Estudio de la actividad fotocatalitica de electrocatalizadores de TiO2 nanoestructurados y modificados en la produccion de hidrogeno

dc.contributor.advisorZea Ramirez, Hugo Ricardo
dc.contributor.authorTirano Vanegas, Joaquin Enrique
dc.contributor.researchgroupGrupo de Investigación en Materiales, Catálisis y Medio Ambientespa
dc.date.accessioned2023-08-29T13:33:41Z
dc.date.available2023-08-29T13:33:41Z
dc.date.issued2022-11-18
dc.descriptionilustraciones, diagramas, fotografías a blanco y negrospa
dc.descriptionilustraciones, diagramas, fotografías a blanco y negrospa
dc.description.abstractSe obtuvieron nanotubos de TiO2 dopados con níquel, con un notorio desempeño fotocatalítico, gran área superficial y con dimensiones y características controladas, mediante anodización electroquímica. Los resultados complementan el estado del arte de la síntesis de este tipo de nanoestructuras, establece relaciones entre las características morfológicas obtenidas y las variables de síntesis. Estas relaciones permiten establecer zonas de síntesis donde se puede controlar la morfología de los nanotubos. Se discuten los resultados de tratamientos que modifican la estructura cristalina de los nanotubos y su superficie. Se discute el efecto del tratamiento térmico sobre la evolución de la fase anatasa del rutilo en los nanotubos de TiO2. Se establece un protocolo para modificar superficialmente los nanotubos de TiO2 con nanopartículas de níquel, mediante electrodepositación. Para cada tratamiento se realiza una caracterización morfológica, cristalina y elemental de las muestras. Se efectúa la caracterización electroquímica de los fotoelectrodos sintetizados y los efectos de las morfologías de las nanoestructuras sobre su comportamiento fotoelectroquímico. Los análisis revelan el comportamiento eléctrico de las nanoestructuras sintetizadas dentro de una celda fotoelectroquímica, así como el tipo de semiconductor y el rol del níquel en la recombinación de cargas fotogeneradas. Se revisan los circuitos equivalentes que representan el comportamiento de nanotubos modificados con níquel en la producción fotoelectroquímica de hidrógeno. (Texto tomado de la fuente)spa
dc.description.abstractNickel-doped TiO2 nanotubes with remarkable photocatalytic performance, large surface area, and controlled dimensions and characteristics were obtained by electrochemical anodization. The results complement the state of the art of the synthesis of this type of nanostructure, establishing relationships between the morphological characteristics obtained and the synthesis variables. These relationships allow for the establishment of synthesis zones where the morphology of the nanotubes can be controlled. The results of treatments that modify the crystalline structure of the nanotubes and their surface are discussed. The effect of thermal treatment on the evolution of the anatase phase in TiO2 nanotubes is also discussed. A protocol is established to superficially modify TiO2 nanotubes with nickel nanoparticles, by using electrodeposition. For each treatment, a morphological, crystalline, and elemental characterization of the samples is carried out. The electrochemical characterization of the synthesized photoelectrodes and the effects of the morphologies of the nanostructures on their photoelectrochemical behavior are also carried out. The analyses reveal the electrical behavior of the nanostructures synthesized within a photoelectrochemical cell, as well as the type of semiconductor and the role of nickel in the recombination of photogenerated charges. Equivalent circuits representing the behavior of nickel-modified nanotubes in the photoelectrochemical production of hydrogen are also reviewed.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingeniería - Ingeniería Químicaspa
dc.description.researchareaDesarrollo de electrocatalizadores modificadosspa
dc.format.extent178 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84607
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Químicaspa
dc.relation.referencesA. A. Al-Swayih, “The electrochemical behavior of titanium improved by nanotubular oxide formed by anodization for biomaterial applications: A review,” Orient. J. Chem., vol. 32, no. 6, pp. 2841–2856, 2016.spa
dc.relation.referencesA. Apolinário et al., “The role of the Ti surface roughness in the self-ordering of TiO2 nanotubes: A detailed study of the growth mechanism,” J. Mater. Chem. A, vol. 2, no. 24, pp. 9067–9078, 2014.spa
dc.relation.referencesA. F. Cipriano, C. Miller, and H. Liu, “Anodic growth and biomedical applications of TiO2 nanotubes,” J. Biomed. Nanotechnol., vol. 10, no. 10, pp. 2977–3003, 2014.spa
dc.relation.referencesA. Fujishima and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature, vol. 238, pp. 37–38, 1972.spa
dc.relation.referencesA. G. Kontos et al., “Photocatalytic degradation of gas pollutants on self-assembled titania nanotubes,” Chem. Phys. Lett., vol. 490, no. 1–3, pp. 58–62, 2010.spa
dc.relation.referencesA. G. Kontos et al., “Photo-induced effects on self-organized TiO2 nanotube arrays: the influence of surface morphology,” Nanotechnology, vol. 20, p. 045603, 2009.spa
dc.relation.referencesA. Hameed, M. A. Gondal, and Z. H. Yamani, “Effect of transition metal doping on photocatalytic activity of WO3 for water splitting under laser illumination: Role of 3d-orbitals,” Catal. Commun., vol. 5, no. 11, pp. 715–719, 2004.spa
dc.relation.referencesA. Kudo, “Development of photocatalyst materials for water splitting,” Int. J. Hydrogen Energy, vol. 31, no. 2, pp. 197–202, 2006.spa
dc.relation.referencesA. Matsuda, S. Sreekantan, and W. Krengvirat, “Well-aligned TiO2 nanotube arrays for energy-related applications under solar irradiation,” J. Asian Ceram. Soc., vol. 1, no. 3, pp. 203–219, 2013.spa
dc.relation.referencesA. Pozio, “Effect of Low Cobalt Loading on TiO2 Nanotube Arrays for Water-Splitting,” Int. J. Electrochem., no. NOVEMBER 2014, pp. 1–7, 2014.spa
dc.relation.referencesA. Pozio, “Effect of Tantalum Doping on TiO<sub>2</sub> Nanotube Arrays for Water-Splitting,” Mod. Res. Catal., vol. 04, no. 01, pp. 1–12, 2015.spa
dc.relation.referencesA. Pozio, A. Masci, and M. Pasquali, “Nickel-TiO2 nanotube anode for photo-electrolysers,” Sol. Energy, vol. 136, pp. 590–596, 2016.spa
dc.relation.referencesA. Sharma, R. . Karn, and S. . Pandiyan, “Synthesis of TiO2 nanoparticles by ultrasonic assisted sol-gel method,” J. Basic Appl. Eng. Res., vol. 1, no. 9, pp. 1–5, 2014.spa
dc.relation.referencesA. Torchani, S. Saadaoui, R. Gharbi, and M. Fathallah, “Sensitized solar cells based on natural dyes,” Curr. Appl. Phys., vol. 15, no. 3, pp. 307–312, 2015.spa
dc.relation.referencesA. Valota et al., “Influence of water content on nanotubular anodic titania formed in fluoride/glycerol electrolytes,” Electrochim. Acta, vol. 54, no. 18, pp. 4321–4327, 2009.spa
dc.relation.referencesB. Chen, J. Hou, and K. Lu, “Formation Mechanism of TiO2 Nanotubes and Their Applications in Photoelectrochemical Water Splitting and Supercapacitors,” Langmuir, vol. 29, no. 19, pp. 5911–5919, 2013.spa
dc.relation.referencesB. Chong et al., “Formation Mechanism of Gaps and Ribs Around Anodic TiO2 Nanotubes and Method to Avoid Formation of Ribs,” J. Electrochem. Soc., vol. 162, no. 4, pp. H244–H250, 2015.spa
dc.relation.referencesB. Chong et al., “Theoretical derivation of anodizing current and comparison between fitted curves and measured curves under different conditions,” Nanotechnology, vol. 26, no. 14, 2015.spa
dc.relation.referencesB. Wielage, G. Alisch, T. Lampke, and D. Nickel, “Anodizing – a key for surface treatment of aluminium,” Key Eng. Mater., vol. 384, pp. 263–281, 2008.spa
dc.relation.referencesC. A. Grimes and G. K. Mor, TiO2 nanotube arrays Synthesis Properties and Applications. Springer US, 2009.spa
dc.relation.referencesC. A. Grimes and G. K. Mor, TiO2 Nanotube Arrays. 2009.spa
dc.relation.referencesC. Adán, J. Marugán, E. Sánchez, C. Pablos, and R. Van Grieken, “Understanding the effect of morphology on the photocatalytic activity of TiO2 nanotube array electrodes,” Electrochim. Acta, vol. 191, pp. 521–529, 2016.spa
dc.relation.referencesC. C. Chen and S. J. Hsieh, “Evaluation of fluorine ion concentration in TiO2 NT anodization process,” J. Electrochem. Soc., vol. 157, no. 6, pp. 125–130, 2010.spa
dc.relation.referencesC. C. Nguyen, N. N. Vu, and T.-O. Do, “Recent advances in the development of sunlight-driven hollow structure photocatalysts and their applications,” J. Mater. Chem. A, vol. 3, no. 36, pp. 18345–18359, 2015.spa
dc.relation.referencesC. J. Chen, C. H. Liao, K. C. Hsu, Y. T. Wu, and J. C. S. Wu, “P-N junction mechanism on improved NiO/TiO2 photocatalyst,” Catal. Commun., vol. 12, no. 14, pp. 1307–1310, 2011.spa
dc.relation.referencesC. Ruan, M. Paulose, O. K. Varghese, G. K. Mor, and C. A. Grimes, “Fabrication of Highly Ordered TiO2 Nanotube Arrays Using an Organic Electrolyte,” J. Phys. Chem. B, vol. 109, no. 33, pp. 15754–15759, 2005.spa
dc.relation.referencesC. Song, “Overview of Hydrogen Production Options for Hydrogen Energy Development , Fuel-Cell Fuel Processing and Mitigation of CO2 Emissions,” in Proceedings of 20th international Pittsburgh coal conference. Hydrogen from coal., 2003, vol. paper 40-3, pp. 1–15.spa
dc.relation.referencesD. Gong et al., “Titanium oxide nanotube arrays prepared by anodic oxidation,” J. Mater. Res., vol. 16, no. 12, pp. 3331–3334, 2001.spa
dc.relation.referencesD. Khudhair et al., “Anodization parameters influencing the morphology and electrical properties of TiO2 nanotubes for living cell interfacing and investigations,” Mater. Sci. Eng. C, vol. 59, pp. 1125–1142, 2016.spa
dc.relation.referencesD. Kowalski et al., “Self-organization of TiO2 nanotubes in mono-, di- and tri-ethylene glycol electrolytes,” Electrochim. Acta, vol. 204, pp. 287–293, 2015.spa
dc.relation.referencesD. Kowalski, J. Mallet, J. Michel, and M. Molinari, “Low electric field strength self-organization of anodic TiO2 nanotubes in diethylene glycol electrolyte,” J. Mater. Chem. A, vol. 3, no. 12, pp. 6655–6661, 2015.spa
dc.relation.referencesD. P. Opra, S. V. Gnedenkov, and S. L. Sinebryukhov, “Recent efforts in design of TiO2(B) anodes for high-rate lithium-ion batteries: A review,” J. Power Sources, vol. 442, no. July, p. 227225, 2019.spa
dc.relation.referencesD. Regonini, a. Satka, D. W. E. Allsopp, a. Jaroenworaluck, R. Stevens, and C. R. Bowen, “Anodised Titania Nanotubes Prepared in a Glycerol/NaF Electrolyte,” J. Nanosci. Nanotechnol., vol. 9, no. 7, pp. 4410–4416, 2009.spa
dc.relation.referencesD. Regonini, A. Satka, A. Jaroenworaluck, D. W. E. Allsopp, C. R. Bowen, and R. Stevens, “Factors influencing surface morphology of anodized TiO 2 nanotubes,” Electrochim. Acta, vol. 74, pp. 244–253, 2012.spa
dc.relation.referencesD. Regonini, C. R. Bowen, A. Jaroenworaluck, and R. Stevens, “A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes,” Mater. Sci. Eng. R Reports, vol. 74, no. 12, pp. 377–406, 2013.spa
dc.relation.referencesD. Sinha, D. De, D. Goswami, A. Mondal, and A. Ayaz, “ZnO and TiO2 Nanostructured Dye sensitized Solar Photovoltaic Cell,” Mater. Today Proc., vol. 11, pp. 782–788, 2019.spa
dc.relation.referencesD. Yu, D. Yu, J. Dai, Y. Zhang, and F. Wang, “Growth of Cu2O / TiO2 heterojunction and its photoelectrochemical properties,” Mater. Lett., vol. 263, pp. 1–4, 2020.spa
dc.relation.referencesE. A. Baranova, A. Cally, A. Allagui, S. Ntais, and R. Wüthrich, “Nickel particles with increased catalytic activity towards hydrogen evolution reaction,” Comptes Rendus Chim., vol. 16, no. 1, pp. 28–33, 2013.spa
dc.relation.referencesE. Kusrini and A. S. Afrozi, “Photocatalytic Reforming of Glycerol-Water Over Nitrogen- and Nickel-Doped Titanium Dioxide Nanoparticles,” no. 06, pp. 47–53, 2012.spa
dc.relation.referencesE. Marceau, M. Che, J. Čejka, and A. Zukal, “Nickel(II) Nitrate vs. Acetate: Influence of the Precursor on the Structure and Reducibility of Ni/MCM-41 and Ni/Al-MCM-41 Catalysts,” ChemCatChem, vol. 2, no. 4, pp. 413–422, 2010.spa
dc.relation.referencesE. Samuel, B. Joshi, M. Kim, M. T. Swihart, and S. S. Yoon, “Morphology engineering of photoelectrodes for efficient photoelectrochemical water splitting,” Nano Energy, vol. 72, no. January, p. 104648, 2020.spa
dc.relation.referencesF. Fresno, R. Portela, S. Suárez, and J. M. Coronado, “Photocatalytic materials: recent achievements and near future trends,” J. Mater. Chem. A, vol. 2, no. 9, p. 2863, 2014.spa
dc.relation.referencesF. M. B. Hassan et al., “Formation of Self-Ordered TiO2 Nanotubes by Electrochemical Anodization of Titanium in 2-Propanol/NH4F,” J. Electrochem. Soc., vol. 156, p. K227, 2009.spa
dc.relation.referencesF. Safizadeh, E. Ghali, and G. Houlachi, “Electrocatalysis developments for hydrogen evolution reaction in alkaline solutions - A Review,” Int. J. Hydrogen Energy, vol. 40, no. 1, pp. 256–274, 2015.spa
dc.relation.referencesG. D. Sulka, J. Kapusta-Kołodziej, A. Brzózka, and M. Jaskuła, “Anodic growth of TiO2 nanopore arrays at various temperatures,” Electrochim. Acta, vol. 104, pp. 526–535, 2013.spa
dc.relation.referencesG. D. Sulka, J. Kapusta-Kołodziej, A. Brzózka, and M. Jaskuła, “Fabrication of nanoporous TiO2 by electrochemical anodization,” Electrochim. Acta, vol. 55, no. 14, pp. 4359–4367, 2010.spa
dc.relation.referencesG. J. Cao, B. Cui, W. Q. Wang, G. Z. Tang, Y. C. Feng, and L. P. Wang, “Fabrication and photodegradation properties of TiO2 nanotubes on porous Ti by anodization,” Oral Oncol., vol. 50, no. 10, pp. 2581–2587, 2014.spa
dc.relation.referencesG. Kopp and J. L. Lean, “A new, lower value of total solar irradiance: Evidence and climate significance,” Geophys. Res. Lett., vol. 38, no. 1, pp. 1–7, 2011.spa
dc.relation.referencesG. Liu, K. Du, and K. Wang, “Surface wettability of TiO2 nanotube arrays prepared by electrochemical anodization,” Appl. Surf. Sci., vol. 388, pp. 313–320, 2016.spa
dc.relation.referencesG. Marbán and T. Valdés-Solís, “Towards the hydrogen economy?,” Int. J. Hydrogen Energy, vol. 32, no. 12, pp. 1625–1637, 2007.spa
dc.relation.referencesG. S. Pozan, M. Isleyen, and S. Gokcen, “Transition metal coated TiO2 nanoparticles: Synthesis, characterization and their photocatalytic activity,” Appl. Catal. B Environ., vol. 140–141, pp. 537–545, 2013.spa
dc.relation.referencesG. Thomas, “Overview of Storage Development DOE Hydrogen Program,” Proc. 2000 U.S. DOE Hydrog. Progr. Rev., pp. 56–69, 2000.spa
dc.relation.referencesH. C. Liang, X. Z. Li, and J. Nowotny, “Photocatalytical Properties of TiO2 Nanotubes,” Solid State Phenom., vol. 162, pp. 295–328, 2010.spa
dc.relation.referencesH. E. Prakasam, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, “A new benchmark for TiO2 nanotube array growth by anodization,” J. Phys. Chem. C, vol. 111, no. 20, pp. 7235–7241, 2007.spa
dc.relation.referencesH. F. Mataré and E. Kostiner, “Defect Electronics in Semiconductors,” J. Electrochem. Soc., vol. 119, no. 8, p. 257C, 1972.spa
dc.relation.referencesH. Kmentova et al., “Photoelectrochemical and structural properties of TiO2 nanotubes and nanorods grown on FTO substrate: Comparative study between electrochemical anodization and hydrothermal method used for the nanostructures fabrication,” Catal. Today, vol. 287, pp. 130–136, 2017.spa
dc.relation.referencesH. Liu et al., “Cytocompatibility and antibacterial property of N+ ions implanted TiO2 nanotubes,” Surf. Coatings Technol., vol. 359, no. August 2018, pp. 468–475, 2019.spa
dc.relation.referencesH. M. Y. Choquette, L. Brossard, A. Lasia, “Study of the Kinetics of Hydrogen Evolution Reaction on Raney Nickel Composite Coated Electrode by AC Impedance Technique.,” J. Electrochem. Soc., vol. 137, no. 6, pp. 1723–1730, 1990.spa
dc.relation.referencesH. Omidvar, S. Goodarzi, A. Seif, and A. R. Azadmehr, “Influence of anodization parameters on the morphology of TiO2 nanotube arrays,” Superlattices Microstruct., vol. 50, no. 1, pp. 26–39, 2011.spa
dc.relation.referencesH. Phattepur, G. B. Siddaiah, and N. Ganganagappa, “Synthesis and characterisation of mesoporous TiO2 nanoparticles by novel surfactant assisted sol-gel method for the degradation of organic compounds,” Period. Polytech. Chem. Eng., vol. 63, no. 1, pp. 85–95, 2019.spa
dc.relation.referencesH. Sopha, A. Jäger, P. Knotek, K. Tesar, M. Jarosova, and J. M. Macak, “Self-organized Anodic TiO2 Nanotube Layers : Influence of the Ti substrate on Nanotube Growth and Dimensions,” Electrochim. Acta, vol. 190, pp. 744–752, 2016.spa
dc.relation.referencesH. Sopha, L. Hromadko, K. Nechvilova, and J. M. Macak, “Effect of electrolyte age and potential changes on the morphology of TiO2 nanotubes,” J. Electroanal. Chem., vol. 759, pp. 122–128, 2015.spa
dc.relation.referencesH. Tsuchiya, J. M. Macak, A. Ghicov, A. S. Räder, L. Taveira, and P. Schmuki, “Characterization of electronic properties of TiO2 nanotube films,” Corros. Sci., vol. 49, no. 1, pp. 203–210, 2007.spa
dc.relation.referencesH. Zhang et al., “Extending the detection range and response of TiO2 based hydrogen sensors by surface defect engineering,” Int. J. Hydrogen Energy, vol. 45, no. 35, pp. 18057–18065, 2020.spa
dc.relation.referencesI. Ganesh et al., “Preparation and characterization of Ni-doped TiO2 materials for photocurrent and photocatalytic applications,” Sci. World J., vol. 2012, pp. 13–20, 2012.spa
dc.relation.referencesI. H. Tseng, J. C. S. Wu, and H. Y. Chou, “Effects of sol-gel procedures on the photocatalysis of Cu/TiO2 in CO2 photoreduction,” J. Catal., vol. 221, no. 2, pp. 432–440, 2004.spa
dc.relation.referencesJ. E. Houser and K. R. Hebert, “The role of viscous flow of oxide in the growth of self-ordered porous anodic alumina films.,” Nat. Mater., vol. 8, no. 5, pp. 415–420, 2009.spa
dc.relation.referencesJ. E. Yoo and P. Schmuki, “Critical factors in the anodic formation of extremely ordered titania nanocavities,” J. Electrochem. Soc., vol. 166, no. 11, pp. C3389–C3398, 2019.spa
dc.relation.referencesJ. Joy, J. Mathew, and S. C. George, “Nanomaterials for photoelectrochemical water splitting – review,” Int. J. Hydrogen Energy, vol. 43, no. 10, pp. 4804–4817, 2018.spa
dc.relation.referencesJ. M. Macak et al., “TiO2 nanotubes: Self-organized electrochemical formation, properties and applications,” Curr. Opin. Solid State Mater. Sci., vol. 11, no. 1–2, pp. 3–18, 2007.spa
dc.relation.referencesJ. M. Macák, H. Tsuchiya, and P. Schmuki, “High-aspect-ratio TiO2 nanotubes by anodization of titanium,” Angew. Chemie - Int. Ed., vol. 44, no. 14, pp. 2100–2102, 2005.spa
dc.relation.referencesJ. M. Macak, H. Tsuchiya, L. Taveira, S. Aldabergerova, and P. Schmuki, “Smooth anodic TiO2 nanotubes,” Angew. Chemie - Int. Ed., vol. 44, no. 45, pp. 7463–7465, 2005.spa
dc.relation.referencesJ. M. Macak, K. Sirotna, and P. Schmuki, “Self-organized porous titanium oxide prepared in Na2SO4/NaF electrolytes,” Electrochim. Acta, vol. 50, no. 18, pp. 3679–3684, 2005.spa
dc.relation.referencesJ. M. Ogden, “Hydrogen: The Fuel of the Future?,” Phys. Today, vol. 55, no. 4, pp. 69–75, 2002.spa
dc.relation.referencesJ. R. Bartels, M. B. Pate, and N. K. Olson, “An economic survey of hydrogen production from conventional and alternative energy sources,” Int. J. Hydrogen Energy, vol. 35, no. 16, pp. 8371–8384, 2010.spa
dc.relation.referencesJ. V. Pasikhani, N. Gilani, and A. E. Pirbazari, “The effect of the anodization voltage on the geometrical characteristics and photocatalytic activity of TiO2 nanotube arrays,” Nano-Structures and Nano-Objects, vol. 8, pp. 7–14, 2016.spa
dc.relation.referencesJ. W. Schultze, M. M. Lohrengel, and D. Ross, “Nucleation and growth of anodic oxide films,” Electrochim. Acta, vol. 28, no. 7, pp. 973–984, 1983.spa
dc.relation.referencesJ. Wan, X. Yan, J. Ding, M. Wang, and K. Hu, “Self-organized highly ordered TiO2 nanotubes in organic aqueous system,” Mater. Charact., vol. 60, no. 12, pp. 1534–1540, 2009.spa
dc.relation.referencesJ. Wen, X. Li, W. Liu, Y. Fang, J. Xie, and Y. Xu, “Photocatalysis fundamentals and surface modification of TiO2 nanomaterials,” Cuihua Xuebao/Chinese J. Catal., vol. 36, no. 12, pp. 2049–2070, 2015.spa
dc.relation.referencesJ. Xue, Q. Shen, F. Yang, W. Liang, and X. Liu, “Investigation on the influence of pH on structure and photoelectrochemical properties of CdSe electrolytically deposited into TiO2 nanotube arrays,” J. Alloys Compd., vol. 607, pp. 163–168, 2014.spa
dc.relation.referencesJ. Yahalom and J. Zahavi, “Electrolytic breakdown crystallization of anodic oxide films on A1, Ta and Ti,” Electrochim. Acta, vol. 15, no. 9, pp. 1429–1435, 1970.spa
dc.relation.referencesJ. Yang et al., “Morphology defects guided pore initiation during the formation of porous anodic alumina,” ACS Appl. Mater. Interfaces, vol. 6, no. 4, pp. 2285–2291, 2014.spa
dc.relation.referencesJ.-M. Lehn, J.-P. Sauvage, and R. Ziessel, “Photochemical water splitting continuous generation of hydrogen and oxygen by irradiation of aqueous suspensions of metal loaded strontium titanate,” Nouv. J. Chim., vol. 4, no. 11, pp. 623–627, 1980.spa
dc.relation.referencesK. Domen, S. Naito, M. Soma, T. Onishi, and K. Tamaru, “Photocatalytic decomposition of water vapour on an NiO–SrTiO3 catalyst,” J. Chem. Soc. Chem. Commun., pp. 543–544, 1980.spa
dc.relation.referencesK. Indira, U. K. Mudali, T. Nishimura, and N. Rajendran, “A Review on TiO2 Nanotubes: Influence of Anodization Parameters, Formation Mechanism, Properties, Corrosion Behavior, and Biomedical Applications,” J. Bio- Tribo-Corrosion, vol. 1, no. 4, pp. 1–22, 2015.spa
dc.relation.referencesK. Lee, W. S. Nam, and G. Y. Han, “Photocatalytic water-splitting in alkaline solution using redox mediator. 1: Parameter study,” Int. J. Hydrogen Energy, vol. 29, no. 13, pp. 1343–1347, 2004.spa
dc.relation.referencesK. Lu, Z. Tian, and J. A. Geldmeier, “Polishing effect on anodic titania nanotube formation,” Electrochim. Acta, vol. 56, no. 17, pp. 6014–6020, 2011.spa
dc.relation.referencesK. Nielsch, J. Choi, K. Schwirn, and R. B. Wehrspohn, “Self-ordering Regimes of Porous Alumina : The 10 % Porosity Rule,” Nano Lett., vol. 2, no. 7, pp. 677–680, 2002.spa
dc.relation.referencesK. S. Lin, H. W. Cheng, W. R. Chen, and C. F. Wu, “Synthesis, characterization, and adsorption kinetics of titania nanotubes for basic dye wastewater treatment,” Adsorption, vol. 16, no. 1–2, pp. 47–56, 2010.spa
dc.relation.referencesK. S. Raja, M. Misra, and K. Paramguru, “Formation of self-ordered nano-tubular structure of anodic oxide layer on titanium,” Electrochim. Acta, vol. 51, no. 1, pp. 154–165, 2005.spa
dc.relation.referencesK. S. Raja, T. Gandhi, and M. Misra, “Effect of water content of ethylene glycol as electrolyte for synthesis of ordered titania nanotubes,” Electrochem. commun., vol. 9, no. 5, pp. 1069–1076, 2007.spa
dc.relation.referencesK. Shankar et al., “Highly-ordered TiO2 nanotube arrays up to 220 μm in length: Use in water photoelectrolysis and dye-sensitized solar cells,” Nanotechnology, vol. 18, no. 6, 2007.spa
dc.relation.referencesK. Syrek, J. Kapusta-Kołodziej, M. Jarosz, and G. D. Sulka, “Effect of electrolyte agitation on anodic titanium dioxide (ATO) growth and its photoelectrochemical properties,” Electrochim. Acta, vol. 180, pp. 801–810, 2015.spa
dc.relation.referencesL. C. Sim, K. W. Ng, S. Ibrahim, and P. Saravanan, “Preparation of improved p-n junction NiO/TiO2 nanotubes for solar-energy-driven light photocatalysis,” Int. J. Photoenergy, vol. 2013, 2013.spa
dc.relation.referencesL. G. Devi, N. Kottam, S. G. Kumar, and K. E. Rajashekhar, “Preparation, characterization and enhanced photocatalytic activity of Ni2+ doped titania under solar light,” Cent. Eur. J. Chem., vol. 8, no. 1, pp. 142–148, 2010.spa
dc.relation.referencesL. Tsui and G. Zangari, “Titania Nanotubes by Electrochemical Anodization for Solar Energy Conversion,” J. Electrochem. Soc. , vol. 161, no. 7, pp. D3066–D3077, 2014.spa
dc.relation.referencesL. V. Taveira, J. M. Macák, H. Tsuchiya, L. F. P. Dick, and P. Schmuki, “Initiation and growth of self-organized TiO2 nanotubes anodically formed in NH4F/(NH 4)2SO4 electrolytes,” J. Electrochem. Soc., vol. 152, no. 10, pp. 405–410, 2005.spa
dc.relation.referencesL. Yang, D. He, Q. Cai, and C. A. Grimes, “Fabrication and catalytic properties of Co - Ag - Pt nanoparticle-decorated titania nanotube arrays,” J. Phys. Chem. C, vol. 111, no. 23, pp. 8214–8217, 2007.spa
dc.relation.referencesL. Yin, S. Ji, G. Liu, G. Xu, and C. Ye, “Understanding the growth behavior of titania nanotubes,” Electrochem. commun., vol. 13, no. 5, pp. 454–457, 2011.spa
dc.relation.referencesM. A. A. Taib, K. A. Razak, M. Jaafar, and Z. Lockman, “Initial growth study of TiO2 nanotube arrays anodised in KOH/fluoride/ethylene glycol electrolyte,” Mater. Des., vol. 128, no. January, pp. 195–205, 2017.spa
dc.relation.referencesM. A. V. Zwilling E. Darque-Ceretti, “Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach,” Electrochim. Acta, vol. 45, pp. 921–929, 1999.spa
dc.relation.referencesM. Anpo, M. Takeuchi, K. Ikeue, and S. Dohshi, “Design and development of titanium oxide photocatalysts operating under visible and UV light irradiation . The applications of metal ion-implantation techniques to semiconducting TiO2 and Ti / zeolite catalysts,” Curr. Opin. Solid State Mater. Sci., vol. 6, pp. 381–388, 2002.spa
dc.relation.referencesM. Anpo, S. Dohshi, M. Kitano, Y. Hu, M. Takeuchi, and M. Matsuoka, “The Preparation and Characterization of Highly Efficient Titanium Oxide-Ba,” Annu. Rev. Mater. Res., vol. 35, no. 1, pp. 1–27, 2005.spa
dc.relation.referencesM. Balat, “Potential importance of hydrogen as a future solution to environmental and transportation problems,” Int. J. Hydrogen Energy, vol. 33, no. 15, pp. 4013–4029, 2008.spa
dc.relation.referencesM. H. Seo, D. J. Kim, and J. S. Kim, “The effects of pH and temperature on Ni-Fe-P alloy electrodeposition from a sulfamate bath and the material properties of the deposits,” Thin Solid Films, vol. 489, no. 1–2, pp. 122–129, 2005.spa
dc.relation.referencesM. Haskul, A. T. Ülgen, and A. Döner, “Fabrication and characterization of Ni modified TiO2 electrode as anode material for direct methanol fuel cell,” Int. J. Hydrogen Energy, vol. 45, no. 7, pp. 4860–4874, 2020.spa
dc.relation.referencesM. Hideki and F. Kenji, “Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina.,” Science (80-. )., vol. 268, no. 5216, pp. 1466–1468, 1995.spa
dc.relation.referencesM. Khatamian, M. Saket Oskoui, M. Haghighi, and M. Darbandi, “Visible-light response photocatalytic water splitting over CdS/TiO2 and CdS-TiO2/metalosilicate composites,” Int. J. energy Res., vol. 38, no. 13, pp. 1712–1726, 2014.spa
dc.relation.referencesM. Levent, D. J. Gunn, and M. A. El-Bousiffi, “Production of hydrogen-rich gases from steam reforming of methane in an automatic catalytic microreactor,” Int. J. Hydrogen Energy, vol. 28, no. 9, pp. 945–959, 2003.spa
dc.relation.referencesM. M. Rashid, M. K. Al Mesfer, H. Naseem, and M. Danish, “Hydrogen Production by Water Electrolysis : A Review of Alkaline Water Electrolysis , PEM Water Electrolysis and High Temperature Water Electrolysis,” Int. J. Eng. Adv. Technol., vol. 4, no. 3, pp. 80–93, 2015.spa
dc.relation.referencesM. Michalska-Domańska, P. Nyga, and M. Czerwiński, “Ethanol-based electrolyte for nanotubular anodic TiO2 formation,” Corros. Sci., vol. 134, no. February, pp. 99–102, 2018.spa
dc.relation.referencesM. Motola et al., “Comparison of photoelectrochemical performance of anodic single- and double-walled TiO2 nanotube layers,” Electrochem. commun., vol. 97, no. July, pp. 1–5, 2018.spa
dc.relation.referencesM. Ni, M. K. H. Leung, D. Y. C. Leung, and K. Sumathy, “A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production,” Renew. Sustain. Energy Rev., vol. 11, no. 3, pp. 401–425, 2007.spa
dc.relation.referencesM. Paulose et al., “Anodic Growth of Highly Ordered TiO2 Nanotube Arrays to 134 μm in Length,” J. Phys. Chem. B, vol. 110, no. 33, pp. 16179–16184, 2006.spa
dc.relation.referencesM. Paulose, G. K. Mor, O. K. Varghese, K. Shankar, and C. A. Grimes, “Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays,” J. Photochem. Photobiol. A Chem., vol. 178, no. 1, pp. 8–15, 2006.spa
dc.relation.referencesM. Popczyk, J. Kubisztal, and A. Budniok, “Structure and electrochemical characterization of electrolytic Ni+Mo+Si composite coatings in an alkaline solution,” Electrochim. Acta, vol. 51, no. 27, pp. 6140–6144, 2006.spa
dc.relation.referencesM. T. Islam et al., “Development of photocatalytic paint based on TiO2 and photopolymer resin for the degradation of organic pollutants in water,” Sci. Total Environ., vol. 704, p. 135406, 2020.spa
dc.relation.referencesM. V Someswararao, D. Pradeep, R. S. Dubey, and P. S. V Subbarao, “Experimental Investigation of Electrospun Titania Nanofibers : An Applied Voltage Influence,” Mater. Today Proc., vol. 18, pp. 384–388, 2019.spa
dc.relation.referencesM. Wu, T. Duan, Y. Chen, Q. Wen, Y. Wang, and H. Xin, “Surface modification of TiO2 nanotube arrays with metal copper particle for high efficient photocatalytic reduction of Cr(VI),” Desalin. Water Treat., vol. 57, no. 23, pp. 10790–10801, 2016.spa
dc.relation.referencesM. Yu et al., “Studies of oxide growth location on anodization of Al and Ti provide evidence against the field-assisted dissolution and field-assisted ejection theories,” Electrochem. commun., vol. 87, no. December 2017, pp. 76–80, 2018.spa
dc.relation.referencesM. Zulfiqar, S. Chowdhury, and A. A. Omar, “Hydrothermal synthesis of multiwalled TiO2 nanotubes and its photocatalytic activities for Orange II removal,” Sep. Sci. Technol., vol. 53, no. 9, pp. 1412–1422, 2018.spa
dc.relation.referencesN. A. Kyeremateng, C. Lebouin, P. Knauth, and T. Djenizian, “The electrochemical behaviour of TiO2 nanotubes with Co3O4 or NiO submicron particles: composite anode materials for Li-ion micro batteries,” Electrochim. Acta, vol. 88, pp. 814–820, 2012.spa
dc.relation.referencesN. B. Kondrikov, P. L. Titov, S. A. Schegoleva, and M. A. Khorin, “Influence of Formation Conditions on the Level of Arrays Ordering of Anodic Titanium Oxide Nanotubes,” Phys. Procedia, vol. 86, no. June 2015, pp. 37–43, 2017.spa
dc.relation.referencesN. K. Allam, K. Shankar, and C. A. Grimes, “A General Method for the Anodic Formation of Crystalline Metal Oxide Nanotube Arrays without the Use of Thermal Annealing **,” Adv. Mater., vol. 20, pp. 3942–3946, 2008.spa
dc.relation.referencesN. Vaenas, T. Stergiopoulos, A. G. Kontos, V. Likodimos, and P. Falaras, “Influence of controlled-charge anodization processes on the morphology of TiO2 nanotubes and their efficiency in dye-sensitized solar cells,” Electrochim. Acta, vol. 113, pp. 490–496, 2013.spa
dc.relation.referencesO. Robinson Aguirre and E. Félix Echeverría, “Effects of fluoride source on the characteristics of titanium dioxide nanotubes,” Appl. Surf. Sci., vol. 445, pp. 308–319, 2018.spa
dc.relation.referencesØ. Ulleberg, “Modeling of advanced alkaline electrolyzers: A system simulation approach,” Int. J. Hydrogen Energy, vol. 28, no. 1, pp. 21–33, 2003.spa
dc.relation.referencesP. Acevedo-Peña and I. González, “ TiO 2 Nanotubes Formed in Aqueous Media: Relationship between Morphology, Electrochemical Properties and Photoelectrochemical Performance for Water Oxidation ,” J. Electrochem. Soc., vol. 160, no. 8, pp. H452–H458, 2013.spa
dc.relation.referencesP. Acevedo-Peña and I. Gonźalez, “TiO2 nanotubes formed in aqueous media: Relationship between morphology, electrochemical properties and photoelectrochemical performance for water oxidation,” J. Electrochem. Soc., vol. 160, no. 8, pp. H452–H458, 2013.spa
dc.relation.referencesP. Acevedo-Peña and I. González, “TiO2 photoanodes prepared by cathodic electrophoretic deposition in 2-propanol: Effect of the electric field and deposition time,” J. Solid State Electrochem., vol. 17, no. 2, pp. 519–526, 2013.spa
dc.relation.referencesP. C. Hallenbeck and J. R. Benemann, “Biological hydrogen production; Fundamentals and limiting processes,” Int. J. Hydrogen Energy, vol. 27, no. 11–12, pp. 1185–1193, 2002.spa
dc.relation.referencesP. Roy, S. Berger, and P. Schmuki, “TiO2 nanotubes: Synthesis and applications,” Angew. Chemie - Int. Ed., vol. 50, no. 13, pp. 2904–2939, 2011.spa
dc.relation.referencesQ. Cai, L. Yang, and Y. Yu, “Investigations on the self-organized growth of TiO2 nanotube arrays by anodic oxidization,” Thin Solid Films, vol. 515, no. 4, pp. 1802–1806, 2006.spa
dc.relation.referencesR. A. R. Monteiro, F. V. S. Lopes, R. A. R. Boaventura, A. M. T. Silva, and V. J. P. Vilar, “Synthesis and characterization of N-modified titania nanotubes for photocatalytic applications,” Environ. Sci. Pollut. Res., vol. 22, no. 2, pp. 810–819, 2014.spa
dc.relation.referencesR. García-Valverde, C. Miguel, R. Martínez-Béjar, and A. Urbina, “Optimized photovoltaic generator-water electrolyser coupling through a controlled DC-DC converter,” Int. J. Hydrogen Energy, vol. 33, no. 20, pp. 5352–5362, 2008.spa
dc.relation.referencesR. Kothari, D. Buddhi, and R. L. Sawhney, “Comparison of environmental and economic aspects of various hydrogen production methods,” Renew. Sustain. Energy Rev., vol. 12, no. 2, pp. 553–563, 2008.spa
dc.relation.referencesR. M. Navarro, M. C. Sánchez-Sánchez, M. C. Alvarez-Galvan, F. del Valle, and J. L. G. Fierro, “Hydrogen production from renewable sources: biomass and photocatalytic opportunities,” Energy Environ. Sci., vol. 2, no. 1, pp. 35–54, 2009.spa
dc.relation.referencesR. Marschall, “Semiconductor composites: Strategies for enhancing charge carrier separation to improve photocatalytic activity,” Adv. Funct. Mater., vol. 24, no. 17, pp. 2421–2440, 2014.spa
dc.relation.referencesR. S. Hyam and D. Choi, “Effects of titanium foil thickness on TiO2 nanostructures synthesized by anodization,” RSC Adv., vol. 3, no. 19, pp. 7057–7063, 2013.spa
dc.relation.referencesR. Sánchez-Tovar, K. Lee, J. García-Antón, and P. Schmuki, “Formation of anodic TiO2 nanotube or nanosponge morphology determined by the electrolyte hydrodynamic conditions,” Electrochem. commun., vol. 26, no. 1, pp. 1–4, 2013.spa
dc.relation.referencesR. Sharma, K. Arnoult, K. Hart, M. Mughal, and R. Engelken, “Photoelectrochemical characterization of titania photoanodes fabricated using varying anodization parameters,” IEEE Ind. Appl. Soc. - 51st Annu. Meet. IAS 2015, Conf. Rec., pp. 1–7, 2015.spa
dc.relation.referencesR. Singh and S. Dutta, “A review on H2 production through photocatalytic reactions using TiO2/TiO2-assisted catalysts,” Fuel, vol. 220, no. July 2017, pp. 607–620, 2018.spa
dc.relation.referencesS. B. Patil, P. S. Basavarajappa, N. Ganganagappa, M. S. Jyothi, A. V. Raghu, and K. R. Reddy, “Recent advances in non-metals-doped TiO2 nanostructured photocatalysts for visible-light driven hydrogen production, CO2 reduction and air purification,” Int. J. Hydrogen Energy, vol. 44, no. 26, pp. 13022–13039, 2019.spa
dc.relation.referencesS. Chen, Q. Chen, M. Gao, S. Yan, R. Jin, and X. Zhu, “Morphology evolution of TiO2 nanotubes by a slow anodization in mixed electrolytes,” Surf. Coatings Technol., vol. 321, pp. 257–264, 2017.spa
dc.relation.referencesS. G. Lee, S. Lee, and H. I. Lee, “Photocatalytic production of hydrogen from aqueous solution containing CN- as a hole scavenger,” Appl. Catal. A Gen., vol. 207, no. 1–2, pp. 173–181, 2001.spa
dc.relation.referencesS. Gupta, N. Patel, A. Miotello, and D. C. Kothari, “Cobalt-Boride: An efficient and robust electrocatalyst for Hydrogen Evolution Reaction,” J. Power Sources, vol. 279, pp. 620–625, 2015.spa
dc.relation.referencesS. Hoang, S. Guo, N. T. Hahn, A. J. Bard, and C. B. Mullins, “Visible Light Driven Photoelectrochemical Water Oxidation on Nitrogen-Modified TiO2 Nanowires,” Nano Lett., vol. 12, pp. 26–32, 2012.spa
dc.relation.referencesS. J. Garcia-Vergara, P. Skeldon, G. E. Thompson, and H. Habazaki, “A flow model of porous anodic film growth on aluminium,” Electrochim. Acta, vol. 52, no. 2, pp. 681–687, 2006.spa
dc.relation.referencesS. Karthik et al., “Highly-ordered TiO2 nanotube arrays up to 220µm in length: use in water photoelectrolysis and dye-sensitized solar cells,” Nanotechnology, vol. 18, no. 6, p. 65707, 2007.spa
dc.relation.referencesS. Liang et al., “Improving Photoelectrochemical Water Splitting Activity of TiO2 Nanotube Arrays by Tuning Geometrical Parameters,” J. Phys. Chem. C, vol. 116, no. 16, p. 120405164648006, 2012.spa
dc.relation.referencesS. Meher Kotay and D. Das, “Biohydrogen as a renewable energy resource-Prospects and potentials,” Int. J. Hydrogen Energy, vol. 33, no. 1, pp. 258–263, 2008.spa
dc.relation.referencesS. Ozkan, A. Mazare, and P. Schmuki, “Critical parameters and factors in the formation of spaced TiO 2 nanotubes by self-organizing anodization,” Electrochim. Acta, vol. 268, pp. 435–447, 2018.spa
dc.relation.referencesS. Ozkan, N. T. Nguyen, A. Mazare, I. Cerri, and P. Schmuki, “Controlled spacing of self-organized anodic TiO2 nanotubes,” Electrochem. commun., vol. 69, pp. 76–79, 2016.spa
dc.relation.referencesS. Ozkan, N. T. Nguyen, A. Mazare, R. Hahn, I. Cerri, and P. Schmuki, “Fast growth of TiO2 nanotube arrays with controlled tube spacing based on a self-ordering process at two different scales,” Electrochem. commun., vol. 77, pp. 98–102, 2017.spa
dc.relation.referencesS. P. Albu, I. Paramasivam, P. Schmuki, N. Taccardi, and K. R. Hebert, “Oxide Growth Efficiencies and Self-Organization of TiO2 Nanotubes,” J. Electrochem. Soc., vol. 159, no. 8, pp. H697–H703, 2012.spa
dc.relation.referencesS. P. Albu, P. Roy, S. Virtanen, and P. Schmuki, “Self‐organized TiO2 Nanotube Arrays: Critical Effects on Morphology and Growth,” Isr. J. Chem., vol. 50, pp. 453–467, 2010.spa
dc.relation.referencesS. Sato and J. M. White, “Photocatalytic Production of Hydrogen from Water and Texas Lignite by Use of a Platinized Titania Catalyst,” Ind. Eng. Chem. Prod. Res. Dev., vol. 19, no. 4, pp. 542–544, 1980.spa
dc.relation.referencesS. Shen et al., “Titanium dioxide nanostructures for photoelectrochemical applications,” Prog. Mater. Sci., vol. 98, no. July, pp. 299–385, 2018.spa
dc.relation.referencesS. Sircar, W. E. Waldron, M. B. Rao, and M. Anand, “Hydrogen production by hybrid SMR-PSA-SSF membrane system,” Sep. Purif. Technol., vol. 17, no. 1, pp. 11–20, 1999.spa
dc.relation.referencesS. Sreekantan, Z. Lockman, R. Hazan, M. Tasbihi, L. K. Tong, and A. R. Mohamed, “Influence of electrolyte pH on TiO2 nanotube formation by Ti anodization,” J. Alloys Compd., vol. 485, no. 1–2, pp. 478–483, 2009.spa
dc.relation.referencesS. X. Liu, Z. P. Qu, X. W. Han, and C. L. Sun, “A mechanism for enhanced photocatalytic activity of silver-loaded titanium dioxide,” Catal. Today, vol. 93–95, pp. 877–884, 2004.spa
dc.relation.referencesS. Z. Chu, K. Wada, S. Inoue, S. ichi Todoroki, Y. K. Takahashi, and K. Hono, “Fabrication and characteristics of ordered Ni nanostructures on glass by anodization and direct current electrodeposition,” Chem. Mater., vol. 14, no. 11, pp. 4595–4602, 2002.spa
dc.relation.referencesS. Zhao et al., “A mathematical model for initiation and growth of anodic titania nanotube embryos under compact oxide layer,” Electrochem. commun., vol. 91, no. May, pp. 60–65, 2018.spa
dc.relation.referencesS.-I. In, Y. Hou, B. L. Abrams, P. C. K. Vesborg, and I. Chorkendorff, “Controlled Directional Growth of TiO2 Nanotubes,” J. Electrochem. Soc., vol. 157, no. 5, pp. E69–E74, 2010.spa
dc.relation.referencesT. H. E. J. Of et al., “Recent Advances in the Use of TiO 2 Nanotube and Nanowire Arrays for Oxidative photoelectrochemistry,” J. Phys. Chem. C, vol. 113, no. 16, pp. 6327–6359, 2009.spa
dc.relation.referencesT. Teka, “Current State Of Doped-TiO2 Photocatalysts And Synthesis Methods To Prepare TiO2 Films : A Review,” Int. J. Technol. Enhanc. Emerg. Eng. Res., vol. 3, no. 01, pp. 14–18, 2015.spa
dc.relation.referencesU. K. Chime, F. I. Ezema, and J. Marques-hueso, “Porosity and hole diameter tuning on nanoporous anodic aluminium oxide membranes by one-step anodization,” Opt. - Int. J. Light Electron Opt., vol. 174, no. August, pp. 558–562, 2018.spa
dc.relation.referencesV. Vega et al., “Unveiling the Hard Anodization Regime of Aluminum: Insight into Nanopores Self-Organization and Growth Mechanism,” ACS Appl. Mater. Interfaces, vol. 7, no. 51, pp. 28682–28692, 2015.spa
dc.relation.referencesW. C. Lattin and V. P. Utgikar, “Transition to hydrogen economy in the United States: A 2006 status report,” Int. J. Hydrogen Energy, vol. 32, no. 15 SPEC. ISS., pp. 3230–3237, 2007.spa
dc.relation.referencesW. Li et al., “Enhancing photoelectrochemical water splitting by aluminum-doped plate-like WO3 electrodes,” Electrochim. Acta, vol. 160, pp. 57–63, 2015.spa
dc.relation.referencesW. Zhu, G. Wang, X. Hong, X. Shen, D. Li, and X. Xie, “Metal nanoparticle chains embedded in TiO2 nanotubes prepared by one-step electrodeposition,” Electrochim. Acta, vol. 55, no. 2, pp. 480–484, 2009.spa
dc.relation.referencesX. Bai, L. Ma, Z. Dai, and H. Shi, “Electrochemical synthesis of p-Cu2O / n-TiO2 heterojunction electrode with enhanced photoelectrocatalytic activity,” Mater. Sci. Semicond. Process., vol. 74, pp. 319–328, 2018.spa
dc.relation.referencesX. Chen, S. Shen, L. Guo, and S. S. Mao, “Semiconductor-Based Photocatalytic Hydrogen Generation,” Chem. Rev., vol. 110, no. 11, pp. 6503–6570, 2010.spa
dc.relation.referencesX. Li, T. Xia, C. Xu, J. Murowchick, and X. Chen, “Synthesis and photoactivity of nanostructured CdS-TiO2 composite catalysts,” Catal. Today, vol. 225, pp. 64–73, 2014.spa
dc.relation.referencesX. M. Zhong et al., “Fabrication and Formation Mechanism of Triple-Layered TiO2 Nanotubes,” J. Electrochem. Soc., vol. 160, no. 10, pp. E125–E129, 2013.spa
dc.relation.referencesX. Xiao, K. Ouyang, R. Liu, and J. Liang, “Anatase type titania nanotube arrays direct fabricated by anodization without annealing,” Appl. Surf. Sci., vol. 255, no. 6, pp. 3659–3663, 2009.spa
dc.relation.referencesX. Zhou, N. T. Nguyen, S. Özkan, and P. Schmuki, “Anodic TiO2 nanotube layers: Why does self-organized growth occur - A mini review,” Electrochem. commun., vol. 46, pp. 157–162, 2014.spa
dc.relation.referencesY. Fu and A. Mo, “A Review on the Electrochemically Self-organized Titania Nanotube Arrays: Synthesis, Modifications, and Biomedical Applications,” Nanoscale Res. Lett., vol. 13, 2018.spa
dc.relation.referencesY. Kado, R. Hahn, and P. Schmuki, “Surface modification of TiO2 nanotubes by low temperature thermal treatment in C2H2 atmosphere,” J. Electroanal. Chem., vol. 662, no. 1, pp. 25–29, 2011.spa
dc.relation.referencesY. L. Pang, S. Lim, H. C. Ong, and W. T. Chong, “A critical review on the recent progress of synthesizing techniques and fabrication of TiO2-based nanotubes photocatalysts,” Appl. Catal. A Gen., vol. 481, pp. 127–142, 2014.spa
dc.relation.referencesY. Lai, H. Zhuang, L. Sun, Z. Chen, and C. Lin, “Self-organized TiO2 nanotubes in mixed organic-inorganic electrolytes and their photoelectrochemical performance,” Electrochim. Acta, vol. 54, no. 26, pp. 6536–6542, 2009.spa
dc.relation.referencesY. Lai, L. Sun, Y. Chen, H. Zhuang, C. Lin, and J. W. Chin, “Effects of the structure of TiO2 nanotube array on Ti substrate on its photocatalytic activity,” J. Electrochem. Soc., vol. 153, no. 7, pp. 123–127, 2006.spa
dc.relation.referencesY. Li, G. Lu, and S. Li, “Photocatalytic production of hydrogen in single component and mixture systems of electron donors and monitoring adsorption of donors by in situ infrared spectroscopy,” Chemosphere, vol. 52, no. 5, pp. 843–850, 2003.spa
dc.relation.referencesY. Sun, G. Wang, and K. Yan, “TiO2 nanotubes for hydrogen generation by photocatalytic water splitting in a two-compartment photoelectrochemical cell,” Int. J. Hydrogen Energy, vol. 36, no. 24, pp. 15502–15508, 2011.spa
dc.relation.referencesY. Wang et al., “Simulation and separation of anodizing current-time curves, morphology evolution of TiO2 nanotubes anodized at various temperatures,” J. Electrochem. Soc., vol. 161, no. 14, pp. H891–H895, 2014.spa
dc.relation.referencesY. Yang, X. Wang, and L. Li, “Synthesis and growth mechanism of graded TiO2 nanotube arrays by two-step anodization,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., vol. 149, no. 1, pp. 58–62, 2008.spa
dc.relation.referencesY. Zhang et al., “Quantitative relationship between nanotube length and anodizing current during constant current anodization.,” Electrochim. Acta, vol. 180, pp. 147–154, 2015.spa
dc.relation.referencesY. Zhang, “Electronic structures of impurities and point defects in semiconductors,” Chinese Phys. B, vol. 27, no. 11, 2018.spa
dc.relation.referencesY. Zhang, H. Fan, X. Ding, Q. Yan, L. Wang, and W. Ma, “Simulation of anodizing current-time curves and morphology evolution of TiO2 nanotubes anodized in electrolytes with different NH4F concentrations,” Electrochim. Acta, vol. 176, pp. 1083–1091, 2015.spa
dc.relation.referencesZ. B. Xie and D. J. Blackwood, “Effects of anodization parameters on the formation of titania nanotubes in ethylene glycol,” Electrochim. Acta, vol. 56, no. 2, pp. 905–912, 2010.spa
dc.relation.referencesZ. Ghorannevis, T. Hoseinzadeh, M. Ghoranneviss, A. H. Sari, and M. K. Salem, “Effects of various applied voltages on physical properties of TiO2 nanotubes by anodization method,” J. Theor. Appl. Phys., no. 11, pp. 243–248, 2017.spa
dc.relation.referencesZ. Liu, B. Pesic, K. S. Raja, R. R. Rangaraju, and M. Misra, “Hydrogen generation under sunlight by self ordered TiO2 nanotube arrays,” Int. J. Hydrogen Energy, vol. 34, no. 8, pp. 3250–3257, 2009.spa
dc.relation.referencesZ. Qiao, Z. Wang, C. Zhang, S. Yuan, Y. Zhu, and J. Wang, “A Novel Approach to Well-Aligned TiO2 Nanotube Arrays and Their Enhanced Photocatalytic Performances,” AIChE J., vol. 59, no. 6, pp. 2134–2144, 2013.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.lembNanoestructurasspa
dc.subject.lembNanostructureseng
dc.subject.lembMicrostructureeng
dc.subject.lembMicroestructuraspa
dc.subject.lembCatalizadoresspa
dc.subject.lembCatalystseng
dc.subject.lembFotocatalisisspa
dc.subject.lembPhotocatalysiseng
dc.subject.proposalFotoelectrodospa
dc.subject.proposalMateriales nanoestructuradosspa
dc.subject.proposalNanoparticulasspa
dc.subject.proposalNanoparticulas de níquelspa
dc.subject.proposalNanotubos TiO2spa
dc.subject.proposalNanoparticleseng
dc.subject.proposalNanostructured materialseng
dc.subject.proposalNickel nanoparticleseng
dc.subject.proposalTiO2 nanotubeseng
dc.titleEstudio de la actividad fotocatalitica de electrocatalizadores de TiO2 nanoestructurados y modificados en la produccion de hidrogenospa
dc.title.translatedStudy of the photocatalytic activity of nanoestructured and modified TiO2 electrocatalyst for hydrogen productioneng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameColciencias convocatoria 617spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
79614908.2022.pdf
Tamaño:
8.09 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: