Estudio de las propiedades estructurales, eléctricas y magnéticas en materiales de tipo perovskita A2BB'O6

dc.contributor.advisorRoa Rojas, Jairospa
dc.contributor.authorVilla Hernández, Jorge Ignaciospa
dc.contributor.researchgroupGrupo de Física de Nuevos Materialesspa
dc.date.accessioned2021-01-25T11:48:53Zspa
dc.date.available2021-01-25T11:48:53Zspa
dc.date.issued2020-12-09spa
dc.description.abstractMaterials belonging to the A2BWO6 and A2BVO6 families have shown interesting electrical and magnetic properties that may be applied to spintronics and fuel cell cathodes. The main motivation of this thesis is to synthesize and characterize materials with double perovskite type structure, especially the materials Sr2−xLaxNiWO6 (0 ≤ x ≤ 0, 15), Sr2FeWO6, Sr2CoWO6, LaFe0,5V0,5O3 y LaCo0,5V0,5O3, in order to evaluate its structural, morphological and magnetic properties. These materials were synthesized by means of the assisted gel combustion method, an unexplored synthesis method for this type of materials, which showed advantages over con-ventional synthesis methods such as the solid-state reaction method. The structural characteri-zations of the materials were carried out through X-ray diffraction (DRX), in some cases taking synchrotron data and implementing Rietveld refinements to the obtained diffraction patterns. The materials Sr2NiWO6 and Sr2CoWO6 crystallized in a tetragonal structure with a space group I4/m, while the material Sr2FeWO6 crystallized in a monoclinic structure with a space group P 21/n. The materials LaCo0.5V0.5O3 and LaFe0.5V0.5O3 crystallized into orthorhombic structures with space groups P nma and P nm, respectively. The morphological properties were determined through the Scanning Electron Microscopy technique (SEM), obtaining several mi-crographs, which allowed to determine average grain sizes in the range of ≈ 80 nm −270 nm for samples with granular structure. Magnetic susceptibility curves as a function of temperature and magnetization as a function of the external magnetic field applied were used to determine the magnetic properties. It was found that the antiferromagnetic response was characteristic for every material under study. However for the materials Sr2−xLaxNiWO6 and LaFe0.5V0.5O3, small ferromagnetic contributions were observed, while for the material LaCo0.5V0.5O3, a ferri-magnetic behavior is presented to temperatures below 150 K. Additionally, for the materials Sr2−xLaxNiWO6 Exchange Bias is presented, possibly associated with the Ni and W ions inter-actions that occur in the structure with different valences, as a result of the inclusion of trivalent ions of lanthanum. Thus, these results motivate research on this type of materials in order to determine their potential application as fuel cell cathodes and spintronic devices.spa
dc.description.abstractMateriales pertenecientes a las familias A2BWO6 y A2BVO6 han mostrado propiedades eléctricas y magnéticas interesantes, posiblemente aplicables a la espintrónica y a la implementación de cátodos de celdas de combustible. Por esto, la motivación principal de esta tesis es sintetizar y caracterizar materiales con estructura tipo perovskita doble. Específicamente, los materiales Sr2-xLaxNiWO6 (0 ≤ x ≤ 0.15), Sr2FeWO6, Sr2CoWO6, LaFe0.5V0.5O3 y LaCo0.5V0.5O3, a fin de evaluar sus propiedades estructurales, morfológicas y magnéticas. Los materiales en estudio se sintetizaron por medio del método de combustión de gel asistida, un método de síntesis inexplorado para este tipo de materiales, el cual mostró ventajas con respecto a métodos de síntesis convencionales como el método de reacción de estado sólido. Las caracterizaciones estructurales de los materiales se realizaron a través de difracción de rayos X (DRX), implementando refinamientos Rietveld a los patrones de difracción obtenidos. Se encontró que los materiales Sr2NiWO6 y Sr2CoWO6 cristalizan en una estructura tetragonal con un grupo espacial I4/m, mientras que el material Sr2FeWO6 cristaliza en una estructura monoclínica con un grupo espacial P21/n. Los materiales LaCo0.5V0.5O3 y LaFe0.5V0.5O3 cristalizan en estructuras ortorrómbicas con grupos espaciales Pnma y Pbnm, respectivamente. Las caracterizaciones morfológicas se realizaron a través de la técnica de microscopía electrónica de barrido (SEM), tomando diferentes micrografías, lo que permitió determinar tamaños de grano promedio en el rango de ≈ 80 nm - 270 nm para las muestras que presentan estructura granular. La caracterización magnética de los materiales se realizó a través de curvas de susceptibilidad magnética DC en función de la temperatura y magnetización en función del campo magnético externo aplicado. La respuesta antiferromagnética es característica para todos los materiales en estudio, sin embargo se pueden observar pequeñas contribuciones ferromagnéticas para los materiales Sr2-xLaxNiWO6 y LaFe0.5V0.5O3, mientras que para el material LaCo0.5V0.5O3 se presenta un comportamiento ferrimagnético para temperaturas menores a 150 K. Adicionalmente, se evidencia Exchange Bias para los materiales Sr2-xLaxNiWO6 posiblemente asociado a la interacción de los iones de Ni y W que se presentan en la estructura con diferentes valencias, como resultado de la inclusión de iones trivalentes de lantano. Estos resultados motivan la investigación en este tipo de materiales con el fin de determinar su potencial aplicación como cátodos de celdas de combustible y dispositivos espintrónicos.spa
dc.description.degreelevelDoctoradospa
dc.description.projectBeca de Doctorados Nacionales - Cov. 647spa
dc.description.sponsorshipMinisterio de Ciencia y Tecnología - Colcienciasspa
dc.format.extent141spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationVilla, J. (2020). Estudio de las propiedades estructurales, eléctricas y magnéticas en materiales tipo perovskita doble A2BB'O6 [Tesis de doctorado, Universidad Nacional de Colombia]. Repositorio Institucional.spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78886
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Físicaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Físicaspa
dc.relation.referencesD. G. Schlom, L. Q. Chen, X. Pan, A. Schmehl, and M. A. Zurbuchen. A thin film approach to engineering functionality into oxides. Journal of the American Ceramic Society, 91(8):2429–2454, 2008.spa
dc.relation.referencesM. E. Lines and A. M. Glass. Principles and Applications of Ferroelectrics and Related Materials. Oxford University Press, 1977.spa
dc.relation.referencesW. Thompson. The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to Proceedings of the Royal Society of London. ® www.jstor.org. The Royal Society, XIX, 1857.spa
dc.relation.referencesNobelPrize.Org. The Nobel Prize in Physics 2007. https://www.nobelprize.org/prizes/physics/2007/summary/, 2020.spa
dc.relation.referencesK. I. Kobayashi, T. Kimura, H. Sawada, K. Terakura, and Y. Tokura. Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure. Nature, 395(6703):677–680, 1998.spa
dc.relation.referencesS. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. Von Molnár, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger. Spintronics: A spin-based electronics vision for the future. Science, 294(5546):1488–1495, 2001.spa
dc.relation.referencesX. Marti, I. Fina, and T. Jungwirth. Prospect for antiferromagnetic spintronics. IEEE Transactions on Magnetics, 51(4):5–8, 2015.spa
dc.relation.referencesM. C. Viola, M. J. Martínez-Lope, J. A. Alonso, P. Velasco, J. L. Martínez, J. C. Pedregosa, R. E. Carbonio, and M. T. Fernández-Díaz. Induction of colossal magnetoresistance in the double perovskite Sr2CoMoO6. Chemistry of Materials, 14(2):812–818, 2002.spa
dc.relation.referencesM. Bonilla, D. A. Landínez Téllez, J. Arbey Rodríguez, J. Albino Aguiar, and J. Roa-Rojas. Study of half-metallic behavior in Sr2CoWO6 perovskite by ab initio DFT calculations. Journal of Magnetism and Magnetic Materials, 320(14):397–399, 2008.spa
dc.relation.referencesC. A. López, M. C. Viola, and J. C. Pedregosa. B-site cation partial substitution by La3+ doping in the Sr2CoWO6 double perovskite: A XRPD structural study. Journal of the Argentine Chemical Society, 97:226–233, 2009.spa
dc.relation.referencesA. Aguadero, C. de la Calle, J. A. Alonso, D. Pérez-Coll, M. J. Escudero, and L. Daza. Structure, thermal stability and electrical properties of Ca(V0.5Mo0.5)O3 as solid oxide fuel cell anode. Journal of Power Sources, 192(1):78–83, 2009.spa
dc.relation.referencesJ. Androulakis, N. Katsarakis, and J. Giapintzakis. Realization of La2MnVO6 search for half-metallic antiferromagnetism? Solid State Communications, 124:77–81, 2002.spa
dc.relation.referencesH. Van Leuken and R. A. De Groot. Half-metallic antiferromagnets. Physical Review Letters, 74(7):1171–1173, 1995.spa
dc.relation.referencesL. Karvonen, A. Weidenka, and P. Tomes. Materials for Energy Efficiency Thermoelectrics, Thin Films, and Phosphors. Mater. Matt., 6(4), 2011.spa
dc.relation.referencesJ. M. Rondinelli and C. J. Fennie. Octahedral rotation-induced ferroelectricity in cation ordered perovskites. Advanced Materials, 24(15):1961–1968, 2012.spa
dc.relation.referencesP. J. Ryan, J. W. Kim, T. Birol, P. Thompson, J. H. Lee, X. Ke, P. S. Normile, E. Karapetrova, P. Schiffer, S. D. Brown, C. J. Fennie, and D. G. Schlom. Reversible control of magnetic interactions by electric field in a single-phase material. Nature Communications, 4:1–8, 2013.spa
dc.relation.referencesG. Goldschmidt. Geochemistry. Oxford University Press, 1958.spa
dc.relation.referencesY. Teraoka, M. D. Wei, and S. Kagawa. Double perovskites containing hexavalent molybdenum and tungsten: Synthesis, structural investigation and proposal of a fitness factor to discriminate the crystal symmetry. Journal of Materials Chemistry, 8(11):2323–2325, 1998.spa
dc.relation.referencesB. Noheda, J. Gonzalo, L. Cross, R. Guo, and S. Park. Tetragonal-to-monoclinic phase transition in a ferroelectric perovskite: The structure. Physical Review B - Condensed Matter and Materials Physics, 61(13):8687–8695, 2000.spa
dc.relation.referencesA. M. Glazer. The classification of tilted octahedra in perovskites. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 28(11):3384–3392, 1972.spa
dc.relation.referencesA. M. Glazer. Simple ways of determining perovskite structures. Acta Crystallographica Section A, 31(6):756–762, 1975.spa
dc.relation.referencesP. M. Woodward. Octahedral Tilting in Perovskites. I. Geometrical Considerations. Acta Crystallographica Section B: Structural Science, 53(1):32–43, 1997.spa
dc.relation.referencesR. H. Mitchell. Perovskites: Modern and ancient. Almaz Press, Canada, 2002.spa
dc.relation.referencesA. M. Glazer and Ishida Koichi. Cation displacements and octahedral tilts in NaNbO3 Part I-Determination from x-ray difference reflections. Ferroelectrics, 6(1):219–224, 1973.spa
dc.relation.referencesC. J. Howard and H. T. Stokes. Group-theoretical analysis of octahedral tilting in ferroelectric perovskites. Acta Crystallographica Section B: Structural Science, 54:782–789, 1998.spa
dc.relation.referencesJ. S. Forrester, R. O. Piltz, E. H. Kizi, and G. J. McIntyre. Temperature-induced phase transitions in the giant-piezoelectric-effect material PZN-4.5 % PT. J. Phys.: Condens. Matter: Condensed Matter, 13:L825–LL833, 2001.spa
dc.relation.referencesC. J. Howard, V. Luca, and K. S. Knight. High-temperature phase transitions in tungsten trioxide-the last word? Journal of Physics Condensed Matter, 14(3):377–387, 2002.spa
dc.relation.referencesK. S. Aleksandrov. Mechanisms of the Ferroelectric and Structural Phase Transitions. Structural Distortions in Perovskites. Ferroelectrics, 20(1):61–67, 1978.spa
dc.relation.referencesH. T. Stokes, E. H. Kisi, D. M. Hatch, and C. J. Howard. Group-Theoretical Analysis of Octahedral Tilting in Ferroelectric Perovskites. Acta Crystallographica Section B: Structural Science, 58(6):934–938, 2002.spa
dc.relation.referencesE. Y. Tsymbal and I. Zutic. Handbook of Spin Transport and Magnetism. Chapman and Hall/CRC, 2012.spa
dc.relation.referencesN. A. Spalding. Magnetic materials. Fundamentals and applications. Cambridge University Press, New York, United States of America, 2 edition, 2011.spa
dc.relation.referencesB. Sanyal and O. Eriksson. Advanced Functional Materials: A Perspective from Theory and Experiment. Elsevier, 1 edition, 2012.spa
dc.relation.referencesR. J. D. Tilley. Understanding Solids. The Science of Materials. JohnWiley & Sons Ltd, 2013.spa
dc.relation.referencesL. E. Smart and E. A. Moore. Solid State Chemistry: An Introduction. Taylor & Francis, Bacon Raton, USA, 1992.spa
dc.relation.referencesA. R. West. Solid State Chemistry and its Applications. John Wiley & Sons Ltd., 1984.spa
dc.relation.referencesM. T. Weller. Inorganic Materials Chemistry. Oxford University Press, New York, United States of America, 1996.spa
dc.relation.referencesC. Zener. Interaction between the d shells in the transition metals. Physical Review, 81(4):440–444, 1951.spa
dc.relation.referencesC. Zener. Interaction between the d-Shells in the Transition Metals. II. Ferromagnetic Compounds of Manganese with Perovskite Structure. Physical Review, 82(3), 1951.spa
dc.relation.referencesA. K. Kundu. Magnetic Perovskites. Synthesis, structure and physical properties. Number 2016. Springer US, 2016.spa
dc.relation.referencesJ. I. Villa and J. E. Rodr´ıguez. Structural, transport and thermoelectric properties of Nb-doped CaLaMnO perovskite. Physica B: Condensed Matter, 455, 2014.spa
dc.relation.referencesC. A. Triana-E. Investigación Teórico-Experimental de Propiedades Físicas de los Nuevos Materiales Multifuncionales AMXFe8O19 (A:Sr-Ba-Ca; M:Co-Mn; X:Ti-Zr). PhD thesis, Universidad Nacional de Colombia, 2013.spa
dc.relation.referencesA. K. Kundu. Magnetic perovskites. Synthesis, structure and physical properties. Springer US, 2016.spa
dc.relation.referencesR. Chang. Química General. McGraw-Hill, 7a edition, 2002.spa
dc.relation.referencesD. J. Griffiths. Introduction to Electrodynamics. Prentice-Hall, 1981.spa
dc.relation.referencesD. Wolfram and S. Ellialtioglu. Electronic and optical properties of d-band perovskites. Cambridge University Press, 2006.spa
dc.relation.referencesP. A. Cox. Transition metal oxides: An introduction to their electronic structure and properties. Oxford University Press, 1992.spa
dc.relation.referencesS. Maekawa, T. Tohyama, S. E. Barnes, S. Ishihara, W. Koshibae, and G. Khaliullin. Physics of Transition Metal Oxides. Springer US, 2003.spa
dc.relation.referencesD. Serrate, J. M. De Teresa, and M. R. Ibarra. Double perovskites with ferromagnetism above room temperature. Journal of Physics Condensed Matter, 19(2):0–86, 2007.spa
dc.relation.referencesC. Herring. Effect of change of scale on sintering phenomena. Journal of Applied Physics, 21(4):301–303, 1950.spa
dc.relation.referencesS. L. Kang. Sintering. Densification, grain growth and microstructure. Elsevier, 2 edition, 2005.spa
dc.relation.referencesA. I. Shcherbakov. Theory of dissolution of binary alloys and the Tamman rule. Protection of Metals, 41(1):30–35, 2005.spa
dc.relation.referencesD. Saavedra. Estudio de las Propiedades Estructurales y Magnéticas de Perovskitas Complejas Bi(1-x)Nd(x)Fe(0,7)Mn(0,3)O3. PhD thesis, Universidad Nacional de Colombia, 2018.spa
dc.relation.referencesK. C. Patil and T. Mimani. Preparation and properties of nanocrystalline magnetic oxides. Mag. Soc. India Bull., 22:21–26, 2000.spa
dc.relation.referencesT. V. Anuradha, S. Ranganathan, T. Mimani, and K. C. Patil. Combustion Synthesis of Nanostructured Barium Titanate. Current Opinion in Solid State and Materials Science, 44(3):2237–2241, 2001.spa
dc.relation.referencesC. Y. Wang, X. Bai, S. M. Liu, and L. H. Liu. Synthesis of cobalt-aluminum spinels via EDTA chelating precursors. Journal of Materials Science, 39(20):6191–6201, 2004.spa
dc.relation.referencesZ. Yongqing, Y. Zihua, D. Shiwen, Q. Mande, and Z. Jian. Synthesis and characterization of Y2O3:Eu nanopowder via EDTA complexing sol-gel process. Materials Letters, 57(19):2901–2906, 2003.spa
dc.relation.referencesD. Zhou, G. Huang, X. Chen, J. Xu, and S. Gong. Synthesis of LaAlO3 via ethylenediaminetetraacetic acid precursor. Materials Chemistry and Physics, 84(1):33–36, 2004.spa
dc.relation.referencesG. Schwarzenbach. Complexometric Titrations. Journal of Chemical Education, 35(5):267, 1958.spa
dc.relation.referencesD. A. Skoog, D. M. West, F. J. Holler, and S. R. Crouch. Fundamentos de Qu´ımica Anal´ıtica. Thomson, México, 8 edition, 2005.spa
dc.relation.referencesB. D. Cullity. Elements of X-ray diffraction. Addison-Wesley, USA, 2 edition, 1978.spa
dc.relation.referencesI. C. Madsen, N. V. Y. Scarlett, and A. Kern. Description and survey of methodologies for the determination of amorphous content via X-ray powder diffraction. Zeitschrift fur Kristallographie, 226(12):944–955, 2011.spa
dc.relation.referencesH. M. Rietveld. A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, 2(2):65–71, 2002.spa
dc.relation.referencesR. A. Young. The Rietveld method. Oxford University Press, Oxford, New York, 2 edition, 2002.spa
dc.relation.referencesB. H. Toby and R. B. Von Dreele. GSAS-II: the genesis of a modern open-source all purpose crystallography software package. Journal of Applied Crystallography, 46(2):544–549, 2013.spa
dc.relation.referencesG. Artioli, P. Ballirano, G. Cruciani, and A. Guagliardi. Quantitative phase analysis using the Rietveld method: towards a procedure for checking the reliability and quality of the results. Periodico di Mineralogia, 88:147–151, 2019.spa
dc.relation.referencesA. C. Larson and R. B. Von Dreele. General Structure Analysis System (GSAS). Los Alamos National Laboratory Report LAUR, 748:86–748, 2004.spa
dc.relation.referencesB. H. Toby. R factors in Rietveld analysis: How good is good enough? Powder Diffraction, 21(01):67–70, 2008.spa
dc.relation.referencesR. B. Von Dreele. Powder Diffraction Analysis with GSAS-II. International Henry Moseley School and Workshop on X-ray Science, pages 18–19, 2012.spa
dc.relation.referencesG. A. Pérez and H. D. Colorado. Difracción de rayos X y el método Rietveld. Universidad del Valle, Cali, Colombia, 2015.spa
dc.relation.referencesK. Momma and F. Izumi. VESTA: a three-dimensional visualization system for electronic and structural analysis. J. Appl. Phys. Crystallogr, 41:653, 2008.spa
dc.relation.referencesK. Momma and F. Izumi. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44(6):1272–1276, 2011.spa
dc.relation.referencesJ. I. Goldstein, D. E. Newbury, J. R. Michael, N. W. M. Ritchie, J. H. J. Scott, and D. C. Joy. Scanning Electron Microscopy and X-Ray Microanalysis. Springer US, 2018.spa
dc.relation.referencesA. Ul-Hamid. A Beginners’ Guide to Scanning Electron Microscopy. Springer US, 2018.spa
dc.relation.referencesS. Amelinckx, D. V. Dyck, J. V. Landuyt, and G. V. Tendeloo. Electron microscopy. Principles and fundamentals. VCH, Weinheim, 1997.spa
dc.relation.referencesF. R. Laffir, A. W. Wren, and M. R. Towler. Influence of morphology and processing on XPS characterization of SrO-Ca-ZnO-SiO2 glass. Journal of Materials Science, 45(11):3102–3105, 2010.spa
dc.relation.referencesG. DiGiuseppe, V. Boddapati, and H. Mothikhana. XPS Studies of LSCF Interfaces after Cell Testing. Advances in Materials Science and Engineering, 2018:1–6, 2018.spa
dc.relation.referencesT. Wu, G. Wu, and X. H. Chen. Effect of disorder on transport and electronic structure in LaCo1-xNixO3 system. Solid State Communications, 145(5-6):293–298, 2008.spa
dc.relation.referencesR. M. Eisberg. Fundamentos de Física Moderna, 1983.spa
dc.relation.referencesC. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, and G. E. Muilenberg. Handbook of X-ray electron spectroscopy, 1979.spa
dc.relation.referencesJ. Amthauer and Al. Et. Mössbauer spectroscopy: Basic principles. Spectroscopic Methods in Mineralogy. EMU Notes in Mineralogy, 6:345–367, 2004.spa
dc.relation.referencesN. N. Greenwood and T. C. Gibb. Mössbauer Spectroscopy. Chapman and Hall Ltd, 1971.spa
dc.relation.referencesR. A. Brand. WinNormos for Igor. Laboratorium für Angewandte Physik Universität Duisburg, 2009.spa
dc.relation.referencesQuantum Desing. Physical Property Measurement System Vibrating Sample Magnetometer (VSM) Option, User’s Manual Part. Quantum Desing, 4 edition, 2008.spa
dc.relation.referencesT. Ferreira and W. Rasband. ImageJ User Guide User Guide ImageJ. Image J Enterprise, 2 edition, 2012.spa
dc.relation.referencesJ. F. Moulder, W. F. Stickle, and P.E. Sobol. Handbook of X-ray Photoelectron Spectroscopy. Physical Electronics Inc., MN, USA., 1995.spa
dc.relation.referencesJ. Zhang, J. P. Tu, X. H. Xia, Y. Qiao, and Y. Lu. An all-solid-state electrochromic device based on NiO/WO 3 complementary structure and solid hybrid polyelectrolyte. Solar Energy Materials and Solar Cells, 93(10):1840–1845, 2009.spa
dc.relation.referencesG. F. Cai, X. L. Wang, D. Zhou, J. Zhang, Q. Xiong, C. D. Gu, and J. P. Tu. Hierarchical structure Ti-doped WO3 film with improved electrochromism in visible-infrared region. RSC Advances, 3(19):6896–6905, 2013.spa
dc.relation.referencesT. Kung Ng and D. M. Hercules. Studies of nickel-tungsten-alumina catalysts by X-ray photoelectron spectroscopy. Journal of Physical Chemistry, 80(19):2094–2102, 1976.spa
dc.relation.referencesJ. Clarke and A. I. Braginski. The SQUID Handbook: Fundamentals and Technology of SQUIDs and SQUID Systems, I. Wiley-VCH Verlag GmbH and Co. KGaA, 2004.spa
dc.relation.referencesJ. A. Cuervo-Farfán, C. A. Vargas Parra, D. S. F. Viana, F. P. Milton, D. García, D. A. Téllez Landínez, and J. Roa-Rojas. Structural, magnetic, dielectric and optical properties of the Eu2Bi2Fe4O12 bismuth-based low-temperature biferroic. Journal of Materials Science: Materials in Electronics, 29(24):20942–20951, 2018.spa
dc.relation.referencesD. Iwanaga, Y. Inaguma, and M. Itoh. Structure and Magnetic Properties of Sr2NiAO6 (A = W, Te). Materials Research Bulletin, 35:449–457, 2000.spa
dc.relation.referencesS. Z. Tian, J. C. Zhao, C. D. Qiao, X. L. Ji, and B. Z. Jiang. Structure and properties of the ordered double perovskites Sr2MWO6 (M = Co, Ni) by sol-gel route. Materials Letters, 60(21-22):2747–2750, 2006.spa
dc.relation.referencesN. W. Ashcroft and N. D. Mermin. Solid State Physics. Saunders College Publishing, USA, college ed edition, 1976.spa
dc.relation.referencesJ. R. Jesus, F. Garcia, J. G. S. Duque, and C. T. Meneses. Study of exchange bias in single-phase Dy0.2Nd0.8CrO3. Journal of Alloys and Compounds, 779:577–581, 2019.spa
dc.relation.referencesV. Skumryev, S. Stoyanov, J. Zhang, G. Hadjipanayis, D. Givord, and J. Nogu´es. Beating the superparamagnetic limit with exchange bias. Nature, 423(June):19–22, 2003.spa
dc.relation.referencesJ. Nogués, J. Sort, V. Langlais, V. Skumryev, S. Suriñach, J. S. Muñoz, and M. D. Baró. Exchange bias in nanostructures. Physics Reports, 422(3):65–117, 2005.spa
dc.relation.referencesD. A. Thompson and J. S. Best. The future of magnetic data storage technology. IBM Journal of Research and Development, 44(3):311–322, 2010.spa
dc.relation.referencesR. C. Sahoo, S. K. Giri, P. Dasgupta, A. Poddar, and T. K. Nath. Exchange bias effect in ferromagnetic LaSrCoMnO6 double perovskite: Consequence of spin glass-like ordering at low temperature. Journal of Alloys and Compounds, 658:1003–1009, 2016.spa
dc.relation.referencesT. S. Chan, R. S. Liu, G. Y. Guo, S. F. Hu, J. G. Lin, J. M. Chen, and C. R. Chang. Effects of B-site transition metal on the properties of double perovskites Sr2 FeMO6 (M = Mo, W): B 4d-5d system. Solid State Communications, 133(4):265–270, 2005.spa
dc.relation.referencesM. Retuerto, F. Jiménez-Villacorta, M. J. Martínez-Lope, Y. Huttel, E. Roman, M. T. Fernández-Díaz, and J. A. Alonso. Study of the valence state and electronic structure in Sr2FeMO6 (M = W, Mo, Re and Sb) double perovskites. Physical Chemistry Chemical Physics, 12(41):13616–13625, 2010.spa
dc.relation.referencesP. W. Stephens. Phenomenological model of anisotropic peak broadening in powder dif-fraction. Journal of Applied Crystallography, 32(2):281–289, 1999.spa
dc.relation.referencesY. A. Alsabah, A. A. Elbadawi, E. M. Mustafa, and M. A. Siddig. The Effect of Replacement of Zn2+ Cation with Ni2+ Cation on the Structural Properties of Ba2Zn1-xNixWO6 Double Perovskite Oxides. Journal of Materials Science and chemical engineering, 4:61–70, 2016.spa
dc.relation.referencesM. Iranmanesh, M. Lingg, M. Stir, and J. Hulliger. Sol gel and ceramic synthesis of Sr2FeMo1-xWxO6 (0<x<1) double perovskites series. RSC Advances, 6:42069–42075, 2016.spa
dc.relation.referencesO. Ortiz, J. Roa-Rojas, J. A. Aguiar, and David A. Landinez Tellez. Evaluation of Sr2YSbO6 as a new substrate for YBa2Cu3O7-d superconductor thin films. Mod. Phys. Lett. B, 18:1035–1042, 2004.spa
dc.relation.referencesM. T. Anderson, K. B. Greenwood, G. A. Taylor, and K. R. Poeppelmeier. B-cation arrangements in double perovskites. Progress in Solid State Chemistry, 22(3):197–233, 1993.spa
dc.relation.referencesA. K. Azad, S. A. Ivanov, S. G. Eriksson, J. Eriksen, H. Rundl¨of, R. Mathieu, and P. Sved-lindh. Nuclear and magnetic structure of Ca2MnWO6: A neutron powder diffraction study. Materials Research Bulletin, 36(13-14):2485–2496, 2001.spa
dc.relation.referencesD. Sánchez, J. A. Alonso, M. García-Hernández, M. J. Martínez-Lope, and M. T. Casais. Hole doping effects in Sr2FeMo1-xWxO 6 (0 < x < 1) double perovskites: A neutron diffraction study. Journal of Physics Condensed Matter, 17(23):3673–3688, 2005.spa
dc.relation.referencesN. Fairley. CasaXPS Version 2.3.19PR1.0, volume Copyright. Neal Fairley. Casa Software Ltd., 2009.spa
dc.relation.referencesF. De Groot and A. Kotani. Core level spectroscopy of solids. CRC Press, Taylor & Francis Group, Boca Raton, London, NY, 2008.spa
dc.relation.referencesM. Deepa, D. P. Singh, S. M. Shivaprasad, and S. A. Agnihotry. A comparison of electro-chromic properties of sol-gel derived amorphous and nanocrystalline tungsten oxide films. Current Applied Physics, 7(2):220–229, 2007.spa
dc.relation.referencesA. P. Grosvenor, B. A. Kobe, M. C. Biesinger, and N. S. McIntyre. Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surface and Interface Analysis, 36(12):1564–1574, 2004.spa
dc.relation.referencesE. Z. Kurmaev, A. V. Postnikov, H. M. Palmer, and C. Greaves. Electronic structure of FeCr2S4 and Fe0.5Cu0.5Cr2S4. J. Phys.: Condens. Matter, 12:5411–5421, 2000.spa
dc.relation.referencesM. Raekers, K. Kuepper, H. Hesse, I. Balasz, I. G. Deac, S. Constantinescu, E. Burzo, M. Valeanu, and M. Neumann. Investigation of chemical and grain boundary effects in highly ordered Sr2FeMoO6: XPS and Mössbauer studies. Journal of Optoelectronics and Advanced Materials, 8(2):455–460, 2006.spa
dc.relation.referencesC. Ruby, B. Humbert, and J. Fusy. Surface and interface properties of epitaxial iron oxide thin films deposited on MgO(001) studied by XPS and Raman spectroscopy. Surface and Interface Analysis, 29(6):377–380, 2000.spa
dc.relation.referencesT. Yamashita and P. Hayes. Analysis of XPS spectra of Fe 2+ and Fe 3+ ions in oxide materials. Applied Surface Science, 254(8):2441–2449, 2008.spa
dc.relation.referencesW. Lisowski, A. H. J. van den Berg, G. A. M. Kip, and L. J. Hanekamp. Characterization of tungsten tips for STM by SEM/AES/XPS. Fresenius’ Journal of Analytical Chemistry, 341(3-4):196–199, 1991.spa
dc.relation.referencesL. Srisombat, S. Ananta, B. Singhana, T. Randall Lee, and R. Yimnirun. Chemical investigation of Fe3+/Nb5+-doped barium titanate ceramics. Ceramics International, 39(SUPPL.1):S591–S594, 2013.spa
dc.relation.referencesP. Gütlich, C. Schöder, and V. Schünemann. Mössbauer spectroscopy - An indispensable tool in solid state research. Spectroscopic Europe, 24(4):21–32, 2014.spa
dc.relation.referencesH. Kawanaka, I. Hase, S. Toyama, and Y. Nishihara. Electronic state of Fe in double perovskite oxide Sr2FeWO6. Journal of the Physical Society of Japan, 68(9):2890–2893, 1999.spa
dc.relation.referencesM. C. Viola, M. J. Martínez-Lope, J. A. Alonso, J. L. Martínez, J. M. De Paoli, S. Pagola, J. C. Pedregosa, M. T. Fernández-Díaz, and R. E. Carbonio. Structure and magnetic properties of Sr2CoWO6: An ordered double perovskite containing Co2+(HS) with un-quenched orbital magnetic moment. Chemistry of Materials, 15(8):1655–1663, 2003.spa
dc.relation.referencesC. A. López, M. C. Viola, J. C. Pedregosa, R. E. Carbonio, R. D. Sánchez, and M. T. Fernández-Díaz. La3+ doping of the Sr2CoWO6 double perovskite: A structural and magnetic study. Journal of Solid State Chemistry, 181(11):3095–3102, 2008.spa
dc.relation.referencesP. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, J. Luitz, R. Laskowsk, F. Tran, and L. Marks. WIEN2k: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties. Techn. Universität Wien., Viena, 2001.spa
dc.relation.referencesJ. P. Perdew, K. Burke, and M. Ernzerhof. Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18):3865–3868, 1996.spa
dc.relation.referencesV. Kumar, S. Kr, T. P. Sharma, and V. Singh. Band gap determination in thick films from reflectance measurement. Optical Materials, 12:115–119, 1999.spa
dc.relation.referencesA. Aguadero, C. De La Calle, D. Pérez-Coll, and J. A. Alonso. Study of the crystal structure, thermal stability and conductivity of Sr(V0.5Mo0.5)O3+δ as SOFC material. Fuel Cells, 11(1):44–50, 2011.spa
dc.relation.referencesK. Nishimura, I. Yamada, K. Oka, Y. Shimakawa, and M. Azuma. High-pressure synthesis of BaVO3: A new cubic perovskite. Journal of Physics and Chemistry of Solids, 75(6):710–712, 2014.spa
dc.relation.referencesV. C. Fuertes, M. C. Blanco, D. G. Franco, S. Ceppi, R. D. Sánchez, M. T. Fernández-Díaz, G. Tirao, and R. E. Carbonio. A new LaCo0.71(1)V0.29(1)O2.97(3) perovskite containing vanadium in octahedral sites: Synthesis and structural and magnetic characterization. Dalton Transactions, 44(23):10721–10727, 2015.spa
dc.relation.referencesD. Gatteschi, R. Sessoli, and J. Villain. Molecular nanomagnets. Oxford University Press, Oxford, New York, 2011.spa
dc.relation.referencesK. L. Holman, Q. Huang, T. Klimczuk, K. Trzebiatowski, J. W.G. Bos, E. Morosan, J. W. Lynn, and R. J. Cava. Synthesis and properties of the double perovskites La2NiVO6, La2CoVO6, and La2CoTiO6. Journal of Solid State Chemistry, 180(1):75–83, 2007.spa
dc.relation.referencesR. D. Shannon. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A, 32:751, 1976.spa
dc.relation.referencesR. Dronskowski. Computational chemistry of solid state materials. WILEY-VCH Verlag GmbH & Co, Germany, 2005.spa
dc.relation.referencesJ. A. Mydosh. Spin glasses: an experimental introduction. Taylor & Francis, London, 1993.spa
dc.relation.referencesB. Aslibeiki, P. Kameli, and H. Salamati. Reentrant spin-glass behavior in La0.8Sr0.2Mn1-xTixO3 manganites. Solid State Communications, 149(31-32):1274–1277, 2009.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc530 - Físicaspa
dc.subject.proposalDouble Perovskiteseng
dc.subject.proposalPerovskitas doblesspa
dc.subject.proposalRietveld Refinementeng
dc.subject.proposalRefinamiento Rietveldspa
dc.subject.proposalSusceptibilidad magnéticaspa
dc.subject.proposalMagnetic Susceptibilityeng
dc.subject.proposalMagnetizaciónspa
dc.subject.proposalMagnetizationeng
dc.subject.proposalExchange Biaseng
dc.titleEstudio de las propiedades estructurales, eléctricas y magnéticas en materiales de tipo perovskita A2BB'O6spa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032370341.2020.pdf
Tamaño:
32.23 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: