Simulación de efectos biológicos de la cadena del ADN bajo la acción simultánea de radiación ionizante e hipertermia
dc.contributor.advisor | Plazas, Maria Cristina | |
dc.contributor.author | Rodríguez Coronado, Diego Antonio | |
dc.date.accessioned | 2023-08-09T17:10:45Z | |
dc.date.available | 2023-08-09T17:10:45Z | |
dc.date.issued | 2023-08-09 | |
dc.description | ilustraciones, diagramas | spa |
dc.description.abstract | La radiación ionizante ha sido utilizada a lo largo de los años como una herramienta en la creación de prácticas sanitarias y, en especial, en tratamientos oncológicos mediante la radioterapia. Existen, sin embargo, otros tratamientos alternos como la hipertermia, que se basan en focalizar gradientes de temperatura en la región de interés sin hacer uso de la radiación ionizante. Este trabajo se centra en simular los efectos que presenta la radiación ionizante y la hipertermia aplicadas de manera simultánea en las moléculas de ADN, utilizando el modelo de Charlton incluido en la herramienta computacional conocida como TOPAS-nBio que está basada en las extensiones de Geant4-DNA. Se simuló el transporte de rayos X primarios de baja energía y las correspondientes partículas secundarias producidas en un medio acuoso, para estudiar el daño radiobiológico en forma de rupturas SSB y DSB de las hebras de la molécula de ADN y, a su vez, investigar el efecto sinérgico de radiación e hipertermia en un rango de 40 a 50 °C. Adicionalmente, se implementó en la simulación una forma de cambiar la magnitud de las secciones transversales asociadas con los procesos físicos dominantes para estudiar el impacto en el número de rupturas SSB y DSB. Los resultados evidencian un acuerdo razonable con lo reportado en la literatura, dejando abierto el camino para futuras investigaciones. | spa |
dc.description.abstract | Throughout the years, ionizing radiation has been utilized as a tool in the development of health practices, most notably radiotherapy for the treatment of cancer. Other alternative treatments, such as hyperthermia, are based on concentrating temperature gradients in the area of interest without employing ionizing radiation. This study simulates the simultaneous effects of ionizing radiation and hyperthermia on DNA molecules using the Charlton model, which is a component of the computational tool TOPAS-nBio (based on the Geant4-DNA extension). The transport of low-energy primary X-rays and the corresponding secondary particles produced in an aqueous medium were simulated to study radiobiological damage as SSB and DSB breaks of the DNA molecule strands and, in turn, to investigate the synergistic effect of radiation and hyperthermia in the temperature range of 40 to 50 ◦C. In addition, a method for modifying the magnitude of the cross sections associated with the primary physical processes was incorporated into the simulation in order to examine its effect on the number of SSB and DSB ruptures. The results show a reasonable agreement with what has been reported in the literature, paving the way for future research | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.researcharea | Radiología | spa |
dc.format.extent | xv, 86 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/84509 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional De Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Física Médica | spa |
dc.relation.references | Academia nacional de medicina de Colombia. Historia del cáncer y el cáncer en la historia. 2020. | spa |
dc.relation.references | Recomendaciones de la comisión internacional de protección radiológica Sociedad española de protección radiológica. ICRP, page 157–178, 2007. | spa |
dc.relation.references | Sureka C.S. and Armpilia C. Radiation biology for medical physicists. Taylor & Francis 2017 | spa |
dc.relation.references | Andreo P. Burns D. Nahum A. Seuntjens J and Attix F. Fundamentals of ionizing radiation dosimetry, Wiley -vch, volume 1. 1986 | spa |
dc.relation.references | Podgorsak E.B. Radiation Oncology physics, IAEA, volume 1. 2005. | spa |
dc.relation.references | Attix F.H. Introduction to radiological physics and radiation dosimetry, Wiley -vch, volume 1. 1986. | spa |
dc.relation.references | Edited Rosalie David. Egyptian Mummies and Modern, CAMBRIDGE UNIVERSITY PRESS, 2008 | spa |
dc.relation.references | Lou C and Xing D. Temperature monitoring utilising thermoacoustic signals during pulsed microwave thermotherapy: a feasibility study, Int J Hyperthermia. 2010. | spa |
dc.relation.references | Molls M. and Scherer E. The Combination of Hyperthermia and Radiation: Clinical Investigations. In: Streffer, C. (eds) Hyperthermia and the Therapy of Malignant Tumors, Recent Results in Cancer Research. 1987 | spa |
dc.relation.references | George M. Hahn. Hyperthermia and Cancer, Plenum Press, New York. 1982. | spa |
dc.relation.references | Park H Song CW and Griffin RJ. Theoretical and experimental basis of hyperthermia, sthermotherapy for neoplasia, inflammation, and pain, springer. 2001 | spa |
dc.relation.references | Einstein. A. On the theory of light production and light absorption, annalen der phisik. 20(34):709, 1906. | spa |
dc.relation.references | Eisberg. Robert M. Fundamentos de f ́ısica moderna, Ed LIMUSA, volume 8. 1955 | spa |
dc.relation.references | Compton. A. A quantum theory of the scattering of x—rays by light elements, physica: Review. 21(5), 1923. | spa |
dc.relation.references | Andisco D. and EBuzzia Blanco A. Dosimetry in radiology, rev argent radiol. pages 114–117, 2014 | spa |
dc.relation.references | Damasio Antonio. El extra ̃no orden de las cosas, Destino. 2018. | spa |
dc.relation.references | Horton R. Laurence A. Scrimgeour K. Perry M and Rawn J. Principios de bioquimica, Pearson educacion. 2008. | spa |
dc.relation.references | Sanchez Javier and Trejo Nayeli. Biolog ́ıa celular y molecular, Alfil. 2006. | spa |
dc.relation.references | Clark David. Molecular Biology, Elsevier academic press. 2005. | spa |
dc.relation.references | Duncan W and Nias AHW. Clinical radiobiology, london, u.k.: Churchill. 1989. | spa |
dc.relation.references | Dutreics J Tubiana M and Wambersie A. Introduction to Radiobiology, London, New York, Taylor Francis. 2005. | spa |
dc.relation.references | Hildebrandt Bert. Gellermann Johanna. Riess Hanno. and Wust Peter. Cancer Manage- ment in Man: Chemotherapy, Biological Therapy, Hyperthermia and Supporting Measures, Springer. 2011. | spa |
dc.relation.references | Clifford L. K. Pang. Hyperthermia in Oncology, CRC Press Taylor Francis Group. 2016. | spa |
dc.relation.references | Wang F Head JF and Lipari CA. The important role of infrared imaging in breast cancer, ieee engineering in medicine and biology magazine. 2000 | spa |
dc.relation.references | Weiss TF. Cellular biophysics, mit press, cambridge. 1996. | spa |
dc.relation.references | Choi IB Song CW and Nah BS. Microvasculature and perfusion in normal tissues and tumors, seegenschmiedt mh, fessenden p, vernon cc. 1995. | spa |
dc.relation.references | Takana Y. Thermal responses of microcirculation and modification of tumor blood flow in treating the tumors, theoretical and experimental basis of hyperthermia. thermotherapy for neoplasia, inflammation, and pain. springer. 2001 | spa |
dc.relation.references | Szasz Andras. Szasz Nora and Szasz Oliver. Oncothermia: Principles and Practices, Series: Molecular Biology Intelligence Unit. Springer. 2011 | spa |
dc.relation.references | Keszler G. Csapo Z. Spasokoutskaja T. Hyperthermy increase the phosporylation of deoxycytidine in the membrane phospholipid precursors and decrease its incorporation into DNA, Adv Exper Med Biol. 2000. | spa |
dc.relation.references | Xu M. Wright WD. Higashikubo R. Chronic thermotolerance with continued cell prolife- ration, int j hyperthermia. 1996. | spa |
dc.relation.references | Pirity M. Hever-Szabo A and. Venetianer A. Overexpression of p-glycoprotein in heta and/or drug resistant hepatoma variants, int j hyperthermia. 1996 | spa |
dc.relation.references | Santin AD. Hermonat PL and Ravaggi A. The effects of irradiation on the expression of a tumor rejection antigen (heat shock protein gp96) in human cervical cancer, int radiatbiol. 1998. | spa |
dc.relation.references | Morgan J. Whitaker JE and Oseroff AR. Grp78 induction by calcium ionophore potentiates photodynamic therapy using the mitochondrial targeting dye victoria blue bo, photocem photobiol. 1998. | spa |
dc.relation.references | Suit Herman D. and Gerweck Leo E. Potential for hyperthermiaand radiationtherapy, cancer research 39, 2290-2298,. 1979. | spa |
dc.relation.references | Hildebrandt Bert. Wust Peter. Ahlers Olaf. Dieing Annette. Sreenivasa Geetha. Kerner Thoralf. Felix Roland and Riess Hanno. The cellular and molecular basis of hyperthermia, critical reviews in oncology/hematology 43 33–56. 2002. | spa |
dc.relation.references | De Mendoza Adriana M. Michl ́ıkov ́a So ̆na and Berger Johann. Mathematical model for the thermal enhancement of radiation response: thermodynamic approach, scientific repots. 2021 | spa |
dc.relation.references | Agostinelli S. Allison J. Amako K. Apostolakis J. Araujo H. and Arce andothers P. Geant4—a simulation toolkit. nuclear instruments and methods in physics research section a: Accelerators, spectrometers, detectors and associated equipment, geant4—a simulation toolkit. 506(3):250 – 303, 2003. | spa |
dc.relation.references | Aso Allison J. Amako, K. Apostolakis J. Arce P. Asai M. and T. Barrand G. Nuclear ins- truments and methods in physics research section a: Accelerators, spectrometers, detectors and associated equipment, recent developments in geant4. page 186–225, 2016. | spa |
dc.relation.references | Geant4 Collaboration. Geant4 user’s guide for toolkit developers. cern | spa |
dc.relation.references | Incerti S. Baldacchino G. Bernal M. Capra R. Champion C. Francias Z. Gu ́eye P. Mantero A. Mascialino B. Moretto P. Nieminen P. Villagrsa C. and Zacharatou C. Comparison of geant4 very low energy cross section models with experimental data in water, world scientific publishing company. page 157–178, 2010. | spa |
dc.relation.references | Delage E. Pham Q T. Karamitros M. Payno H. Stepan V. Incerti S. Maigne L and Perrot Y. Pdb4dna: Implementation of dna geometry from the protein data bank (pdb) description for geant4-dna monte-carlo simulations, comput phys commun. 2015. | spa |
dc.relation.references | TOPAS MCInc. TOPAS Documentation Release 3.8. 2022. | spa |
dc.relation.references | Perl J. Shin J. Schumann J. Faddegon B. and Paganetti H. Topas: An innovative proton monte carlo platform for research and clinical applications, medical physics. 39:6818, 2012 | spa |
dc.relation.references | Faddegon B. Ramos-Mendez J. Schuemann J. McNamara A. Shin J. Perl J and Paganetti H. The topas tool for particle simulation, a monte carlo simulation tool for physics, biology and clinical research, physica medica. 2020. | spa |
dc.relation.references | Dollinger Malin. Everyone’s Guide to Cancer Therapy, How Cancer Is Diagnosed, Treated, and Managed Day to Day. Kansas City, MO: Andrews McMeel Publishing. 5 edition, 2008. | spa |
dc.relation.references | Luther W.; Wazer David E Freeman Carolyn; Halperin, Edward C.; Brady. Principles and Practice of Radiation Oncology, Wolters Kluwer Health/Lippincott Williams Wilkins. 7 edition, 2019. | spa |
dc.relation.references | Charlton DE. Nikjoo H and Humm JL. Calculation of initial yields of single- and double- strand breaks in cell nuclei from electrons, protons and alpha particles, int. j. radiat. biol. 56(1), 1–19. 1989. | spa |
dc.relation.references | Tomita H. Kai M. Kusama T. and Aoki Y. Strand break formation in plasmid dna irra- diated in aqueous solution effect of medium temperature and hydroxyl radical scavenger concentration, journal of radiation research. 1995. | spa |
dc.relation.references | Ramos-Méndez José. García-García Omar. Domínguez-Kondo Jorge. LaVerne Jay A. Schuemann Jan. Moreno-Barbosa Eduardo and Faddegon Bruce. Topas-nbio simulation of temperature-dependent indirect dna strand break yields, phys med biol. 2022. | spa |
dc.relation.references | Peyrard M and Bish. Statistical mechanics of a nonlinear model for dna denaturation, physical review letters. 1989. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.decs | ADN encadenado | spa |
dc.subject.decs | DNA, Catenated | eng |
dc.subject.decs | Radiazión ionizante | spa |
dc.subject.decs | Hipertemia | spa |
dc.subject.decs | Hyperthermia | eng |
dc.subject.decs | Radiation, Ionizing | spa |
dc.subject.lemb | ADN | sps |
dc.subject.lemb | Deoxyribonucleic acid DNA | eng |
dc.subject.lemb | Radiation, Ionizing | eng |
dc.subject.proposal | Radiación ionizante | spa |
dc.subject.proposal | Hipertermia | spa |
dc.subject.proposal | Radiobiológico | spa |
dc.subject.proposal | Rupturas SSB y DSB | spa |
dc.subject.proposal | Energía | spa |
dc.subject.proposal | Simulación | spa |
dc.subject.proposal | TOPAS-nBio | spa |
dc.title | Simulación de efectos biológicos de la cadena del ADN bajo la acción simultánea de radiación ionizante e hipertermia | spa |
dc.title.translated | Simulation of biological effects of the DNA chain under the simultaneous action of ionizing radiation and hyperthermia | |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1016051175.2023.pdf
- Tamaño:
- 6.3 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Física Médica
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: