Variabilidad espacial de suelos afectados por sales en Zona Bananera, Magdalena

dc.contributor.advisorLoaiza Úsuga, Juan Carlos
dc.contributor.advisorRubiano Sanabria, Yolanda
dc.contributor.authorRincón Rodríguez, Cristian Andrés
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visua lizador/generarCurriculoCv.do? cod_rh=0001700554spa
dc.contributor.orcidRincón Rodríguez, Cristian Andrés [0009-0007-0628-9908]spa
dc.contributor.researchgatehttps://www.researchgate.net/profile/Cristian-Rincon-15spa
dc.coverage.regionCaribe (Región) -- Colombia
dc.date.accessioned2024-05-06T14:56:52Z
dc.date.available2024-05-06T14:56:52Z
dc.date.issued2024-04
dc.descriptionilustraciones, fotografías, mapasspa
dc.description.abstractLos suelos afectados por sales son la principal degradación en la Región Caribe Colombiana, lo cual pone en riesgo la seguridad alimentaria y la paz en nuestro país. El primer paso para poder abordar el problema es la cartografía y seguimiento de los suelos afectados por sales SAS. No obstante, los altos costos de la elaboración de mapas, debido a los análisis químicos específicos de salinidad que son requeridos y la gran área que ocupa hacen que el mapeo a nivel detallado muchas veces sea inviable. En esta investigación planteamos el uso de la Espectroscopia de Infrarrojo Cercano NIRS para la evaluación de los SAS estableciendo primero la relación suelo y paisaje en el piedemonte aluvial de la Sierra Nevada de Santa Marta, para suelos cultivados con banano en el municipio Zona Bananera. Se desarrollaron varios modelos espectrales mediante el uso de modelos de regresión y aprendizaje automático Machine Learning que permitieron evaluar la variabilidad espacial de las propiedades del suelo asociadas a la salinidad. Este trabajo se divide en dos capítulos, el primero enfocado a la relación suelo-paisaje, donde se elaboró un mapa geomorfológico y se describió un perfil de suelos por cada geoforma, para determinar así la distribución de los SAS con respecto al paisaje y las morfodinámicas que han tenido lugar sobre el suelo. Además, se usaron modelos de regresión de mínimos de cuadrados parciales PLS, PLSR y PCR para la elaboración de los modelos espectrales con el fin de predecir mediante NIRS los iones SO42-, HCO3-, CO32-, Cl-, y para los parámetros de pH y CE. Se encontraron valores de R2 significativos en su mayoría superior a 0,5, con los cuales se elaboraron los respectivos mapas y se pudo determinar la variabilidad espacial de estas propiedades y correlacionarla con los mapas obtenidos mediante los métodos convencionales. Esto evidenció una estrecha relación en geoformas asociadas a dinámicas fluvio-marinas y las sales. Por otra parte, un segundo capítulo fue enfocado al aprendizaje de máquinas con métodos supervisados y no supervisados para determinar los suelos afectados y no afectados por sales y mediante el uso de OPLS-DA, donde se obtuvo un R2 de 0,76. Además, se evaluó la variabilidad espacial de las siguientes propiedades: pH, CE, Ca2+, Mg2+, K+, Na+, RAS (Relación de Adsorción de Sodio), PSI (Porcentaje de Sodio Intercambiable) mediante el uso de la geoestadísticas, con datos obtenidos a partir de análisis de suelos de la Zona Bananera. Para esto se evaluaron distintos modelos espectrales obtenidos con herramientas de regresión como Operador de Selección y Contracción Mínima Absoluta LASSO, Componentes Principales de Regresión PCR, Regresión Parcial de Mínimos Cuadrados PLSR y Mínimos Cuadrados Parciales PLS. Obteniendo resultados aceptables para la mayoría de variables, además de mostrar la tendencia de las propiedades del suelo asociadas a las sales hacia el complejo lagunar Ciénaga Grande de Santa Marta. Este trabajo mostró el potencial de NIRS para la evaluación de SAS, como una alternativa para el mapeo de suelos en la Región Caribe Colombiana. Esto es uno de los primeros trabajos de espectroscopia en suelos afectados por sales en suelos cultivados con banano en la Zona Bananera del Magdalena, elaborando una biblioteca espectral, contribuyendo significativamente a la ciencia en el uso de sensores remotos. Además, se convierte en un aporte social pudiendo ser implantado como el punto de partida para el monitoreo de SAS en el área de estudio. (Tomado de la fuente)spa
dc.description.abstractSalts affected soils are the main degradation in the Colombian Caribbean Region, which threats food security and peace in our country. The first step to address the problem is the mapping and monitoring of salts-affected soils (SAS). However, the high costs of map production, due to specific salinity chemical analyses required and the vast area they cover, often render detailed mapping unfeasible. In this research, we propose the use of Near Infrared Spectroscopy (NIRS) for SAS evaluation, initially establishing the soil-landscape relationship in the alluvial piedmont of the Sierra Nevada de Santa Marta, for banana-cultivated soils in the Zona Bananera municipality. Several spectral models were developed using regression models and Machine Learning algorithms, allowing the assessment of spatial variability of soil properties associated with salinity. This work is divided into two chapters: the first focusing on the soil-landscape relationship, where a geomorphological map was developed, and a soil profile was described for each landform, to determine the distribution of SAS concerning landscape and soil morphodynamics. Additionally, Partial Least Squares Regression (PLS), PLS Regression (PLSR), and Principal Component Regression (PCR) models were used to develop spectral models to predict SO42-, HCO3-, CO32-, Cl- ions, pH, and EC parameters through NIRS. Significant R2 values mostly exceeding 0.5 were found, with which the respective maps were developed, determining the spatial variability of these properties and correlating them with maps obtained through conventional methods. This revealed a close relationship between landforms associated with fluvial-marine dynamics and salts. On the other hand, a second chapter focused on machine learning with supervised and unsupervised methods to determine soils affected and unaffected by salts, and through the use of OPLS-DA, an R2 of 0.76 was obtained. Additionally, the spatial variability of the following properties was evaluated: pH, EC, Ca2+, Mg2+, K+, Na+, SAR (Sodium Adsorption Ratio), ESP (Exchangeable Sodium Percentage) using geostatistics, with data obtained from soil analysis in the Zona Bananera. For this, different spectral models obtained with regression tools such as Least Absolute Shrinkage and Selection Operator (LASSO), Principal Component Regression (PCR), Partial Least Squares Regression (PLSR), and Partial Least Squares (PLS) were evaluated. Acceptable results were obtained for most variables, in addition to showing the trend of soil properties associated with salts towards the Ciénaga Grande de Santa Marta lagoon complex. This work demonstrated the potential of NIRS for SAS evaluation as an alternative for soil mapping in the Colombian Caribbean Region. This is one of the first spectroscopy research on salts affected soil in banana-cultivated soils in the Magdalena Banana Zone, compiling a spectral library, significantly contributing to science in remote sensing use. Additionally, it becomes a social contribution that could be implemented as the starting point for SAS monitoring in the study area.eng
dc.description.curricularareaCiencias Naturales.Sede Medellínspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Geomorfología y Suelosspa
dc.format.extent85 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86023
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Geomorfología y Suelosspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAbdennour, M. A., Douaoui, A., Bradai, A., Bennacer, A., & Pulido Fernández, M. (2019). Application of kriging techniques for assessing the salinity of irrigated soils: the case of El Ghrous perimeter, Biskra, Algeria. Spanish Journal of Soil Science, 9. https://doi.org/10.3232/SJSS.2019.V9.N2.04spa
dc.relation.referencesAgudelo, L. (2011). La industria bananera y el inicio de los conflictos sociales del siglo XX. Credencial historia, Rev. Credencial, no. 258.spa
dc.relation.referencesAllbed, A., Kumar, L., & Aldakheel, Y. Y. (2014). Assessing soil salinity using soil salinity and vegetation indices derived from IKONOS high-spatial resolution imageries: Applications in a date palm dominated region. Geoderma, 230–231, 1–8. https://doi.org/10.1016/j.geoderma.2014.03.025spa
dc.relation.referencesBarreto Filho, F. L., Guerra, H. O. C., & Gheyi, H. R. (2003). Conductividad hidráulica en un suelo aluvial en respuesta al porcentaje de sodio intercambiable. Revista Brasileira de Engenharia Agrícola e Ambiental, 7(2), 403–407. https://doi.org/10.1590/S1415-43662003000200037spa
dc.relation.referencesBarreto, A. C., Ferreira Neto, M., Oliveira, R. P. de, Moreira, L. C. J., Medeiros, J. F. de, & Sá, F. V. da S. (2023). Comparative analysis of spectral indexes for soil salinity mapping in irrigated areas in a semi-arid region, Brazil. Journal of Arid Environments, 209, 104888. https://doi.org/10.1016/j.jaridenv.2022.104888spa
dc.relation.referencesBastidas-obando, E. (2010). Caracterización espectral y mineralógica de los suelos del valle del río Cauca por espectroscopía visible e infrarroja (400 - 2.500 nm). Agronomía Colombiana, 28(2), 291–301.spa
dc.relation.referencesBernal, G. (2016). Caracterización geomorfológica de la llanura deltaica del rio magdalena con énfasis en el sistema lagunar de la ciénaga grande de santa marta, Colombia. Bulletin of Marine and Coastal Research, 25. https://doi.org/10.25268/bimc.invemar.1996.25.0.369spa
dc.relation.referencesBernal, G., & Betancur, J. (2016). Sedimentología de lagunas costeras: ciénaga grande de santa marta y ciénaga de pajarales. Bulletin of Marine and Coastal Research, 25. https://doi.org/10.25268/bimc.invemar.1996.25.0.370spa
dc.relation.referencesBilgili, A. V., Cullu, M. A., van Es, H., Aydemir, A., & Aydemir, S. (2011). The Use of Hyperspectral Visible and Near Infrared Reflectance Spectroscopy for the Characterization of Salt-Affected Soils in the Harran Plain, Turkey. Arid Land Research and Management, 25(1), 19–37. https://doi.org/10.1080/15324982.2010.528153spa
dc.relation.referencesBressler, E., Carter, D. L., & McNeal, B. L. (1982). Saline and sodic soils: principles, dynamics, modeling. Springer-Verlag.spa
dc.relation.referencesBuol, S., Southard, R., & Graham, R. (2011). Soil Genesis and Classification Sixth Edition (J. W. & Sons (Ed.)).spa
dc.relation.referencesCamacho-Tamayo, J. H., Forero-Cabrera, N. M., Ramírez-López, L., & Rubiano, Y. (2017). Near-infrared spectroscopic assessment of soil texture in an oxisol of the eastern plains of Colombia. Colombia Forestal, 20(1), 5–18. https://doi.org/10.14483/udistrital.jour.colomb.for.2017.1.a01spa
dc.relation.referencesCambou, A., Barthès, B. G., Moulin, P., Chauvin, L., Faye, E. H., Masse, D., Chevallier, T., & Chapuis-Lardy, L. (2022). Prediction of soil carbon and nitrogen contents using visible and near infrared diffuse reflectance spectroscopy in varying salt-affected soils in Sine Saloum (Senegal). Catena, 212, 106075. https://doi.org/10.1016/j.catena.2022.106075spa
dc.relation.referencesCase, I. E., & Macdonald, W. D. (1973). Regional Gravity Anomalies and Crustal Structure in Northern Colombia. Geological Society of America Bulletin, 84(9), 2905. https://doi.org/10.1130/0016-7606(1973)84<2905:RGAACS>2.0.CO;2spa
dc.relation.referencesda Silva, R. B., Rosa, J. S., Packer, A. P., Bento, C. B., & de Melo Silva, F. A. (2022). A soil quality physical–chemical approach 30 years after land-use change from forest to banana plantation. Environmental Monitoring and Assessment, 194(7), 482. https://doi.org/10.1007/s10661-022-10167-9spa
dc.relation.referencesDamodaran, T., Mishra, V. K., Sharma, D. K., Jha, S. K., Verma, C. L., Rai, R. B., Kannan, R., Nayak, A. K., Dhama, K., Of, M., For, S. S., Banana, S., & In, P. (2013). Management of sub-soil sodicity for sustainable banana production in sodic soil-an approach. Int. J. Curr. Res, 5(7), 1930–1934.spa
dc.relation.referencesDe Maesschalck, R., Jouan-Rimbaud, D., & Massart, D. L. (2000). The Mahalanobis distance. Chemometrics and Intelligent Laboratory Systems, 50(1), 1–18. https://doi.org/10.1016/S0169-7439(99)00047-7spa
dc.relation.referencesDelgadillo-Duran, D. A., Vargas-García, C. A., Varón-Ramírez, V. M., Calderón, F., Montenegro, A. C., & Reyes-Herrera, P. H. (2022). Vis–NIR spectroscopy and machine learning methods to diagnose chemical properties in Colombian sugarcane soils. Geoderma Regional, 31, e00588. https://doi.org/10.1016/j.geodrs.2022.e00588spa
dc.relation.referencesEl-Fadel, M., Deeb, T., Alameddine, I., Zurayk, R., & Chaaban, J. (2018). Impact of groundwater salinity on agricultural productivity with climate change implications. International Journal of Sustainable Development and Planning, 13(03), 445–456. https://doi.org/10.2495/SDP-V13-N3-445-456spa
dc.relation.referencesEriksson, L. E. Johansson, N. Kettaneh-Wold, J. Trygg, C. W. y S. W. (2006). Multi- and megavariate data analysis : Part I: Basic principles and applications (U. A. Umeå (Ed.)).spa
dc.relation.referencesESA, (2012). Sentinel-2 MSI User Guide, European Space Agency (ESA), ttps://sentinels.copernicus.eu/web/sentinel/ user-guides/sentinel-2-msi.spa
dc.relation.referencesEspinal, L.S. (1991) Apuntes ecológicos, Departamento de Ciencias de la Tierra, Universidad Nacional de Colombia, Sede Medellín, Medellín: Editorial Lealon,spa
dc.relation.referencesFanning, D.S; Fanning, M. C. B. (1989). Soil morphology & genesis classification. John Wiley and Sons Inc.spa
dc.relation.referencesFernández-Buces, N., Siebe, C., Cram, S., & Palacio, J. L. (2006). Mapping soil salinity using a combined spectral response index for bare soil and vegetation: A case study in the former lake Texcoco, Mexico. Journal of Arid Environments, 65(4), 644–667. https://doi.org/10.1016/j.jaridenv.2005.08.005spa
dc.relation.referencesFerreira, R. de A., Teixeira, G., & Peternelli, L. A. (2022). Kennard-Stone method outperforms the Random Sampling in the selection of calibration samples in SNPs and NIR data. Ciência Rural, 52(5). https://doi.org/10.1590/0103-8478cr20201072spa
dc.relation.referencesGómez, J., Montes, N.E. (2020). Mapa Geológico de Colombia 2020. Escala 1:1 000 000. Servicio Geológico Colombiano (p. 2). https://www2.sgc.gov.co/MGC/Documents/MGC_2020/mgc2020.pdfHaqspa
dc.relation.referencesGozukara, G., Altunbas, S., Dengiz, O., & Adak, A. (2022). Assessing the effect of soil to water ratios and sampling strategies on the prediction of EC and pH using pXRF and Vis-NIR spectra. Computers and Electronics in Agriculture, 203, 107459. https://doi.org/10.1016/j.compag.2022.107459spa
dc.relation.referencesHaq, Y. ul, Shahbaz, M., Asif, H. M. S., Al-Laith, A., & Alsabban, W. H. (2023). Spatial Mapping of Soil Salinity Using Machine Learning and Remote Sensing in Kot Addu, Pakistan. Sustainability, 15(17), 12943. https://doi.org/10.3390/su151712943spa
dc.relation.referencesHe, Y., Huang, M., García, A., Hernández, A., & Song, H. (2007). Prediction of soil macronutrients content using near-infrared spectroscopy. Computers and Electronics in Agriculture, 58(2), 144–153. https://doi.org/10.1016/j.compag.2007.03.011spa
dc.relation.referencesHerczeg, A. L., Torgersen, T., Chivas, A. R., & Habermehl, M. A. (1991). Geochemistry of ground waters from the Great Artesian Basin, Australia. Journal of Hydrology, 126(3–4), 225–245. https://doi.org/10.1016/0022-1694(91)90158-Espa
dc.relation.referencesHou, J., & Rusuli, Y. (2023). Estimation of soil salt content in the Bosten Lake watershed, Northwest China based on a support vector machine model and optimal spectral indices. PLOS ONE, 18(2), e0273738. https://doi.org/10.1371/journal.pone.0273738spa
dc.relation.referencesIDEAM, 2017.Mapa nacional de degradación de suelos por salinización, Bogotá: IDEAM, Grupo de Suelos y Tierras, Subdirección de Ecosistemas e Información Ambiental,spa
dc.relation.referencesIGAC. (2009). Estudio General de Suelos y Zonificación de Tierras: Departamento de Magdalena, escala 1:100.000 (Imprenta nacional de Colombia (Ed.)).spa
dc.relation.referencesIGAC. (2018). Sistema de Clasificación Geomorfológica Aplicado a los Levantamientos de Suelos (Imprenta N).spa
dc.relation.referencesIUSS Working Group WRB. 2022. World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps. 4th edition. International Union of Soil Sciences (IUSS), Vienna, Austria.spa
dc.relation.referencesJia, P., Zhang, J., He, W., Hu, Y., Zeng, R., Zamanian, K., Jia, K., & Zhao, X. (2022). Combination of Hyperspectral and Machine Learning to Invert Soil Electrical Conductivity. Remote Sensing, 14(11), 2602. https://doi.org/10.3390/rs14112602spa
dc.relation.referencesJin, X., Du, J., Liu, H., Wang, Z., & Song, K. (2016). Remote estimation of soil organic matter content in the Sanjiang Plain, Northest China: The optimal band algorithm versus the GRA-ANN model. Agricultural and Forest Meteorology, 218–219, 250–260. https://doi.org/10.1016/j.agrformet.2015.12.062spa
dc.relation.referencesJinfu, Z., Kelong, C., Shengkui, C., Liang, C., Yanpeng, W., Baoliang, L., & Yongsheng, W. (2011). Spatial Variability Analysis of Soil Salt and Its Component Ions in Qinghai Lake Region. Procedia Environmental Sciences, 10, 2431–2436. https://doi.org/10.1016/j.proenv.2011.09.378spa
dc.relation.referencesJohnston, K., Ver Hoef, J. M., Krivoruchko, K., & Lucas, N. (2001). Using ArcGIS geostatistical analyst (Vol. 380). Redlands: Esri.spa
dc.relation.referencesLaga, I., & Kleiber, W. (2017). The modified Matérn process. Stat, 6(1), 241–247. https://doi.org/10.1002/sta4.152spa
dc.relation.referencesLao, C., Chen, J., Zhang, Z., Chen, Y., Ma, Y., Chen, H., Gu, X., Ning, J., Jin, J., & Li, X. (2021). Predicting the contents of soil salt and major water-soluble ions with fractional-order derivative spectral indices and variable selection. Computers and Electronics in Agriculture, 182, 106031. https://doi.org/10.1016/j.compag.2021.106031spa
dc.relation.referencesLi, J., Pu, L., Han, M., Zhu, M., Zhang, R., & Xiang, Y. (2014). Soil salinization research in China: Advances and prospects. Journal of Geographical Sciences, 24(5), 943–960. https://doi.org/10.1007/s11442-014-1130-2spa
dc.relation.referencesLi, J., Pu, L., Zhu, M., Zhang, J., Li, P., Dai, X., Xu, Y., & Liu, L. (2014). Evolution of soil properties following reclamation in coastal areas: A review. Geoderma, 226–227, 130–139. https://doi.org/10.1016/j.geoderma.2014.02.003spa
dc.relation.referencesLi, Y., Yang, J., Yu, M., Zhao, W., Xiao, Y., Zhou, D., Zhan, C., Yu, Y., Zhang, J., Lv, Z., & Yu, J. (2019). Different effects of NaCl and Na2SO4 on the carbon mineralization of an estuarine wetland soil. Geoderma, 344, 179–183. https://doi.org/10.1016/j.geoderma.2019.02.035spa
dc.relation.referencesLin, H. (2011). Three Principles of Soil Change and Pedogenesis in Time and Space. Soil Science Society of America Journal, 75(6), 2049–2070. https://doi.org/10.2136/sssaj2011.0130spa
dc.relation.referencesLondoño Ardila, J. H. (2017). Suelos afectados por sales en la zona bananera de Santa Marta. Universidad Nacional de Colombia, Sede Medellín.spa
dc.relation.referencesLR, (2020) Sector bananero genera 50.000 empleos según el presidente de ASBAMA, in Agronegocios, Bogotá: Editorial la República,spa
dc.relation.referencesMa, Y., Chen, H., Zhao, G., Wang, Z., & Wang, D. (2020). Spectral Index Fusion for Salinized Soil Salinity Inversion Using Sentinel-2A and UAV Images in a Coastal Area. IEEE Access, 8, 159595–159608. https://doi.org/10.1109/ACCESS.2020.3020325spa
dc.relation.referencesMaertens, M., De Lannoy, G. J. M., Vincent, F., Massart, S., Giménez, R., Houspanossian, J., Gasparri, I., & Vanacker, V. (2022). Spatial patterns of soil salinity in the central Argentinean Dry Chaco. Anthropocene, 37, 100322. https://doi.org/10.1016/j.ancene.2022.100322spa
dc.relation.referencesMahajan, G. R., Das, B., Gaikwad, B., Murgaonkar, D., Desai, A., Morajkar, S., Patel, K. P., & Kulkarni, R. M. (2021). Monitoring properties of the salt-affected soils by multivariate analysis of the visible and near-infrared hyperspectral data. Catena, 198, 105041. https://doi.org/10.1016/j.catena.2020.105041spa
dc.relation.referencesMelendez-Pastor, I., Navarro-Pedreño, J., Koch, M., & Gómez, I. (2010). Applying imaging spectroscopy techniques to map saline soils with ASTER images. Geoderma, 158(1–2), 55–65. https://doi.org/10.1016/j.geoderma.2010.02.015spa
dc.relation.referencesMetternicht, G., & Alfred Zinck, J. (2008). Soil Salinity and Salinization Hazard. In Remote Sensing of Soil Salinization (Issue December). https://doi.org/10.1201/9781420065039.pt1spa
dc.relation.referencesMetternicht, G., & Zinck, A. (2009). Remote sensing of soil salinization: Impact on land management. CRC Pressspa
dc.relation.referencesMevik, B. H., Wehrens, R., Liland, K. H., & Hiemstra, P. (2016). Rpackage: pls, Partial Least Squares and Principal Component Regression. R Package version, 2.spa
dc.relation.referencesMiloš, B., Bensa, A., & Japundžić-Palenkić, B. (2022). Evaluation of Vis-NIR preprocessing combined with PLS regression for estimation soil organic carbon, cation exchange capacity and clay from eastern Croatia. Geoderma Regional, 30, e00558. https://doi.org/10.1016/j.geodrs.2022.e00558spa
dc.relation.referencesMinasny, B., & McBratney, A. B. (2006). A conditioned Latin hypercube method for sampling in the presence of ancillary information. Computers & Geosciences, 32(9), 1378–1388. https://doi.org/10.1016/j.cageo.2005.12.009spa
dc.relation.referencesMohamed, E. S., Saleh, A. M., Belal, A. B., & Gad, A. (2018). Application of near-infrared reflectance for quantitative assessment of soil properties. The Egyptian Journal of Remote Sensing and Space Science, 21(1), 1–14. https://doi.org/10.1016/j.ejrs.2017.02.001spa
dc.relation.referencesMorales, G. M.-A. (2009). La regresión por mínimos cuadrados parciales: orígenes y evolución. Historia de la Probabilidad y la Estadística (IV). Universidad Complutense de Madrid.spa
dc.relation.referencesMouazen, A. M., Kuang, B., De Baerdemaeker, J., & Ramon, H. (2010). Comparison among principal component, partial least squares and back propagation neural network analyses for accuracy of measurement of selected soil properties with visible and near infrared spectroscopy. Geoderma, 158(1–2), 23–31. https://doi.org/10.1016/j.geoderma.2010.03.001spa
dc.relation.referencesNeira F., Sanchez R., Otero J., Marroquin P., Gama D., F. M. (2021). National study of soil degradation by salinization in Colombia. in: Halt soil salinization, boost soil productivity – Proceedings of the Global Symposium on Salt-affected Soils. 20 – 22 October 2021. FAO. Rome. p 84 - 85. https://doi.org/10.4060/cb9565enGlobal FAOspa
dc.relation.referencesNinomiya, Y. (2002). Mapping quartz, carbonate minerals, and mafic-ultramafic rocks using remotely sensed multispectral thermal infrared ASTER (X. P. Maldague & A. E. Rozlosnik (Eds.); pp. 191–202). https://doi.org/10.1117/12.459566spa
dc.relation.referencesOlivares Campos, B. O. (2023). Evaluation of the Incidence of Banana Wilt and its Relationship with Soil Properties (pp. 95–117). https://doi.org/10.1007/978-3-031-34475-6_4spa
dc.relation.referencesOmuto, C.T., Vargas, R.R., El Mobarak, A.M., Mohamed, N., Viatkin, K., Yigini Y. (2020). Mapping of salt-affected soils: Technical manual. Rome, FAO https://doi.org/10.4060/ca9215enspa
dc.relation.referencesOtero, J., Gómez, C., & Sánchez, R. (2002). Zonificación de los procesos de salinización de los suelos de Colombia (Subdirección). IDEAM.spa
dc.relation.referencesPanagopoulos, T., Jesus, J., Antunes, M. D. C., & Beltrão, J. (2006). Analysis of spatial interpolation for optimising management of a salinized field cultivated with lettuce. European Journal of Agronomy, 24(1), 1–10. https://doi.org/10.1016/j.eja.2005.03.001spa
dc.relation.referencesPeng, J., Ji, W., Ma, Z., Li, S., Chen, S., Zhou, L., & Shi, Z. (2016). Predicting total dissolved salts and soluble ion concentrations in agricultural soils using portable visible near-infrared and mid-infrared spectrometers. Biosystems Engineering, 152, 94–103. https://doi.org/10.1016/j.biosystemseng.2016.04.015spa
dc.relation.referencesPessoa, L. G. M., Freire, M. B. G. dos S., Green, C. H. M., Miranda, M. F. A., Filho, J. C. de A., & Pessoa, W. R. L. S. (2022). Assessment of soil salinity status under different land-use conditions in the semiarid region of Northeastern Brazil. Ecological Indicators, 141, 109139. https://doi.org/10.1016/j.ecolind.2022.109139spa
dc.relation.referencesPla, I. (2014). Nuevas experiencias en la evaluación y diagnóstico de procesos de salinización y sodificación de suelos en américa latina. Suelos Ecuatoriales, 44, 125–137. https://doi.org/10.47864spa
dc.relation.referencesPla, Sentís, I. (2014). Advances in the prognosis of soil sodicity under dryland irrigated conditions. International Soil and Water Conservation Research, 2(4), 50–63. https://doi.org/10.1016/S2095-6339(15)30058-7spa
dc.relation.referencesPla, I. (1996). Soil salinization and land desertification. soil degradation and desertification in mediterranean environments. 105-129spa
dc.relation.referencesRamirez Lopez, L., Stevens, A., Orellano, C., Viscarra Rossel, R., Shen, Z., Wadoux, A., Breure, T. (2023). resemble: Regression and similarity evaluation for memory-based learning in spectral chemometrics. R package version 2.2.2, https://CRAN.R-project.org/package=resemble.spa
dc.relation.referencesRamírez, P. B., Calderón, F. J., Jastrow, J. D., Ping, C.-L., & Matamala, R. (2023). Applying NIR and MIR spectroscopy for C and soil property prediction in northern cold-region ecosystems. Which approach works better? Geoderma Regional, 32, e00617. https://doi.org/10.1016/j.geodrs.2023.e00617spa
dc.relation.referencesRamirez-Lopez, L., Behrens, T., Schmidt, K., Rossel, R. A. V., Demattê, J. A. M., & Scholten, T. (2013). Distance and similarity-search metrics for use with soil vis–NIR spectra. Geoderma, 199, 43–53. https://doi.org/10.1016/j.geoderma.2012.08.035spa
dc.relation.referencesRavi, I., & Vaganan, M. M. (2016). Abiotic Stress Tolerance in Banana. In Abiotic Stress Physiology of Horticultural Crops (pp. 207–222). Springer India. https://doi.org/10.1007/978-81-322-2725-0_12spa
dc.relation.referencesRawat, J. S., & Kumar, M. (2015). Monitoring land use/cover change using remote sensing and GIS techniques: A case study of Hawalbagh block, district Almora, Uttarakhand, India. The Egyptian Journal of Remote Sensing and Space Science, 18(1), 77–84. https://doi.org/10.1016/j.ejrs.2015.02.002spa
dc.relation.referencesRincon-Rodriguez, C.A., Loaiza-Usuga, J.C., and Rubiano-Sanabria, Y., (2021).Preliminary study of Salt affected soils in the Zona Bananera, Magdalena (Colombia), Proc.Global Symp. on Salt Afected Soils, Oct. 20–22, 2021, Global Soil Partnership, FAO,.https://www.fao.org/fileadmin/user_upload/GSP/GSAS21/069.pdf.spa
dc.relation.referencesRincón, C. A., Loaiza-Usuga, J. C., Rubiano, Y., Castañeda, D. (2023). Use of NIRS in Soil Properties Evaluation Related to Soil Salinity and Sodicity in Colombian Caribbean Coast. Moscow University Soil Science Bulletin. 78(5), 439-450.spa
dc.relation.referencesRStudio Team, RStudio (2020): Integrated Development for R. RStudio, Boston, MA: PBC. http://www.rstudio.com/.spa
dc.relation.referencesSantos, C. R. C. dos, Matsunaga, A. T., Costa, L. R. R., Santos, M. L. dos, Brasil Neto, A. B., Rodrigues, R. P., Maciel, M. de N. M., & Melo, V. S. de. (2023). Spatial variability of soil fertility under agroforestry system and native forest in eastern Amazonia, Brazil. Bioscience Journal, 39, e39015. https://doi.org/10.14393/BJ-v39n0a2023-62830spa
dc.relation.referencesSavitzky, A., & Golay, M. J. E. (1964). Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Analytical Chemistry, 36(8), 1627–1639. https://doi.org/10.1021/ac60214a047spa
dc.relation.referencesSoil Science Division Staff. (2017) Soil survey manual, USDA. Handbook 18, Washington, D.C., C. Ditzler, K.spa
dc.relation.referencesSoil Survey Staff. (2022a). Keys to Soil Taxonomy, 13th edition. USDA Natural Resources Conservation Service.spa
dc.relation.referencesSoil Survey Staff. 2022. Kellogg Soil Survey Laboratory methods manual. Soil Survey Investigations Report No. 42, Version 6.0. U.S. Department of Agriculture, Natural Resources Conservation Service.spa
dc.relation.referencesStrauss, T., & von Maltitz, M. J. (2017). Generalising Ward’s Method for Use with Manhattan Distances. PLOS ONE, 12(1), e0168288. https://doi.org/10.1371/journal.pone.0168288spa
dc.relation.referencesSuleymanov, A., Gabbasova, I., Abakumov, E., & Kostecki, J. (2021). Soil salinity assessment from satellite data in the Trans-Ural steppe zone (Southern Ural, Russia). Soil Science Annual. https://doi.org/10.37501/soilsa/132233spa
dc.relation.referencesTaleisnik, E., & Lavado, R. S. (Eds.). (2021). Saline and Alkaline Soils in Latin America. Springer International Publishing. https://doi.org/10.1007/978-3-030-52592-7spa
dc.relation.referencesTian, A., Zhao, J., Fu, C., & Xiong, H. (2022). Estimation of SO42− ion in saline soil using VIS-NIR spectroscopy under different human activity stress. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 282, 121647. https://doi.org/10.1016/j.saa.2022.121647spa
dc.relation.referencesTibshirani, R. (1996). Regression Shrinkage and Selection Via the Lasso. Journal of the Royal Statistical Society: Series B (Methodological), 58(1), 267–288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.xspa
dc.relation.referencesUbugunov, L. L., & Ubugunova, V. I. (2011). Floodplain soils in the lower reaches of the Khovd River in the Great Lakes Basin of Mongolia. Eurasian Soil Science, 44(11), 1184–1192. https://doi.org/10.1134/S106422931111007Xspa
dc.relation.referencesUrrego, L. E., Correa-Metrio, A., González, C., Castaño, A. R., & Yokoyama, Y. (2013). Contrasting responses of two Caribbean mangroves to sea-level rise in the Guajira Peninsula (Colombian Caribbean). Palaeogeography, Palaeoclimatology, Palaeoecology, 370, 92–102. https://doi.org/10.1016/j.palaeo.2012.11.023spa
dc.relation.referencesU.S. Salinity Laboratory Staff. (1954). Diagnosis and improvement of saline and alkali soils. USDA Agricultural Handbook No. 60. U.S. Government Printing Officespa
dc.relation.referencesVelásquez, E., Lavelle, P., Barrios, E., Joffre, R., & Reversat, F. (2005). Evaluating soil quality in tropical agroecosystems of Colombia using NIRS. Soil Biology and Biochemistry, 37(5), 889–898. https://doi.org/10.1016/j.soilbio.2004.09.009spa
dc.relation.referencesVelez, M. I., Escobar, J., Brenner, M., Rangel, O., Betancourt, A., Jaramillo, A. J., Curtis, J. H., & Moreno, J. L. (2014). Middle to late Holocene relative sea level rise, climate variability and environmental change along the Colombian Caribbean coast. The Holocene, 24(8), 898–907. https://doi.org/10.1177/0959683614534740spa
dc.relation.referencesVoigt, C., Klipsch, S., Herwartz, D., Chong, G., & Staubwasser, M. (2020). The spatial distribution of soluble salts in the surface soil of the Atacama Desert and their relationship to hyperaridity. Global and Planetary Change, 184, 103077. https://doi.org/10.1016/j.gloplacha.2019.103077spa
dc.relation.referencesWackernagel, H. (1995). Ordinary Kriging. In Multivariate Geostatistics (pp. 74–81). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-03098-1_11spa
dc.relation.referencesWan, M., Qu, M., Hu, W., Li, W., Zhang, C., Cheng, H., & Huang, B. (2019). Estimation of soil pH using PXRF spectrometry and Vis-NIR spectroscopy for rapid environmental risk assessment of soil heavy metals. Process Safety and Environmental Protection, 132, 73–81. https://doi.org/10.1016/j.psep.2019.09.025spa
dc.relation.referencesWang, L., & Wang, R. (2022). Determination of soil pH from Vis-NIR spectroscopy by extreme learning machine and variable selection: A case study in lime concretion black soil. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 283, 121707. https://doi.org/10.1016/j.saa.2022.121707spa
dc.relation.referencesWang, Q., Li, P., & Chen, X. (2012). Modeling salinity effects on soil reflectance under various moisture conditions and its inverse application: A laboratory experiment. Geoderma, 170, 103–111. https://doi.org/10.1016/j.geoderma.2011.10.015spa
dc.relation.referencesWold, S., & Sjöström, M. (1977). SIMCA: A Method for Analyzing Chemical Data in Terms of Similarity and Analogy (pp. 243–282). https://doi.org/10.1021/bk-1977-0052.ch012spa
dc.relation.referencesYang, F., Zhang, G.-L., Sauer, D., Yang, F., Yang, R.-M., Liu, F., Song, X.-D., Zhao, Y.-G., Li, D.-C., & Yang, J.-L. (2020). The geomorphology – sediment distribution – soil formation nexus on the northeastern Qinghai-Tibetan Plateau: Implications for landscape evolution. Geomorphology, 354, 107040. https://doi.org/10.1016/j.geomorph.2020.107040spa
dc.relation.referencesYudina, A., & Kuzyakov, Y. (2023). Dual nature of soil structure: The unity of aggregates and pores. Geoderma, 434, 116478. https://doi.org/10.1016/j.geoderma.2023.116478spa
dc.relation.referencesZapata, R. (2022). Los procesos químicos del suelo. Facultad de Ciencias Universidad Nacional de Colombia.spa
dc.relation.referencesZeaiter, M., & Rutledge, D. (2009). Preprocessing Methods. In Comprehensive Chemometrics (pp. 121–231). Elsevier. https://doi.org/10.1016/B978-044452701-1.00074-0spa
dc.relation.referencesZhou, Y., Chen, S., Hu, B., Ji, W., Li, S., Hong, Y., Xu, H., Wang, N., Xue, J., Zhang, X., Xiao, Y., & Shi, Z. (2022). Global Soil Salinity Prediction by Open Soil Vis-NIR Spectral Library. Remote Sensing, 14(21), 5627. https://doi.org/10.3390/rs14215627spa
dc.relation.referencesZinck, J. A. (1987). Aplicación de la geomorfología al levantamiento de suelos en zonas aluviales y definición del ambiente geomorfológico con fines de descripción de suelos.spa
dc.relation.referencesZinck, J. A. (1988). Physiography and Soils. In International Institute for Geoinformation Science and Earth Observation (ITC) (Internatio). https://webapps.itc.utwente.nl/librarywww/papers_1989/tech/zinck_phy.pdfspa
dc.relation.referencesZinck, J. A., Metternicht, G., Bocco, G., & Del Valle, H. F. (Eds.). (2016). Geopedology. Springer International Publishing. https://doi.org/10.1007/978-3-319-19159-1spa
dc.relation.referencesZontov, Y. V., Rodionova, O. Y., Kucheryavskiy, S. V., & Pomerantsev, A. L. (2020). PLS-DA – A MATLAB GUI tool for hard and soft approaches to partial least squares discriminant analysis. Chemometrics and Intelligent Laboratory Systems, 203, 104064. https://doi.org/10.1016/j.chemolab.2020.104064spa
dc.relation.referencesZovko, M., Romić, D., Colombo, C., Di Iorio, E., Romić, M., Buttafuoco, G., & Castrignanò, A. (2018). A geostatistical Vis-NIR spectroscopy index to assess the incipient soil salinization in the Neretva River valley, Croatia. Geoderma, 332, 60–72. https://doi.org/10.1016/j.geoderma.2018.07.005spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc630 - Agricultura y tecnologías relacionadasspa
dc.subject.lembZonas de cultivo - Caribe (Región) - Colombia
dc.subject.lembBanano - Industria - Caribe (Región) - Colombia
dc.subject.lembCultivos - Efectos de la sal - Caribe (Región) - Colombia
dc.subject.lembDegradación del suelo - Caribe (Región) - Colombia
dc.subject.lembEspectroscopia de Infrarrojos
dc.subject.proposalSuelos afectados por salesspa
dc.subject.proposalEspectroscopia de Infrarrojo Cercanospa
dc.subject.proposalCultivo de bananospa
dc.subject.proposalVariabilidad espacialspa
dc.subject.proposalSalts Affected Soilseng
dc.subject.proposalNear Infrared Spectroscopyeng
dc.subject.proposalBanana plantationseng
dc.subject.proposalSpatial variabilityeng
dc.titleVariabilidad espacial de suelos afectados por sales en Zona Bananera, Magdalenaspa
dc.title.translatedSpatial variability of salt-affected soil in Zona Bananera, Magdalenaeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1082987155_2024.pdf
Tamaño:
2.94 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Geomorfología y Suelos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: