Flujos de bióxido de carbono y vapor de agua medidos mediante covarianza de remolinos en sabana nativa y cultivos transitorios mecanizados en la Altillanura colombiana

dc.contributor.advisorJiménez Pizarro, Rodrigo
dc.contributor.authorMorales Rincón, Luis Alberto
dc.contributor.researchgroupCalidad del Airespa
dc.coverage.countryColombia
dc.date.accessioned2021-06-24T20:14:55Z
dc.date.available2021-06-24T20:14:55Z
dc.date.issued2020
dc.descriptionilustracionesspa
dc.description.abstractMediciones de flujos de carbono y energía en una sabana nativa y un ecosistema de cultivo transitorio en la altillanura colombiana. En este documento se presenta la estrategia metodológica para la selección del sitio de medición, diseño de la estación de monitoreo, análisis y procesamiento de datos de mediciones realizadas a través de la técnica de covarianza de remolinos (Apartes del texto)spa
dc.description.abstractCarbon and energy flux measurements in a native savanna and a temporary crop ecosystem in the Colombian High Plains. This document presents the methodological strategy for the selection of the measurement site, design of the monitoring station, analysis and data processing of measurements conducted using the eddy covariance technique. (Apartes del texto)eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingeniería - Ingeniería Químicaspa
dc.description.researchareaProcesos ambientalesspa
dc.format.extent249 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79716
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería Química y Ambientalspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Químicaspa
dc.relation.referencesAcevedo, O. C.; Moraes, O. L. L.; Degrazia, G. A.; Fitzjarrald, D. R.; Manzi, A. O. and Campos, J. G. (2009). Is friction velocity the most appropriate scale for correcting nocturnal carbon dioxide fluxes? Agricultural and Forest Meteorology, 149(1), 1–10. https://doi.org/10.1016/j.agrformet.2008.06.014spa
dc.relation.referencesAgo, E. E.; Agbossou, E. K.; Cohard, J.-M.; Galle, S. and Aubinet, M. (2016). Response of CO2 fluxes and productivity to water availability in two contrasting ecosystems in northern Benin (West Africa). Annals of Forest Science, 73(2), 483–500. https://doi.org/10.1007/s13595-016-0542-9spa
dc.relation.referencesAgrosavia. (2017). Informe Final de Meta. 2017. Recomendaciones tecnológicas de manejo de suelos de la altillanura plana mediante la estrategia de capa productiva para los diferentes sistemas. Villavicencio. Retrieved from https://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000002033spa
dc.relation.referencesAlexandratos, N. and Bruinsma, J. (2012). World agriculture towards 2030/2050: the 2012 revision. ESA Working paper No. 12-03. Rome, FAO.spa
dc.relation.referencesArchibald, S. A.; Kirton, A.; Van Der Merwe, M. R.; Scholes, R. J.; Williams, C. A. and Hanan, N. (2009). Drivers of inter-annual variability in Net Ecosystem Exchange in a semi-arid savanna ecosystem, South Africa. Biogeosciences, 6(2), 251–266. https://doi.org/10.5194/bg-6-251-2009spa
dc.relation.referencesAubinet, M.; Feigenwinter, C.; Heinesch, B.; Laffineur, Q.; Papale, D.; Reichstein, M.; Rinne, J. and Van Gorsel, E. (2012). Nighttime Flux Correction. In Eddy Covariance (pp. 133–157). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-007-2351-1_5spa
dc.relation.referencesAubinet, M.; Joly, L.; Loustau, D.; De Ligne, A.; Chopin, H.; Cousin, J.; Chauvin, N.; Decarpenterie, T. and Gross, P. (2016). Dimensioning IRGA gas sampling systems: Laboratory and field experiments. Atmospheric Measurement Techniques, 9(3), 1361–1367. https://doi.org/10.5194/amt-9-1361-2016spa
dc.relation.referencesAubinet, M.; Vesala, T. and Papale, D. (Eds). (2012). Eddy Covariance. Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-007-2351-1spa
dc.relation.referencesAurela, M.; Laurila, T. and Tuovinen, J. P. (2002). Annual CO<inf>2</inf> balance of a subarctic fen in northern Europe: Importance of the wintertime efflux. Journal of Geophysical Research Atmospheres, 107(21), 1–12. https://doi.org/10.1029/2002JD002055spa
dc.relation.referencesBaldocchi, D. D. (2003). Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Global Change Biology, 9(4), 479–492. https://doi.org/10.1046/j.1365-2486.2003.00629.xspa
dc.relation.referencesBaldocchi, D. D. (2014). Measuring fluxes of trace gases and energy between ecosystems and the atmosphere - the state and future of the eddy covariance method. Global Change Biology, 3600–3609. https://doi.org/10.1111/gcb.12649spa
dc.relation.referencesBaldocchi, D. D. (2016). Advanced Topics in Biometeorology and Micrometeorology ESPM 228. Retrieved March 12, 2016, from https://nature.berkeley.edu/biometlab/index.php?scrn=espm228spa
dc.relation.referencesBarman, N.; Borgohain, A.; Kundu, S. S.; Saha, B.; Roy, R.; Solanki, R.; Kumar, N. V. P. K. and N Raju, P. L. (2019). Impact of atmospheric conditions in surface–air exchange of energy in a topographically complex terrain over Umiam. Meteorology and Atmospheric Physics. https://doi.org/10.1007/s00703-019-00668-7spa
dc.relation.referencesBastin, J.-F.; Finegold, Y.; Garcia, C.; Mollicone, D.; Rezende, M.; Routh, D.; Zohner, C. M. and Crowther, T. W. (2019). The global tree restoration potential. Science, 365(6448), 76–79. https://doi.org/10.1126/science.aax0848spa
dc.relation.referencesBellarby, J.; Foereid, B.; Hastings, A. and Smith, P. (2008). Cool Farming : Climate impacts of agriculture and mitigation potential. Retrieved from http://www.greenpeace.org/international/en/publications/reports/cool-farming-full-report/spa
dc.relation.referencesBéziat, P.; Ceschia, E. and Dedieu, G. (2009). Carbon balance of a three crop succession over two cropland sites in South West France. Agricultural and Forest Meteorology, 149, 1628–1645. https://doi.org/10.1016/j.agrformet.2009.05.004spa
dc.relation.referencesBond-Lamberty, B.; Bailey, V. L.; Chen, M.; Gough, C. M. and Vargas, R. (2018). Globally rising soil heterotrophic respiration over recent decades. Nature, 560(7716), 80–83. https://doi.org/10.1038/s41586-018-0358-xspa
dc.relation.referencesBoos, D.; Broecker, H.; Dorr, T.; von Luepke, H. and Sharma, S. (2015). How are INDCs and NAMAs linked? . Giz. Retrieved from https://www.giz.de/en/downloads_els/indcnama.pdf%5Cnpapers3://publication/uuid/92F9F6C4-7414-4C25-AC29-8BACD78C239Cspa
dc.relation.referencesBurba, G. (2013a). Eddy covariance method. Eoearth.Org. Retrieved from http://www.eoearth.org/view/article/152354/spa
dc.relation.referencesBurba, G. (2013b). Eddy Covariance Method for Scientific, Industrial, Agricultural and Regulatory Applications: A Field Book on Measuring Ecosystem Gas Exchage and Areal Emission Rates. Lincoln, NE, USA: LI-COR Biosciences.spa
dc.relation.referencesBurba, G.; Schmidt, A.; Scott, R. L.; Nakai, T.; Kathilankal, J.; Fratini, G.; Hanson, C.; Law, B.; Mcdermitt, D. K.; Eckles, R.; Furtaw, M. and Velgersdyk, M. (2012). Calculating CO2 and H2O eddy covariance fluxes from an enclosed gas analyzer using an instantaneous mixing ratio. Global Change Biology, 18(1), 385–399. https://doi.org/10.1111/j.1365-2486.2011.02536.xspa
dc.relation.referencesButterbach-Bahl, K.; Baggs, E. M.; Dannenmann, M.; Kiese, R. and Zechmeister-Boltenstern, S. (2013). Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 368(1621), 20130122. https://doi.org/10.1098/rstb.2013.0122spa
dc.relation.referencesCampioli, M.; Malhi, Y.; Vicca, S.; Luyssaert, S.; Papale, D.; Peñuelas, J.; Reichstein, M.; Migliavacca, M.; Arain, M. A. and Janssens, I. A. (2016). Evaluating the convergence between eddy-covariance and biometric methods for assessing carbon budgets of forests. Nature Communications, 7(May 2015), 1–12. https://doi.org/10.1038/ncomms13717spa
dc.relation.referencesCeschia, E.; Béziat, P.; Dejoux, J. F.; Aubinet, M.; Bernhofer, C.; Bodson, B.; Buchmann, N.; Carrara, a.; Cellier, P.; Di Tommasi, P.; Elbers, J. a.; Eugster, W.; Grünwald, T.; Jacobs, C. M. J.; Jans, W. W. P.; Jones, M.; Kutsch, W.; Lanigan, G.; Magliulo, E.; Marloie, O.; Moors, E. J.; Moureaux, C.; Olioso, a.; Osborne, B.; Sanz, M. J.; Saunders, M.; Smith, P.; Soegaard, H. and Wattenbach, M. (2010). Management effects on net ecosystem carbon and GHG budgets at European crop sites. Agriculture, Ecosystems & Environment, 139(3), 363–383. https://doi.org/10.1016/j.agee.2010.09.020spa
dc.relation.referencesChaichana, N.; Bellingrath-Kimura, S. D.; Komiya, S.; Fujii, Y.; Noborio, K.; Dietrich, O. and Pakoktom, T. (2018). Comparison of closed chamber and eddy covariance methods to improve the understanding of methane fluxes from rice paddy fields in Japan. Atmosphere, 9(9). https://doi.org/10.3390/atmos9090356spa
dc.relation.referencesChambers, J. Q.; Negron-Juarez, R. I.; Marra, D. M.; Di Vittorio, A.; Tews, J.; Roberts, D.; Ribeiro, G. H. P. M.; Trumbore, S. E. and Higuchi, N. (2013). The steady-state mosaic of disturbance and succession across an old-growth central Amazon forest landscape. Proceedings of the National Academy of Sciences of the United States of America, 110(10), 3949–3954. https://doi.org/10.1073/pnas.1202894110spa
dc.relation.referencesChapin, F. S.; Woodwell, G. M.; Randerson, J. T.; Rastetter, E. B.; Lovett, G. M.; Baldocchi, D. D.; Clark, D. A.; Harmon, M. E.; Schimel, D. S.; Valentini, R.; Wirth, C.; Aber, J. D.; Cole, J. J.; Goulden, M. L.; Harden, J. W.; Heimann, M.; Howarth, R. W.; Matson, P. A.; McGuire, A. D.; Melillo, J. M.; Mooney, H. A.; Neff, J. C.; Houghton, R. A.; Pace, M. L.; Ryan, M. G.; Running, S. W.; Sala, O. E.; Schlesinger, W. H. and Schulze, E.-D. (2006). Reconciling Carbon-cycle Concepts, Terminology, and Methods. Ecosystems, 9(7), 1041–1050. https://doi.org/10.1007/s10021-005-0105-7spa
dc.relation.referencesChu, H.; Baldocchi, D. D.; John, R.; Wolf, S. and Reichstein, M. (2017). Fluxes all of the time? A primer on the temporal representativeness of FLUXNET. Journal of Geophysical Research: Biogeosciences, 122(2), 289–307. https://doi.org/10.1002/2016JG003576spa
dc.relation.referencesCorbin, K. D.; Denning, A. S.; Lokupitiya, E. Y.; Schuh, A. E.; Miles, N. L.; Davis, K. J.; Richardson, S. and Baker, I. T. (2010). Assessing the impact of crops on regional CO2 fluxes and atmospheric concentrations. Tellus B, 62(5), 521–532. https://doi.org/10.1111/j.1600-0889.2010.00485.xspa
dc.relation.referencesDNP. (2014). Política para el desarrollo integral de la Orinoquia: Altillanura - Fase 1. (Documento CONPES 3797). Bogotá D.C.: DNP.spa
dc.relation.referencesEamus, D.; Hutley, L. B. and O’Grady, A. P. (2001). Daily and seasonal patterns of carbon and water fluxes above a north Australian savanna. Tree Physiology, 21(12–13), 977–988. https://doi.org/10.1093/treephys/21.12-13.977spa
dc.relation.referencesEddyPro® (Version6.2). (2016). EddyPro® Software (Version 6.2) [windows]. Lincoln, NE. LI-COR, Inc; Infrastructure for Measurements of the European Carbon Cycle consortium.spa
dc.relation.referencesFalge, E.; Baldocchi, D.; Olson, R.; Anthoni, P.; Aubinet, M.; Bernhofer, C.; Burba, G.; Ceulemans, R.; Clement, R.; Dolman, H.; Granier, A.; Gross, P.; Gr??nwald, T.; Hollinger, D.; Jensen, N. O.; Katul, G.; Keronen, P.; Kowalski, A.; Lai, C. T.; Law, B. E.; Meyers, T.; Moncrieff, J.; Moors, E.; Munger, J. W.; Pilegaard, K.; Rannik, ??llar; Rebmann, C.; Suyker, A.; Tenhunen, J.; Tu, K.; Verma, S.; Vesala, T.; Wilson, K. and Wofsy, S. (2001). Gap filling strategies for defensible annual sums of net ecosystem exchange. Agricultural and Forest Meteorology, 107(1), 43–69. https://doi.org/10.1016/S0168-1923(00)00225-2spa
dc.relation.referencesFAO. (2011). Biodiversity for Food and Agriculture Biodiversity for Food and Agriculture. Retrieved from http://www.fao.org/3/a-i1980e.pdfspa
dc.relation.referencesFei, X.; Jin, Y.; Zhang, Y.; Sha, L.; Liu, Y.; Song, Q.; Zhou, W.; Liang, N.; Yu, G.; Zhang, L.; Zhou, R.; Li, J.; Zhang, S. and Li, P. (2017). Eddy covariance and biometric measurements show that a savanna ecosystem in Southwest China is a carbon sink. Scientific Reports, 7(July 2016), 1–14. https://doi.org/10.1038/srep41025spa
dc.relation.referencesFigueres, C.; Schellnhuber, H. J.; Whiteman, G.; Rockström, J.; Hobley, A. and Rahmstorf, S. (2017, June 28). Three years to safeguard our climate. Nature. https://doi.org/10.1038/546593aspa
dc.relation.referencesFinkelstein, P. L. and Sims, P. F. (2001). Sampling error in eddy correlation flux measurements. Journal of Geophysical Research: Atmospheres, 106(D4), 3503–3509. https://doi.org/10.1029/2000JD900731spa
dc.relation.referencesFinnigan, J. J.; Clement, R.; Malhi, Y.; Leuning, R. and Cleugh, H. A. (2003). A Re-Evaluation of Long-Term Flux Measurement Techniques Part I: Averaging and Coordinate Rotation. Boundary-Layer Meteorology, 107(1), 1–48. https://doi.org/10.1023/A:1021554900225spa
dc.relation.referencesFoken, T. (2008a). Micrometeorology. Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-74666-9spa
dc.relation.referencesFoken, T. (2008b). The energy balance closure problem: An overview. Ecological Applications, 18(6), 1351–1367. https://doi.org/10.1890/06-0922.1spa
dc.relation.referencesFoken, T. (2017a). Energy and Matter Fluxes of a Spruce Forest Ecosystem. (T. Foken, Ed.) (Vol. 229). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-49389-3spa
dc.relation.referencesFoken, T. (2017b). General Basics. In Micrometeorology (pp. 1–32). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-25440-6_1spa
dc.relation.referencesFoken, T.; Leuning, R.; Oncley, S. R.; Mauder, M. and Aubinet, M. (2012). Corrections and Data Quality Control. In Eddy Covariance (pp. 85–131). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-007-2351-1_4spa
dc.relation.referencesFratini, G.; Ibrom, A.; Arriga, N.; Burba, G. and Papale, D. (2012). Relative humidity effects on water vapour fluxes measured with closed-path eddy-covariance systems with short sampling lines. Agricultural and Forest Meteorology, 165, 53–63. https://doi.org/10.1016/j.agrformet.2012.05.018spa
dc.relation.referencesGill Instruments. (2016). Technical Key Note (KN1509v6*). Retrieved from http://gillinstruments.com/data/manuals/KN1509-WM-WMPro-W-Bug-Info-Sheet.pdfspa
dc.relation.referencesGöckede, M.; Foken, T.; Aubinet, M.; Aurela, M.; Banza, J.; Bernhofer, C.; Bonnefond, J. M.; Brunet, Y.; Carrara, A.; … Yakir, D. (2008). Quality control of CarboEurope flux data &amp;ndash; Part 1: Coupling footprint analyses with flux data quality assessment to evaluate sites in forest ecosystems. Biogeosciences, 5(2), 433–450. https://doi.org/10.5194/bg-5-433-2008spa
dc.relation.referencesGoodrich, J. P.; Oechel, W. C.; Gioli, B.; Moreaux, V.; Murphy, P. C.; Burba, G. and Zona, D. (2016). Impact of different eddy covariance sensors, site set-up, and maintenance on the annual balance of CO2 and CH4 in the harsh Arctic environment. Agricultural and Forest Meteorology, 228–229, 239–251. https://doi.org/10.1016/j.agrformet.2016.07.008spa
dc.relation.referencesGörres, C. M.; Kammann, C. and Ceulemans, R. (2016). Automation of soil flux chamber measurements: Potentials and pitfalls. Biogeosciences, 13(6), 1949–1966. https://doi.org/10.5194/bg-13-1949-2016spa
dc.relation.referencesGough, C. M. (2011). Terrestrial Primary Production: Fuel for Life. Nature Education Knowledge, 3(10), 28.spa
dc.relation.referencesGoulden, M. L.; Miller, S. D. and da Rocha, H. R. (2006). Nocturnal cold air drainage and pooling in a tropical forest. Journal of Geophysical Research Atmospheres, 111(8), 1–14. https://doi.org/10.1029/2005JD006037spa
dc.relation.referencesGrace, J.; Jose, J. S.; Meir, P.; Miranda, H. S. and Montes, R. A. (2006). Productivity and carbon fluxes of tropical savannas. Journal of Biogeography, 33(3), 387–400. https://doi.org/10.1111/j.1365-2699.2005.01448.xspa
dc.relation.referencesGrassini, P.; Eskridge, K. M. and Cassman, K. G. (2013). Distinguishing between yield advances and yield plateaus in historical crop production trends. Nature Communications, 4, 1–11. https://doi.org/10.1038/ncomms3918spa
dc.relation.referencesGrover, S. P. P.; Livesley, S. J.; Hutley, L. B.; Jamali, H.; Fest, B.; Beringer, J.; Butterbach-Bahl, K. and Arndt, S. K. (2012). Land use change and the impact on greenhouse gas exchange in north Australian savanna soils. Biogeosciences, 9(1), 423–437. https://doi.org/10.5194/bg-9-423-2012spa
dc.relation.referencesHaslwanter, A.; Hammerle, A. and Wohlfahrt, G. (2009). Open-path vs. closed-path eddy covariance measurements of the net ecosystem carbon dioxide and water vapour exchange: A long-term perspective. Agricultural and Forest Meteorology, 149(2), 291–302. https://doi.org/10.1016/j.agrformet.2008.08.011spa
dc.relation.referencesHenry, J. (2005). Tropical And Equatorial Climates. In J. E. Oliver (Ed.), Encyclopedia of World Climatology (pp. 742–750). Dordrecht: Springer Netherlands. https://doi.org/10.1007/1-4020-3266-8_212spa
dc.relation.referencesHorst, T. W. (1997). A simple formula for attenuation of eddy fluxes measured with first-order-response scalar sensors. Boundary-Layer Meteorology, 82(2), 219–233. https://doi.org/10.1023/A:1000229130034spa
dc.relation.referencesHutley, L. L. B.; Leuning, R.; Beringer, J. and Cleugh, H. H. a. (2005). The utility of the eddy covariance techniques as a tool in carbon accounting: tropical savanna as a case study. Australian Journal of Botany, 53(7), 663. https://doi.org/10.1071/BT04147spa
dc.relation.referencesIbrom, A.; Dellwik, E.; Flyvbjerg, H.; Jensen, N. O. and Pilegaard, K. (2007). Strong low-pass filtering effects on water vapour flux measurements with closed-path eddy correlation systems. Agricultural and Forest Meteorology, 147(3–4), 140–156. https://doi.org/10.1016/j.agrformet.2007.07.007spa
dc.relation.referencesIDEAM. (2015). Primer Informe Bienal De Actualización Ante La Convención Marco de las Naciones Unidas sobre el Cambio Climático.spa
dc.relation.referencesIGAC. (2004). Estudio General de Suelos y Zonificación de Tierras del Departamento del Meta. Bogota, Colombia.spa
dc.relation.referencesIGAC. (2014). Estudio General de Suelos y Zonificación De Tierras Departamento del Vichada. Bogota, Colombia.spa
dc.relation.referencesInfometrika – Sociedad de Agricultores de Colombia - SAC. (2014). Estudio de caracterización del sector agropecuario en Colombia Tomo I. Servicio Nacional de Aprendisaje - SENA.spa
dc.relation.referencesIPCC. (2014). Climate Change 2014: Mitigation of Climate Change. Working Group III Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. https://doi.org/10.1017/CBO9781107415416spa
dc.relation.referencesJacobson, M. Z. (2005). Fundamentals of Atmospheric Modeling. Cambridge: Cambridge University Press.spa
dc.relation.referencesKai, F. M.; Cobb, A.; Chua, A. F. L.; Tee, M. H.; Ng, B.; Gandois, L. and Harvey, C. (2013). An off-grid PV power system for meteorological and eddy covariance flux station in Kranji, Singapore. Energy Procedia, 33, 364–373. https://doi.org/10.1016/j.egypro.2013.05.077spa
dc.relation.referencesKaimal, J. C.; Wyngaard, J. C.; Haugen, D. A.; Coté, O. R.; Izumi, Y.; Caughey, S. J. and Readings, C. J. (1976). Turbulence Structure in the Convective Boundary Layer. Journal of the Atmospheric Sciences. https://doi.org/10.1175/1520-0469(1976)033<2152:TSITCB>2.0.CO;2spa
dc.relation.referencesKaimal, J. C.; Wyngaard, J. C.; Izumi, Y. and Coté, O. R. (1972). Spectral characteristics of surface-layer turbulence. Quarterly Journal of the Royal Meteorological Society, 98(417), 563–589. https://doi.org/10.1002/qj.49709841707spa
dc.relation.referencesKaimal, J. J. C. and Finnigan, J. J. (1994). Atmospheric Boundary Layer Flows: their structure and measurements. Oxford University Press.spa
dc.relation.referencesKeenan, T. F.; Migliavacca, M.; Papale, D.; Baldocchi, D.; Reichstein, M.; Torn, M. and Wutzler, T. (2019). Widespread inhibition of daytime ecosystem respiration. Nature Ecology and Evolution, 3(3), 407–415. https://doi.org/10.1038/s41559-019-0809-2spa
dc.relation.referencesKirschbaum, M.U.F. & Mueller, R. (2001). Net Ecosystem Exchange.spa
dc.relation.referencesKirschbaum, M. U. F.; Eamus, D.; Gifford, R. M.; Roxburgh, S. H. and Sands, P. J. (2001). C Accounting Definitions, (April), 18–20. Retrieved from http://www.steverox.info/Downloads/Software/C Accounting Definitions.pdfspa
dc.relation.referencesKljun, N.; Calanca, P.; Rotach, M. W. and Schmid, H. P. (2015). A simple two-dimensional parameterisation for Flux Footprint Prediction (FFP). Geoscientific Model Development, 8(11), 3695–3713. https://doi.org/10.5194/gmd-8-3695-2015spa
dc.relation.referencesLasslop, G.; Reichstein, M.; Papale, D.; Richardson, A.; Arneth, A.; Barr, A.; Stoy, P. and Wohlfahrt, G. (2010). Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: Critical issues and global evaluation. Global Change Biology, 16(1), 187–208. https://doi.org/10.1111/j.1365-2486.2009.02041.xspa
dc.relation.referencesLavelle, P.; Rodríguez, N.; Arguello, O.; Bernal, J.; Botero, C.; Chaparro, P.; Gómez, Y.; Gutiérrez, A.; Hurtado, M. del P.; Loaiza, S.; Pullido, S. X.; Rodríguez, E.; Sanabria, C.; Velásquez, E. and Fonte, S. J. (2014). Soil ecosystem services and land use in the rapidly changing Orinoco River Basin of Colombia. Agriculture, Ecosystems & Environment, 185, 106–117. https://doi.org/10.1016/j.agee.2013.12.020spa
dc.relation.referencesLeclerc, M. Y. and Foken, T. (2014). Footprints in Micrometeorology and Ecology. https://doi.org/10.1007/978-3-642-54545-0spa
dc.relation.referencesLee, X.; Finnigan, J. and Paw U, K. T. (2005). Handbook of Micrometeorology: A Guide for surface flux measurement and analysis. (X. Lee, W. Massman and B. Law, Eds.), Handbook of Micrometeorology (Vol. 29). Dordrecht: Springer Netherlands. https://doi.org/10.1007/1-4020-2265-4spa
dc.relation.referencesLeip, A.; Skiba, U.; Vermeulen, A. and Thompson, R. L. (2018). A complete rethink is needed on how greenhouse gas emissions are quantified for national reporting. Atmospheric Environment, 174(November 2017), 237–240. https://doi.org/10.1016/j.atmosenv.2017.12.006spa
dc.relation.referencesLI-COR. (2010). Technical Note: Solar Power for Eddy Covariance Flux Station. Nebraska. Retrieved from https://www.licor.com/documents/aadiwe7sh4i79kvyteiyspa
dc.relation.referencesLI-COR, I. (2016). EddyPro® version 6.2 Help and User’s Guide. LI-COR, Inc. Lincoln, NE.spa
dc.relation.referencesLucas-Moffat, A. M.; Huth, V.; Augustin, J.; Brümmer, C.; Herbst, M. and Kutsch, W. L. (2018). Towards pairing plot and field scale measurements in managed ecosystems: Using eddy covariance to cross-validate CO2 fluxes modeled from manual chamber campaigns. Agricultural and Forest Meteorology, 256–257(August 2016), 362–378. https://doi.org/10.1016/j.agrformet.2018.01.023spa
dc.relation.referencesMADR. (2016). Agronet. Retrieved from http://www.agronet.gov.co/estadistica/Paginas/default.aspxspa
dc.relation.referencesMamadou, O.; Gourlez de la Motte, L.; De Ligne, A.; Heinesch, B. and Aubinet, M. (2016). Sensitivity of the annual net ecosystem exchange to the cospectral model used for high frequency loss corrections at a grazed grassland site. Agricultural and Forest Meteorology, 228–229, 360–369. https://doi.org/10.1016/j.agrformet.2016.06.008spa
dc.relation.referencesMassman, W. and Clement, R. (2005). Uncertainty in Eddy Covariance Flux Estimates Resulting from Spectral Attenuation. In Handbook of Micrometeorology (Vol. 29, pp. 67–99). Dordrecht: Kluwer Academic Publishers. https://doi.org/10.1007/1-4020-2265-4_4spa
dc.relation.referencesMassman, W. J. (2000). A simple method for estimating frequency response corrections for eddy covariance systems. Agricultural and Forest Meteorology, 104(3), 185–198. https://doi.org/10.1016/S0168-1923(00)00164-7spa
dc.relation.referencesMassman, W. J. (2001). Reply to comment by Rannik on “A simple method for estimatiog frequency responde corrections for eddy covariance systems.” Agricultural and Forest Meteorology, 107(107), 247–251.spa
dc.relation.referencesMauder, M. and Foken, T. (2004). Documentation and instruction manual of the eddy covariance software package TK2. Bayreuth, Abt. Mikrometeorol., ISSN, (26), 1614–89166.spa
dc.relation.referencesMauder, M. and Foken, T. (2015). Eddy-Covariance Software TK3. Http://Dx.Doi.Org/10.5281/Zenodo.20349, (July 2015). https://doi.org/10.5281/zenodo.20349spa
dc.relation.referencesMcNaughton, K. G. and Laubach, J. (2000). Power Spectra and Cospectra for Wind and Scalars in a Disturbed Surface Layer at the Base of an Advective Inversion. Boundary-Layer Meteorology, 96(1/2), 143–185. https://doi.org/10.1023/A:1002477120507spa
dc.relation.referencesMetzger, S.; Burba, G.; Burns, S. P.; Blanken, P. D.; Li, J.; Luo, H. and Zulueta, R. C. (2016). Optimization of an enclosed gas analyzer sampling system for measuring eddy covariance fluxes of H2O and CO2. Atmospheric Measurement Techniques, 9(3), 1341–1359. https://doi.org/10.5194/amt-9-1341-2016spa
dc.relation.referencesMiranda, A. C.; Miranda, H. S.; Lloyd, J.; Grace, J.; Francey, R. J.; Mcintyre, J. A.; Meir, P.; Riggan, P.; Lockwood, R. and Brass, J. (1997). Fluxes of carbon, water and energy over Brazilian cerrado: An analysis using eddy covariance and stable isotopes. Plant, Cell and Environment, 20(3), 315–328. https://doi.org/10.1046/j.1365-3040.1997.d01-80.xspa
dc.relation.referencesMoncrieff, J. B.; Massheder, J. M.; de Bruin, H.; Elbers, J.; Friborg, T.; Heusinkveld, B.; Kabat, P.; Scott, S.; Soegaard, H. and Verhoef, A. (1997). A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide. Journal of Hydrology, 188–189, 589–611. https://doi.org/10.1016/S0022-1694(96)03194-0spa
dc.relation.referencesMoncrieff, J.; Clement, R.; Finnigan, J. and Meyers, T. (2005). Averaging, Detrending, and Filtering of Eddy Covariance Time Series. In X. Lee, W. Massman and B. Law (Eds.), Handbook of Micrometeorology: A Guide for Surface Flux Measurement and Analysis (pp. 7–31). Dordrecht: Springer Netherlands. https://doi.org/10.1007/1-4020-2265-4_2spa
dc.relation.referencesMoore, C. J. (1986). Frequency response corrections for eddy correlation systems. Boundary-Layer Meteorology, 37(1–2), 17–35. https://doi.org/10.1007/BF00122754spa
dc.relation.referencesMunger, J. W.; Loescher, H. W. and Luo, H. (2012). Measurement, Tower, and Site Design Considerations. In Eddy Covariance (pp. 21–58). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-007-2351-1_2spa
dc.relation.referencesNakai, T.; Iwata, H.; Harazono, Y. and Ueyama, M. (2014). An inter-comparison between Gill and Campbell sonic anemometers. Agricultural and Forest Meteorology, 195–196, 123–131. https://doi.org/10.1016/j.agrformet.2014.05.005spa
dc.relation.referencesNakai, T. and Shimoyama, K. (2012). Ultrasonic anemometer angle of attack errors under turbulent conditions. Agricultural and Forest Meteorology, 162–163, 14–26. https://doi.org/10.1016/j.agrformet.2012.04.004spa
dc.relation.referencesNelson, J. A.; Carvalhais, N.; Migliavacca, M.; Reichstein, M. and Jung, M. (2018). Water-stress-induced breakdown of carbon-water relations: Indicators from diurnal FLUXNET patterns. Biogeosciences, 15(8), 2433–2447. https://doi.org/10.5194/bg-15-2433-2018spa
dc.relation.referencesNovick, K. A.; Walker, J.; Chan, W. S.; Schmidt, A.; Sobek, C. and Vose, J. M. (2013). Eddy covariance measurements with a new fast-response, enclosed-path analyzer: Spectral characteristics and cross-system comparisons. Agricultural and Forest Meteorology, 181, 17–32. https://doi.org/10.1016/j.agrformet.2013.06.020spa
dc.relation.referencesORNL DAAC. (2017). Fluxnet: Archived Website Including Site and Investigator Information. ORNL Distributed Active Archive Center. https://doi.org/10.3334/ornldaac/1549spa
dc.relation.referencesOrtiz, E. Y.; Jimenez, R.; Fochesatto, G. J. and Morales-Rincon, L. A. (2019). Caracterización de la turbulencia atmosférica en una gran zona verde de una megaciudad andina tropical. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 43(166), 133. https://doi.org/10.18257/raccefyn.697spa
dc.relation.referencesPolonik, P.; Chan, W. S.; Billesbach, D. P.; Burba, G.; Li, J.; Nottrott, A.; Bogoev, I.; Conrad, B. and Biraud, S. C. (2019). Comparison of gas analyzers for eddy covariance: Effects of analyzer type and spectral corrections on fluxes. Agricultural and Forest Meteorology, 272–273(February), 128–142. https://doi.org/10.1016/j.agrformet.2019.02.010spa
dc.relation.referencesRäsänen, M.; Aurela, M.; Vakkari, V.; Beukes, J. P.; Tuovinen, J. P.; Van Zyl, P. G.; Josipovic, M.; Venter, A. D.; Jaars, K.; Siebert, S. J.; Laurila, T.; Rinne, J. and Laakso, L. (2017). Carbon balance of a grazed savanna grassland ecosystem in South Africa. Biogeosciences, 14(5), 1039–1054. https://doi.org/10.5194/bg-14-1039-2017spa
dc.relation.referencesReichstein, M.; Falge, E.; Baldocchi, D. D.; Papale, D.; Aubinet, M.; Berbigier, P.; Bernhofer, C.; Buchmann, N.; Gilmanov, T.; … Valentini, R. (2005). On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology, 11(9), 1424–1439. https://doi.org/10.1111/j.1365-2486.2005.001002.xspa
dc.relation.referencesRippstein, G.; Escobar, G. and Motta, F. (2001). Agroecología y Biodiversidad de las Sabanas en los Llanos Orientales de Colombia. Meta.spa
dc.relation.referencesRumpel, C.; Amiraslani, F.; Koutika, L.-S.; Smith, P.; Whitehead, D. and Wollenberg, E. (2018). Put more carbon in soils to meet Paris climate pledges. Nature, 564(7734), 32–34. https://doi.org/10.1038/d41586-018-07587-4spa
dc.relation.referencesSan José, J. J. (1991). Corbon Dioxide and Ammonia Exchange in the Trachypogon Sabannas of the Orinoco Llanos. Annals of Botany, 68, 321–328.spa
dc.relation.referencesSan José, J. J. (2001). Evaluación de los efectos del uso de la tierra sobre el contenido y flujos de carbono en los llanos del Orinoco. Retrieved from http://www.uach.cl/procarbono/pdf/simposio_carbono/01_SanJose.PDFspa
dc.relation.referencesSan José, J. J. and Montes, R. A. (2007). Resource apportionment and net primary production across the Orinoco savanna-woodland continuum, Venezuela. Acta Oecologica, 32(2), 243–253. https://doi.org/10.1016/j.actao.2007.05.005spa
dc.relation.referencesSan José, J. J.; Montes, R. A. and Fariñas, M. (1998). Carbon stocks and fluxes in a temporal scaling from a savanna to a semi-deciduous forest. Forest Ecology and Management, 105(1–3), 251–262. https://doi.org/10.1016/S0378-1127(97)00288-0spa
dc.relation.referencesSan José, J. J.; Montes, R. A. and Rocha, C. (2003). Neotropical savanna converted to food cropping and cattle feeding systems: soil carbon and nitrogen changes over 30 years. Forest Ecology and Management, 184(1–3), 17–32. https://doi.org/10.1016/S0378-1127(03)00144-0spa
dc.relation.referencesSan José, J. J.; Montes, R.; Grace, J. and Nikonova, N. (2008). Land-use changes alter CO2flux patterns of a tall-grass Andropogon field and a savanna-woodland continuum in the Orinoco lowlands. Tree Physiology, 28(3), 437–450. https://doi.org/10.1093/treephys/28.3.437spa
dc.relation.referencesSan José, J. J.; Montes, R.; Nikonova, N.; Grace, J. and Buendía, C. (2014). Effect of the replacement of a native savanna by an African Brachiaria decumbens pasture on the CO2 exchange in the Orinoco lowlands, Venezuela. Photosynthetica, 52(3), 358–370. https://doi.org/10.1007/s11099-014-0039-4spa
dc.relation.referencesSantos, A. J. B.; Silva, G. T. D. A.; Miranda, H. S.; Miranda, A. C. and Lloyd, J. (2003). Effects of fire on surface carbon, energy and water vapour fluxes over campo sujo savanna in central Brazil. Functional Ecology, 17(6), 711–719. https://doi.org/10.1111/j.1365-2435.2003.00790.xspa
dc.relation.referencesSarmiento, G. (1983). The savannas of tropical America. In F. Bourliere (Ed.), Ecosystems of the World XIII. Tropical Savannas (pp. 245–288). Amsterdam: Elsevier.spa
dc.relation.referencesSaunders, M. J.; Kansiimet, F. and Jones, M. B. (2012). Agricultural encroachment : implications for carbon sequestration in tropical African wetlands. Global Change Biology, 18, 1312–1321. https://doi.org/10.1111/j.1365-2486.2011.02633.xspa
dc.relation.referencesSchmidt, A.; Hanson, C.; Stephen Chan, W. and Law, B. E. (2012). Empirical assessment of uncertainties of meteorological parameters and turbulent fluxes in the AmeriFlux network. Journal of Geophysical Research G: Biogeosciences, 117(4). https://doi.org/10.1029/2012JG002100spa
dc.relation.referencesSievers, J.; Papakyriakou, T.; Larsen, S. E.; Jammet, M. M.; Rysgaard, S.; Sejr, M. K. and S??rensen, L. L. (2015). Estimating surface fluxes using eddy covariance and numerical ogive optimization. Atmospheric Chemistry and Physics, 15(4), 2081–2103. https://doi.org/10.5194/acp-15-2081-2015spa
dc.relation.referencesSmith, P.; Lanigan, G.; Kutsch, W. L.; Buchmann, N.; Eugster, W.; Aubinet, M.; Ceschia, E.; Béziat, P.; Yeluripati, J. B.; Osborne, B.; Moors, E. J.; Brut, A.; Wattenbach, M.; Saunders, M. and Jones, M. (2010). Measurements necessary for assessing the net ecosystem carbon budget of croplands. Agriculture, Ecosystems & Environment, 139(3), 302–315. https://doi.org/10.1016/j.agee.2010.04.004spa
dc.relation.referencesSmith, P.; Martino, D.; Cai, Z.; Gwary, D.; Janzen, H.; Kumar, P.; McCarl, B.; Ogle, S. M.; O’Mara, F.; Rice, C.; Scholes, B.; Sirotenko, O.; Howden, M.; McAllister, T.; Pan, G.; Romanenkov, V.; Schneider, U.; Towprayoon, S.; Wattenbach, M. and Smith, J. (2008). Greenhouse gas mitigation in agriculture. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 363(1492), 789–813. https://doi.org/10.1098/rstb.2007.2184spa
dc.relation.referencesSmith, W. N.; Grant, B. B.; Desjardins, R. L.; Worth, D.; Li, C.; Boles, S. H. and Huffman, E. C. (2010). A tool to link agricultural activity data with the DNDC model to estimate GHG emission factors in Canada. Agriculture, Ecosystems & Environment, 136(3–4), 301–309. https://doi.org/10.1016/j.agee.2009.12.008spa
dc.relation.referencesTagesson, T. (2012). Turbulent transport in the atmospheric surface layer. SKB TR-12-05. Retrieved from https://inis.iaea.org/collection/NCLCollectionStore/_Public/43/127/43127961.pdfspa
dc.relation.referencesTagesson, T.; Fensholt, R.; Cropley, F.; Guiro, I.; Horion, S.; Ehammer, A. and Ardö, J. (2015). Dynamics in carbon exchange fluxes for a grazed semi-arid savanna ecosystem in West Africa. Agriculture, Ecosystems & Environment, 205, 15–24. https://doi.org/10.1016/j.agee.2015.02.017spa
dc.relation.referencesThomas, A. R. C.; Bond, A. J. and Hiscock, K. M. (2013). A multi-criteria based review of models that predict environmental impacts of land use-change for perennial energy crops on water, carbon and nitrogen cycling. GCB Bioenergy, 5(3), 227–242. https://doi.org/10.1111/j.1757-1707.2012.01198.xspa
dc.relation.referencesUeyama, M.; Hirata, R.; Mano, M.; Hamotani, K.; Harazono, Y.; Hirano, T.; Miyata, A.; Takagi, K. and Takahashi, Y. (2012). Influences of various calculation options on heat, water and carbon fluxes determined by open- and closed-path eddy covariance methods. Tellus B, 64(0). https://doi.org/10.3402/tellusb.v64i0.19048spa
dc.relation.referencesVan Gorsel, E.; Leuning, R.; Cleugh, H. A.; Keith, H. and Suni, T. (2007). Nocturnal carbon efflux: Reconciliation of eddy covariance and chamber measurements using an alternative to the u * -threshold filtering technique. Tellus, Series B: Chemical and Physical Meteorology, 59(3), 397–403. https://doi.org/10.1111/j.1600-0889.2007.00252.xspa
dc.relation.referencesVejen, F.; Jacobsson, C.; Fredriksson, U.; Moe, M.; Andresen, L.; Hellsten, E.; Rissanen, P.; Pálsdóttir, Þ. and Arason, Þ. (2002). Quality Control of Meteorological Observations: Automatic Methods Used in the Nordic Countries. (F. Vejen, Ed.) (Vol. 15). Norwegian Meteorological Institute. Retrieved from https://books.google.com.co/books?id=5MtaHQAACAAJspa
dc.relation.referencesVelasco, E. and Roth, M. (2010). Cities as net sources of CO2: Review of atmospheric CO2 exchange in urban environments measured by eddy covariance technique. Geography Compass, 4(9), 1238–1259. https://doi.org/10.1111/j.1749-8198.2010.00384.xspa
dc.relation.referencesVickers, D. and Mahrt, L. (1997). Quality Control and Flux Sampling Problems for Tower and Aircraft Data. Journal of Atmospheric and Oceanic Technology, 512–526. https://doi.org/10.1175/1520-0426spa
dc.relation.referencesVourlitis, G. L.; Priante Filho, N.; Hayashi, M. M. S.; Nogueira, J. D. S.; Caseiro, F. T. and Holanda Campelo, J. (2001). Seasonal variations in the net ecosystem CO2 exchange of a mature Amazonian transitional tropical forest (cerradão). Functional Ecology, 15(3), 388–395. https://doi.org/10.1046/j.1365-2435.2001.00535.xspa
dc.relation.referencesWebb, E. K.; Pearman, G. . and Leuning, R. (1980). Correction of flux measurements for density effects due to heat and water vapour transfer. Quarterly Journal of the Royal Meteorological Society. https://doi.org/10.1002/qj.49710644707spa
dc.relation.referencesWilczak, J.; Oncley, S. and Stage, S. (2001). Sonic Anemometer Tilt Correction Algorithms. Boundary-Layer Meteorology, 99(1), 127–150.spa
dc.relation.referencesYi, C.; Wei, S. and Hendrey, G. (2014). Warming climate extends dryness-controlled areas of terrestrial carbon sequestration. Scientific Reports, 4, 1–6. https://doi.org/10.1038/srep05472spa
dc.relation.referencesZahumenský, I. (2004). Guidelines on quality control procedures for data from automatic weather stations. Retrieved from http://www.wmo.int/pages/prog/www/IMOP/publications/IOM-82-TECO_2005/Papers/3(14)_Slovakia_2_Zahumensky.pdfspa
dc.rightsDerechos Reservados al Autor, 2020spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc660 - Ingeniería químicaspa
dc.subject.otherCalentamiento global
dc.subject.otherGlobal Warming
dc.subject.proposalAltillanuraspa
dc.subject.proposalCovarianza de remolinosspa
dc.subject.proposalTurbulencia ecuatoriaspa
dc.subject.proposalFlujos de carbono y vapor de aguaspa
dc.subject.proposalIntercomparación instrumentalspa
dc.subject.proposalAltillanuraeng
dc.subject.proposalEddy covarianceeng
dc.subject.proposalEquatorial turbulenceeng
dc.subject.unescoCambio climáticospa
dc.subject.unescoClimate changeeng
dc.titleFlujos de bióxido de carbono y vapor de agua medidos mediante covarianza de remolinos en sabana nativa y cultivos transitorios mecanizados en la Altillanura colombianaspa
dc.title.translatedCarbon dioxide and water vapor fluxes measured by eddy covariance in native savanna and mechanized temporary crops in the Colombian High Plainseng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audienceGeneralspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
91519742.2020.pdf
Tamaño:
13.56 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: