluronic acid as a bioink for extrusion-based 3D printing. Biofabrication 12:032001. https://doi.org/10.1088/1758-5090/ab8752spa
dc.relation.referencesOladapo BI, Zahedi SA, Ismail SO, Omigbodun FT (2021) 3D printing of PEEK and its composite to increase biointerfaces as a biomedical material- A review. Colloids and Surfaces B: Biointerfaces 203:111726. https://doi.org/10.1016/j.colsurfb.2021.111726spa
dc.relation.referencesGeng P, Zhao J, Wu W, et al (2019) Effects of extrusion speed and printing speed on the 3D printing stability of extruded PEEK filament. Journal of Manufacturing Processes 37:266–273. https://doi.org/10.1016/j.jmapro.2018.11.023spa
dc.relation.referencesXiaoyong S, Liangcheng C, Honglin M, et al (2017) Experimental Analysis of High Temperature PEEK Materials on 3D Printing Test. In: 2017 9th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA). IEEE, Changsha, China, pp 13–16spa
dc.relation.referencesYang C, Tian X, Li D, et al (2017) Influence of thermal processing conditions in 3D printing on the crystallinity and mechanical properties of PEEK material. Journal of Materials Processing Technology 248:1–7. https://doi.org/10.1016/j.jmatprotec.2017.04.027spa
dc.relation.referencesChen X, Gao C, Jiang J, et al (2019) 3D printed porous PLA/nHA composite scaffolds with enhanced osteogenesis and osteoconductivity in vivo for bone regeneration. Biomed Mater 14:065003. https://doi.org/10.1088/1748-605X/ab388dspa
dc.relation.referencesWang M, Favi P, Cheng X, et al (2016) Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration. Acta Biomaterialia 46:256–265. https://doi.org/10.1016/j.actbio.2016.09.030spa
dc.relation.referencesAnbu RT, Suresh V, Gounder R, Kannan A (2019) Comparison of the Efficacy of Three Different Bone Regeneration Materials: An Animal Study. Eur J Dent 13:022–028. https://doi.org/10.1055/s-0039-1688735spa
dc.relation.referencesLi X, Wang Y, Wang Z, et al (2018) Composite PLA/PEG/nHA/Dexamethasone Scaffold Prepared by 3D Printing for Bone Regeneration. Macromol Biosci 18:1800068. https://doi.org/10.1002/mabi.201800068spa
dc.relation.referencesLiu D, Nie W, Li D, et al (2019) 3D printed PCL/SrHA scaffold for enhanced bone regeneration. Chemical Engineering Journal 362:269–279. https://doi.org/10.1016/j.cej.2019.01.015spa
dc.relation.referencesDong Q, Zhang M, Zhou X, et al (2021) 3D-printed Mg-incorporated PCL-based scaffolds: A promising approach for bone healing. Materials Science and Engineering: C 129:112372. https://doi.org/10.1016/j.msec.2021.112372spa
dc.relation.referencesBlackham JT, Vandewalle KS, Lien W (2009) Properties of Hybrid Resin Composite Systems Containing Prepolymerized Filler Particles. Operative Dentistry 34:697–702. https://doi.org/10.2341/08-118-Lspa
dc.relation.referencesBettencourt AF, Neves CB, de Almeida MS, et al (2010) Biodegradation of acrylic based resins: A review. Dental Materials 26:e171–e180. https://doi.org/10.1016/j.dental.2010.01.006spa
dc.relation.referencesStoye D, Funke W, Hoppe L, et al (2006) Paints and Coatings. In Ullmann’s Encyclopedia of Industrial Chemistry, (Ed.). https://doi.org/10.1002/14356007.a18_359.pub2spa
dc.relation.referencesVallittu PK (1999) Flexural properties of acrylic resin polymers reinforced with unidirectional and woven glass fibers. The Journal of Prosthetic Dentistry 81:318–326. https://doi.org/10.1016/S0022-3913(99)70276-3spa
dc.relation.referencesCasemiro LA, Martins CHG, Pires-de-Souza F de CP, Panzeri H (2008) Antimicrobial and mechanical properties of acrylic resins with incorporated silver-zinc zeolite - part I. Gerodontology 25:187–194. https://doi.org/10.1111/j.1741-2358.2007.00198.xspa
dc.relation.referencesBagheri A, Jin J (2019) Photopolymerization in 3D Printing. ACS Appl Polym Mater 1:593–611. https://doi.org/10.1021/acsapm.8b00165spa
dc.relation.referencesDong Z, Zhao X (2021) Application of TPMS structure in bone regeneration. Engineered Regeneration 2:154–162. https://doi.org/10.1016/j.engreg.2021.09.004spa
dc.relation.referencesHayashi K, Kishida R, Tsuchiya A, Ishikawa K (2023) Superiority of Triply Periodic Minimal Surface Gyroid Structure to Strut-Based Grid Structure in Both Strength and Bone Regeneration. ACS Appl Mater Interfaces 15:34570–34577. https://doi.org/10.1021/acsami.3c06263spa
dc.relation.referencesAbueidda DW, Elhebeary M, Shiang C-S (Andrew), et al (2019) Mechanical properties of 3D printed polymeric Gyroid cellular structures: Experimental and finite element study. Materials & Design 165:107597. https://doi.org/10.1016/j.matdes.2019.107597spa
dc.relation.referencesLyubutin IS, Lin CR, Korzhetskiy YuV, et al (2009) Mössbauer spectroscopy and magnetic properties of hematite/magnetite nanocomposites. Journal of Applied Physics 106:034311. https://doi.org/10.1063/1.3194316spa
dc.relation.referencesLouis Néel (1952) Antiferromagnetism and Ferrimagnetism. Proceedings of the Physical Society Section A 65:869. https://doi.org/10.1088/0370-1298/65/11/301spa
dc.relation.referencesMaterial-Properties.org (2024) Magnetic Properties of Materials – Definition. In: Magnetic Properties of Materials. https://material-properties.org/magnetic-properties-of-materials-definition/. Accessed 25 Mar 2024spa
dc.relation.referencesIowa State University - Center for Nondestructive Evaluation (2024) The Hysteresis Loop. In: Magnetism. https://www.nde-ed.org/Physics/Magnetism/HysteresisLoop.xhtml. Accessed 25 Mar 2024spa
dc.relation.referencesDeganello F, Tyagi AK (2018) Solution combustion synthesis, energy and environment: Best parameters for better materials. Progress in Crystal Growth and Characterization of Materials 64:23–61. https://doi.org/10.1016/j.pcrysgrow.2018.03.001spa
dc.relation.referencesCarlos E, Martins R, Fortunato E, Branquinho R (2020) Solution Combustion Synthesis: Towards a Sustainable Approach for Metal Oxides. Chem Eur J 26:9099–9125. https://doi.org/10.1002/chem.202000678spa
dc.relation.referencesDasari A, Xue J, Deb S (2022) Magnetic Nanoparticles in Bone Tissue Engineering. Nanomaterials 12:. https://doi.org/10.3390/nano12050757spa
dc.relation.referencesShuai C, Yang W, He C, et al (2020) A magnetic micro-environment in scaffolds for stimulating bone regeneration. Materials & Design 185:108275. https://doi.org/10.1016/j.matdes.2019.108275spa
dc.relation.referencesKim J-J, Singh RK, Seo S-J, et al (2014) Magnetic scaffolds of polycaprolactone with functionalized magnetite nanoparticles: physicochemical, mechanical, and biological properties effective for bone regeneration. RSC Adv 4:17325–17336. https://doi.org/10.1039/C4RA00040Dspa
dc.relation.referencesBin S, Wang A, Guo W, et al (2020) Micro Magnetic Field Produced by Fe3O4 Nanoparticles in Bone Scaffold for Enhancing Cellular Activity. Polymers 12:. https://doi.org/10.3390/polym12092045spa
dc.relation.referencesWang Q, Tang Y, Ke Q, et al (2020) Magnetic lanthanum-doped hydroxyapatite/chitosan scaffolds with endogenous stem cell-recruiting and immunomodulatory properties for bone regeneration. J Mater Chem B 8:5280–5292. https://doi.org/10.1039/D0TB00342Espa
dc.relation.referencesLi Y, Huang L, Tai G, et al (2022) Graphene Oxide-loaded magnetic nanoparticles within 3D hydrogel form High-performance scaffolds for bone regeneration and tumour treatment. Composites Part A: Applied Science and Manufacturing 152:106672. https://doi.org/10.1016/j.compositesa.2021.106672spa
dc.relation.referencesShuai C, Yang W, He C, et al (2020) A magnetic micro-environment in scaffolds for stimulating bone regeneration. Materials & Design 185:108275. https://doi.org/10.1016/j.matdes.2019.108275spa
dc.relation.referencesWei X, Li D, Jiang W, et al (2015) 3D Printable Graphene Composite. Sci Rep 5:11181. https://doi.org/10.1038/srep11181spa
dc.relation.referencesGnanasekaran K, Heijmans T, Van Bennekom S, et al (2017) 3D printing of CNT- and graphene-based conductive polymer nanocomposites by fused deposition modeling. Applied Materials Today 9:21–28. https://doi.org/10.1016/j.apmt.2017.04.003spa
dc.relation.referencesQu H (2020) Additive manufacturing for bone tissue engineering scaffolds. Materials Today Communications 24:101024. https://doi.org/10.1016/j.mtcomm.2020.101024spa
dc.relation.referencesDul S, Fambri L, Pegoretti A (2016) Fused deposition modelling with ABS–graphene nanocomposites. Composites Part A: Applied Science and Manufacturing 85:181–191. https://doi.org/10.1016/j.compositesa.2016.03.013spa
dc.relation.referencesSavaris M, Santos VD, Brandalise RN (2016) Influence of different sterilization processes on the properties of commercial poly(lactic acid). Materials Science and Engineering: C 69:661–667. https://doi.org/10.1016/j.msec.2016.07.031spa
dc.relation.referencesLee S-J, Zhu W, Nowicki M, et al (2018) 3D printing nano conductive multi-walled carbon nanotube scaffolds for nerve regeneration. J Neural Eng 15:016018. https://doi.org/10.1088/1741-2552/aa95a5spa
dc.relation.referencesSciancalepore C, Moroni F, Messori M, Bondioli F (2017) Acrylate-based silver nanocomposite by simultaneous polymerization–reduction approach via 3D stereolithography. Composites Communications 6:11–16. https://doi.org/10.1016/j.coco.2017.07.006spa
dc.relation.referencesFeng Z, Li Y, Xin C, et al (2019) Fabrication of Graphene-Reinforced Nanocomposites with Improved Fracture Toughness in Net Shape for Complex 3D Structures via Digital Light Processing. C 5:25. https://doi.org/10.3390/c5020025spa
dc.relation.referencesFeng Z, Li Y, Hao L, et al (2019) Graphene-Reinforced Biodegradable Resin Composites for Stereolithographic 3D Printing of Bone Structure Scaffolds. Journal of Nanomaterials 2019:1–13. https://doi.org/10.1155/2019/9710264spa
dc.relation.referencesDizon JRC, Chen Q, Valino AD, Advincula RC (2019) Thermo-mechanical and swelling properties of three-dimensional-printed poly (ethylene glycol) diacrylate/silica nanocomposites. MRS Communications 9:209–217. https://doi.org/10.1557/mrc.2018.188spa
dc.relation.referencesChunze Y, Yusheng S, Jinsong Y, Jinhui L (2009) A Nanosilica/Nylon-12 Composite Powder for Selective Laser Sintering. Journal of Reinforced Plastics and Composites 28:2889–2902. https://doi.org/10.1177/0731684408094062spa
dc.relation.referencesValino AD, Dizon JRC, Espera AH, et al (2019) Advances in 3D printing of thermoplastic polymer composites and nanocomposites. Progress in Polymer Science 98:101162. https://doi.org/10.1016/j.progpolymsci.2019.101162spa
dc.relation.referencesZhang Y, Hao L, Savalani MM, et al (2008) Characterization and dynamic mechanical analysis of selective laser sintered hydroxyapatite‐filled polymeric composites. J Biomed Mater Res 86A:607–616. https://doi.org/10.1002/jbm.a.31622spa
dc.relation.referencesChung H, Das S (2008) Functionally graded Nylon-11/silica nanocomposites produced by selective laser sintering. Materials Science and Engineering: A 487:251–257. https://doi.org/10.1016/j.msea.2007.10.082spa
dc.relation.referencesDrummer D, Medina-Hernández M, Drexler M, Wudy K (2015) Polymer Powder Production for Laser Melting Through Immiscible Blends. Procedia Engineering 102:1918–1925. https://doi.org/10.1016/j.proeng.2015.01.332spa
dc.relation.referencesWiberg A, Persson J, Ölvander J (2019) Design for additive manufacturing – a review of available design methods and software. RPJ 25:1080–1094. https://doi.org/10.1108/RPJ-10-2018-0262spa
dc.relation.referencesReddy K. SN, Ferguson I, Frecker M, et al (2016) Topology Optimization Software for Additive Manufacturing: A Review of Current Capabilities and a Real-World Example. In: IDETC-CIE2016. Volume 2A: 42nd Design Automation Conferencespa
dc.relation.referencesGibson I, Rosen D, Stucker B, Khorasani M (2021) Software for Additive Manufacturing. In: Gibson I, Rosen D, Stucker B, Khorasani M (eds) Additive Manufacturing Technologies. Springer International Publishing, Cham, pp 491–524spa
dc.relation.referencesGibson I, Rosen D, Stucker B (2015) Software Issues for Additive Manufacturing. In: Gibson I, Rosen D, Stucker B (eds) Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing. Springer New York, New York, NY, pp 351–374spa
dc.relation.referencesO’Reilly (2024) 3D printing. https://www.oreilly.com/library/view/3d-printing-basics/9781351610810/xhtml/Ch06.xhtml. Accessed 14 Apr 2024spa
dc.relation.referencesManapat JZ, Chen Q, Ye P, Advincula RC (2017) 3D Printing of Polymer Nanocomposites via Stereolithography. Macromolecular Materials and Engineering 302:1600553. https://doi.org/10.1002/mame.201600553spa
dc.relation.referencesDeshmane S, Kendre P, Mahajan H, Jain S (2021) Stereolithography 3D printing technology in pharmaceuticals: a review. Drug Development and Industrial Pharmacy 47:1362–1372. https://doi.org/10.1080/03639045.2021.1994990spa
dc.relation.referencesMukhtarkhanov M, Perveen A, Talamona D (2020) Application of Stereolithography Based 3D Printing Technology in Investment Casting. Micromachines 11:. https://doi.org/10.3390/mi11100946spa
dc.relation.referencesTAICED (2023) ¿Qué es una Impresora 3D? TIpos y Como Funciona. In: TAICED Construyendo Ideas. https://www.taiced.com/post/tipos-de-impresoras-3d-y-como-funcionan. Accessed 25 Mar 2024spa
dc.relation.referencesMhmood TR, Al-Karkhi NK (2023) A Review of the Stereo lithography 3D Printing Process and the Effect of Parameters on Quality. alkej 19:82–94. https://doi.org/10.22153/kej.2023.04.003spa
dc.relation.referencesHuang J, Qin Q, Wang J (2020) A Review of Stereolithography: Processes and Systems. Processes 8:. https://doi.org/10.3390/pr8091138spa
dc.relation.referencesThomas G. Mezger (2006) The reology Handbook, 2nd ed. Coatings Compendiaspa
dc.relation.referencesHsissou R, Bekhta A, Dagdag O, et al (2020) Rheological properties of composite polymers and hybrid nanocomposites. Heliyon 6:e04187. https://doi.org/10.1016/j.heliyon.2020.e04187spa
dc.relation.referencesBochnia J, Kozior T, Szot W, et al (2024) Selected Mechanical and Rheological Properties of Medical Resin MED610 in PolyJet Matrix Three-Dimensional Printing Technology in Quality Aspects. 3D Printing and Additive Manufacturing 11:299–313. https://doi.org/10.1089/3dp.2022.0215spa
dc.relation.referencesLiu Y, Lin Y, Jiao T, et al (2019) Photocurable modification of inorganic fillers and their application in photopolymers for 3D printing. Polym Chem 10:6350–6359. https://doi.org/10.1039/C9PY01445Dspa
dc.relation.referencesHada T, Kanazawa M, Miyamoto N, et al (2022) Effect of Different Filler Contents and Printing Directions on the Mechanical Properties for Photopolymer Resins. International Journal of Molecular Sciences 23:. https://doi.org/10.3390/ijms23042296spa
dc.relation.referencesVyas A, Garg V, Ghosh SB, Bandyopadhyay-Ghosh S (2022) Photopolymerizable resin-based 3D printed biomedical composites: Factors affecting resin viscosity. Materials Today: Proceedings 62:1435–1439. https://doi.org/10.1016/j.matpr.2022.01.172spa
dc.relation.referencesTsai S-C, Chen L-H, Chu C-P, et al (2022) Photo curable resin for 3D printed conductive structures. Additive Manufacturing 51:102590. https://doi.org/10.1016/j.addma.2021.102590spa
dc.relation.referencesLiu M, Wu J, Gan Y, et al (2016) Evaporation Limited Radial Capillary Penetration in Porous Media. Langmuir 32:9899–9904. https://doi.org/10.1021/acs.langmuir.6b02404spa
dc.relation.referencesBYK Additives & Instruments Humectación y Dispersión de Aditivosspa
dc.relation.referencesJain A, Ong SP, Hautier G, et al (2013) Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Materials 1:011002. https://doi.org/10.1063/1.4812323spa
dc.relation.referencesInternational Organization for Standardization (2009) Biological evaluation of medical devices Part 5: Tests for in vitro cytotoxicity, ISO Standard No. 10993-5:2009spa
dc.relation.referencesInternational Organization for Standardization (2009) Biological evaluation of medical devices Part 12: Sample preparation and reference materials, ISO Standard No. 10993-12:2009spa
dc.relation.referencesRusso et al. - 2018 - Bone regeneration in a rabbit critical femoral def.pdfspa
dc.relation.referencesUserCom (2000) Interpreting DSC Curvesspa
dc.relation.referencesSchick C (2009) Differential scanning calorimetry (DSC) of semicrystalline polymers. Anal Bioanal Chem 395:1589–1611. https://doi.org/10.1007/s00216-009-3169-yspa
dc.relation.referencesChiantore O, Lazzari M (1996) Characterization of Acrylic Resins. International Journal of Polymer Analysis and Characterization 2:395–408. https://doi.org/10.1080/10236669608033358spa
dc.relation.referencesAnycubic (2023) Buyer’s Guide: How to Choose the Right Resin for 3D Printing. In: 3D Printing Guides. https://store.anycubic.com/blogs/3d-printing-guides/how-to-choose-the-right-resin-for-3d-printing. Accessed 20 Apr 2024spa
dc.relation.referencesKim D-Y, Kim J-H (2021) Comparison of shrinkage according to thickness of photopolymerization resin for 3D printing. J Tech Dent 43:1–5. https://doi.org/10.14347/jtd.2021.43.1.1spa
dc.relation.referencesPeng J, Zhao J, Long Y, et al (2019) Magnetic Materials in Promoting Bone Regeneration. Front Mater 6:268. https://doi.org/10.3389/fmats.2019.00268spa
dc.relation.referencesTorres del Castillo, Miguel Ángel (2016) Potencial de la adición de nanofibras de frafeno en la resistencia mecánica de resinas autopolimerizables para aplicaciones en implanto-prótesis. Universidad Católica San Antonio de Murciaspa
dc.relation.referencesCaeiro JR, González P, Guede D (2013) Biomecánica y hueso (y II): ensayos en los distintos niveles jerárquicos del hueso y técnicas alternativas para la determinación de la resistencia ósea. Rev Osteoporos Metab Miner 5:99–108. https://doi.org/10.4321/S1889-836X2013000200007spa
dc.relation.referencesChiantore O, Lazzari M (1996) Characterization of Acrylic Resins. International Journal of Polymer Analysis and Characterization 2:395–408. https://doi.org/10.1080/10236669608033358spa
dc.relation.referencesSingh RK, Patel KD, Lee JH, et al (2014) Potential of Magnetic Nanofiber Scaffolds with Mechanical and Biological Properties Applicable for Bone Regeneration. PLoS ONE 9:e91584. https://doi.org/10.1371/journal.pone.0091584spa
dc.relation.referencesSeongpil Jeong, Hye-Won Kim (2023) In situ real-time monitoring technologies for fouling detection in membrane processes. In: Membrane Technology for Sustainable Water and Energy Management, 1st ed. Elsevier Science, pp 43–64spa
dc.relation.referencesNegishi J, Nam K, Kimura T, et al (2010) High-hydrostatic pressure technique is an effective method for the preparation of PVA–heparin hybrid gel. European Journal of Pharmaceutical Sciences 41:617–622. https://doi.org/10.1016/j.ejps.2010.09.001spa
dc.relation.referencesInternational Organization for Standardization (2009) Biological evaluation of medical devices, Part 5: Tests for in vitro cytotoxicity (ISO Standard No. 10993-5:2009)spa
dc.relation.referencesSoenen SJ, Parak WJ, Rejman J, Manshian B (2015) (Intra)Cellular Stability of Inorganic Nanoparticles: Effects on Cytotoxicity, Particle Functionality, and Biomedical Applications. Chem Rev 115:2109–2135. https://doi.org/10.1021/cr400714jspa
dc.relation.referencesAmeh ES (2019) A review of basic crystallography and x-ray diffraction applications. Int J Adv Manuf Technol 105:3289–3302. https://doi.org/10.1007/s00170-019-04508-1spa
dc.relation.referencesBunaciu AA, Udriştioiu EG, Aboul-Enein HY (2015) X-Ray Diffraction: Instrumentation and Applications. Critical Reviews in Analytical Chemistry 45:289–299. https://doi.org/10.1080/10408347.2014.949616spa
dc.relation.referencesAli A, Chiang YW, Santos RM (2022) X-ray Diffraction Techniques for Mineral Characterization: A Review for Engineers of the Fundamentals, Applications, and Research Directions. Minerals 12:205. https://doi.org/10.3390/min12020205spa
dc.relation.referencesErik Gregersen Bragg condition, Bragg’s lawspa
dc.relation.referencesMcCusker LB, Von Dreele RB, Cox DE, et al (1999) Rietveld refinement guidelines. J Appl Crystallogr 32:36–50. https://doi.org/10.1107/S0021889898009856spa
dc.relation.referencesSakata M, Cooper MJ (1979) An analysis of the Rietveld refinement method. Journal of Applied Crystallography 12:554–563. https://doi.org/10.1107/S002188987901325Xspa
dc.relation.referencesGhazi N, Chenari HM, Ghodsi FE (2018) Rietveld refinement, morphology analysis, optical and magnetic properties of magnesium-zinc ferrite nanofibers. Journal of Magnetism and Magnetic Materials 468:132–140. https://doi.org/10.1016/j.jmmm.2018.07.084spa
dc.relation.referencesWeisstein, Eric W. “Gaussian Function.” From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/GaussianFunction.htmlspa
dc.relation.referencesGiannuzzi LA, Stevie FA (1999) A review of focused ion beam milling techniques for TEM specimen preparation. Micron 30:197–204. https://doi.org/10.1016/S0968-4328(99)00005-0spa
dc.relation.referencesZaefferer S (2011) A critical review of orientation microscopy in SEM and TEM. Cryst Res Technol 46:607–628. https://doi.org/10.1002/crat.201100125spa
dc.relation.referencesMohammed A, Abdullah A Scanning Electron Microscopy (SEM): a Reviewspa
dc.relation.referencesMetalinspect (2022) Microscopio electrónico de barrido: Qué es y cómo funciona. In: Microscopio electrónico de barrido. https://www.blog.metalinspec.com.mx/que-es-y-como-funciona-un-microscopio-electronico-de-barrido. Accessed 2 Mar 2024spa
dc.relation.referencesZaefferer S (2011) A critical review of orientation microscopy in SEM and TEM. Cryst Res Technol 46:607–628. https://doi.org/10.1002/crat.201100125spa
dc.relation.referencesRauwel P, Küünal S, Ferdov S, Rauwel E (2015) A Review on the Green Synthesis of Silver Nanoparticles and Their Morphologies Studied via TEM. Advances in Materials Science and Engineering 2015:1–9. https://doi.org/10.1155/2015/682749spa
dc.relation.referencesEgerton RF (2009) Electron energy-loss spectroscopy in the TEM. Rep Prog Phys 72:016502. https://doi.org/10.1088/0034-4885/72/1/016502spa
dc.relation.referencesResta V Propiedades morfológicas y ópticas de nanopartículas de oro producidas o procesadas mediante técnicas láserspa
dc.relation.referencesErlandsen SL, Frethem C, Chen Y (2000) Field Emission Scanning Electron Microscopy (FESEM) Entering the 21st Century: Nanometer Resolution and Molecular Topography of Cell Structure. Journal of Histotechnology 23:249–259. https://doi.org/10.1179/his.2000.23.3.249spa
dc.relation.referencesPrabhu RS, Priyanka R, Vijay M, Vikashini GRK Field Emission Scanning Electron Microscopy (Fesem) with A Very Big Future in Pharmaceutical Research. International Journal of Pharmacy and Biological Sciencesspa
dc.relation.referencesA.H.M. Areef Billah (2016) Investigation Of Multiferroic And Photocatalytic Properties Of Li Doped BiFeO3 Nanoparticles Prepared By Ultrasonication. BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGYspa
dc.relation.referencesSharma S, Rasool HI, Palanisamy V, et al (2010) Structural-Mechanical Characterization of Nanoparticle Exosomes in Human Saliva, Using Correlative AFM, FESEM, and Force Spectroscopy. ACS Nano 4:1921–1926. https://doi.org/10.1021/nn901824nspa
dc.relation.referencesNallusamy S, Manoj Babu A (2015) X-Ray Differaction and FESEM Analysis for Mixture of Hybrid Nanoparticles in Heat Transfer Applications. JNanoR 37:58–67. https://doi.org/10.4028/www.scientific.net/JNanoR.37.58spa
dc.relation.referencesScimeca M, Bischetti S, Lamsira HK, et al (2018) Energy Dispersive X-ray (EDX) microanalysis: A powerful tool in biomedical research and diagnosis. Eur J Histochem. https://doi.org/10.4081/ejh.2018.2841spa
dc.relation.referencesStefaniak EA, Buczynska A, Novakovic V, et al (2009) Determination of chemical composition of individual airborne particles by SEM/EDX and micro-Raman spectrometry: A review. J Phys: Conf Ser 162:012019. https://doi.org/10.1088/1742-6596/162/1/012019spa
dc.relation.referencesPiccinotti D Chalcogenide Platforms for Photonic Metamaterialsspa
dc.relation.referencesCardell C, Guerra I (2016) An overview of emerging hyphenated SEM-EDX and Raman spectroscopy systems: Applications in life, environmental and materials sciences. TrAC Trends in Analytical Chemistry 77:156–166. https://doi.org/10.1016/j.trac.2015.12.001spa
dc.relation.referencesPoole JJA, Mostaço-Guidolin LB (2021) Optical Microscopy and the Extracellular Matrix Structure: A Review. Cells 10:1760. https://doi.org/10.3390/cells10071760spa
dc.relation.referencesJosé L. Fernández (2023) El Microscopio. In: Óptica Geométrica. https://www.fisicalab.com/apartado/microscopio. Accessed 2 Mar 2024spa
dc.relation.referencesChen Y, Zou C, Mastalerz M, et al (2015) Applications of Micro-Fourier Transform Infrared Spectroscopy (FTIR) in the Geological Sciences—A Review. IJMS 16:30223–30250. https://doi.org/10.3390/ijms161226227spa
dc.relation.referencesTorres-Luque MM (2010) Estudio comparativo del proceso de corrosión en recubrimientos cerámicos, metálicos y orgánicos mediante técnicas electroquímicas. PhD Thesisspa
dc.relation.referencesBerthomieu C, Hienerwadel R (2009) Fourier transform infrared (FTIR) spectroscopy. Photosynth Res 101:157–170. https://doi.org/10.1007/s11120-009-9439-xspa
dc.relation.referencesMovasaghi Z, Rehman S, Ur Rehman DrI (2008) Fourier Transform Infrared (FTIR) Spectroscopy of Biological Tissues. Applied Spectroscopy Reviews 43:134–179. https://doi.org/10.1080/05704920701829043spa
dc.relation.referencesBacsik Z, Mink J, Keresztury G (2004) FTIR Spectroscopy of the Atmosphere. I. Principles and Methods. Applied Spectroscopy Reviews 39:295–363. https://doi.org/10.1081/ASR-200030192spa
dc.relation.referencesMaría Guillermina Volonté, Pablo Quiroga (2013) Análisis farmacéutico, 1ed ed. edulp Editorial de la Universidad de La Plata, Universidad Nacional de La Plataspa
dc.relation.referencesFlynn JH (1993) Analysis of DSC results by integration. Thermochimica Acta 217:129–149. https://doi.org/10.1016/0040-6031(93)85104-Hspa
dc.relation.referencesVan Dooren AA, Müller BW (1984) Purity determinations of drugs with differential scanning calorimetry (DSC)—a critical review. International Journal of Pharmaceutics 20:217–233. https://doi.org/10.1016/0378-5173(84)90170-4spa
dc.relation.referencesCristancho YAG (2015) Universidad Distrital Francisco José De Caldasspa
dc.relation.referencesMansa R, Zou S (2021) Thermogravimetric analysis of microplastics: A mini review. Environmental Advances 5:100117. https://doi.org/10.1016/j.envadv.2021.100117spa
dc.relation.referencesSaadatkhah N, Carillo Garcia A, Ackermann S, et al (2020) Experimental methods in chemical engineering: Thermogravimetric analysis—TGA. Can J Chem Eng 98:34–43. https://doi.org/10.1002/cjce.23673spa
dc.relation.referencesJeffrey Gotro (2014) Rheology of Thermosets Part 2: Rheometers. In: Polymer Innovation Blog. https://polymerinnovationblog.com/rheology-thermosets-part-2-rheometers/. Accessed 3 Mar 2024spa
dc.relation.referencesSankhi BR, Turgut E (2020) A low-cost vibrating sample magnetometry based on audio components. Journal of Magnetism and Magnetic Materials 502:166560. https://doi.org/10.1016/j.jmmm.2020.166560spa
dc.relation.referencesMulay LN, Mulay IL (1984) Magnetometry: aspects of instrumentation and applications including catalysis, bioscience, and geoscience. Anal Chem 56:293–300. https://doi.org/10.1021/ac00269a023spa
dc.relation.referencesLiu E (2018) Materials and designs of magnetic tunnel junctions with perpendicular magnetic anisotropy for high-density memory applications. PhD Thesisspa
dc.relation.referencesDodrill B, Lindemuth JR (2021) Vibrating Sample Magnetometry. In: Franco V, Dodrill B (eds) Magnetic Measurement Techniques for Materials Characterization. Springer International Publishing, Cham, pp 15–37spa
dc.relation.referencesElmrabet N, Siegkas P (2020) Dimensional considerations on the mechanical properties of 3D printed polymer parts. Polymer Testing 90:106656. https://doi.org/10.1016/j.polymertesting.2020.106656spa
dc.relation.references(2021) BS 6319-2 : How to check the compressive strength of resin flooring. In: EPOXY TILE FLOORING. Accessed 3 Mar 2024spa
dc.relation.referencesJarray A, Wijshoff H, Luiken JA, Den Otter WK (2020) Systematic approach for wettability prediction using molecular dynamics simulations. Soft Matter 16:4299–4310. https://doi.org/10.1039/D0SM00197Jspa
dc.relation.referencesAbbas MA, Zamir A, Elraies KA, et al (2021) A critical parametric review of polymers as shale inhibitors in water-based drilling fluids. Journal of Petroleum Science and Engineering 204:108745. https://doi.org/10.1016/j.petrol.2021.108745spa
dc.relation.referencesRiofrio SKE Trabajo Final de Máster en Biotecnología Biomédicaspa
dc.relation.referencesSargent JM (2003) The Use of the MTT Assay to Study Drug Resistance in Fresh Tumour Samples. In: Reinhold U, Tilgen W (eds) Chemosensitivity Testing in Oncology. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 13–25spa
dc.relation.referencesPintor AVB, Queiroz LD, Barcelos R, et al (2020) MTT versus other cell viability assays to evaluate the biocompatibility of root canal filling materials: a systematic review. Int Endodontic J 53:1348–1373. https://doi.org/10.1111/iej.13353spa
dc.relation.referencesGrela E, Kozłowska J, Grabowiecka A (2018) Current methodology of MTT assay in bacteria – A review. Acta Histochemica 120:303–311. https://doi.org/10.1016/j.acthis.2018.03.007spa
dc.relation.referencesHayon T, Dvilansky A, Shpilberg O, Nathan I (2003) Appraisal of the MTT-based Assay as a Useful Tool for Predicting Drug Chemosensitivity in Leukemia. Leukemia & Lymphoma 44:1957–1962. https://doi.org/10.1080/1042819031000116607spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::621 - Física aplicadaspa
dc.subject.decsRegeneración Ósea
dc.subject.decsMateriales Biocompatibles
dc.subject.decsBiomateriales
dc.subject.decsTejido Óseo
dc.subject.proposalScaffoldseng
dc.subject.proposalSíntesis de Materialesspa
dc.subject.proposalPropiedades Magnéticasspa
dc.subject.proposalManufactura aditivaspa
dc.subject.proposalRegeneración Oseaspa
dc.subject.proposalMaterial Synthesiseng
dc.subject.proposalMagnetic propertieseng
dc.subject.proposalAdditive manufacturingeng
dc.subject.proposalBone regenerationeng
dc.titleObtención de Scaffolds Compuestos Polímero-Cerámico por Estereolitografía de Mascara (MSLA) con Propiedades Magnéticas y Potencial Aplicación en Regeneración Óseaspa
dc.title.translatedObtaining Polymer-Ceramic Composite Scaffolds by Masked Stereolithography (MSLA) with Magnetic Properties and Potential Application in Bone Regeneration
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleAgradezco principalmente al proyecto que hizo posible la realización de este trabajo, proyecto titulado “Desarrollo y evaluación in vitro de un prototipo de scaffold de matriz polimérica con adición de partículas magnéticas, funcionalizado con proteínas morfogenéticas BMP-2 producido por manufactura aditiva para regeneración ósea.” Código Hermes 53992. SEGUNDA CONVOCATORIA CONJUNTA DE PROYECTOS DE I+D+i EN EL MARCO DE LA AGENDA REGIONAL DE I+D -> Ispa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1026159675.2024.pdf
Tamaño:
3.6 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Física

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: