Cálculo de la incertidumbre de la Temperatura de Color Correlacionada (CCT) mediante un método de Monte Carlo

dc.contributor.advisorJesús M., Quintero Q.
dc.contributor.authorChávez Cañón, Miguel Ángel
dc.date.accessioned2021-09-01T19:09:59Z
dc.date.available2021-09-01T19:09:59Z
dc.date.issued2021
dc.descriptionIlustraciones y fotografíasspa
dc.description.abstractSe presentan e implementan los métodos actuales más utilizados y aceptados tanto para el cálculo de la Temperatura de Color Correlacionada (CCT) como para su respectiva incertidumbre. Los métodos actuales se basan en el enfoque clásico de incertidumbre de acuerdo con la "Guía para la expresión de la incertidumbre de la medición" (GUM, JCGM 100:2008) cuyo fundamento matemático se basa en aproximaciones de series de Taylor. Para resolver los problemas actuales debidos a aproximaciones, supuestos, restricciones y complejidad en el cálculo de incertidumbre de este parámetro se propone la implementación de un Método de Monte Carlo (MCM) de acuerdo con los suplementos GUM S1 (JCGM 101:2008) y GUM S2 (JCGM 102:2012). Este trabajo presenta la implementación del método propuesto y los métodos más importantes utilizados actualmente, con su respectiva comparación. Para esto se utilizan espectros de fuentes de luz típicos ya definidos bien conocidos y usados en la literatura. Además, se desarrolla un software que permite realizar las estimaciones de incertidumbre el cual tendría como objetivo ser usado por el laboratorio de ensayos eléctricos de la Universidad Nacional de Colombia, con esto se espera mejorar la exactitud y confiabilidad del servicio que actualmente presta este laboratorio en cuanto a la incertidumbre de CCT. (Texto tomado de la fuente).spa
dc.description.abstractThe most widely used and accepted current methods are presented and implemented both for the calculation of the Correlated Color Temperature (CCT) and their respective uncertainty. Current methods are based on the classical uncertainty approach according to the GUM (Guide to the expression of uncertainty in measurement, JCGM 100: 2008) whose mathematical foundation is based on Taylor series approximations. To solve current problems due to approximations, assumptions, restrictions, and complexity in calculating the uncertainty of this parameter, the implementation of a Monte Carlo method, MCM, is proposed, according to the supplements GUM S1 (JCGM 101: 2008) and GUM S2 (JCGM 102: 2012). This work presents the implementation of a proposed method and the most important methods currently used, with their respective comparison. For this, spectra of typical and well-known light sources commonly used in the literature will be used. In addition, a software is developed allowing the Electrical Testing Laboratory (LABE) of the Universidad Nacional de Colombia to make uncertainty estimates which, it is expected to improve its accuracy and reliability of the CCT measurements service that is currently provided.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería Eléctricaspa
dc.description.researchareaIluminación y Eficiencia Energéticaspa
dc.format.extentxxii, 163 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80072
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería Eléctrica y Electrónicaspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Eléctricaspa
dc.relation.referencesY. Ohno and W. Davis, “NIST CQS version 9.0 (Hoja de cálculo en Excel).” NIST, E.E.U.U NIST, p., 2011. W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng., vol. 49, no. 3, p. 033602, 2010, doi: 10.1117/1.3360335. Y. Ohno, “Spectral design considerations for white LED color rendering,” Opt. Eng., vol. 44, no. 11, 2005, doi: 10.1117/1.2130694. A. Ugale, T. N. Kalyani, and S. J. Dhoble, “Potential of europium and samarium β-diketonates as red light emitters in organic light-emitting diodes,” in Lanthanide-Based Multifunctional Materials: From OLEDs to SIMs, 2018. Y. Ohno and W. Davis, “Rationale of Color Quality Scale,” Energy, 2010. D. Judd, “A flattery index for artificial illumiants,” IES Trans., 1967. W. A. Thornton, “A validation of the color-preference index,” J. Illum. Eng. Soc., vol. 4, no. 1, 1974, doi: 10.1080/00994480.1974.10732288. M. S. Rea and J. P. Freyssinier-Nova, “Color rendering: A tale of two metrics,” Color Res. Appl., vol. 33, no. 3, 2008, doi: 10.1002/col.20399. K. Hashimoto, T. Yano, M. Shimizu, and Y. Nayatani, “New method for specifying color-rendering properties of light sources based on feeling of contrast,” Color Res. Appl., vol. 32, no. 5, 2007, doi: 10.1002/col.20338. P. Bodrogi, S. Brückner, and T. Q. Khanh, “Ordinal scale based description of colour rendering,” Color Res. Appl., vol. 36, no. 4, 2011, doi: 10.1002/col.20629. K. A. G. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “A memory colour quality metric for white light sources,” Energy Build., vol. 49, 2012, doi: 10.1016/j.enbuild.2012.02.008. A. Ẑukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkeviĉius, P. Vitta, and M. S. Shur, “Statistical approach to color quality of solid-state lamps,” IEEE J. Sel. Top. Quantum Electron., vol. 15, no. 6, 2009, doi: 10.1109/JSTQE.2009.2034587. F. Szabó, P. Bodrogi, and J. Schanda, “A colour harmony rendering index based on predictions of colour harmony impression,” Light. Res. Technol., vol. 41, no. 2, 2009, doi: 10.1177/1477153509103067. K. A. G. Smet, J. Schanda, L. Whitehead, and R. M. Luo, “CRI2012: A proposal for updating the CIE colour rendering index,” Light. Res. Technol., vol. 45, no. 6, 2013, doi: 10.1177/1477153513481375. Illuminating Engineering Society of North America, “IES Method for Evaluating Light Source Color Renditon,” New York, 2015. A. David et al., “Development of the IES method for evaluating the color rendition of light sources,” Opt. Express, vol. 23, no. 12, 2015, doi: 10.1364/oe.23.015888. Illuminating Engineering Society of North, IES Method for Evaluating Light Source Color Renditon. New York, 2018. Illuminating Engineering Society of North, “IES Method for Evaluating Light Source Color Rendition,” New York, 2020. doi: ISBN# 978-0-87995-379-9. I. Ashdown et al., “Correspondence: In support of the IES method of evaluating light source colour rendition,” Lighting Research and Technology, vol. 47, no. 8. 2015, doi: 10.1177/1477153515617392. R. Windisch, G. Heidel, U. Binder, and K. Bergenek, “Impact of spectral features of common LED lighting systems on TM-30 color indices,” Opt. Express, vol. 25, no. 3, 2017, doi: 10.1364/oe.25.001824. M. Royer, “Analysis of color rendition specification criteria,” 2019, doi: 10.1117/12.2507283. 2021 Westinghouse Electric Corporation, “Color Rendering Index,” 2021. https://www.westinghouselighting.com/lighting-education/color-rendering-index-cri.aspx. M. Garrett and R. Stech, “Energy Policy Act of 1992,” in Encyclopedia of Transportation: Social Science and Policy, 2014. CIE, “CIE 13.3-1995, Method of measuring and Specifying Colour Rendering Properties of Light Sources,” Cie 13.3, 1995. D. B. Judd, “Standard Response Functions for Protanopic and Deuteranopic Vision,” J. Opt. Soc. Am., vol. 39, no. 6, 1949, doi: 10.1364/josa.39.000505. F. Zhang, “Evaluation of changing the components involved in CIE color rendering index,” Optik (Stuttg)., vol. 219, 2020, doi: 10.1016/j.ijleo.2020.165261. X. Guo and K. W. Houser, “A review of colour rendering indices and their application to commercial light sources,” Light. Res. Technol., vol. 36, no. 3, 2004, doi: 10.1191/1365782804li112oa. K. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Correlation between color quality metric predictions and visual appreciation of light sources,” Opt. Express, vol. 19, no. 9, 2011, doi: 10.1364/oe.19.008151. P. Raynham, “ Book review: The Lighting Handbook 10 th Edition, Reference and Application ,” Light. Res. Technol., vol. 44, no. 4, 2012, doi: 10.1177/1477153512461896. K. W. Houser, M. Wei, A. David, M. R. Krames, and X. S. Shen, “Review of measures for light-source color rendition and considerations for a two-measure system for characterizing color rendition,” Opt. Express, vol. 21, no. 8, 2013, doi: 10.1364/oe.21.010393. K. Hashimoto and Y. Nayatani, “Visual clarity and feeling of contrast,” Color Res. Appl., vol. 19, no. 3, 1994, doi: 10.1002/col.5080190305. Illuminating Engineering Society of North, “IES Method for Evaluating Light Source Color Rendetion,” Illuminating Engineering Society, New York, p. 37, 2015. Illuminating Engineering Society, “IES-TM-30-18: Method for Evaluating Light Source Color Rendition,” New York, 2018. doi: 978-0-87995-379-9. “CIE 224:2017 CIE 2017 COLOUR FIDELITY INDEX FOR ACCURATE SCIENTIFIC USE Vienna: CIE Central Bureau, 2017 52 pp, and is readily available from the http://www.techstreet.com/cie/ or from the National Committees of the CIE. €219.00; Members €72.99,” Color Research and Application, 2017. K. A. G. Smet, A. David, and L. Whitehead, “Why Color Space Uniformity and Sample Set Spectral Uniformity Are Essential for Color Rendering Measures,” LEUKOS - J. Illum. Eng. Soc. North Am., vol. 12, no. 1–2, 2016, doi: 10.1080/15502724.2015.1091356. M. P. Royer and M. Wei, “The Role of Presented Objects in Deriving Color Preference Criteria from Psychophysical Studies,” LEUKOS - J. Illum. Eng. Soc. North Am., vol. 13, no. 3, 2017, doi: 10.1080/15502724.2016.1271339. C. Li, M. R. Luo, M. R. Pointer, and P. Green, “Comparison of real colour gamuts using a new reflectance database,” Color Res. Appl., vol. 39, no. 5, 2014, doi: 10.1002/col.21827. J. Tajima, M. Tsukada, H. Haneishi, and N. Ojima, “‘Representative Data Selection and their Evaluation for Standard Object Colour Spectra Database (SOCS),’” J. Inst. Image Electron. Eng. Japan, vol. 31, no. 5, 2002, doi: 10.11371/iieej.31.768. S. E. J. Armold, S. Faruq, V. Savolainen, P. W. McOwan, and L. Chittka, “FReD: The floral reflectance database - a web portal for analyses of flower colour,” PLoS One, vol. 5, no. 12, 2010, doi: 10.1371/journal.pone.0014287. S. Jost, C. Cauwerts, and P. Avouac, “CIE 2017 color fidelity index Rf: a better index to predict perceived color difference?,” J. Opt. Soc. Am. A, vol. 35, no. 4, 2018, doi: 10.1364/josaa.35.00b202. D. Durmus and W. Davis, “EVALUATION OF HUE SHIFT FORMULAE IN CIELAB AND CAM02,” 2019, doi: 10.25039/x46.2019.po005. R. M. Lou, G. Cui, and C. Li, “Uniform colour spaces based on CIECAM02 colour apperance model,” Color Res. Appl., vol. 31, no. 4, 2006, doi: 10.1002/col.20227. M. Roger and K. HOuser, “Understanding and Applying TM-30-15,” U.S. Department of Energy, IES, 2015. https://www.energy.gov/sites/prod/files/2015/09/f26/tm30-intro-webinar_9-15-15.pdf. https://www.techstreet.com/, “IES TM-30-20,” IES Method for Evaluating Light Source Color Rendition, 2020. https://www.techstreet.com/standards/ies-tm-30-20?utm_campaign=tracker&utm_medium=email&utm_source=internal&utm_term=IES TM-30-20&product_id=2207652. E. Desimoni and B. Brunetti, “Uncertainty of measurement: Approaches and open problems,” Ann. Chim., vol. 95, no. 5, 2005, doi: 10.1002/adic.200590032. Y. Ohno, “CIE Fundamentals for Color Measurements,” 2000. CIE, “CIE 198:2011, Determination of measurement uncertainties in photometry,” 2011.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.lembMétodo Montecarlo
dc.subject.lembMonte Carlo method
dc.subject.lembFotometría
dc.subject.lembPhotometry
dc.subject.lembLuz
dc.subject.lembLight
dc.subject.proposalCorrelated Color Temperature (CCT)eng
dc.subject.proposalUncertaintyeng
dc.subject.proposalColorimetryeng
dc.subject.proposalTemperatura de colorspa
dc.subject.proposalIncertidumbrespa
dc.subject.proposalColorimetríaspa
dc.titleCálculo de la incertidumbre de la Temperatura de Color Correlacionada (CCT) mediante un método de Monte Carlospa
dc.title.translatedCalculation of the Correlated Color Temperature (CCT) uncertainty using a Monte Carlo methodeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audienceGeneralspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1023924221.2021.pdf
Tamaño:
5.39 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Eléctrica

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: