Simulación de efectos biológicos de la cadena del ADN bajo la acción simultánea de radiación ionizante e hipertermia

dc.contributor.advisorPlazas, Maria Cristina
dc.contributor.authorRodríguez Coronado, Diego Antonio
dc.date.accessioned2023-08-09T17:10:45Z
dc.date.available2023-08-09T17:10:45Z
dc.date.issued2023-08-09
dc.descriptionilustraciones, diagramasspa
dc.description.abstractLa radiación ionizante ha sido utilizada a lo largo de los años como una herramienta en la creación de prácticas sanitarias y, en especial, en tratamientos oncológicos mediante la radioterapia. Existen, sin embargo, otros tratamientos alternos como la hipertermia, que se basan en focalizar gradientes de temperatura en la región de interés sin hacer uso de la radiación ionizante. Este trabajo se centra en simular los efectos que presenta la radiación ionizante y la hipertermia aplicadas de manera simultánea en las moléculas de ADN, utilizando el modelo de Charlton incluido en la herramienta computacional conocida como TOPAS-nBio que está basada en las extensiones de Geant4-DNA. Se simuló el transporte de rayos X primarios de baja energía y las correspondientes partículas secundarias producidas en un medio acuoso, para estudiar el daño radiobiológico en forma de rupturas SSB y DSB de las hebras de la molécula de ADN y, a su vez, investigar el efecto sinérgico de radiación e hipertermia en un rango de 40 a 50 °C. Adicionalmente, se implementó en la simulación una forma de cambiar la magnitud de las secciones transversales asociadas con los procesos físicos dominantes para estudiar el impacto en el número de rupturas SSB y DSB. Los resultados evidencian un acuerdo razonable con lo reportado en la literatura, dejando abierto el camino para futuras investigaciones.spa
dc.description.abstractThroughout the years, ionizing radiation has been utilized as a tool in the development of health practices, most notably radiotherapy for the treatment of cancer. Other alternative treatments, such as hyperthermia, are based on concentrating temperature gradients in the area of interest without employing ionizing radiation. This study simulates the simultaneous effects of ionizing radiation and hyperthermia on DNA molecules using the Charlton model, which is a component of the computational tool TOPAS-nBio (based on the Geant4-DNA extension). The transport of low-energy primary X-rays and the corresponding secondary particles produced in an aqueous medium were simulated to study radiobiological damage as SSB and DSB breaks of the DNA molecule strands and, in turn, to investigate the synergistic effect of radiation and hyperthermia in the temperature range of 40 to 50 ◦C. In addition, a method for modifying the magnitude of the cross sections associated with the primary physical processes was incorporated into the simulation in order to examine its effect on the number of SSB and DSB ruptures. The results show a reasonable agreement with what has been reported in the literature, paving the way for future researcheng
dc.description.degreelevelMaestríaspa
dc.description.researchareaRadiologíaspa
dc.format.extentxv, 86 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84509
dc.language.isospaspa
dc.publisherUniversidad Nacional De Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Física Médicaspa
dc.relation.referencesAcademia nacional de medicina de Colombia. Historia del cáncer y el cáncer en la historia. 2020.spa
dc.relation.referencesRecomendaciones de la comisión internacional de protección radiológica Sociedad española de protección radiológica. ICRP, page 157–178, 2007.spa
dc.relation.referencesSureka C.S. and Armpilia C. Radiation biology for medical physicists. Taylor & Francis 2017spa
dc.relation.referencesAndreo P. Burns D. Nahum A. Seuntjens J and Attix F. Fundamentals of ionizing radiation dosimetry, Wiley -vch, volume 1. 1986spa
dc.relation.referencesPodgorsak E.B. Radiation Oncology physics, IAEA, volume 1. 2005.spa
dc.relation.referencesAttix F.H. Introduction to radiological physics and radiation dosimetry, Wiley -vch, volume 1. 1986.spa
dc.relation.referencesEdited Rosalie David. Egyptian Mummies and Modern, CAMBRIDGE UNIVERSITY PRESS, 2008spa
dc.relation.referencesLou C and Xing D. Temperature monitoring utilising thermoacoustic signals during pulsed microwave thermotherapy: a feasibility study, Int J Hyperthermia. 2010.spa
dc.relation.referencesMolls M. and Scherer E. The Combination of Hyperthermia and Radiation: Clinical Investigations. In: Streffer, C. (eds) Hyperthermia and the Therapy of Malignant Tumors, Recent Results in Cancer Research. 1987spa
dc.relation.referencesGeorge M. Hahn. Hyperthermia and Cancer, Plenum Press, New York. 1982.spa
dc.relation.referencesPark H Song CW and Griffin RJ. Theoretical and experimental basis of hyperthermia, sthermotherapy for neoplasia, inflammation, and pain, springer. 2001spa
dc.relation.referencesEinstein. A. On the theory of light production and light absorption, annalen der phisik. 20(34):709, 1906.spa
dc.relation.referencesEisberg. Robert M. Fundamentos de f ́ısica moderna, Ed LIMUSA, volume 8. 1955spa
dc.relation.referencesCompton. A. A quantum theory of the scattering of x—rays by light elements, physica: Review. 21(5), 1923.spa
dc.relation.referencesAndisco D. and EBuzzia Blanco A. Dosimetry in radiology, rev argent radiol. pages 114–117, 2014spa
dc.relation.referencesDamasio Antonio. El extra ̃no orden de las cosas, Destino. 2018.spa
dc.relation.referencesHorton R. Laurence A. Scrimgeour K. Perry M and Rawn J. Principios de bioquimica, Pearson educacion. 2008.spa
dc.relation.referencesSanchez Javier and Trejo Nayeli. Biolog ́ıa celular y molecular, Alfil. 2006.spa
dc.relation.referencesClark David. Molecular Biology, Elsevier academic press. 2005.spa
dc.relation.referencesDuncan W and Nias AHW. Clinical radiobiology, london, u.k.: Churchill. 1989.spa
dc.relation.referencesDutreics J Tubiana M and Wambersie A. Introduction to Radiobiology, London, New York, Taylor Francis. 2005.spa
dc.relation.referencesHildebrandt Bert. Gellermann Johanna. Riess Hanno. and Wust Peter. Cancer Manage- ment in Man: Chemotherapy, Biological Therapy, Hyperthermia and Supporting Measures, Springer. 2011.spa
dc.relation.referencesClifford L. K. Pang. Hyperthermia in Oncology, CRC Press Taylor Francis Group. 2016.spa
dc.relation.referencesWang F Head JF and Lipari CA. The important role of infrared imaging in breast cancer, ieee engineering in medicine and biology magazine. 2000spa
dc.relation.referencesWeiss TF. Cellular biophysics, mit press, cambridge. 1996.spa
dc.relation.referencesChoi IB Song CW and Nah BS. Microvasculature and perfusion in normal tissues and tumors, seegenschmiedt mh, fessenden p, vernon cc. 1995.spa
dc.relation.referencesTakana Y. Thermal responses of microcirculation and modification of tumor blood flow in treating the tumors, theoretical and experimental basis of hyperthermia. thermotherapy for neoplasia, inflammation, and pain. springer. 2001spa
dc.relation.referencesSzasz Andras. Szasz Nora and Szasz Oliver. Oncothermia: Principles and Practices, Series: Molecular Biology Intelligence Unit. Springer. 2011spa
dc.relation.referencesKeszler G. Csapo Z. Spasokoutskaja T. Hyperthermy increase the phosporylation of deoxycytidine in the membrane phospholipid precursors and decrease its incorporation into DNA, Adv Exper Med Biol. 2000.spa
dc.relation.referencesXu M. Wright WD. Higashikubo R. Chronic thermotolerance with continued cell prolife- ration, int j hyperthermia. 1996.spa
dc.relation.referencesPirity M. Hever-Szabo A and. Venetianer A. Overexpression of p-glycoprotein in heta and/or drug resistant hepatoma variants, int j hyperthermia. 1996spa
dc.relation.referencesSantin AD. Hermonat PL and Ravaggi A. The effects of irradiation on the expression of a tumor rejection antigen (heat shock protein gp96) in human cervical cancer, int radiatbiol. 1998.spa
dc.relation.referencesMorgan J. Whitaker JE and Oseroff AR. Grp78 induction by calcium ionophore potentiates photodynamic therapy using the mitochondrial targeting dye victoria blue bo, photocem photobiol. 1998.spa
dc.relation.referencesSuit Herman D. and Gerweck Leo E. Potential for hyperthermiaand radiationtherapy, cancer research 39, 2290-2298,. 1979.spa
dc.relation.referencesHildebrandt Bert. Wust Peter. Ahlers Olaf. Dieing Annette. Sreenivasa Geetha. Kerner Thoralf. Felix Roland and Riess Hanno. The cellular and molecular basis of hyperthermia, critical reviews in oncology/hematology 43 33–56. 2002.spa
dc.relation.referencesDe Mendoza Adriana M. Michl ́ıkov ́a So ̆na and Berger Johann. Mathematical model for the thermal enhancement of radiation response: thermodynamic approach, scientific repots. 2021spa
dc.relation.referencesAgostinelli S. Allison J. Amako K. Apostolakis J. Araujo H. and Arce andothers P. Geant4—a simulation toolkit. nuclear instruments and methods in physics research section a: Accelerators, spectrometers, detectors and associated equipment, geant4—a simulation toolkit. 506(3):250 – 303, 2003.spa
dc.relation.referencesAso Allison J. Amako, K. Apostolakis J. Arce P. Asai M. and T. Barrand G. Nuclear ins- truments and methods in physics research section a: Accelerators, spectrometers, detectors and associated equipment, recent developments in geant4. page 186–225, 2016.spa
dc.relation.referencesGeant4 Collaboration. Geant4 user’s guide for toolkit developers. cernspa
dc.relation.referencesIncerti S. Baldacchino G. Bernal M. Capra R. Champion C. Francias Z. Gu ́eye P. Mantero A. Mascialino B. Moretto P. Nieminen P. Villagrsa C. and Zacharatou C. Comparison of geant4 very low energy cross section models with experimental data in water, world scientific publishing company. page 157–178, 2010.spa
dc.relation.referencesDelage E. Pham Q T. Karamitros M. Payno H. Stepan V. Incerti S. Maigne L and Perrot Y. Pdb4dna: Implementation of dna geometry from the protein data bank (pdb) description for geant4-dna monte-carlo simulations, comput phys commun. 2015.spa
dc.relation.referencesTOPAS MCInc. TOPAS Documentation Release 3.8. 2022.spa
dc.relation.referencesPerl J. Shin J. Schumann J. Faddegon B. and Paganetti H. Topas: An innovative proton monte carlo platform for research and clinical applications, medical physics. 39:6818, 2012spa
dc.relation.referencesFaddegon B. Ramos-Mendez J. Schuemann J. McNamara A. Shin J. Perl J and Paganetti H. The topas tool for particle simulation, a monte carlo simulation tool for physics, biology and clinical research, physica medica. 2020.spa
dc.relation.referencesDollinger Malin. Everyone’s Guide to Cancer Therapy, How Cancer Is Diagnosed, Treated, and Managed Day to Day. Kansas City, MO: Andrews McMeel Publishing. 5 edition, 2008.spa
dc.relation.referencesLuther W.; Wazer David E Freeman Carolyn; Halperin, Edward C.; Brady. Principles and Practice of Radiation Oncology, Wolters Kluwer Health/Lippincott Williams Wilkins. 7 edition, 2019.spa
dc.relation.referencesCharlton DE. Nikjoo H and Humm JL. Calculation of initial yields of single- and double- strand breaks in cell nuclei from electrons, protons and alpha particles, int. j. radiat. biol. 56(1), 1–19. 1989.spa
dc.relation.referencesTomita H. Kai M. Kusama T. and Aoki Y. Strand break formation in plasmid dna irra- diated in aqueous solution effect of medium temperature and hydroxyl radical scavenger concentration, journal of radiation research. 1995.spa
dc.relation.referencesRamos-Méndez José. García-García Omar. Domínguez-Kondo Jorge. LaVerne Jay A. Schuemann Jan. Moreno-Barbosa Eduardo and Faddegon Bruce. Topas-nbio simulation of temperature-dependent indirect dna strand break yields, phys med biol. 2022.spa
dc.relation.referencesPeyrard M and Bish. Statistical mechanics of a nonlinear model for dna denaturation, physical review letters. 1989.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.decsADN encadenadospa
dc.subject.decsDNA, Catenatedeng
dc.subject.decsRadiazión ionizantespa
dc.subject.decsHipertemiaspa
dc.subject.decsHyperthermiaeng
dc.subject.decsRadiation, Ionizingspa
dc.subject.lembADNsps
dc.subject.lembDeoxyribonucleic acid DNAeng
dc.subject.lembRadiation, Ionizingeng
dc.subject.proposalRadiación ionizantespa
dc.subject.proposalHipertermiaspa
dc.subject.proposalRadiobiológicospa
dc.subject.proposalRupturas SSB y DSBspa
dc.subject.proposalEnergíaspa
dc.subject.proposalSimulaciónspa
dc.subject.proposalTOPAS-nBiospa
dc.titleSimulación de efectos biológicos de la cadena del ADN bajo la acción simultánea de radiación ionizante e hipertermiaspa
dc.title.translatedSimulation of biological effects of the DNA chain under the simultaneous action of ionizing radiation and hyperthermia
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1016051175.2023.pdf
Tamaño:
6.3 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Física Médica

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: