Flujos de bióxido de carbono y vapor de agua medidos mediante covarianza de remolinos en sabana nativa y cultivos transitorios mecanizados en la Altillanura colombiana
dc.contributor.advisor | Jiménez Pizarro, Rodrigo | |
dc.contributor.author | Morales Rincón, Luis Alberto | |
dc.contributor.researchgroup | Calidad del Aire | spa |
dc.coverage.country | Colombia | |
dc.date.accessioned | 2021-06-24T20:14:55Z | |
dc.date.available | 2021-06-24T20:14:55Z | |
dc.date.issued | 2020 | |
dc.description | ilustraciones | spa |
dc.description.abstract | Mediciones de flujos de carbono y energía en una sabana nativa y un ecosistema de cultivo transitorio en la altillanura colombiana. En este documento se presenta la estrategia metodológica para la selección del sitio de medición, diseño de la estación de monitoreo, análisis y procesamiento de datos de mediciones realizadas a través de la técnica de covarianza de remolinos (Apartes del texto) | spa |
dc.description.abstract | Carbon and energy flux measurements in a native savanna and a temporary crop ecosystem in the Colombian High Plains. This document presents the methodological strategy for the selection of the measurement site, design of the monitoring station, analysis and data processing of measurements conducted using the eddy covariance technique. (Apartes del texto) | eng |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctor en Ingeniería - Ingeniería Química | spa |
dc.description.researcharea | Procesos ambientales | spa |
dc.format.extent | 249 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/79716 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.department | Departamento de Ingeniería Química y Ambiental | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Química | spa |
dc.relation.references | Acevedo, O. C.; Moraes, O. L. L.; Degrazia, G. A.; Fitzjarrald, D. R.; Manzi, A. O. and Campos, J. G. (2009). Is friction velocity the most appropriate scale for correcting nocturnal carbon dioxide fluxes? Agricultural and Forest Meteorology, 149(1), 1–10. https://doi.org/10.1016/j.agrformet.2008.06.014 | spa |
dc.relation.references | Ago, E. E.; Agbossou, E. K.; Cohard, J.-M.; Galle, S. and Aubinet, M. (2016). Response of CO2 fluxes and productivity to water availability in two contrasting ecosystems in northern Benin (West Africa). Annals of Forest Science, 73(2), 483–500. https://doi.org/10.1007/s13595-016-0542-9 | spa |
dc.relation.references | Agrosavia. (2017). Informe Final de Meta. 2017. Recomendaciones tecnológicas de manejo de suelos de la altillanura plana mediante la estrategia de capa productiva para los diferentes sistemas. Villavicencio. Retrieved from https://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000002033 | spa |
dc.relation.references | Alexandratos, N. and Bruinsma, J. (2012). World agriculture towards 2030/2050: the 2012 revision. ESA Working paper No. 12-03. Rome, FAO. | spa |
dc.relation.references | Archibald, S. A.; Kirton, A.; Van Der Merwe, M. R.; Scholes, R. J.; Williams, C. A. and Hanan, N. (2009). Drivers of inter-annual variability in Net Ecosystem Exchange in a semi-arid savanna ecosystem, South Africa. Biogeosciences, 6(2), 251–266. https://doi.org/10.5194/bg-6-251-2009 | spa |
dc.relation.references | Aubinet, M.; Feigenwinter, C.; Heinesch, B.; Laffineur, Q.; Papale, D.; Reichstein, M.; Rinne, J. and Van Gorsel, E. (2012). Nighttime Flux Correction. In Eddy Covariance (pp. 133–157). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-007-2351-1_5 | spa |
dc.relation.references | Aubinet, M.; Joly, L.; Loustau, D.; De Ligne, A.; Chopin, H.; Cousin, J.; Chauvin, N.; Decarpenterie, T. and Gross, P. (2016). Dimensioning IRGA gas sampling systems: Laboratory and field experiments. Atmospheric Measurement Techniques, 9(3), 1361–1367. https://doi.org/10.5194/amt-9-1361-2016 | spa |
dc.relation.references | Aubinet, M.; Vesala, T. and Papale, D. (Eds). (2012). Eddy Covariance. Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-007-2351-1 | spa |
dc.relation.references | Aurela, M.; Laurila, T. and Tuovinen, J. P. (2002). Annual CO<inf>2</inf> balance of a subarctic fen in northern Europe: Importance of the wintertime efflux. Journal of Geophysical Research Atmospheres, 107(21), 1–12. https://doi.org/10.1029/2002JD002055 | spa |
dc.relation.references | Baldocchi, D. D. (2003). Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Global Change Biology, 9(4), 479–492. https://doi.org/10.1046/j.1365-2486.2003.00629.x | spa |
dc.relation.references | Baldocchi, D. D. (2014). Measuring fluxes of trace gases and energy between ecosystems and the atmosphere - the state and future of the eddy covariance method. Global Change Biology, 3600–3609. https://doi.org/10.1111/gcb.12649 | spa |
dc.relation.references | Baldocchi, D. D. (2016). Advanced Topics in Biometeorology and Micrometeorology ESPM 228. Retrieved March 12, 2016, from https://nature.berkeley.edu/biometlab/index.php?scrn=espm228 | spa |
dc.relation.references | Barman, N.; Borgohain, A.; Kundu, S. S.; Saha, B.; Roy, R.; Solanki, R.; Kumar, N. V. P. K. and N Raju, P. L. (2019). Impact of atmospheric conditions in surface–air exchange of energy in a topographically complex terrain over Umiam. Meteorology and Atmospheric Physics. https://doi.org/10.1007/s00703-019-00668-7 | spa |
dc.relation.references | Bastin, J.-F.; Finegold, Y.; Garcia, C.; Mollicone, D.; Rezende, M.; Routh, D.; Zohner, C. M. and Crowther, T. W. (2019). The global tree restoration potential. Science, 365(6448), 76–79. https://doi.org/10.1126/science.aax0848 | spa |
dc.relation.references | Bellarby, J.; Foereid, B.; Hastings, A. and Smith, P. (2008). Cool Farming : Climate impacts of agriculture and mitigation potential. Retrieved from http://www.greenpeace.org/international/en/publications/reports/cool-farming-full-report/ | spa |
dc.relation.references | Béziat, P.; Ceschia, E. and Dedieu, G. (2009). Carbon balance of a three crop succession over two cropland sites in South West France. Agricultural and Forest Meteorology, 149, 1628–1645. https://doi.org/10.1016/j.agrformet.2009.05.004 | spa |
dc.relation.references | Bond-Lamberty, B.; Bailey, V. L.; Chen, M.; Gough, C. M. and Vargas, R. (2018). Globally rising soil heterotrophic respiration over recent decades. Nature, 560(7716), 80–83. https://doi.org/10.1038/s41586-018-0358-x | spa |
dc.relation.references | Boos, D.; Broecker, H.; Dorr, T.; von Luepke, H. and Sharma, S. (2015). How are INDCs and NAMAs linked? . Giz. Retrieved from https://www.giz.de/en/downloads_els/indcnama.pdf%5Cnpapers3://publication/uuid/92F9F6C4-7414-4C25-AC29-8BACD78C239C | spa |
dc.relation.references | Burba, G. (2013a). Eddy covariance method. Eoearth.Org. Retrieved from http://www.eoearth.org/view/article/152354/ | spa |
dc.relation.references | Burba, G. (2013b). Eddy Covariance Method for Scientific, Industrial, Agricultural and Regulatory Applications: A Field Book on Measuring Ecosystem Gas Exchage and Areal Emission Rates. Lincoln, NE, USA: LI-COR Biosciences. | spa |
dc.relation.references | Burba, G.; Schmidt, A.; Scott, R. L.; Nakai, T.; Kathilankal, J.; Fratini, G.; Hanson, C.; Law, B.; Mcdermitt, D. K.; Eckles, R.; Furtaw, M. and Velgersdyk, M. (2012). Calculating CO2 and H2O eddy covariance fluxes from an enclosed gas analyzer using an instantaneous mixing ratio. Global Change Biology, 18(1), 385–399. https://doi.org/10.1111/j.1365-2486.2011.02536.x | spa |
dc.relation.references | Butterbach-Bahl, K.; Baggs, E. M.; Dannenmann, M.; Kiese, R. and Zechmeister-Boltenstern, S. (2013). Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 368(1621), 20130122. https://doi.org/10.1098/rstb.2013.0122 | spa |
dc.relation.references | Campioli, M.; Malhi, Y.; Vicca, S.; Luyssaert, S.; Papale, D.; Peñuelas, J.; Reichstein, M.; Migliavacca, M.; Arain, M. A. and Janssens, I. A. (2016). Evaluating the convergence between eddy-covariance and biometric methods for assessing carbon budgets of forests. Nature Communications, 7(May 2015), 1–12. https://doi.org/10.1038/ncomms13717 | spa |
dc.relation.references | Ceschia, E.; Béziat, P.; Dejoux, J. F.; Aubinet, M.; Bernhofer, C.; Bodson, B.; Buchmann, N.; Carrara, a.; Cellier, P.; Di Tommasi, P.; Elbers, J. a.; Eugster, W.; Grünwald, T.; Jacobs, C. M. J.; Jans, W. W. P.; Jones, M.; Kutsch, W.; Lanigan, G.; Magliulo, E.; Marloie, O.; Moors, E. J.; Moureaux, C.; Olioso, a.; Osborne, B.; Sanz, M. J.; Saunders, M.; Smith, P.; Soegaard, H. and Wattenbach, M. (2010). Management effects on net ecosystem carbon and GHG budgets at European crop sites. Agriculture, Ecosystems & Environment, 139(3), 363–383. https://doi.org/10.1016/j.agee.2010.09.020 | spa |
dc.relation.references | Chaichana, N.; Bellingrath-Kimura, S. D.; Komiya, S.; Fujii, Y.; Noborio, K.; Dietrich, O. and Pakoktom, T. (2018). Comparison of closed chamber and eddy covariance methods to improve the understanding of methane fluxes from rice paddy fields in Japan. Atmosphere, 9(9). https://doi.org/10.3390/atmos9090356 | spa |
dc.relation.references | Chambers, J. Q.; Negron-Juarez, R. I.; Marra, D. M.; Di Vittorio, A.; Tews, J.; Roberts, D.; Ribeiro, G. H. P. M.; Trumbore, S. E. and Higuchi, N. (2013). The steady-state mosaic of disturbance and succession across an old-growth central Amazon forest landscape. Proceedings of the National Academy of Sciences of the United States of America, 110(10), 3949–3954. https://doi.org/10.1073/pnas.1202894110 | spa |
dc.relation.references | Chapin, F. S.; Woodwell, G. M.; Randerson, J. T.; Rastetter, E. B.; Lovett, G. M.; Baldocchi, D. D.; Clark, D. A.; Harmon, M. E.; Schimel, D. S.; Valentini, R.; Wirth, C.; Aber, J. D.; Cole, J. J.; Goulden, M. L.; Harden, J. W.; Heimann, M.; Howarth, R. W.; Matson, P. A.; McGuire, A. D.; Melillo, J. M.; Mooney, H. A.; Neff, J. C.; Houghton, R. A.; Pace, M. L.; Ryan, M. G.; Running, S. W.; Sala, O. E.; Schlesinger, W. H. and Schulze, E.-D. (2006). Reconciling Carbon-cycle Concepts, Terminology, and Methods. Ecosystems, 9(7), 1041–1050. https://doi.org/10.1007/s10021-005-0105-7 | spa |
dc.relation.references | Chu, H.; Baldocchi, D. D.; John, R.; Wolf, S. and Reichstein, M. (2017). Fluxes all of the time? A primer on the temporal representativeness of FLUXNET. Journal of Geophysical Research: Biogeosciences, 122(2), 289–307. https://doi.org/10.1002/2016JG003576 | spa |
dc.relation.references | Corbin, K. D.; Denning, A. S.; Lokupitiya, E. Y.; Schuh, A. E.; Miles, N. L.; Davis, K. J.; Richardson, S. and Baker, I. T. (2010). Assessing the impact of crops on regional CO2 fluxes and atmospheric concentrations. Tellus B, 62(5), 521–532. https://doi.org/10.1111/j.1600-0889.2010.00485.x | spa |
dc.relation.references | DNP. (2014). Política para el desarrollo integral de la Orinoquia: Altillanura - Fase 1. (Documento CONPES 3797). Bogotá D.C.: DNP. | spa |
dc.relation.references | Eamus, D.; Hutley, L. B. and O’Grady, A. P. (2001). Daily and seasonal patterns of carbon and water fluxes above a north Australian savanna. Tree Physiology, 21(12–13), 977–988. https://doi.org/10.1093/treephys/21.12-13.977 | spa |
dc.relation.references | EddyPro® (Version6.2). (2016). EddyPro® Software (Version 6.2) [windows]. Lincoln, NE. LI-COR, Inc; Infrastructure for Measurements of the European Carbon Cycle consortium. | spa |
dc.relation.references | Falge, E.; Baldocchi, D.; Olson, R.; Anthoni, P.; Aubinet, M.; Bernhofer, C.; Burba, G.; Ceulemans, R.; Clement, R.; Dolman, H.; Granier, A.; Gross, P.; Gr??nwald, T.; Hollinger, D.; Jensen, N. O.; Katul, G.; Keronen, P.; Kowalski, A.; Lai, C. T.; Law, B. E.; Meyers, T.; Moncrieff, J.; Moors, E.; Munger, J. W.; Pilegaard, K.; Rannik, ??llar; Rebmann, C.; Suyker, A.; Tenhunen, J.; Tu, K.; Verma, S.; Vesala, T.; Wilson, K. and Wofsy, S. (2001). Gap filling strategies for defensible annual sums of net ecosystem exchange. Agricultural and Forest Meteorology, 107(1), 43–69. https://doi.org/10.1016/S0168-1923(00)00225-2 | spa |
dc.relation.references | FAO. (2011). Biodiversity for Food and Agriculture Biodiversity for Food and Agriculture. Retrieved from http://www.fao.org/3/a-i1980e.pdf | spa |
dc.relation.references | Fei, X.; Jin, Y.; Zhang, Y.; Sha, L.; Liu, Y.; Song, Q.; Zhou, W.; Liang, N.; Yu, G.; Zhang, L.; Zhou, R.; Li, J.; Zhang, S. and Li, P. (2017). Eddy covariance and biometric measurements show that a savanna ecosystem in Southwest China is a carbon sink. Scientific Reports, 7(July 2016), 1–14. https://doi.org/10.1038/srep41025 | spa |
dc.relation.references | Figueres, C.; Schellnhuber, H. J.; Whiteman, G.; Rockström, J.; Hobley, A. and Rahmstorf, S. (2017, June 28). Three years to safeguard our climate. Nature. https://doi.org/10.1038/546593a | spa |
dc.relation.references | Finkelstein, P. L. and Sims, P. F. (2001). Sampling error in eddy correlation flux measurements. Journal of Geophysical Research: Atmospheres, 106(D4), 3503–3509. https://doi.org/10.1029/2000JD900731 | spa |
dc.relation.references | Finnigan, J. J.; Clement, R.; Malhi, Y.; Leuning, R. and Cleugh, H. A. (2003). A Re-Evaluation of Long-Term Flux Measurement Techniques Part I: Averaging and Coordinate Rotation. Boundary-Layer Meteorology, 107(1), 1–48. https://doi.org/10.1023/A:1021554900225 | spa |
dc.relation.references | Foken, T. (2008a). Micrometeorology. Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-74666-9 | spa |
dc.relation.references | Foken, T. (2008b). The energy balance closure problem: An overview. Ecological Applications, 18(6), 1351–1367. https://doi.org/10.1890/06-0922.1 | spa |
dc.relation.references | Foken, T. (2017a). Energy and Matter Fluxes of a Spruce Forest Ecosystem. (T. Foken, Ed.) (Vol. 229). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-49389-3 | spa |
dc.relation.references | Foken, T. (2017b). General Basics. In Micrometeorology (pp. 1–32). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-25440-6_1 | spa |
dc.relation.references | Foken, T.; Leuning, R.; Oncley, S. R.; Mauder, M. and Aubinet, M. (2012). Corrections and Data Quality Control. In Eddy Covariance (pp. 85–131). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-007-2351-1_4 | spa |
dc.relation.references | Fratini, G.; Ibrom, A.; Arriga, N.; Burba, G. and Papale, D. (2012). Relative humidity effects on water vapour fluxes measured with closed-path eddy-covariance systems with short sampling lines. Agricultural and Forest Meteorology, 165, 53–63. https://doi.org/10.1016/j.agrformet.2012.05.018 | spa |
dc.relation.references | Gill Instruments. (2016). Technical Key Note (KN1509v6*). Retrieved from http://gillinstruments.com/data/manuals/KN1509-WM-WMPro-W-Bug-Info-Sheet.pdf | spa |
dc.relation.references | Göckede, M.; Foken, T.; Aubinet, M.; Aurela, M.; Banza, J.; Bernhofer, C.; Bonnefond, J. M.; Brunet, Y.; Carrara, A.; … Yakir, D. (2008). Quality control of CarboEurope flux data &ndash; Part 1: Coupling footprint analyses with flux data quality assessment to evaluate sites in forest ecosystems. Biogeosciences, 5(2), 433–450. https://doi.org/10.5194/bg-5-433-2008 | spa |
dc.relation.references | Goodrich, J. P.; Oechel, W. C.; Gioli, B.; Moreaux, V.; Murphy, P. C.; Burba, G. and Zona, D. (2016). Impact of different eddy covariance sensors, site set-up, and maintenance on the annual balance of CO2 and CH4 in the harsh Arctic environment. Agricultural and Forest Meteorology, 228–229, 239–251. https://doi.org/10.1016/j.agrformet.2016.07.008 | spa |
dc.relation.references | Görres, C. M.; Kammann, C. and Ceulemans, R. (2016). Automation of soil flux chamber measurements: Potentials and pitfalls. Biogeosciences, 13(6), 1949–1966. https://doi.org/10.5194/bg-13-1949-2016 | spa |
dc.relation.references | Gough, C. M. (2011). Terrestrial Primary Production: Fuel for Life. Nature Education Knowledge, 3(10), 28. | spa |
dc.relation.references | Goulden, M. L.; Miller, S. D. and da Rocha, H. R. (2006). Nocturnal cold air drainage and pooling in a tropical forest. Journal of Geophysical Research Atmospheres, 111(8), 1–14. https://doi.org/10.1029/2005JD006037 | spa |
dc.relation.references | Grace, J.; Jose, J. S.; Meir, P.; Miranda, H. S. and Montes, R. A. (2006). Productivity and carbon fluxes of tropical savannas. Journal of Biogeography, 33(3), 387–400. https://doi.org/10.1111/j.1365-2699.2005.01448.x | spa |
dc.relation.references | Grassini, P.; Eskridge, K. M. and Cassman, K. G. (2013). Distinguishing between yield advances and yield plateaus in historical crop production trends. Nature Communications, 4, 1–11. https://doi.org/10.1038/ncomms3918 | spa |
dc.relation.references | Grover, S. P. P.; Livesley, S. J.; Hutley, L. B.; Jamali, H.; Fest, B.; Beringer, J.; Butterbach-Bahl, K. and Arndt, S. K. (2012). Land use change and the impact on greenhouse gas exchange in north Australian savanna soils. Biogeosciences, 9(1), 423–437. https://doi.org/10.5194/bg-9-423-2012 | spa |
dc.relation.references | Haslwanter, A.; Hammerle, A. and Wohlfahrt, G. (2009). Open-path vs. closed-path eddy covariance measurements of the net ecosystem carbon dioxide and water vapour exchange: A long-term perspective. Agricultural and Forest Meteorology, 149(2), 291–302. https://doi.org/10.1016/j.agrformet.2008.08.011 | spa |
dc.relation.references | Henry, J. (2005). Tropical And Equatorial Climates. In J. E. Oliver (Ed.), Encyclopedia of World Climatology (pp. 742–750). Dordrecht: Springer Netherlands. https://doi.org/10.1007/1-4020-3266-8_212 | spa |
dc.relation.references | Horst, T. W. (1997). A simple formula for attenuation of eddy fluxes measured with first-order-response scalar sensors. Boundary-Layer Meteorology, 82(2), 219–233. https://doi.org/10.1023/A:1000229130034 | spa |
dc.relation.references | Hutley, L. L. B.; Leuning, R.; Beringer, J. and Cleugh, H. H. a. (2005). The utility of the eddy covariance techniques as a tool in carbon accounting: tropical savanna as a case study. Australian Journal of Botany, 53(7), 663. https://doi.org/10.1071/BT04147 | spa |
dc.relation.references | Ibrom, A.; Dellwik, E.; Flyvbjerg, H.; Jensen, N. O. and Pilegaard, K. (2007). Strong low-pass filtering effects on water vapour flux measurements with closed-path eddy correlation systems. Agricultural and Forest Meteorology, 147(3–4), 140–156. https://doi.org/10.1016/j.agrformet.2007.07.007 | spa |
dc.relation.references | IDEAM. (2015). Primer Informe Bienal De Actualización Ante La Convención Marco de las Naciones Unidas sobre el Cambio Climático. | spa |
dc.relation.references | IGAC. (2004). Estudio General de Suelos y Zonificación de Tierras del Departamento del Meta. Bogota, Colombia. | spa |
dc.relation.references | IGAC. (2014). Estudio General de Suelos y Zonificación De Tierras Departamento del Vichada. Bogota, Colombia. | spa |
dc.relation.references | Infometrika – Sociedad de Agricultores de Colombia - SAC. (2014). Estudio de caracterización del sector agropecuario en Colombia Tomo I. Servicio Nacional de Aprendisaje - SENA. | spa |
dc.relation.references | IPCC. (2014). Climate Change 2014: Mitigation of Climate Change. Working Group III Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. https://doi.org/10.1017/CBO9781107415416 | spa |
dc.relation.references | Jacobson, M. Z. (2005). Fundamentals of Atmospheric Modeling. Cambridge: Cambridge University Press. | spa |
dc.relation.references | Kai, F. M.; Cobb, A.; Chua, A. F. L.; Tee, M. H.; Ng, B.; Gandois, L. and Harvey, C. (2013). An off-grid PV power system for meteorological and eddy covariance flux station in Kranji, Singapore. Energy Procedia, 33, 364–373. https://doi.org/10.1016/j.egypro.2013.05.077 | spa |
dc.relation.references | Kaimal, J. C.; Wyngaard, J. C.; Haugen, D. A.; Coté, O. R.; Izumi, Y.; Caughey, S. J. and Readings, C. J. (1976). Turbulence Structure in the Convective Boundary Layer. Journal of the Atmospheric Sciences. https://doi.org/10.1175/1520-0469(1976)033<2152:TSITCB>2.0.CO;2 | spa |
dc.relation.references | Kaimal, J. C.; Wyngaard, J. C.; Izumi, Y. and Coté, O. R. (1972). Spectral characteristics of surface-layer turbulence. Quarterly Journal of the Royal Meteorological Society, 98(417), 563–589. https://doi.org/10.1002/qj.49709841707 | spa |
dc.relation.references | Kaimal, J. J. C. and Finnigan, J. J. (1994). Atmospheric Boundary Layer Flows: their structure and measurements. Oxford University Press. | spa |
dc.relation.references | Keenan, T. F.; Migliavacca, M.; Papale, D.; Baldocchi, D.; Reichstein, M.; Torn, M. and Wutzler, T. (2019). Widespread inhibition of daytime ecosystem respiration. Nature Ecology and Evolution, 3(3), 407–415. https://doi.org/10.1038/s41559-019-0809-2 | spa |
dc.relation.references | Kirschbaum, M.U.F. & Mueller, R. (2001). Net Ecosystem Exchange. | spa |
dc.relation.references | Kirschbaum, M. U. F.; Eamus, D.; Gifford, R. M.; Roxburgh, S. H. and Sands, P. J. (2001). C Accounting Definitions, (April), 18–20. Retrieved from http://www.steverox.info/Downloads/Software/C Accounting Definitions.pdf | spa |
dc.relation.references | Kljun, N.; Calanca, P.; Rotach, M. W. and Schmid, H. P. (2015). A simple two-dimensional parameterisation for Flux Footprint Prediction (FFP). Geoscientific Model Development, 8(11), 3695–3713. https://doi.org/10.5194/gmd-8-3695-2015 | spa |
dc.relation.references | Lasslop, G.; Reichstein, M.; Papale, D.; Richardson, A.; Arneth, A.; Barr, A.; Stoy, P. and Wohlfahrt, G. (2010). Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: Critical issues and global evaluation. Global Change Biology, 16(1), 187–208. https://doi.org/10.1111/j.1365-2486.2009.02041.x | spa |
dc.relation.references | Lavelle, P.; Rodríguez, N.; Arguello, O.; Bernal, J.; Botero, C.; Chaparro, P.; Gómez, Y.; Gutiérrez, A.; Hurtado, M. del P.; Loaiza, S.; Pullido, S. X.; Rodríguez, E.; Sanabria, C.; Velásquez, E. and Fonte, S. J. (2014). Soil ecosystem services and land use in the rapidly changing Orinoco River Basin of Colombia. Agriculture, Ecosystems & Environment, 185, 106–117. https://doi.org/10.1016/j.agee.2013.12.020 | spa |
dc.relation.references | Leclerc, M. Y. and Foken, T. (2014). Footprints in Micrometeorology and Ecology. https://doi.org/10.1007/978-3-642-54545-0 | spa |
dc.relation.references | Lee, X.; Finnigan, J. and Paw U, K. T. (2005). Handbook of Micrometeorology: A Guide for surface flux measurement and analysis. (X. Lee, W. Massman and B. Law, Eds.), Handbook of Micrometeorology (Vol. 29). Dordrecht: Springer Netherlands. https://doi.org/10.1007/1-4020-2265-4 | spa |
dc.relation.references | Leip, A.; Skiba, U.; Vermeulen, A. and Thompson, R. L. (2018). A complete rethink is needed on how greenhouse gas emissions are quantified for national reporting. Atmospheric Environment, 174(November 2017), 237–240. https://doi.org/10.1016/j.atmosenv.2017.12.006 | spa |
dc.relation.references | LI-COR. (2010). Technical Note: Solar Power for Eddy Covariance Flux Station. Nebraska. Retrieved from https://www.licor.com/documents/aadiwe7sh4i79kvyteiy | spa |
dc.relation.references | LI-COR, I. (2016). EddyPro® version 6.2 Help and User’s Guide. LI-COR, Inc. Lincoln, NE. | spa |
dc.relation.references | Lucas-Moffat, A. M.; Huth, V.; Augustin, J.; Brümmer, C.; Herbst, M. and Kutsch, W. L. (2018). Towards pairing plot and field scale measurements in managed ecosystems: Using eddy covariance to cross-validate CO2 fluxes modeled from manual chamber campaigns. Agricultural and Forest Meteorology, 256–257(August 2016), 362–378. https://doi.org/10.1016/j.agrformet.2018.01.023 | spa |
dc.relation.references | MADR. (2016). Agronet. Retrieved from http://www.agronet.gov.co/estadistica/Paginas/default.aspx | spa |
dc.relation.references | Mamadou, O.; Gourlez de la Motte, L.; De Ligne, A.; Heinesch, B. and Aubinet, M. (2016). Sensitivity of the annual net ecosystem exchange to the cospectral model used for high frequency loss corrections at a grazed grassland site. Agricultural and Forest Meteorology, 228–229, 360–369. https://doi.org/10.1016/j.agrformet.2016.06.008 | spa |
dc.relation.references | Massman, W. and Clement, R. (2005). Uncertainty in Eddy Covariance Flux Estimates Resulting from Spectral Attenuation. In Handbook of Micrometeorology (Vol. 29, pp. 67–99). Dordrecht: Kluwer Academic Publishers. https://doi.org/10.1007/1-4020-2265-4_4 | spa |
dc.relation.references | Massman, W. J. (2000). A simple method for estimating frequency response corrections for eddy covariance systems. Agricultural and Forest Meteorology, 104(3), 185–198. https://doi.org/10.1016/S0168-1923(00)00164-7 | spa |
dc.relation.references | Massman, W. J. (2001). Reply to comment by Rannik on “A simple method for estimatiog frequency responde corrections for eddy covariance systems.” Agricultural and Forest Meteorology, 107(107), 247–251. | spa |
dc.relation.references | Mauder, M. and Foken, T. (2004). Documentation and instruction manual of the eddy covariance software package TK2. Bayreuth, Abt. Mikrometeorol., ISSN, (26), 1614–89166. | spa |
dc.relation.references | Mauder, M. and Foken, T. (2015). Eddy-Covariance Software TK3. Http://Dx.Doi.Org/10.5281/Zenodo.20349, (July 2015). https://doi.org/10.5281/zenodo.20349 | spa |
dc.relation.references | McNaughton, K. G. and Laubach, J. (2000). Power Spectra and Cospectra for Wind and Scalars in a Disturbed Surface Layer at the Base of an Advective Inversion. Boundary-Layer Meteorology, 96(1/2), 143–185. https://doi.org/10.1023/A:1002477120507 | spa |
dc.relation.references | Metzger, S.; Burba, G.; Burns, S. P.; Blanken, P. D.; Li, J.; Luo, H. and Zulueta, R. C. (2016). Optimization of an enclosed gas analyzer sampling system for measuring eddy covariance fluxes of H2O and CO2. Atmospheric Measurement Techniques, 9(3), 1341–1359. https://doi.org/10.5194/amt-9-1341-2016 | spa |
dc.relation.references | Miranda, A. C.; Miranda, H. S.; Lloyd, J.; Grace, J.; Francey, R. J.; Mcintyre, J. A.; Meir, P.; Riggan, P.; Lockwood, R. and Brass, J. (1997). Fluxes of carbon, water and energy over Brazilian cerrado: An analysis using eddy covariance and stable isotopes. Plant, Cell and Environment, 20(3), 315–328. https://doi.org/10.1046/j.1365-3040.1997.d01-80.x | spa |
dc.relation.references | Moncrieff, J. B.; Massheder, J. M.; de Bruin, H.; Elbers, J.; Friborg, T.; Heusinkveld, B.; Kabat, P.; Scott, S.; Soegaard, H. and Verhoef, A. (1997). A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide. Journal of Hydrology, 188–189, 589–611. https://doi.org/10.1016/S0022-1694(96)03194-0 | spa |
dc.relation.references | Moncrieff, J.; Clement, R.; Finnigan, J. and Meyers, T. (2005). Averaging, Detrending, and Filtering of Eddy Covariance Time Series. In X. Lee, W. Massman and B. Law (Eds.), Handbook of Micrometeorology: A Guide for Surface Flux Measurement and Analysis (pp. 7–31). Dordrecht: Springer Netherlands. https://doi.org/10.1007/1-4020-2265-4_2 | spa |
dc.relation.references | Moore, C. J. (1986). Frequency response corrections for eddy correlation systems. Boundary-Layer Meteorology, 37(1–2), 17–35. https://doi.org/10.1007/BF00122754 | spa |
dc.relation.references | Munger, J. W.; Loescher, H. W. and Luo, H. (2012). Measurement, Tower, and Site Design Considerations. In Eddy Covariance (pp. 21–58). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-007-2351-1_2 | spa |
dc.relation.references | Nakai, T.; Iwata, H.; Harazono, Y. and Ueyama, M. (2014). An inter-comparison between Gill and Campbell sonic anemometers. Agricultural and Forest Meteorology, 195–196, 123–131. https://doi.org/10.1016/j.agrformet.2014.05.005 | spa |
dc.relation.references | Nakai, T. and Shimoyama, K. (2012). Ultrasonic anemometer angle of attack errors under turbulent conditions. Agricultural and Forest Meteorology, 162–163, 14–26. https://doi.org/10.1016/j.agrformet.2012.04.004 | spa |
dc.relation.references | Nelson, J. A.; Carvalhais, N.; Migliavacca, M.; Reichstein, M. and Jung, M. (2018). Water-stress-induced breakdown of carbon-water relations: Indicators from diurnal FLUXNET patterns. Biogeosciences, 15(8), 2433–2447. https://doi.org/10.5194/bg-15-2433-2018 | spa |
dc.relation.references | Novick, K. A.; Walker, J.; Chan, W. S.; Schmidt, A.; Sobek, C. and Vose, J. M. (2013). Eddy covariance measurements with a new fast-response, enclosed-path analyzer: Spectral characteristics and cross-system comparisons. Agricultural and Forest Meteorology, 181, 17–32. https://doi.org/10.1016/j.agrformet.2013.06.020 | spa |
dc.relation.references | ORNL DAAC. (2017). Fluxnet: Archived Website Including Site and Investigator Information. ORNL Distributed Active Archive Center. https://doi.org/10.3334/ornldaac/1549 | spa |
dc.relation.references | Ortiz, E. Y.; Jimenez, R.; Fochesatto, G. J. and Morales-Rincon, L. A. (2019). Caracterización de la turbulencia atmosférica en una gran zona verde de una megaciudad andina tropical. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 43(166), 133. https://doi.org/10.18257/raccefyn.697 | spa |
dc.relation.references | Polonik, P.; Chan, W. S.; Billesbach, D. P.; Burba, G.; Li, J.; Nottrott, A.; Bogoev, I.; Conrad, B. and Biraud, S. C. (2019). Comparison of gas analyzers for eddy covariance: Effects of analyzer type and spectral corrections on fluxes. Agricultural and Forest Meteorology, 272–273(February), 128–142. https://doi.org/10.1016/j.agrformet.2019.02.010 | spa |
dc.relation.references | Räsänen, M.; Aurela, M.; Vakkari, V.; Beukes, J. P.; Tuovinen, J. P.; Van Zyl, P. G.; Josipovic, M.; Venter, A. D.; Jaars, K.; Siebert, S. J.; Laurila, T.; Rinne, J. and Laakso, L. (2017). Carbon balance of a grazed savanna grassland ecosystem in South Africa. Biogeosciences, 14(5), 1039–1054. https://doi.org/10.5194/bg-14-1039-2017 | spa |
dc.relation.references | Reichstein, M.; Falge, E.; Baldocchi, D. D.; Papale, D.; Aubinet, M.; Berbigier, P.; Bernhofer, C.; Buchmann, N.; Gilmanov, T.; … Valentini, R. (2005). On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology, 11(9), 1424–1439. https://doi.org/10.1111/j.1365-2486.2005.001002.x | spa |
dc.relation.references | Rippstein, G.; Escobar, G. and Motta, F. (2001). Agroecología y Biodiversidad de las Sabanas en los Llanos Orientales de Colombia. Meta. | spa |
dc.relation.references | Rumpel, C.; Amiraslani, F.; Koutika, L.-S.; Smith, P.; Whitehead, D. and Wollenberg, E. (2018). Put more carbon in soils to meet Paris climate pledges. Nature, 564(7734), 32–34. https://doi.org/10.1038/d41586-018-07587-4 | spa |
dc.relation.references | San José, J. J. (1991). Corbon Dioxide and Ammonia Exchange in the Trachypogon Sabannas of the Orinoco Llanos. Annals of Botany, 68, 321–328. | spa |
dc.relation.references | San José, J. J. (2001). Evaluación de los efectos del uso de la tierra sobre el contenido y flujos de carbono en los llanos del Orinoco. Retrieved from http://www.uach.cl/procarbono/pdf/simposio_carbono/01_SanJose.PDF | spa |
dc.relation.references | San José, J. J. and Montes, R. A. (2007). Resource apportionment and net primary production across the Orinoco savanna-woodland continuum, Venezuela. Acta Oecologica, 32(2), 243–253. https://doi.org/10.1016/j.actao.2007.05.005 | spa |
dc.relation.references | San José, J. J.; Montes, R. A. and Fariñas, M. (1998). Carbon stocks and fluxes in a temporal scaling from a savanna to a semi-deciduous forest. Forest Ecology and Management, 105(1–3), 251–262. https://doi.org/10.1016/S0378-1127(97)00288-0 | spa |
dc.relation.references | San José, J. J.; Montes, R. A. and Rocha, C. (2003). Neotropical savanna converted to food cropping and cattle feeding systems: soil carbon and nitrogen changes over 30 years. Forest Ecology and Management, 184(1–3), 17–32. https://doi.org/10.1016/S0378-1127(03)00144-0 | spa |
dc.relation.references | San José, J. J.; Montes, R.; Grace, J. and Nikonova, N. (2008). Land-use changes alter CO2flux patterns of a tall-grass Andropogon field and a savanna-woodland continuum in the Orinoco lowlands. Tree Physiology, 28(3), 437–450. https://doi.org/10.1093/treephys/28.3.437 | spa |
dc.relation.references | San José, J. J.; Montes, R.; Nikonova, N.; Grace, J. and Buendía, C. (2014). Effect of the replacement of a native savanna by an African Brachiaria decumbens pasture on the CO2 exchange in the Orinoco lowlands, Venezuela. Photosynthetica, 52(3), 358–370. https://doi.org/10.1007/s11099-014-0039-4 | spa |
dc.relation.references | Santos, A. J. B.; Silva, G. T. D. A.; Miranda, H. S.; Miranda, A. C. and Lloyd, J. (2003). Effects of fire on surface carbon, energy and water vapour fluxes over campo sujo savanna in central Brazil. Functional Ecology, 17(6), 711–719. https://doi.org/10.1111/j.1365-2435.2003.00790.x | spa |
dc.relation.references | Sarmiento, G. (1983). The savannas of tropical America. In F. Bourliere (Ed.), Ecosystems of the World XIII. Tropical Savannas (pp. 245–288). Amsterdam: Elsevier. | spa |
dc.relation.references | Saunders, M. J.; Kansiimet, F. and Jones, M. B. (2012). Agricultural encroachment : implications for carbon sequestration in tropical African wetlands. Global Change Biology, 18, 1312–1321. https://doi.org/10.1111/j.1365-2486.2011.02633.x | spa |
dc.relation.references | Schmidt, A.; Hanson, C.; Stephen Chan, W. and Law, B. E. (2012). Empirical assessment of uncertainties of meteorological parameters and turbulent fluxes in the AmeriFlux network. Journal of Geophysical Research G: Biogeosciences, 117(4). https://doi.org/10.1029/2012JG002100 | spa |
dc.relation.references | Sievers, J.; Papakyriakou, T.; Larsen, S. E.; Jammet, M. M.; Rysgaard, S.; Sejr, M. K. and S??rensen, L. L. (2015). Estimating surface fluxes using eddy covariance and numerical ogive optimization. Atmospheric Chemistry and Physics, 15(4), 2081–2103. https://doi.org/10.5194/acp-15-2081-2015 | spa |
dc.relation.references | Smith, P.; Lanigan, G.; Kutsch, W. L.; Buchmann, N.; Eugster, W.; Aubinet, M.; Ceschia, E.; Béziat, P.; Yeluripati, J. B.; Osborne, B.; Moors, E. J.; Brut, A.; Wattenbach, M.; Saunders, M. and Jones, M. (2010). Measurements necessary for assessing the net ecosystem carbon budget of croplands. Agriculture, Ecosystems & Environment, 139(3), 302–315. https://doi.org/10.1016/j.agee.2010.04.004 | spa |
dc.relation.references | Smith, P.; Martino, D.; Cai, Z.; Gwary, D.; Janzen, H.; Kumar, P.; McCarl, B.; Ogle, S. M.; O’Mara, F.; Rice, C.; Scholes, B.; Sirotenko, O.; Howden, M.; McAllister, T.; Pan, G.; Romanenkov, V.; Schneider, U.; Towprayoon, S.; Wattenbach, M. and Smith, J. (2008). Greenhouse gas mitigation in agriculture. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 363(1492), 789–813. https://doi.org/10.1098/rstb.2007.2184 | spa |
dc.relation.references | Smith, W. N.; Grant, B. B.; Desjardins, R. L.; Worth, D.; Li, C.; Boles, S. H. and Huffman, E. C. (2010). A tool to link agricultural activity data with the DNDC model to estimate GHG emission factors in Canada. Agriculture, Ecosystems & Environment, 136(3–4), 301–309. https://doi.org/10.1016/j.agee.2009.12.008 | spa |
dc.relation.references | Tagesson, T. (2012). Turbulent transport in the atmospheric surface layer. SKB TR-12-05. Retrieved from https://inis.iaea.org/collection/NCLCollectionStore/_Public/43/127/43127961.pdf | spa |
dc.relation.references | Tagesson, T.; Fensholt, R.; Cropley, F.; Guiro, I.; Horion, S.; Ehammer, A. and Ardö, J. (2015). Dynamics in carbon exchange fluxes for a grazed semi-arid savanna ecosystem in West Africa. Agriculture, Ecosystems & Environment, 205, 15–24. https://doi.org/10.1016/j.agee.2015.02.017 | spa |
dc.relation.references | Thomas, A. R. C.; Bond, A. J. and Hiscock, K. M. (2013). A multi-criteria based review of models that predict environmental impacts of land use-change for perennial energy crops on water, carbon and nitrogen cycling. GCB Bioenergy, 5(3), 227–242. https://doi.org/10.1111/j.1757-1707.2012.01198.x | spa |
dc.relation.references | Ueyama, M.; Hirata, R.; Mano, M.; Hamotani, K.; Harazono, Y.; Hirano, T.; Miyata, A.; Takagi, K. and Takahashi, Y. (2012). Influences of various calculation options on heat, water and carbon fluxes determined by open- and closed-path eddy covariance methods. Tellus B, 64(0). https://doi.org/10.3402/tellusb.v64i0.19048 | spa |
dc.relation.references | Van Gorsel, E.; Leuning, R.; Cleugh, H. A.; Keith, H. and Suni, T. (2007). Nocturnal carbon efflux: Reconciliation of eddy covariance and chamber measurements using an alternative to the u * -threshold filtering technique. Tellus, Series B: Chemical and Physical Meteorology, 59(3), 397–403. https://doi.org/10.1111/j.1600-0889.2007.00252.x | spa |
dc.relation.references | Vejen, F.; Jacobsson, C.; Fredriksson, U.; Moe, M.; Andresen, L.; Hellsten, E.; Rissanen, P.; Pálsdóttir, Þ. and Arason, Þ. (2002). Quality Control of Meteorological Observations: Automatic Methods Used in the Nordic Countries. (F. Vejen, Ed.) (Vol. 15). Norwegian Meteorological Institute. Retrieved from https://books.google.com.co/books?id=5MtaHQAACAAJ | spa |
dc.relation.references | Velasco, E. and Roth, M. (2010). Cities as net sources of CO2: Review of atmospheric CO2 exchange in urban environments measured by eddy covariance technique. Geography Compass, 4(9), 1238–1259. https://doi.org/10.1111/j.1749-8198.2010.00384.x | spa |
dc.relation.references | Vickers, D. and Mahrt, L. (1997). Quality Control and Flux Sampling Problems for Tower and Aircraft Data. Journal of Atmospheric and Oceanic Technology, 512–526. https://doi.org/10.1175/1520-0426 | spa |
dc.relation.references | Vourlitis, G. L.; Priante Filho, N.; Hayashi, M. M. S.; Nogueira, J. D. S.; Caseiro, F. T. and Holanda Campelo, J. (2001). Seasonal variations in the net ecosystem CO2 exchange of a mature Amazonian transitional tropical forest (cerradão). Functional Ecology, 15(3), 388–395. https://doi.org/10.1046/j.1365-2435.2001.00535.x | spa |
dc.relation.references | Webb, E. K.; Pearman, G. . and Leuning, R. (1980). Correction of flux measurements for density effects due to heat and water vapour transfer. Quarterly Journal of the Royal Meteorological Society. https://doi.org/10.1002/qj.49710644707 | spa |
dc.relation.references | Wilczak, J.; Oncley, S. and Stage, S. (2001). Sonic Anemometer Tilt Correction Algorithms. Boundary-Layer Meteorology, 99(1), 127–150. | spa |
dc.relation.references | Yi, C.; Wei, S. and Hendrey, G. (2014). Warming climate extends dryness-controlled areas of terrestrial carbon sequestration. Scientific Reports, 4, 1–6. https://doi.org/10.1038/srep05472 | spa |
dc.relation.references | Zahumenský, I. (2004). Guidelines on quality control procedures for data from automatic weather stations. Retrieved from http://www.wmo.int/pages/prog/www/IMOP/publications/IOM-82-TECO_2005/Papers/3(14)_Slovakia_2_Zahumensky.pdf | spa |
dc.rights | Derechos Reservados al Autor, 2020 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 660 - Ingeniería química | spa |
dc.subject.other | Calentamiento global | |
dc.subject.other | Global Warming | |
dc.subject.proposal | Altillanura | spa |
dc.subject.proposal | Covarianza de remolinos | spa |
dc.subject.proposal | Turbulencia ecuatoria | spa |
dc.subject.proposal | Flujos de carbono y vapor de agua | spa |
dc.subject.proposal | Intercomparación instrumental | spa |
dc.subject.proposal | Altillanura | eng |
dc.subject.proposal | Eddy covariance | eng |
dc.subject.proposal | Equatorial turbulence | eng |
dc.subject.unesco | Cambio climático | spa |
dc.subject.unesco | Climate change | eng |
dc.title | Flujos de bióxido de carbono y vapor de agua medidos mediante covarianza de remolinos en sabana nativa y cultivos transitorios mecanizados en la Altillanura colombiana | spa |
dc.title.translated | Carbon dioxide and water vapor fluxes measured by eddy covariance in native savanna and mechanized temporary crops in the Colombian High Plains | eng |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TD | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience | General | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 91519742.2020.pdf
- Tamaño:
- 13.56 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Doctorado en Ingeniería - Ingeniería Química
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 3.87 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: