Obtención de Scaffolds Compuestos Polímero-Cerámico por Estereolitografía de Mascara (MSLA) con Propiedades Magnéticas y Potencial Aplicación en Regeneración Ósea
dc.contributor.advisor | García García, Claudia Patricia | |
dc.contributor.author | Orozco Osorio, Yeison Alejandro | |
dc.contributor.orcid | Orozco Osorio, Yeison Alejandro [0000-0002-6317-6172] | spa |
dc.contributor.researchgroup | Materiales Cerámicos y Vítreos | spa |
dc.date.accessioned | 2024-09-18T21:40:19Z | |
dc.date.available | 2024-09-18T21:40:19Z | |
dc.date.issued | 2024 | |
dc.description.abstract | Este estudio exploró el diseño, fabricación y evaluación de scaffolds que incorporan propiedades esenciales para la regeneración ósea, incluyendo biocompatibilidad, geometría macroporosa, resistencia mecánica y capacidad de respuesta magnética. Mediante el uso de la geometría de superficies mínimas triplemente periódicas (TPMS), resinas fotopolimerizables acrílicas, óxidos de hierro sintetizados y la impresión por máscara de estereolitografía (MSLA), se diseñaron scaffolds con características geométricas precisas. Las propiedades mecánicas se mejoraron mediante el curado de resina, mientras que las partículas de magnetita, obtenidas de nanopartículas sintetizadas, se integraron para conferir propiedades magnéticas. Estos scaffolds exhibieron un equilibrio óptimo entre rigidez, porosidad y capacidad de respuesta magnética. Se obtuvieron scaffolds de resina con óxidos de hierro sintetizados con una resistencia máxima a la compresión entre 4.8 MPa y 9.2 MPa, módulo de Young entre 58 MPa y 174 MPa. Se midieron propiedades magnéticas para los scaffolds sintéticos, como coercitividad magnética de 293 Oe, remanencia magnética entre 11.3 emu/g y 12.3 emu/g, y saturación magnética entre 29.4 emu/g y 37.1 emu/g. Se midió la viscosidad de las mezclas utilizadas para imprimir los scaffolds entre 350 mPa-s y 380 mPa-s, valores adecuados para una impresión 3D correcta, y se obtuvieron medidas del ángulo de contacto entre 90° y 110°. Las mejores propiedades entre los scaffolds fabricados fueron exhibidas por aquellos con un porcentaje en peso del 1%. La evaluación de la biocompatibilidad de los scaffolds sugirió su potencial para futuros ensayos clínicos, respaldado por su capacidad para mantener la viabilidad celular. (Tomado de la fuente) | spa |
dc.description.abstract | This study explored the design, fabrication, and evaluation of scaffolds that incorporate essential properties for bone regeneration, including biocompatibility, macroporous geometry, mechanical strength, and magnetic responsiveness. Using triply periodic minimal surfaces (TPMS) geometry, acrylic photopolymerizable resins, synthesized iron oxides, and masked stereolithography (MSLA) printing, scaffolds with precise geometric characteristics were designed. Mechanical properties were enhanced through resin curing, while magnetite particles obtained from synthesized nanoparticles were integrated to confer magnetic properties. These scaffolds exhibited an optimal balance between stiffness, porosity, and magnetic responsiveness. Resin scaffolds with synthesized iron oxides achieved maximum compressive strength between 4.8 MPa and 9.2 MPa, Young’s modulus between 58 MPa and 174 MPa. Magnetic properties were measured for the synthetic scaffolds, including magnetic coercivity of 293 Oe, magnetic remanence between 11.3 emu/g and 12.3 emu/g, and magnetic saturation between 29.4 emu/g and 37.1 emu/g. The viscosity of the mixtures used for printing the scaffolds was measured between 350 mPa-s and 380 mPa-s, values suitable for proper 3D printing, and contact angle measurements were obtained between 90° and 110°. The best properties among the manufactured scaffolds were exhibited by those with a 1% weight percentage. The biocompatibility evaluation of the scaffolds suggested their potential for future clinical trials, supported by their ability to maintain cell viability. | eng |
dc.description.curriculararea | Física.Sede Medellín | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería Física | spa |
dc.description.methods | Diseño de experimentos y caracterización de materiales principalmente. | spa |
dc.description.researcharea | Diseño de biomateriales | spa |
dc.description.sponsorship | Agradezco principalmente al proyecto que hizo posible la realización de este trabajo, proyecto titulado “Desarrollo y evaluación in vitro de un prototipo de scaffold de matriz polimérica con adición de partículas magnéticas, funcionalizado con proteínas morfogenéticas BMP-2 producido por manufactura aditiva para regeneración ósea.” Código Hermes 53992. SEGUNDA CONVOCATORIA CONJUNTA DE PROYECTOS DE I+D+i EN EL MARCO DE LA AGENDA REGIONAL DE I+D -> I | spa |
dc.format.extent | 142 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/86844 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Medellín, Colombia | spa |
dc.publisher.program | Medellín - Ciencias - Maestría en Ingeniería Física | spa |
dc.relation.indexed | LaReferencia | spa |
dc.relation.references | Tim D. White, Pieter A. Folkens (2005) The Human Bone Manual., 1st ed. Elsevier Academic Press | spa |
dc.relation.references | Court-Brown CM, Caesar B (2006) Epidemiology of adult fractures: A review. Injury 37:691–697. https://doi.org/10.1016/j.injury.2006.04.130 | spa |
dc.relation.references | Dimitriou R, Jones E, McGonagle D, Giannoudis PV (2011) Bone regeneration: current concepts and future directions. BMC Med 9:66. https://doi.org/10.1186/1741-7015-9-66 | spa |
dc.relation.references | Park S-Y, Kim K-H, Kim S, et al (2019) BMP-2 Gene Delivery-Based Bone Regeneration in Dentistry. Pharmaceutics 11:393. https://doi.org/10.3390/pharmaceutics11080393 | spa |
dc.relation.references | Egido-Moreno S, Valls-Roca-Umbert J, Céspedes-Sánchez JM, et al (2021) Clinical Efficacy of Mesenchymal Stem Cells in Bone Regeneration in Oral Implantology. Systematic Review and Meta-Analysis. IJERPH 18:894. https://doi.org/10.3390/ijerph18030894 | spa |
dc.relation.references | Tan SHS, Wong JRY, Sim SJY, et al (2020) Mesenchymal stem cell exosomes in bone regenerative strategies—a systematic review of preclinical studies. Materials Today Bio 7:100067. https://doi.org/10.1016/j.mtbio.2020.100067 | spa |
dc.relation.references | Iaquinta MR, Mazzoni E, Bononi I, et al (2019) Adult Stem Cells for Bone Regeneration and Repair. Front Cell Dev Biol 7:268. https://doi.org/10.3389/fcell.2019.00268 | spa |
dc.relation.references | Bourdón-Santoyo M, Quiñones-Uriostegui I, Martínez-López V, et al Preliminary study of an in vitro development of new tissue applying mechanical stimulation with a bioreactor as an alternative for ligament reconstruction | spa |
dc.relation.references | Fan J, Lee C-S, Kim S, et al (2020) Generation of Small RNA-Modulated Exosome Mimetics for Bone Regeneration. ACS Nano 14:11973–11984. https://doi.org/10.1021/acsnano.0c05122 | spa |
dc.relation.references | Pereira HF, Cengiz IF, Silva FS, et al (2020) Scaffolds and coatings for bone regeneration. J Mater Sci: Mater Med 31:27. https://doi.org/10.1007/s10856-020-06364-y | spa |
dc.relation.references | Battafarano G, Rossi M, De Martino V, et al (2021) Strategies for Bone Regeneration: From Graft to Tissue Engineering. IJMS 22:1128. https://doi.org/10.3390/ijms22031128 | spa |
dc.relation.references | Dong Z, Zhao X (2021) Application of TPMS structure in bone regeneration. Engineered Regeneration 2:154–162. https://doi.org/10.1016/j.engreg.2021.09.004 | spa |
dc.relation.references | Ambu R, Morabito A (2018) Porous Scaffold Design Based on Minimal Surfaces: Development and Assessment of Variable Architectures. Symmetry 10:361. https://doi.org/10.3390/sym10090361 | spa |
dc.relation.references | Abbasi N, Hamlet S, Love RM, Nguyen N-T (2020) Porous scaffolds for bone regeneration. Journal of Science: Advanced Materials and Devices 5:1–9. https://doi.org/10.1016/j.jsamd.2020.01.007 | spa |
dc.relation.references | Owen R, Sherborne C, Evans R, et al (2020) Combined Porogen Leaching and Emulsion Templating to produce Bone Tissue Engineering Scaffolds. IJB 6:265. https://doi.org/10.18063/ijb.v6i2.265 | spa |
dc.relation.references | Coogan KR, Stone PT, Sempertegui ND, Rao SS (2020) Fabrication of micro-porous hyaluronic acid hydrogels through salt leaching. European Polymer Journal 135:109870. https://doi.org/10.1016/j.eurpolymj.2020.109870 | spa |
dc.relation.references | Ruiz-Aguilar C, Olivares-Pinto U, Drew RAL, et al (2021) Porogen Effect on Structural and Physical Properties of β-TCP Scaffolds for Bone Tissue Regeneration. IRBM 42:302–312. https://doi.org/10.1016/j.irbm.2020.05.007 | spa |
dc.relation.references | Santos-Rosales V, Ardao I, Goimil L, et al (2021) Solvent-Free Processing of Drug-Loaded Poly(ε-Caprolactone) Scaffolds with Tunable Macroporosity by Combination of Supercritical Foaming and Thermal Porogen Leaching. Polymers 13:159. https://doi.org/10.3390/polym13010159 | spa |
dc.relation.references | Moon JY, Lee J, Hwang TI, et al (2021) A multifunctional, one-step gas foaming strategy for antimicrobial silver nanoparticle-decorated 3D cellulose nanofiber scaffolds. Carbohydrate Polymers 273:118603. https://doi.org/10.1016/j.carbpol.2021.118603 | spa |
dc.relation.references | Manavitehrani I, Le TYL, Daly S, et al (2019) Formation of porous biodegradable scaffolds based on poly(propylene carbonate) using gas foaming technology. Materials Science and Engineering: C 96:824–830. https://doi.org/10.1016/j.msec.2018.11.088 | spa |
dc.relation.references | Chen Y, Xu W, Shafiq M, et al (2021) Three-dimensional porous gas-foamed electrospun nanofiber scaffold for cartilage regeneration. Journal of Colloid and Interface Science 603:94–109. https://doi.org/10.1016/j.jcis.2021.06.067 | spa |
dc.relation.references | Du X, Dehghani M, Alsaadi N, et al (2022) A femoral shape porous scaffold bio-nanocomposite fabricated using 3D printing and freeze-drying technique for orthopedic application. Materials Chemistry and Physics 275:125302. https://doi.org/10.1016/j.matchemphys.2021.125302 | spa |
dc.relation.references | Izadyari Aghmiuni A, Heidari Keshel S, Sefat F, AkbarzadehKhiyavi A (2021) Fabrication of 3D hybrid scaffold by combination technique of electrospinning-like and freeze-drying to create mechanotransduction signals and mimic extracellular matrix function of skin. Materials Science and Engineering: C 120:111752. https://doi.org/10.1016/j.msec.2020.111752 | spa |
dc.relation.references | Grenier J, Duval H, Barou F, et al (2019) Mechanisms of pore formation in hydrogel scaffolds textured by freeze-drying. Acta Biomaterialia 94:195–203. https://doi.org/10.1016/j.actbio.2019.05.070 | spa |
dc.relation.references | Kordjamshidi A, Saber-Samandari S, Ghadiri Nejad M, Khandan A (2019) Preparation of novel porous calcium silicate scaffold loaded by celecoxib drug using freeze drying technique: Fabrication, characterization and simulation. Ceramics International 45:14126–14135. https://doi.org/10.1016/j.ceramint.2019.04.113 | spa |
dc.relation.references | Xie X, Chen Y, Wang X, et al (2020) Electrospinning nanofiber scaffolds for soft and hard tissue regeneration. Journal of Materials Science & Technology 59:243–261. https://doi.org/10.1016/j.jmst.2020.04.037 | spa |
dc.relation.references | Wang Z, Wang H, Xiong J, et al (2021) Fabrication and in vitro evaluation of PCL/gelatin hierarchical scaffolds based on melt electrospinning writing and solution electrospinning for bone regeneration. Materials Science and Engineering: C 128:112287. https://doi.org/10.1016/j.msec.2021.112287 | spa |
dc.relation.references | Maharjan B, Kaliannagounder VK, Jang SR, et al (2020) In-situ polymerized polypyrrole nanoparticles immobilized poly(ε-caprolactone) electrospun conductive scaffolds for bone tissue engineering. Materials Science and Engineering: C 114:111056. https://doi.org/10.1016/j.msec.2020.111056 | spa |
dc.relation.references | Ameer, Pr, Kasoju (2019) Strategies to Tune Electrospun Scaffold Porosity for Effective Cell Response in Tissue Engineering. JFB 10:30. https://doi.org/10.3390/jfb10030030 | spa |
dc.relation.references | Han Y, Lian M, Wu Q, et al (2021) Effect of Pore Size on Cell Behavior Using Melt Electrowritten Scaffolds. Front Bioeng Biotechnol 9:629270. https://doi.org/10.3389/fbioe.2021.629270 | spa |
dc.relation.references | Saidy NT, Shabab T, Bas O, et al (2020) Melt Electrowriting of Complex 3D Anatomically Relevant Scaffolds. Front Bioeng Biotechnol 8:793. https://doi.org/10.3389/fbioe.2020.00793 | spa |
dc.relation.references | Kade JC, Dalton PD (2021) Polymers for Melt Electrowriting. Adv Healthcare Materials 10:2001232. https://doi.org/10.1002/adhm.202001232 | spa |
dc.relation.references | Varma MV, Kandasubramanian B, Ibrahim SM (2020) 3D printed scaffolds for biomedical applications. Materials Chemistry and Physics 255:123642. https://doi.org/10.1016/j.matchemphys.2020.123642 | spa |
dc.relation.references | Yadav LR, Chandran SV, Lavanya K, Selvamurugan N (2021) Chitosan-based 3D-printed scaffolds for bone tissue engineering. International Journal of Biological Macromolecules 183:1925–1938. https://doi.org/10.1016/j.ijbiomac.2021.05.215 | spa |
dc.relation.references | Kanwar S, Vijayavenkataraman S (2021) Design of 3D printed scaffolds for bone tissue engineering: A review. Bioprinting 24:e00167. https://doi.org/10.1016/j.bprint.2021.e00167 | spa |
dc.relation.references | Wang Z, Wang Y, Yan J, et al (2021) Pharmaceutical electrospinning and 3D printing scaffold design for bone regeneration. Advanced Drug Delivery Reviews 174:504–534. https://doi.org/10.1016/j.addr.2021.05.007 | spa |
dc.relation.references | Wang P, Sun Y, Shi X, et al (2021) 3D printing of tissue engineering scaffolds: a focus on vascular regeneration. Bio-des Manuf 4:344–378. https://doi.org/10.1007/s42242-020-00109-0 | spa |
dc.relation.references | Zimmerling A, Yazdanpanah Z, Cooper DML, et al (2021) 3D printing PCL/nHA bone scaffolds: exploring the influence of material synthesis techniques. Biomater Res 25:3. https://doi.org/10.1186/s40824-021-00204-y | spa |
dc.relation.references | Su X, Wang T, Guo S (2021) Applications of 3D printed bone tissue engineering scaffolds in the stem cell field. Regenerative Therapy 16:63–72. https://doi.org/10.1016/j.reth.2021.01.007 | spa |
dc.relation.references | Bahraminasab M (2020) Challenges on optimization of 3D-printed bone scaffolds. BioMed Eng OnLine 19:69. https://doi.org/10.1186/s12938-020-00810-2 | spa |
dc.relation.references | Liu X, Chen M, Luo J, et al (2021) Immunopolarization-regulated 3D printed-electrospun fibrous scaffolds for bone regeneration. Biomaterials 276:121037. https://doi.org/10.1016/j.biomaterials.2021.121037 | spa |
dc.relation.references | Zhang Q, Wang X, Kuang G, et al (2022) Photopolymerized 3D Printing Scaffolds with Pt(IV) Prodrug Initiator for Postsurgical Tumor Treatment. Research 2022:2022/9784510. https://doi.org/10.34133/2022/9784510 | spa |
dc.relation.references | Chung JJ, Im H, Kim SH, et al (2020) Toward Biomimetic Scaffolds for Tissue Engineering: 3D Printing Techniques in Regenerative Medicine. Front Bioeng Biotechnol 8:586406. https://doi.org/10.3389/fbioe.2020.586406 | spa |
dc.relation.references | Rogers HB, Zhou LT, Kusuhara A, et al (2021) Dental resins used in 3D printing technologies release ovo-toxic leachates. Chemosphere 270:129003. https://doi.org/10.1016/j.chemosphere.2020.129003 | spa |
dc.relation.references | Lin C-H, Lin Y-M, Lai Y-L, Lee S-Y (2020) Mechanical properties, accuracy, and cytotoxicity of UV-polymerized 3D printing resins composed of Bis-EMA, UDMA, and TEGDMA. The Journal of Prosthetic Dentistry 123:349–354. https://doi.org/10.1016/j.prosdent.2019.05.002 | spa |
dc.relation.references | Huang J, Qin Q, Wang J (2020) A Review of Stereolithography: Processes and Systems. Processes 8:1138. https://doi.org/10.3390/pr8091138 | spa |
dc.relation.references | Liu Y, Lin Y, Jiao T, et al (2019) Photocurable modification of inorganic fillers and their application in photopolymers for 3D printing. Polym Chem 10:6350–6359. https://doi.org/10.1039/C9PY01445D | spa |
dc.relation.references | Fu S, Liu W, Liu S, et al (2018) 3D printed porous β-Ca 2 SiO 4 scaffolds derived from preceramic resin and their physicochemical and biological properties. Science and Technology of Advanced Materials 19:495–506. https://doi.org/10.1080/14686996.2018.1471653 | spa |
dc.relation.references | Yu B, Fu S, Kang Z, et al (2020) Enhanced bone regeneration of 3D printed β-Ca2SiO4 scaffolds by aluminum ions solid solution. Ceramics International 46:7783–7791. https://doi.org/10.1016/j.ceramint.2019.11.282 | spa |
dc.relation.references | Fu S, Hu H, Chen J, et al (2020) Silicone resin derived larnite/C scaffolds via 3D printing for potential tumor therapy and bone regeneration. Chemical Engineering Journal 382:122928. https://doi.org/10.1016/j.cej.2019.122928 | spa |
dc.relation.references | Kang Z, Yu B, Fu S, et al (2019) Three-dimensional printing of CaTiO3 incorporated porous β-Ca2SiO4 composite scaffolds for bone regeneration. Applied Materials Today 16:132–140. https://doi.org/10.1016/j.apmt.2019.05.005 | spa |
dc.relation.references | Dokuz ME, Aydın M, Uyaner M (2021) Production of Bioactive Various Lattices as an Artificial Bone Tissue by Digital Light Processing 3D Printing. J of Materi Eng and Perform 30:6938–6948. https://doi.org/10.1007/s11665-021-06067-7 | spa |
dc.relation.references | Chen X, Xin Q, Min Z, et al (2017) Hydroxyapatite Whisker-reinforced Composite Scaffolds Through 3D Printing for Bone Repair. Journal of Inorganic Materials 32:837. https://doi.org/10.15541/jim20160628 | spa |
dc.relation.references | Teotia AK, Dienel K, Qayoom I, et al (2020) Improved Bone Regeneration in Rabbit Bone Defects Using 3D Printed Composite Scaffolds Functionalized with Osteoinductive Factors. ACS Appl Mater Interfaces 12:48340–48356. https://doi.org/10.1021/acsami.0c13851 | spa |
dc.relation.references | Guillaume O, Geven MA, Sprecher CM, et al (2017) Surface-enrichment with hydroxyapatite nanoparticles in stereolithography-fabricated composite polymer scaffolds promotes bone repair. Acta Biomaterialia 54:386–398. https://doi.org/10.1016/j.actbio.2017.03.006 | spa |
dc.relation.references | Abreu MCD, Ponzoni D, Langie R, et al (2016) Effects of a buried magnetic field on cranial bone reconstruction in rats. J Appl Oral Sci 24:162–170. https://doi.org/10.1590/1678-775720150336 | spa |
dc.relation.references | Kim E-C, Leesungbok R, Lee S-W, et al (2015) Effects of moderate intensity static magnetic fields on human bone marrow-derived mesenchymal stem cells: Effects of SMFs on Human MSCs. Bioelectromagnetics 36:267–276. https://doi.org/10.1002/bem.21903 | spa |
dc.relation.references | Zhang J, Meng X, Ding C, Shang P (2018) Effects of static magnetic fields on bone microstructure and mechanical properties in mice. Electromagnetic Biology and Medicine 37:76–83. https://doi.org/10.1080/15368378.2018.1458626 | spa |
dc.relation.references | Yang J, Zhang J, Ding C, et al (2018) Regulation of Osteoblast Differentiation and Iron Content in MC3T3-E1 Cells by Static Magnetic Field with Different Intensities. Biol Trace Elem Res 184:214–225. https://doi.org/10.1007/s12011-017-1161-5 | spa |
dc.relation.references | Aydin N, Bezer M (2011) The effect of an intramedullary implant with a static magnetic field on the healing of the osteotomised rabbit femur. International Orthopaedics (SICOT) 35:135–141. https://doi.org/10.1007/s00264-009-0932-9 | spa |
dc.relation.references | Gujjalapudi M (2016) Effect of Magnetic Field on Bone Healing around Endosseous Implants – An In-vivo Study. JCDR. https://doi.org/10.7860/JCDR/2016/21509.8666 | spa |
dc.relation.references | Zhao P-P, Ge Y-W, Liu X-L, et al (2020) Ordered arrangement of hydrated GdPO4 nanorods in magnetic chitosan matrix promotes tumor photothermal therapy and bone regeneration against breast cancer bone metastases. Chemical Engineering Journal 381:122694. https://doi.org/10.1016/j.cej.2019.122694 | spa |
dc.relation.references | Singh RK, Patel KD, Lee JH, et al (2014) Potential of Magnetic Nanofiber Scaffolds with Mechanical and Biological Properties Applicable for Bone Regeneration. PLoS ONE 9:e91584. https://doi.org/10.1371/journal.pone.0091584 | spa |
dc.relation.references | Russo A, Bianchi M, Sartori M, et al (2018) Bone regeneration in a rabbit critical femoral defect by means of magnetic hydroxyapatite macroporous scaffolds. J Biomed Mater Res 106:546–554. https://doi.org/10.1002/jbm.b.33836 | spa |
dc.relation.references | Zhang J, Zhao S, Zhu M, et al (2014) 3D-printed magnetic Fe 3 O 4 /MBG/PCL composite scaffolds with multifunctionality of bone regeneration, local anticancer drug delivery and hyperthermia. J Mater Chem B 2:7583–7595. https://doi.org/10.1039/C4TB01063A | spa |
dc.relation.references | Perez RA, Patel KD, Kim H-W (2015) Novel magnetic nanocomposite injectables: calcium phosphate cements impregnated with ultrafine magnetic nanoparticles for bone regeneration. RSC Adv 5:13411–13419. https://doi.org/10.1039/C4RA12640H | spa |
dc.relation.references | Tampieri A, Landi E, Valentini F, et al (2011) A conceptually new type of bio-hybrid scaffold for bone regeneration. Nanotechnology 22:015104. https://doi.org/10.1088/0957-4484/22/1/015104 | spa |
dc.relation.references | Court-Brown CM, Caesar B (2006) Epidemiology of adult fractures: A review. Injury 37:691–697. https://doi.org/10.1016/j.injury.2006.04.130 | spa |
dc.relation.references | Wubneh A, Tsekoura EK, Ayranci C, Uludağ H (2018) Current state of fabrication technologies and materials for bone tissue engineering. Acta Biomaterialia 80:1–30. https://doi.org/10.1016/j.actbio.2018.09.031 | spa |
dc.relation.references | Sabir MI, Xu X, Li L (2009) A review on biodegradable polymeric materials for bone tissue engineering applications. J Mater Sci 44:5713–5724. https://doi.org/10.1007/s10853-009-3770-7 | spa |
dc.relation.references | Rau JV, Antoniac I, Cama G, et al (2016) Bioactive Materials for Bone Tissue Engineering. BioMed Research International 2016:1–3. https://doi.org/10.1155/2016/3741428 | spa |
dc.relation.references | Gujjalapudi M (2016) Effect of Magnetic Field on Bone Healing around Endosseous Implants – An In-vivo Study. JCDR. https://doi.org/10.7860/JCDR/2016/21509.8666 | spa |
dc.relation.references | Mohammadi Zerankeshi M, Bakhshi R, Alizadeh R (2022) Polymer/metal composite 3D porous bone tissue engineering scaffolds fabricated by additive manufacturing techniques: A review. Bioprinting 25:e00191. https://doi.org/10.1016/j.bprint.2022.e00191 | spa |
dc.relation.references | Dimitriou R, Jones E, McGonagle D, Giannoudis PV (2011) Bone regeneration: current concepts and future directions. BMC Med 9:66. https://doi.org/10.1186/1741-7015-9-66 | spa |
dc.relation.references | Abbasi N, Hamlet S, Love RM, Nguyen N-T (2020) Porous scaffolds for bone regeneration. Journal of Science: Advanced Materials and Devices 5:1–9. https://doi.org/10.1016/j.jsamd.2020.01.007 | spa |
dc.relation.references | Battafarano G, Rossi M, De Martino V, et al (2021) Strategies for Bone Regeneration: From Graft to Tissue Engineering. IJMS 22:1128. https://doi.org/10.3390/ijms22031128 | spa |
dc.relation.references | Escobar Ivirico J (2008) Síntesis, caracterización y aplicaciones biomédicas de redes de copolímeros basados en poliésteres. Maestría, Universidad Politécnica de Valencia | spa |
dc.relation.references | Zhou J, Zhang Z, Joseph J, et al (2021) Biomaterials and nanomedicine for bone regeneration: Progress and future prospects. Exploration 1:20210011. https://doi.org/10.1002/EXP.20210011 | spa |
dc.relation.references | Giannoudis PV, Dinopoulos H, Tsiridis E (2005) Bone substitutes: An update. Injury 36:S20–S27. https://doi.org/10.1016/j.injury.2005.07.029 | spa |
dc.relation.references | Velioglu ZB, Pulat D, Demirbakan B, et al (2019) 3D-printed poly(lactic acid) scaffolds for trabecular bone repair and regeneration: scaffold and native bone characterization. Connective Tissue Research 60:274–282. https://doi.org/10.1080/03008207.2018.1499732 | spa |
dc.relation.references | Jones JR, Hench LL (2003) Regeneration of trabecular bone using porous ceramics. Current Opinion in Solid State and Materials Science 7:301–307. https://doi.org/10.1016/j.cossms.2003.09.012 | spa |
dc.relation.references | Goldstein SA (1987) The mechanical properties of trabecular bone: Dependence on anatomic location and function. Journal of Biomechanics 20:1055–1061. https://doi.org/10.1016/0021-9290(87)90023-6 | spa |
dc.relation.references | Behrens JC, Walker PS, Shoji H (1974) Variations in strength and structure of cancellous bone at the knee. Journal of Biomechanics 7:201–207. https://doi.org/10.1016/0021-9290(74)90010-4 | spa |
dc.relation.references | Lindahl O (1976) Mechanical Properties of Dried Defatted Spongy Bone. Acta Orthopaedica Scandinavica 47:11–19. https://doi.org/10.3109/17453677608998966 | spa |
dc.relation.references | Williams JL, Lewis JL (1982) Properties and an Anisotropic Model of Cancellous Bone From the Proximal Tibial Epiphysis. Journal of Biomechanical Engineering 104:50–56. https://doi.org/10.1115/1.3138303 | spa |
dc.relation.references | Goldstein SA, Wilson DL, Sonstegard DA, Matthews LS (1983) The mechanical properties of human tibial trabecular bone as a function of metaphyseal location. Journal of Biomechanics 16:965–969. https://doi.org/10.1016/0021-9290(83)90097-0 | spa |
dc.relation.references | Hvid I, Hansen SL (1985) Trabecular bone strength patterns at the proximal tibial epiphysis. Journal of Orthopaedic Research 3:464–472. https://doi.org/10.1002/jor.1100030409 | spa |
dc.relation.references | Ciarelli M, Goldstein S, Dickie D, et al (1986) Experimental determination of the orthogonal mechanical properties, density, and distribution of human trabecular bone from the major metaphyseal regions utilizing materials testing and computed tomography. Transactions of the Orthopedic Research Society 42: | spa |
dc.relation.references | Pugh JW, Rose RM, Radin EL (1973) Elastic and viscoelastic properties of trabecular bone: Dependence on structure. Journal of Biomechanics 6:475–485. https://doi.org/10.1016/0021-9290(73)90006-7 | spa |
dc.relation.references | Ducheyne P, Heymans L, Martens M, et al (1977) The mechanical behaviour of intracondylar cancellous bone of the femur at different loading rates. Journal of Biomechanics 10:747–762. https://doi.org/10.1016/0021-9290(77)90089-6 | spa |
dc.relation.references | mg hardinge (1949) Determination of the strength of the cancellous bone in the head and neck of the femur. Surgery, Gynecology & Obstetrics 89:439–441 | spa |
dc.relation.references | Evans FG, King AI (1961) Regional differences in some physical properties of human spongy bone. Biomechanical studies of the musculo-skeletal system 49: | spa |
dc.relation.references | Schoenfeld CM, Lautenschlager EP, Meyer PR (1974) Mechanical properties of human cancellous bone in the femoral head. Medical and biological engineering 12:313–317. https://doi.org/10.1007/BF02477797 | spa |
dc.relation.references | Brown TD, Ferguson AB (1980) Mechanical Property Distributions in the Cancellous Bone of the Human Proximal Femur. Acta Orthopaedica Scandinavica 51:429–437. https://doi.org/10.3109/17453678008990819 | spa |
dc.relation.references | Martens M, Audekercke RV, Delport P, et al (1983) The mechanical characteristics of cancellous bone at the upper femoral region. Journal of Biomechanics 16:971–983. https://doi.org/10.1016/0021-9290(83)90098-2 | spa |
dc.relation.references | WEAVER JK, CHALMERS J (1966) Cancellous Bone: Its Strength and Changes with Aging and an Evaluation of Some Methods for Measuring Its Mineral Content: I. AGE CHANGES IN CANCELLOUS BONE. JBJS 48: | spa |
dc.relation.references | Galante J, Rostoker W, Ray RD (1970) Physical properties of trabecular bone. Calcified Tissue Research 5:236–246. https://doi.org/10.1007/BF02017552 | spa |
dc.relation.references | JW M (1970) Mechanical properties of cranial bone. J Biomech 3:497 | spa |
dc.relation.references | Struhl S, Goldstein S, Dickie D, et al (1987) The distribution of mechanical properties of trabecular bone within vertebral bodies and iliac crest: correlation with computed tomography density. Transactions of the Orthopedic Research Society 198:262 | spa |
dc.relation.references | Ashman R, Turner C, Cowin S (1986) Ultrasonic technique for the measurement of the structural elastic modulus of cancellous bone. Trans Orthop Res Soc 43: | spa |
dc.relation.references | KELLER TS, HANSSON TH, ABRAM AC, et al (1989) Regional Variations in the Compressive Properties of Lumbar Vertebral Trabeculae: Effects of Disc Degeneration. Spine 14: | spa |
dc.relation.references | Townsend PR, Raux P, Rose RM, et al (1975) The distribution and anisotropy of the stiffness of cancellous bone in the human patella. Journal of Biomechanics 8:363–367. https://doi.org/10.1016/0021-9290(75)90071-8 | spa |
dc.relation.references | J.M Anderson (2012) Polymers in Biology and Medicine. Elsevier Science | spa |
dc.relation.references | Chen H, Yuan L, Song W, et al (2008) Biocompatible polymer materials: Role of protein–surface interactions. Progress in Polymer Science 33:1059–1087. https://doi.org/10.1016/j.progpolymsci.2008.07.006 | spa |
dc.relation.references | Asghari F, Samiei M, Adibkia K, et al (2017) Biodegradable and biocompatible polymers for tissue engineering application: a review. Artificial Cells, Nanomedicine, and Biotechnology 45:185–192. https://doi.org/10.3109/21691401.2016.1146731 | spa |
dc.relation.references | Asri RIM, Harun WSW, Samykano M, et al (2017) Corrosion and surface modification on biocompatible metals: A review. Materials Science and Engineering: C 77:1261–1274. https://doi.org/10.1016/j.msec.2017.04.102 | spa |
dc.relation.references | Saptaji K, Gebremariam MA, Azhari MABM (2018) Machining of biocompatible materials: a review. Int J Adv Manuf Technol 97:2255–2292. https://doi.org/10.1007/s00170-018-1973-2 | spa |
dc.relation.references | Kiradzhiyska DD, Mantcheva RD (2019) Overview of Biocompatible Materials and Their Use in Medicine. Folia Medica 61:34–40. https://doi.org/10.2478/folmed-2018-0038 | spa |
dc.relation.references | Haider A, Haider S, Rao Kummara M, et al (2020) Advances in the scaffolds fabrication techniques using biocompatible polymers and their biomedical application: A technical and statistical review. Journal of Saudi Chemical Society 24:186–215. https://doi.org/10.1016/j.jscs.2020.01.002 | spa |
dc.relation.references | Cao Y, Uhrich KE (2019) Biodegradable and biocompatible polymers for electronic applications: A review. Journal of Bioactive and Compatible Polymers 34:3–15. https://doi.org/10.1177/0883911518818075 | spa |
dc.relation.references | Shastri V (2003) Non-Degradable Biocompatible Polymers in Medicine: Past, Present and Future. CPB 4:331–337. https://doi.org/10.2174/1389201033489694 | spa |
dc.relation.references | Höland W (1997) Biocompatible and bioactive glass-ceramics — state of the art and new directions. Journal of Non-Crystalline Solids 219:192–197. https://doi.org/10.1016/S0022-3093(97)00329-3 | spa |
dc.relation.references | Bedair TM, Heo Y, Ryu J, et al (2021) Biocompatible and functional inorganic magnesium ceramic particles for biomedical applications. Biomater Sci 9:1903–1923. https://doi.org/10.1039/D0BM01934H | spa |
dc.relation.references | Ballouze R, Marahat MH, Mohamad S, et al (2021) Biocompatible MAGNESIUM‐DOPED biphasic calcium phosphate for bone regeneration. J Biomed Mater Res 109:1426–1435. https://doi.org/10.1002/jbm.b.34802 | spa |
dc.relation.references | Ballouze R, Marahat MH, Mohamad S, et al (2021) Biocompatible MAGNESIUM‐DOPED biphasic calcium phosphate for bone regeneration. J Biomed Mater Res 109:1426–1435. https://doi.org/10.1002/jbm.b.34802 | spa |
dc.relation.references | Gautam C, Joyner J, Gautam A, et al (2016) Zirconia based dental ceramics: structure, mechanical properties, biocompatibility and applications. Dalton Trans 45:19194–19215. https://doi.org/10.1039/C6DT03484E | spa |
dc.relation.references | Hamidi MFFA, Harun WSW, Samykano M, et al (2017) A review of biocompatible metal injection moulding process parameters for biomedical applications. Materials Science and Engineering: C 78:1263–1276. https://doi.org/10.1016/j.msec.2017.05.016 | spa |
dc.relation.references | Abdel-Hady Gepreel M, Niinomi M (2013) Biocompatibility of Ti-alloys for long-term implantation. Journal of the Mechanical Behavior of Biomedical Materials 20:407–415. https://doi.org/10.1016/j.jmbbm.2012.11.014 | spa |
dc.relation.references | Asri RIM, Harun WSW, Samykano M, et al (2017) Corrosion and surface modification on biocompatible metals: A review. Materials Science and Engineering: C 77:1261–1274. https://doi.org/10.1016/j.msec.2017.04.102 | spa |
dc.relation.references | Variola F, Vetrone F, Richert L, et al (2009) Improving Biocompatibility of Implantable Metals by Nanoscale Modification of Surfaces: An Overview of Strategies, Fabrication Methods, and Challenges. Small 5:996–1006. https://doi.org/10.1002/smll.200801186 | spa |
dc.relation.references | Manam NS, Harun WSW, Shri DNA, et al (2017) Study of corrosion in biocompatible metals for implants: A review. Journal of Alloys and Compounds 701:698–715. https://doi.org/10.1016/j.jallcom.2017.01.196 | spa |
dc.relation.references | Han WB, Yang SM, Rajaram K, Hwang S (2022) Materials and Fabrication Strategies for Biocompatible and Biodegradable Conductive Polymer Composites toward Bio‐Integrated Electronic Systems. Advanced Sustainable Systems 6:2100075. https://doi.org/10.1002/adsu.202100075 | spa |
dc.relation.references | Pinto AM, Gonçalves IC, Magalhães FD (2013) Graphene-based materials biocompatibility: A review. Colloids and Surfaces B: Biointerfaces 111:188–202. https://doi.org/10.1016/j.colsurfb.2013.05.022 | spa |
dc.relation.references | Tahmasebi E, Alam M, Yazdanian M, et al (2020) Current biocompatible materials in oral regeneration: a comprehensive overview of composite materials. Journal of Materials Research and Technology 9:11731–11755. https://doi.org/10.1016/j.jmrt.2020.08.042 | spa |
dc.relation.references | Tihan TG, Ionita MD, Popescu RG, Iordachescu D (2009) Effect of hydrophilic–hydrophobic balance on biocompatibility of poly(methyl methacrylate) (PMMA)–hydroxyapatite (HA) composites. Materials Chemistry and Physics 118:265–269. https://doi.org/10.1016/j.matchemphys.2009.03.019 | spa |
dc.relation.references | Inzana JA, Olvera D, Fuller SM, et al (2014) 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials 35:4026–4034. https://doi.org/10.1016/j.biomaterials.2014.01.064 | spa |
dc.relation.references | Marques CF, Diogo GS, Pina S, et al (2019) Collagen-based bioinks for hard tissue engineering applications: a comprehensive review. J Mater Sci: Mater Med 30:32. https://doi.org/10.1007/s10856-019-6234-x | spa |
dc.relation.references | Fu S, Du X, Zhu M, et al (2019) 3D printing of layered mesoporous bioactive glass/sodium alginate-sodium alginate scaffolds with controllable dual-drug release behaviors. Biomed Mater 14:065011. https://doi.org/10.1088/1748-605X/ab4166 | spa |
dc.relation.references | Ilhan E, Cesur S, Guler E, et al (2020) Development of Satureja cuneifolia-loaded sodium alginate/polyethylene glycol scaffolds produced by 3D-printing technology as a diabetic wound dressing material. International Journal of Biological Macromolecules 161:1040–1054. https://doi.org/10.1016/j.ijbiomac.2020.06.086 | spa |
dc.relation.references | Liu Y, Tang T, Duan S, et al (2020) Effects of sodium alginate and rice variety on the physicochemical characteristics and 3D printing feasibility of rice paste. LWT 127:109360. https://doi.org/10.1016/j.lwt.2020.109360 | spa |
dc.relation.references | Wei Q, Zhou J, An Y, et al (2023) Modification, 3D printing process and application of sodium alginate based hydrogels in soft tissue engineering: A review. International Journal of Biological Macromolecules 232:123450. https://doi.org/10.1016/j.ijbiomac.2023.123450 | spa |
dc.relation.references | Rajabi M, McConnell M, Cabral J, Ali MA (2021) Chitosan hydrogels in 3D printing for biomedical applications. Carbohydrate Polymers 260:117768. https://doi.org/10.1016/j.carbpol.2021.117768 | spa |
dc.relation.references | Suo H, Zhang J, Xu M, Wang L (2021) Low-temperature 3D printing of collagen and chitosan composite for tissue engineering. Materials Science and Engineering: C 123:111963. https://doi.org/10.1016/j.msec.2021.111963 | spa |
dc.relation.references | Wu Q, Therriault D, Heuzey M-C (2018) Processing and Properties of Chitosan Inks for 3D Printing of Hydrogel Microstructures. ACS Biomater Sci Eng 4:2643–2652. https://doi.org/10.1021/acsbiomaterials.8b00415 | spa |
dc.relation.references | Sommer MR, Schaffner M, Carnelli D, Studart AR (2016) 3D Printing of Hierarchical Silk Fibroin Structures. ACS Appl Mater Interfaces 8:34677–34685. https://doi.org/10.1021/acsami.6b11440 | spa |
dc.relation.references | Wang Q, Han G, Yan S, Zhang Q (2019) 3D Printing of Silk Fibroin for Biomedical Applications. Materials 12:504. https://doi.org/10.3390/ma12030504 | spa |
dc.relation.references | Kim SH, Yeon YK, Lee JM, et al (2018) Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing. Nat Commun 9:1620. https://doi.org/10.1038/s41467-018-03759-y | spa |
dc.relation.references | Mu X, Sahoo JK, Cebe P, Kaplan DL (2020) Photo-Crosslinked Silk Fibroin for 3D Printing. Polymers 12:2936. https://doi.org/10.3390/polym12122936 | spa |
dc.relation.references | Noh I, Kim N, Tran HN, et al (2019) 3D printable hyaluronic acid-based hydrogel for its potential application as a bioink in tissue engineering. Biomater Res 23:3. https://doi.org/10.1186/s40824-018-0152-8 | spa |
dc.relation.references | Shie M-Y, Chang W-C, Wei L-J, et al (2017) 3D Printing of Cytocompatible Water-Based Light-Cured Polyurethane with Hyaluronic Acid for Cartilage Tissue Engineering Applications. Materials 10:136. https://doi.org/10.3390/ma10020136 | spa |
dc.relation.references | Ouyang L, Highley CB, Rodell CB, et al (2016) 3D Printing of Shear-Thinning Hyaluronic Acid Hydrogels with Secondary Cross-Linking. ACS Biomater Sci Eng 2:1743–1751. https://doi.org/10.1021/acsbiomaterials.6b00158 | spa |
dc.relation.references | Petta D, D’Amora U, Ambrosio L, et al (2020) Hyaluronic acid as a bioink for extrusion-based 3D printing. Biofabrication 12:032001. https://doi.org/10.1088/1758-5090/ab8752 | spa |
dc.relation.references | Oladapo BI, Zahedi SA, Ismail SO, Omigbodun FT (2021) 3D printing of PEEK and its composite to increase biointerfaces as a biomedical material- A review. Colloids and Surfaces B: Biointerfaces 203:111726. https://doi.org/10.1016/j.colsurfb.2021.111726 | spa |
dc.relation.references | Geng P, Zhao J, Wu W, et al (2019) Effects of extrusion speed and printing speed on the 3D printing stability of extruded PEEK filament. Journal of Manufacturing Processes 37:266–273. https://doi.org/10.1016/j.jmapro.2018.11.023 | spa |
dc.relation.references | Xiaoyong S, Liangcheng C, Honglin M, et al (2017) Experimental Analysis of High Temperature PEEK Materials on 3D Printing Test. In: 2017 9th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA). IEEE, Changsha, China, pp 13–16 | spa |
dc.relation.references | Yang C, Tian X, Li D, et al (2017) Influence of thermal processing conditions in 3D printing on the crystallinity and mechanical properties of PEEK material. Journal of Materials Processing Technology 248:1–7. https://doi.org/10.1016/j.jmatprotec.2017.04.027 | spa |
dc.relation.references | Chen X, Gao C, Jiang J, et al (2019) 3D printed porous PLA/nHA composite scaffolds with enhanced osteogenesis and osteoconductivity in vivo for bone regeneration. Biomed Mater 14:065003. https://doi.org/10.1088/1748-605X/ab388d | spa |
dc.relation.references | Wang M, Favi P, Cheng X, et al (2016) Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration. Acta Biomaterialia 46:256–265. https://doi.org/10.1016/j.actbio.2016.09.030 | spa |
dc.relation.references | Anbu RT, Suresh V, Gounder R, Kannan A (2019) Comparison of the Efficacy of Three Different Bone Regeneration Materials: An Animal Study. Eur J Dent 13:022–028. https://doi.org/10.1055/s-0039-1688735 | spa |
dc.relation.references | Li X, Wang Y, Wang Z, et al (2018) Composite PLA/PEG/nHA/Dexamethasone Scaffold Prepared by 3D Printing for Bone Regeneration. Macromol Biosci 18:1800068. https://doi.org/10.1002/mabi.201800068 | spa |
dc.relation.references | Liu D, Nie W, Li D, et al (2019) 3D printed PCL/SrHA scaffold for enhanced bone regeneration. Chemical Engineering Journal 362:269–279. https://doi.org/10.1016/j.cej.2019.01.015 | spa |
dc.relation.references | Dong Q, Zhang M, Zhou X, et al (2021) 3D-printed Mg-incorporated PCL-based scaffolds: A promising approach for bone healing. Materials Science and Engineering: C 129:112372. https://doi.org/10.1016/j.msec.2021.112372 | spa |
dc.relation.references | Blackham JT, Vandewalle KS, Lien W (2009) Properties of Hybrid Resin Composite Systems Containing Prepolymerized Filler Particles. Operative Dentistry 34:697–702. https://doi.org/10.2341/08-118-L | spa |
dc.relation.references | Bettencourt AF, Neves CB, de Almeida MS, et al (2010) Biodegradation of acrylic based resins: A review. Dental Materials 26:e171–e180. https://doi.org/10.1016/j.dental.2010.01.006 | spa |
dc.relation.references | Stoye D, Funke W, Hoppe L, et al (2006) Paints and Coatings. In Ullmann’s Encyclopedia of Industrial Chemistry, (Ed.). https://doi.org/10.1002/14356007.a18_359.pub2 | spa |
dc.relation.references | Vallittu PK (1999) Flexural properties of acrylic resin polymers reinforced with unidirectional and woven glass fibers. The Journal of Prosthetic Dentistry 81:318–326. https://doi.org/10.1016/S0022-3913(99)70276-3 | spa |
dc.relation.references | Casemiro LA, Martins CHG, Pires-de-Souza F de CP, Panzeri H (2008) Antimicrobial and mechanical properties of acrylic resins with incorporated silver-zinc zeolite - part I. Gerodontology 25:187–194. https://doi.org/10.1111/j.1741-2358.2007.00198.x | spa |
dc.relation.references | Bagheri A, Jin J (2019) Photopolymerization in 3D Printing. ACS Appl Polym Mater 1:593–611. https://doi.org/10.1021/acsapm.8b00165 | spa |
dc.relation.references | Dong Z, Zhao X (2021) Application of TPMS structure in bone regeneration. Engineered Regeneration 2:154–162. https://doi.org/10.1016/j.engreg.2021.09.004 | spa |
dc.relation.references | Hayashi K, Kishida R, Tsuchiya A, Ishikawa K (2023) Superiority of Triply Periodic Minimal Surface Gyroid Structure to Strut-Based Grid Structure in Both Strength and Bone Regeneration. ACS Appl Mater Interfaces 15:34570–34577. https://doi.org/10.1021/acsami.3c06263 | spa |
dc.relation.references | Abueidda DW, Elhebeary M, Shiang C-S (Andrew), et al (2019) Mechanical properties of 3D printed polymeric Gyroid cellular structures: Experimental and finite element study. Materials & Design 165:107597. https://doi.org/10.1016/j.matdes.2019.107597 | spa |
dc.relation.references | Lyubutin IS, Lin CR, Korzhetskiy YuV, et al (2009) Mössbauer spectroscopy and magnetic properties of hematite/magnetite nanocomposites. Journal of Applied Physics 106:034311. https://doi.org/10.1063/1.3194316 | spa |
dc.relation.references | Louis Néel (1952) Antiferromagnetism and Ferrimagnetism. Proceedings of the Physical Society Section A 65:869. https://doi.org/10.1088/0370-1298/65/11/301 | spa |
dc.relation.references | Material-Properties.org (2024) Magnetic Properties of Materials – Definition. In: Magnetic Properties of Materials. https://material-properties.org/magnetic-properties-of-materials-definition/. Accessed 25 Mar 2024 | spa |
dc.relation.references | Iowa State University - Center for Nondestructive Evaluation (2024) The Hysteresis Loop. In: Magnetism. https://www.nde-ed.org/Physics/Magnetism/HysteresisLoop.xhtml. Accessed 25 Mar 2024 | spa |
dc.relation.references | Deganello F, Tyagi AK (2018) Solution combustion synthesis, energy and environment: Best parameters for better materials. Progress in Crystal Growth and Characterization of Materials 64:23–61. https://doi.org/10.1016/j.pcrysgrow.2018.03.001 | spa |
dc.relation.references | Carlos E, Martins R, Fortunato E, Branquinho R (2020) Solution Combustion Synthesis: Towards a Sustainable Approach for Metal Oxides. Chem Eur J 26:9099–9125. https://doi.org/10.1002/chem.202000678 | spa |
dc.relation.references | Dasari A, Xue J, Deb S (2022) Magnetic Nanoparticles in Bone Tissue Engineering. Nanomaterials 12:. https://doi.org/10.3390/nano12050757 | spa |
dc.relation.references | Shuai C, Yang W, He C, et al (2020) A magnetic micro-environment in scaffolds for stimulating bone regeneration. Materials & Design 185:108275. https://doi.org/10.1016/j.matdes.2019.108275 | spa |
dc.relation.references | Kim J-J, Singh RK, Seo S-J, et al (2014) Magnetic scaffolds of polycaprolactone with functionalized magnetite nanoparticles: physicochemical, mechanical, and biological properties effective for bone regeneration. RSC Adv 4:17325–17336. https://doi.org/10.1039/C4RA00040D | spa |
dc.relation.references | Bin S, Wang A, Guo W, et al (2020) Micro Magnetic Field Produced by Fe3O4 Nanoparticles in Bone Scaffold for Enhancing Cellular Activity. Polymers 12:. https://doi.org/10.3390/polym12092045 | spa |
dc.relation.references | Wang Q, Tang Y, Ke Q, et al (2020) Magnetic lanthanum-doped hydroxyapatite/chitosan scaffolds with endogenous stem cell-recruiting and immunomodulatory properties for bone regeneration. J Mater Chem B 8:5280–5292. https://doi.org/10.1039/D0TB00342E | spa |
dc.relation.references | Li Y, Huang L, Tai G, et al (2022) Graphene Oxide-loaded magnetic nanoparticles within 3D hydrogel form High-performance scaffolds for bone regeneration and tumour treatment. Composites Part A: Applied Science and Manufacturing 152:106672. https://doi.org/10.1016/j.compositesa.2021.106672 | spa |
dc.relation.references | Shuai C, Yang W, He C, et al (2020) A magnetic micro-environment in scaffolds for stimulating bone regeneration. Materials & Design 185:108275. https://doi.org/10.1016/j.matdes.2019.108275 | spa |
dc.relation.references | Wei X, Li D, Jiang W, et al (2015) 3D Printable Graphene Composite. Sci Rep 5:11181. https://doi.org/10.1038/srep11181 | spa |
dc.relation.references | Gnanasekaran K, Heijmans T, Van Bennekom S, et al (2017) 3D printing of CNT- and graphene-based conductive polymer nanocomposites by fused deposition modeling. Applied Materials Today 9:21–28. https://doi.org/10.1016/j.apmt.2017.04.003 | spa |
dc.relation.references | Qu H (2020) Additive manufacturing for bone tissue engineering scaffolds. Materials Today Communications 24:101024. https://doi.org/10.1016/j.mtcomm.2020.101024 | spa |
dc.relation.references | Dul S, Fambri L, Pegoretti A (2016) Fused deposition modelling with ABS–graphene nanocomposites. Composites Part A: Applied Science and Manufacturing 85:181–191. https://doi.org/10.1016/j.compositesa.2016.03.013 | spa |
dc.relation.references | Savaris M, Santos VD, Brandalise RN (2016) Influence of different sterilization processes on the properties of commercial poly(lactic acid). Materials Science and Engineering: C 69:661–667. https://doi.org/10.1016/j.msec.2016.07.031 | spa |
dc.relation.references | Lee S-J, Zhu W, Nowicki M, et al (2018) 3D printing nano conductive multi-walled carbon nanotube scaffolds for nerve regeneration. J Neural Eng 15:016018. https://doi.org/10.1088/1741-2552/aa95a5 | spa |
dc.relation.references | Sciancalepore C, Moroni F, Messori M, Bondioli F (2017) Acrylate-based silver nanocomposite by simultaneous polymerization–reduction approach via 3D stereolithography. Composites Communications 6:11–16. https://doi.org/10.1016/j.coco.2017.07.006 | spa |
dc.relation.references | Feng Z, Li Y, Xin C, et al (2019) Fabrication of Graphene-Reinforced Nanocomposites with Improved Fracture Toughness in Net Shape for Complex 3D Structures via Digital Light Processing. C 5:25. https://doi.org/10.3390/c5020025 | spa |
dc.relation.references | Feng Z, Li Y, Hao L, et al (2019) Graphene-Reinforced Biodegradable Resin Composites for Stereolithographic 3D Printing of Bone Structure Scaffolds. Journal of Nanomaterials 2019:1–13. https://doi.org/10.1155/2019/9710264 | spa |
dc.relation.references | Dizon JRC, Chen Q, Valino AD, Advincula RC (2019) Thermo-mechanical and swelling properties of three-dimensional-printed poly (ethylene glycol) diacrylate/silica nanocomposites. MRS Communications 9:209–217. https://doi.org/10.1557/mrc.2018.188 | spa |
dc.relation.references | Chunze Y, Yusheng S, Jinsong Y, Jinhui L (2009) A Nanosilica/Nylon-12 Composite Powder for Selective Laser Sintering. Journal of Reinforced Plastics and Composites 28:2889–2902. https://doi.org/10.1177/0731684408094062 | spa |
dc.relation.references | Valino AD, Dizon JRC, Espera AH, et al (2019) Advances in 3D printing of thermoplastic polymer composites and nanocomposites. Progress in Polymer Science 98:101162. https://doi.org/10.1016/j.progpolymsci.2019.101162 | spa |
dc.relation.references | Zhang Y, Hao L, Savalani MM, et al (2008) Characterization and dynamic mechanical analysis of selective laser sintered hydroxyapatite‐filled polymeric composites. J Biomed Mater Res 86A:607–616. https://doi.org/10.1002/jbm.a.31622 | spa |
dc.relation.references | Chung H, Das S (2008) Functionally graded Nylon-11/silica nanocomposites produced by selective laser sintering. Materials Science and Engineering: A 487:251–257. https://doi.org/10.1016/j.msea.2007.10.082 | spa |
dc.relation.references | Drummer D, Medina-Hernández M, Drexler M, Wudy K (2015) Polymer Powder Production for Laser Melting Through Immiscible Blends. Procedia Engineering 102:1918–1925. https://doi.org/10.1016/j.proeng.2015.01.332 | spa |
dc.relation.references | Wiberg A, Persson J, Ölvander J (2019) Design for additive manufacturing – a review of available design methods and software. RPJ 25:1080–1094. https://doi.org/10.1108/RPJ-10-2018-0262 | spa |
dc.relation.references | Reddy K. SN, Ferguson I, Frecker M, et al (2016) Topology Optimization Software for Additive Manufacturing: A Review of Current Capabilities and a Real-World Example. In: IDETC-CIE2016. Volume 2A: 42nd Design Automation Conference | spa |
dc.relation.references | Gibson I, Rosen D, Stucker B, Khorasani M (2021) Software for Additive Manufacturing. In: Gibson I, Rosen D, Stucker B, Khorasani M (eds) Additive Manufacturing Technologies. Springer International Publishing, Cham, pp 491–524 | spa |
dc.relation.references | Gibson I, Rosen D, Stucker B (2015) Software Issues for Additive Manufacturing. In: Gibson I, Rosen D, Stucker B (eds) Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing. Springer New York, New York, NY, pp 351–374 | spa |
dc.relation.references | O’Reilly (2024) 3D printing. https://www.oreilly.com/library/view/3d-printing-basics/9781351610810/xhtml/Ch06.xhtml. Accessed 14 Apr 2024 | spa |
dc.relation.references | Manapat JZ, Chen Q, Ye P, Advincula RC (2017) 3D Printing of Polymer Nanocomposites via Stereolithography. Macromolecular Materials and Engineering 302:1600553. https://doi.org/10.1002/mame.201600553 | spa |
dc.relation.references | Deshmane S, Kendre P, Mahajan H, Jain S (2021) Stereolithography 3D printing technology in pharmaceuticals: a review. Drug Development and Industrial Pharmacy 47:1362–1372. https://doi.org/10.1080/03639045.2021.1994990 | spa |
dc.relation.references | Mukhtarkhanov M, Perveen A, Talamona D (2020) Application of Stereolithography Based 3D Printing Technology in Investment Casting. Micromachines 11:. https://doi.org/10.3390/mi11100946 | spa |
dc.relation.references | TAICED (2023) ¿Qué es una Impresora 3D? TIpos y Como Funciona. In: TAICED Construyendo Ideas. https://www.taiced.com/post/tipos-de-impresoras-3d-y-como-funcionan. Accessed 25 Mar 2024 | spa |
dc.relation.references | Mhmood TR, Al-Karkhi NK (2023) A Review of the Stereo lithography 3D Printing Process and the Effect of Parameters on Quality. alkej 19:82–94. https://doi.org/10.22153/kej.2023.04.003 | spa |
dc.relation.references | Huang J, Qin Q, Wang J (2020) A Review of Stereolithography: Processes and Systems. Processes 8:. https://doi.org/10.3390/pr8091138 | spa |
dc.relation.references | Thomas G. Mezger (2006) The reology Handbook, 2nd ed. Coatings Compendia | spa |
dc.relation.references | Hsissou R, Bekhta A, Dagdag O, et al (2020) Rheological properties of composite polymers and hybrid nanocomposites. Heliyon 6:e04187. https://doi.org/10.1016/j.heliyon.2020.e04187 | spa |
dc.relation.references | Bochnia J, Kozior T, Szot W, et al (2024) Selected Mechanical and Rheological Properties of Medical Resin MED610 in PolyJet Matrix Three-Dimensional Printing Technology in Quality Aspects. 3D Printing and Additive Manufacturing 11:299–313. https://doi.org/10.1089/3dp.2022.0215 | spa |
dc.relation.references | Liu Y, Lin Y, Jiao T, et al (2019) Photocurable modification of inorganic fillers and their application in photopolymers for 3D printing. Polym Chem 10:6350–6359. https://doi.org/10.1039/C9PY01445D | spa |
dc.relation.references | Hada T, Kanazawa M, Miyamoto N, et al (2022) Effect of Different Filler Contents and Printing Directions on the Mechanical Properties for Photopolymer Resins. International Journal of Molecular Sciences 23:. https://doi.org/10.3390/ijms23042296 | spa |
dc.relation.references | Vyas A, Garg V, Ghosh SB, Bandyopadhyay-Ghosh S (2022) Photopolymerizable resin-based 3D printed biomedical composites: Factors affecting resin viscosity. Materials Today: Proceedings 62:1435–1439. https://doi.org/10.1016/j.matpr.2022.01.172 | spa |
dc.relation.references | Tsai S-C, Chen L-H, Chu C-P, et al (2022) Photo curable resin for 3D printed conductive structures. Additive Manufacturing 51:102590. https://doi.org/10.1016/j.addma.2021.102590 | spa |
dc.relation.references | Liu M, Wu J, Gan Y, et al (2016) Evaporation Limited Radial Capillary Penetration in Porous Media. Langmuir 32:9899–9904. https://doi.org/10.1021/acs.langmuir.6b02404 | spa |
dc.relation.references | BYK Additives & Instruments Humectación y Dispersión de Aditivos | spa |
dc.relation.references | Jain A, Ong SP, Hautier G, et al (2013) Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Materials 1:011002. https://doi.org/10.1063/1.4812323 | spa |
dc.relation.references | International Organization for Standardization (2009) Biological evaluation of medical devices Part 5: Tests for in vitro cytotoxicity, ISO Standard No. 10993-5:2009 | spa |
dc.relation.references | International Organization for Standardization (2009) Biological evaluation of medical devices Part 12: Sample preparation and reference materials, ISO Standard No. 10993-12:2009 | spa |
dc.relation.references | Russo et al. - 2018 - Bone regeneration in a rabbit critical femoral def.pdf | spa |
dc.relation.references | UserCom (2000) Interpreting DSC Curves | spa |
dc.relation.references | Schick C (2009) Differential scanning calorimetry (DSC) of semicrystalline polymers. Anal Bioanal Chem 395:1589–1611. https://doi.org/10.1007/s00216-009-3169-y | spa |
dc.relation.references | Chiantore O, Lazzari M (1996) Characterization of Acrylic Resins. International Journal of Polymer Analysis and Characterization 2:395–408. https://doi.org/10.1080/10236669608033358 | spa |
dc.relation.references | Anycubic (2023) Buyer’s Guide: How to Choose the Right Resin for 3D Printing. In: 3D Printing Guides. https://store.anycubic.com/blogs/3d-printing-guides/how-to-choose-the-right-resin-for-3d-printing. Accessed 20 Apr 2024 | spa |
dc.relation.references | Kim D-Y, Kim J-H (2021) Comparison of shrinkage according to thickness of photopolymerization resin for 3D printing. J Tech Dent 43:1–5. https://doi.org/10.14347/jtd.2021.43.1.1 | spa |
dc.relation.references | Peng J, Zhao J, Long Y, et al (2019) Magnetic Materials in Promoting Bone Regeneration. Front Mater 6:268. https://doi.org/10.3389/fmats.2019.00268 | spa |
dc.relation.references | Torres del Castillo, Miguel Ángel (2016) Potencial de la adición de nanofibras de frafeno en la resistencia mecánica de resinas autopolimerizables para aplicaciones en implanto-prótesis. Universidad Católica San Antonio de Murcia | spa |
dc.relation.references | Caeiro JR, González P, Guede D (2013) Biomecánica y hueso (y II): ensayos en los distintos niveles jerárquicos del hueso y técnicas alternativas para la determinación de la resistencia ósea. Rev Osteoporos Metab Miner 5:99–108. https://doi.org/10.4321/S1889-836X2013000200007 | spa |
dc.relation.references | Chiantore O, Lazzari M (1996) Characterization of Acrylic Resins. International Journal of Polymer Analysis and Characterization 2:395–408. https://doi.org/10.1080/10236669608033358 | spa |
dc.relation.references | Singh RK, Patel KD, Lee JH, et al (2014) Potential of Magnetic Nanofiber Scaffolds with Mechanical and Biological Properties Applicable for Bone Regeneration. PLoS ONE 9:e91584. https://doi.org/10.1371/journal.pone.0091584 | spa |
dc.relation.references | Seongpil Jeong, Hye-Won Kim (2023) In situ real-time monitoring technologies for fouling detection in membrane processes. In: Membrane Technology for Sustainable Water and Energy Management, 1st ed. Elsevier Science, pp 43–64 | spa |
dc.relation.references | Negishi J, Nam K, Kimura T, et al (2010) High-hydrostatic pressure technique is an effective method for the preparation of PVA–heparin hybrid gel. European Journal of Pharmaceutical Sciences 41:617–622. https://doi.org/10.1016/j.ejps.2010.09.001 | spa |
dc.relation.references | International Organization for Standardization (2009) Biological evaluation of medical devices, Part 5: Tests for in vitro cytotoxicity (ISO Standard No. 10993-5:2009) | spa |
dc.relation.references | Soenen SJ, Parak WJ, Rejman J, Manshian B (2015) (Intra)Cellular Stability of Inorganic Nanoparticles: Effects on Cytotoxicity, Particle Functionality, and Biomedical Applications. Chem Rev 115:2109–2135. https://doi.org/10.1021/cr400714j | spa |
dc.relation.references | Ameh ES (2019) A review of basic crystallography and x-ray diffraction applications. Int J Adv Manuf Technol 105:3289–3302. https://doi.org/10.1007/s00170-019-04508-1 | spa |
dc.relation.references | Bunaciu AA, Udriştioiu EG, Aboul-Enein HY (2015) X-Ray Diffraction: Instrumentation and Applications. Critical Reviews in Analytical Chemistry 45:289–299. https://doi.org/10.1080/10408347.2014.949616 | spa |
dc.relation.references | Ali A, Chiang YW, Santos RM (2022) X-ray Diffraction Techniques for Mineral Characterization: A Review for Engineers of the Fundamentals, Applications, and Research Directions. Minerals 12:205. https://doi.org/10.3390/min12020205 | spa |
dc.relation.references | Erik Gregersen Bragg condition, Bragg’s law | spa |
dc.relation.references | McCusker LB, Von Dreele RB, Cox DE, et al (1999) Rietveld refinement guidelines. J Appl Crystallogr 32:36–50. https://doi.org/10.1107/S0021889898009856 | spa |
dc.relation.references | Sakata M, Cooper MJ (1979) An analysis of the Rietveld refinement method. Journal of Applied Crystallography 12:554–563. https://doi.org/10.1107/S002188987901325X | spa |
dc.relation.references | Ghazi N, Chenari HM, Ghodsi FE (2018) Rietveld refinement, morphology analysis, optical and magnetic properties of magnesium-zinc ferrite nanofibers. Journal of Magnetism and Magnetic Materials 468:132–140. https://doi.org/10.1016/j.jmmm.2018.07.084 | spa |
dc.relation.references | Weisstein, Eric W. “Gaussian Function.” From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/GaussianFunction.html | spa |
dc.relation.references | Giannuzzi LA, Stevie FA (1999) A review of focused ion beam milling techniques for TEM specimen preparation. Micron 30:197–204. https://doi.org/10.1016/S0968-4328(99)00005-0 | spa |
dc.relation.references | Zaefferer S (2011) A critical review of orientation microscopy in SEM and TEM. Cryst Res Technol 46:607–628. https://doi.org/10.1002/crat.201100125 | spa |
dc.relation.references | Mohammed A, Abdullah A Scanning Electron Microscopy (SEM): a Review | spa |
dc.relation.references | Metalinspect (2022) Microscopio electrónico de barrido: Qué es y cómo funciona. In: Microscopio electrónico de barrido. https://www.blog.metalinspec.com.mx/que-es-y-como-funciona-un-microscopio-electronico-de-barrido. Accessed 2 Mar 2024 | spa |
dc.relation.references | Zaefferer S (2011) A critical review of orientation microscopy in SEM and TEM. Cryst Res Technol 46:607–628. https://doi.org/10.1002/crat.201100125 | spa |
dc.relation.references | Rauwel P, Küünal S, Ferdov S, Rauwel E (2015) A Review on the Green Synthesis of Silver Nanoparticles and Their Morphologies Studied via TEM. Advances in Materials Science and Engineering 2015:1–9. https://doi.org/10.1155/2015/682749 | spa |
dc.relation.references | Egerton RF (2009) Electron energy-loss spectroscopy in the TEM. Rep Prog Phys 72:016502. https://doi.org/10.1088/0034-4885/72/1/016502 | spa |
dc.relation.references | Resta V Propiedades morfológicas y ópticas de nanopartículas de oro producidas o procesadas mediante técnicas láser | spa |
dc.relation.references | Erlandsen SL, Frethem C, Chen Y (2000) Field Emission Scanning Electron Microscopy (FESEM) Entering the 21st Century: Nanometer Resolution and Molecular Topography of Cell Structure. Journal of Histotechnology 23:249–259. https://doi.org/10.1179/his.2000.23.3.249 | spa |
dc.relation.references | Prabhu RS, Priyanka R, Vijay M, Vikashini GRK Field Emission Scanning Electron Microscopy (Fesem) with A Very Big Future in Pharmaceutical Research. International Journal of Pharmacy and Biological Sciences | spa |
dc.relation.references | A.H.M. Areef Billah (2016) Investigation Of Multiferroic And Photocatalytic Properties Of Li Doped BiFeO3 Nanoparticles Prepared By Ultrasonication. BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY | spa |
dc.relation.references | Sharma S, Rasool HI, Palanisamy V, et al (2010) Structural-Mechanical Characterization of Nanoparticle Exosomes in Human Saliva, Using Correlative AFM, FESEM, and Force Spectroscopy. ACS Nano 4:1921–1926. https://doi.org/10.1021/nn901824n | spa |
dc.relation.references | Nallusamy S, Manoj Babu A (2015) X-Ray Differaction and FESEM Analysis for Mixture of Hybrid Nanoparticles in Heat Transfer Applications. JNanoR 37:58–67. https://doi.org/10.4028/www.scientific.net/JNanoR.37.58 | spa |
dc.relation.references | Scimeca M, Bischetti S, Lamsira HK, et al (2018) Energy Dispersive X-ray (EDX) microanalysis: A powerful tool in biomedical research and diagnosis. Eur J Histochem. https://doi.org/10.4081/ejh.2018.2841 | spa |
dc.relation.references | Stefaniak EA, Buczynska A, Novakovic V, et al (2009) Determination of chemical composition of individual airborne particles by SEM/EDX and micro-Raman spectrometry: A review. J Phys: Conf Ser 162:012019. https://doi.org/10.1088/1742-6596/162/1/012019 | spa |
dc.relation.references | Piccinotti D Chalcogenide Platforms for Photonic Metamaterials | spa |
dc.relation.references | Cardell C, Guerra I (2016) An overview of emerging hyphenated SEM-EDX and Raman spectroscopy systems: Applications in life, environmental and materials sciences. TrAC Trends in Analytical Chemistry 77:156–166. https://doi.org/10.1016/j.trac.2015.12.001 | spa |
dc.relation.references | Poole JJA, Mostaço-Guidolin LB (2021) Optical Microscopy and the Extracellular Matrix Structure: A Review. Cells 10:1760. https://doi.org/10.3390/cells10071760 | spa |
dc.relation.references | José L. Fernández (2023) El Microscopio. In: Óptica Geométrica. https://www.fisicalab.com/apartado/microscopio. Accessed 2 Mar 2024 | spa |
dc.relation.references | Chen Y, Zou C, Mastalerz M, et al (2015) Applications of Micro-Fourier Transform Infrared Spectroscopy (FTIR) in the Geological Sciences—A Review. IJMS 16:30223–30250. https://doi.org/10.3390/ijms161226227 | spa |
dc.relation.references | Torres-Luque MM (2010) Estudio comparativo del proceso de corrosión en recubrimientos cerámicos, metálicos y orgánicos mediante técnicas electroquímicas. PhD Thesis | spa |
dc.relation.references | Berthomieu C, Hienerwadel R (2009) Fourier transform infrared (FTIR) spectroscopy. Photosynth Res 101:157–170. https://doi.org/10.1007/s11120-009-9439-x | spa |
dc.relation.references | Movasaghi Z, Rehman S, Ur Rehman DrI (2008) Fourier Transform Infrared (FTIR) Spectroscopy of Biological Tissues. Applied Spectroscopy Reviews 43:134–179. https://doi.org/10.1080/05704920701829043 | spa |
dc.relation.references | Bacsik Z, Mink J, Keresztury G (2004) FTIR Spectroscopy of the Atmosphere. I. Principles and Methods. Applied Spectroscopy Reviews 39:295–363. https://doi.org/10.1081/ASR-200030192 | spa |
dc.relation.references | María Guillermina Volonté, Pablo Quiroga (2013) Análisis farmacéutico, 1ed ed. edulp Editorial de la Universidad de La Plata, Universidad Nacional de La Plata | spa |
dc.relation.references | Flynn JH (1993) Analysis of DSC results by integration. Thermochimica Acta 217:129–149. https://doi.org/10.1016/0040-6031(93)85104-H | spa |
dc.relation.references | Van Dooren AA, Müller BW (1984) Purity determinations of drugs with differential scanning calorimetry (DSC)—a critical review. International Journal of Pharmaceutics 20:217–233. https://doi.org/10.1016/0378-5173(84)90170-4 | spa |
dc.relation.references | Cristancho YAG (2015) Universidad Distrital Francisco José De Caldas | spa |
dc.relation.references | Mansa R, Zou S (2021) Thermogravimetric analysis of microplastics: A mini review. Environmental Advances 5:100117. https://doi.org/10.1016/j.envadv.2021.100117 | spa |
dc.relation.references | Saadatkhah N, Carillo Garcia A, Ackermann S, et al (2020) Experimental methods in chemical engineering: Thermogravimetric analysis—TGA. Can J Chem Eng 98:34–43. https://doi.org/10.1002/cjce.23673 | spa |
dc.relation.references | Jeffrey Gotro (2014) Rheology of Thermosets Part 2: Rheometers. In: Polymer Innovation Blog. https://polymerinnovationblog.com/rheology-thermosets-part-2-rheometers/. Accessed 3 Mar 2024 | spa |
dc.relation.references | Sankhi BR, Turgut E (2020) A low-cost vibrating sample magnetometry based on audio components. Journal of Magnetism and Magnetic Materials 502:166560. https://doi.org/10.1016/j.jmmm.2020.166560 | spa |
dc.relation.references | Mulay LN, Mulay IL (1984) Magnetometry: aspects of instrumentation and applications including catalysis, bioscience, and geoscience. Anal Chem 56:293–300. https://doi.org/10.1021/ac00269a023 | spa |
dc.relation.references | Liu E (2018) Materials and designs of magnetic tunnel junctions with perpendicular magnetic anisotropy for high-density memory applications. PhD Thesis | spa |
dc.relation.references | Dodrill B, Lindemuth JR (2021) Vibrating Sample Magnetometry. In: Franco V, Dodrill B (eds) Magnetic Measurement Techniques for Materials Characterization. Springer International Publishing, Cham, pp 15–37 | spa |
dc.relation.references | Elmrabet N, Siegkas P (2020) Dimensional considerations on the mechanical properties of 3D printed polymer parts. Polymer Testing 90:106656. https://doi.org/10.1016/j.polymertesting.2020.106656 | spa |
dc.relation.references | (2021) BS 6319-2 : How to check the compressive strength of resin flooring. In: EPOXY TILE FLOORING. Accessed 3 Mar 2024 | spa |
dc.relation.references | Jarray A, Wijshoff H, Luiken JA, Den Otter WK (2020) Systematic approach for wettability prediction using molecular dynamics simulations. Soft Matter 16:4299–4310. https://doi.org/10.1039/D0SM00197J | spa |
dc.relation.references | Abbas MA, Zamir A, Elraies KA, et al (2021) A critical parametric review of polymers as shale inhibitors in water-based drilling fluids. Journal of Petroleum Science and Engineering 204:108745. https://doi.org/10.1016/j.petrol.2021.108745 | spa |
dc.relation.references | Riofrio SKE Trabajo Final de Máster en Biotecnología Biomédica | spa |
dc.relation.references | Sargent JM (2003) The Use of the MTT Assay to Study Drug Resistance in Fresh Tumour Samples. In: Reinhold U, Tilgen W (eds) Chemosensitivity Testing in Oncology. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 13–25 | spa |
dc.relation.references | Pintor AVB, Queiroz LD, Barcelos R, et al (2020) MTT versus other cell viability assays to evaluate the biocompatibility of root canal filling materials: a systematic review. Int Endodontic J 53:1348–1373. https://doi.org/10.1111/iej.13353 | spa |
dc.relation.references | Grela E, Kozłowska J, Grabowiecka A (2018) Current methodology of MTT assay in bacteria – A review. Acta Histochemica 120:303–311. https://doi.org/10.1016/j.acthis.2018.03.007 | spa |
dc.relation.references | Hayon T, Dvilansky A, Shpilberg O, Nathan I (2003) Appraisal of the MTT-based Assay as a Useful Tool for Predicting Drug Chemosensitivity in Leukemia. Leukemia & Lymphoma 44:1957–1962. https://doi.org/10.1080/1042819031000116607 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::621 - Física aplicada | spa |
dc.subject.decs | Regeneración Ósea | |
dc.subject.decs | Materiales Biocompatibles | |
dc.subject.decs | Biomateriales | |
dc.subject.decs | Tejido Óseo | |
dc.subject.proposal | Scaffolds | eng |
dc.subject.proposal | Síntesis de Materiales | spa |
dc.subject.proposal | Propiedades Magnéticas | spa |
dc.subject.proposal | Manufactura aditiva | spa |
dc.subject.proposal | Regeneración Osea | spa |
dc.subject.proposal | Material Synthesis | eng |
dc.subject.proposal | Magnetic properties | eng |
dc.subject.proposal | Additive manufacturing | eng |
dc.subject.proposal | Bone regeneration | eng |
dc.title | Obtención de Scaffolds Compuestos Polímero-Cerámico por Estereolitografía de Mascara (MSLA) con Propiedades Magnéticas y Potencial Aplicación en Regeneración Ósea | spa |
dc.title.translated | Obtaining Polymer-Ceramic Composite Scaffolds by Masked Stereolithography (MSLA) with Magnetic Properties and Potential Application in Bone Regeneration | |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.awardtitle | Agradezco principalmente al proyecto que hizo posible la realización de este trabajo, proyecto titulado “Desarrollo y evaluación in vitro de un prototipo de scaffold de matriz polimérica con adición de partículas magnéticas, funcionalizado con proteínas morfogenéticas BMP-2 producido por manufactura aditiva para regeneración ósea.” Código Hermes 53992. SEGUNDA CONVOCATORIA CONJUNTA DE PROYECTOS DE I+D+i EN EL MARCO DE LA AGENDA REGIONAL DE I+D -> I | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1026159675.2024.pdf
- Tamaño:
- 3.6 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería Física
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: