Producción de biodiésel no éster mediante desoxigenación catalítica de aceite de palma con generación de hidrógeno in situ

dc.contributor.advisorCadavid Estrada, Juan Guillermo
dc.contributor.advisorNarváez Rincón, Paulo César
dc.contributor.authorMayorga Betancourt, Manuel Alejandro
dc.contributor.cvlacMayorga Betancourt, Manuel Alejandro [https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000947229]spa
dc.contributor.googlescholarManuel Alejandro Mayorga Betancourt [https://scholar.google.com/citations?user=wyQTSPEAAAAJ&hl=es]spa
dc.contributor.orcidMayorga, Manuel A. [0000-0001-6207-8338]spa
dc.contributor.researchgateManuel Alejandro Mayorga Betancourt [https://www.researchgate.net/profile/Manuel-Mayorga-Betancourt-2/stats]spa
dc.contributor.researchgroupGrupo de Investigación en Procesos Químicos y Bioquímicosspa
dc.contributor.scopusMayorga Betancourt, Manuel Alejandro [57209243312]spa
dc.date.accessioned2023-09-01T19:24:45Z
dc.date.available2023-09-01T19:24:45Z
dc.date.issued2023
dc.descriptionilustraciones, diagramasspa
dc.description.abstractEl desarrollo de biocombustibles avanzados es una opción que contribuye a la transición energética a corto y mediano plazo. Así, en esta investigación se verificó experimentalmente la obtención de biodiésel no éster por desoxigenación catalítica de aceite de palma con hidrógeno generado in situ en lugar de alimentarlo. Entonces se definieron dos sistemas catalíticos capaces de generarlo, por transferencia catalítica y/o reformado en fase acuosa, a partir de donantes como ácido fórmico y etanol, para luego hidrotratar los triglicéridos. Se seleccionaron como fases activas platino y paladio soportadas al 5% en carbono, así como su mezcla equimásica. Para estudiar primordialmente el rendimiento de hidrocarburos y la selectividad hacia hidrodesoxigenación, se evaluó el proceso con exceso hidrógeno del 50% y 100%, a 250 °C y 300 °C. El sistema 5% Pt/C con ácido fórmico en un exceso del 50% a 300 °C presentó el mejor desempeño en la producción de hidrocarburos, pues se obtuvo un producto líquido con 94% principalmente de n-pentadecano y n-heptadecano, por lo que favoreció la descarbonilación-descarboxilación, minimizando la selectividad. La temperatura es la variable de mayor incidencia en la producción de hidrocarburos, tal que para el mismo sistema de platino con 100% de exceso de fórmico a 250 °C se obtuvieron menos hidrocarburos aunque se maximizó la selectividad. Mientras que el sistema platino-paladio con un exceso del 50% de ácido fórmico a 300 °C fue el más equilibrado en rendimiento y selectividad. Las diferencias observadas en la actividad de ambos catalizadores, se explican en parte por la mayor mesoporosidad y dispersión del platino. (Texto tomado de la fuente)spa
dc.description.abstractThe development of advanced biofuels is an option that contributes to the energy transition in the short and medium term. Thus, in this research, the obtaining of non-ester biodiesel by catalytic deoxygenation of palm oil with hydrogen generated in situ instead of feeding it was experimentally verified. Two catalytic systems capable of generating it were then defined, by catalytic transfer and/or reforming in the aqueous phase, from donors such as formic acid and ethanol, to then hydrotreat the triglycerides. Platinum and palladium supported at 5% on carbon were selected as active phases, as well as their of equal mass mixture. To primarily study the yield of hydrocarbons and the selectivity towards hydrodeoxygenation, the process was evaluated with excess hydrogen of 50% and 100%, at 250 °C and 300 °C. The 5% Pt/C system with formic acid in excess of 50% at 300 °C presented the best performance in the production of hydrocarbons, since a liquid product with 94% mainly n-pentadecane and n-heptadecane was obtained, for which favored decarbonylation-decarboxylation, minimizing selectivity. Temperature is the variable with the highest incidence in the production of hydrocarbons, such that for the same platinum system with 100% excess formic at 250 °C, the less hydrocarbons were obtained, although selectivity was maximized. While the platinum-palladium system with a 50% excess of formic acid at 300 °C was the most balanced in yield and selectivity. The differences observed in the activity of both catalysts are partly explained by the higher mesoporosity and dispersion of platinum.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.methodsExperimental, empleando un diseño factorial con cuatro (4) factores: tres (3) sistemas catalíticos (5%Pt/C, 5% Pd/C y Mezcla equimásica 5% Pt/C - 5% Pd/C), dos (2) donantes de hidrógeno (ácido fórmico y alcohol etílico), dos (2) excesos de donante (50% y 100%), y dos (2) temperaturas (250 °C y 300 °C). Las variables de respuesta fueron el rendimiento en la producción de hidrocarburos, la selectividad por la ruta de la hidrodesoxigenación, la concentración de hidrógeno generado y la conversión del aceite de palma. El análisis químico se realizó mediante GC y HPLC, mientras que los catalizadores empleados fueron caracterización en estado fresco y usado.spa
dc.description.researchareaBiorrefinerías y Biocombustiblesspa
dc.description.sponsorshipUniversidad ECCIspa
dc.description.sponsorshipInstituto de Investigaciones en Catálisis y Petroquímica, INCAPE, de la Universidad Nacional del Litoral (UNL) y del Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) de Santa Fe, Argentinaspa
dc.format.extentxiii, 352spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84628
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Químicaspa
dc.relation.referencesAatola, H., Larmi, M., Sarjovaara, T., & Mikkonen, S. (2008). Hydrotreated Vegetable Oil (HVO) as a Renewable Diesel Fuel: Trade-off between NOx, Particulate Emission, and Fuel Consumption of a Heavy Duty Engine. SAE Technical Paper 2008-01-2500. SAE Technical Papers, 724, 12. https://doi.org/10.4271/2008-01-2500spa
dc.relation.referencesAatola, H., Larmi, M., Sarjovaara, T., & Mikkonen, S. (2008). Hydrotreated Vegetable Oil (HVO) as a Renewable Diesel Fuel: Trade-off between NOx, Particulate Emission, and Fuel Consumption of a Heavy Duty Engine. SAE Technical Paper 2008-01-2500. SAE Technical Papers, 724, 12. https://doi.org/10.4271/2008-01-2500spa
dc.relation.referencesAcid, F. (1960). Phys. Org. 1923. 1923–1925spa
dc.relation.referencesAfonso, M., Pedroza, P., Soter, I., Segtovich, V., Sermoud, V. D. M., & Antunes, M. (2022). Hydrodeoxygenation of stearic acid to produce diesel – like hydrocarbons: kinetic modeling, parameter estimation and simulation. Chemical Engineering Science, 254, 117576. https://doi.org/10.1016/j.ces.2022.117576spa
dc.relation.referencesAhmadi, M., Nambo, A., Jasinski, J. B., Ratnasamy, P., & Carreon, M. A. (2014). Decarboxylation of oleic acid over Pt catalysts supported on small-pore zeolites and hydrotalcite. Catalysis Science & Technology, 5(1), 380–388. https://doi.org/10.1039/C4CY00661Espa
dc.relation.referencesAl-Muhtaseb, A. H., Jamil, F., Al-Haj, L., Al-Hinai, M. a., Baawain, M., Myint, M. T. Z., & Rooney, D. (2016). Efficient utilization of waste date pits for the synthesis of green diesel and jet fuel fractions. Energy Conversion and Management, 127, 226–232. https://doi.org/10.1016/j.enconman.2016.09.004spa
dc.relation.referencesAl Alwan, B., Salley, S. O., & Ng, K. Y. S. (2015). Biofuels production from hydrothermal decarboxylation of oleic acid and soybean oil over Ni-based transition metal carbides supported on Al-SBA-15. In Applied Catalysis A: General (Vol. 498, pp. 32–40). Elsevier B.V. https://doi.org/10.1016/j.apcata.2015.03.012spa
dc.relation.referencesAlvear, M., Aho, A., Simakova, I. L., Grénman, H., Salmi, T., & Murzin, D. Y. (2020). Aqueous phase reforming of xylitol and xylose in the presence of formic acid. Catalysis Science and Technology, 10(15), 5245–5255. https://doi.org/10.1039/d0cy00811gspa
dc.relation.referencesAnand, M., Farooqui, S. A., Kumar, R., Joshi, R., Kumar, R., Sibi, M. G., Singh, H., & Sinha, A. K. (2016). Kinetics, thermodynamics and mechanisms for hydroprocessing of renewable oils. Applied Catalysis A: General, 516, 144–152. https://doi.org/10.1016/j.apcata.2016.02.027spa
dc.relation.referencesAndersson, K., Hell, M., & Lowendahl, L. (1974). Diffusivities of Hydrogen and Glyceryl Trioleate in Cottonseed Oil at Elevated Temperature. Journal of the American Oil Chemists´s Society, 51(April), 171–173.spa
dc.relation.referencesArora, P., Lind, E., Olsson, L., & Creaser, D. (2019). Kinetic study of hydrodeoxygenation of stearic acid as model compound for renewable oils. Chemical Engineering Journal, 364(January), 376–389. https://doi.org/10.1016/j.cej.2019.01.134spa
dc.relation.referencesArun, N., Sharma, R. V., & Dalai, A. K. (2015). Green diesel synthesis by hydrodeoxygenation of bio-based feedstocks: Strategies for catalyst design and development. Renewable and Sustainable Energy Reviews, 48, 240–255. https://doi.org/10.1016/j.rser.2015.03.074spa
dc.relation.referencesAslam, M., Konwar, L. J., Sarma, A. K., & Kothiyal, N. C. (2015). An investigation of catalytic hydrocracking of high FFA vegetable oils to liquid hydrocarbons using biomass derived heterogeneous catalysts. Journal of Analytical and Applied Pyrolysis, 115, 401–409. https://doi.org/10.1016/j.jaap.2015.08.015spa
dc.relation.referencesAustin, G. T. (1988). Manual de Procesos Químicos en la Industria (McGraw-Hill (ed.); 1a (En Esp).spa
dc.relation.referencesBach, A., Maillard, F., Chatenet, M., Soudant, P., & Cremers, C. (2016). Ethanol oxidation reaction ( EOR ) investigation on Pt/C , Rh/C , and Pt-based bi- and tri-metallic electrocatalysts : A DEMS and in situ FTIR study. “Applied Catalysis B, Environmental,” 181, 672–680. https://doi.org/10.1016/j.apcatb.2015.08.041spa
dc.relation.referencesBaharudin, K. B., Arumugam, M., Hunns, J., Lee, A. F., Mayes, E., & Taufiq-yap, Y. H. (2019). Octanoic acid hydrodeoxygenation over bifunctional Ni/Al-SBA-15 catalysts. Catalysis Science & Technology, 9, 6673–6680. https://doi.org/10.1039/c9cy01710kspa
dc.relation.referencesBalagurumurthy, B., Singh, R., & Bhaskar, T. (2015). Catalysts for Thermochemical Conversion of Biomass. In Recent Advances in Thermochemical Conversion of Biomass. Elsevier B.V. https://doi.org/10.1016/B978-0-444-63289-0.00004-1spa
dc.relation.referencesBaldiraghi, F., Stanislao, M. Di, Faraci, G., Perego, C., Marker, T., Gosling, C., Kokayeff, P., Kalnes, T., & Marinangeli, R. (2009). Ecofining: New Process for Green Diesel Production from Vegetable Oil. In Sustainable Industrial Chemistry (pp. 427–438). https://doi.org/10.1002/9783527629114.ch8spa
dc.relation.referencesBenson, T. J., Daggolu, P. R., Hernandez, R. A., Liu, S., & White, M. G. (2013). Catalytic deoxygenation chemistry: Upgrading of liquids derived from biomass processing. In Advances in Catalysis (1st ed., Vol. 56). Elsevier Inc. https://doi.org/10.1016/B978-0-12-420173-6.00003-6spa
dc.relation.referencesBernard, E. (2014). Biodiesel : Los aspectos mecánicos en los vehículos (Issue 506). http://www.bioenergywiki.net/images/e/e1/CNPML-Costa-Rica-Biodiesel-Aspectos-Meca?nicos-Vehi?culos.pdfspa
dc.relation.referencesBernas, A., Myllyoja, J., Salmi, T., & Murzin, D. Y. (2009). Kinetics of linoleic acid hydrogenation on Pd/C catalyst. Applied Catalysis A: General, 353(2), 166–180. https://doi.org/10.1016/j.apcata.2008.10.059spa
dc.relation.referencesBertero, M., & Sedran, U. (2015). Coprocessing of Bio-oil in Fluid Catalytic Cracking. In Recent Advances in Thermochemical Conversion of Biomass (pp. 355–381). Elsevier B.V. https://doi.org/10.1016/B978-0-444-63289-0.00013-2spa
dc.relation.referencesBesse, X., Schuurman, Y., & Guilhaume, N. (2016). Hydrothermal conversion of linoleic acid and ethanol for biofuel production. Applied Catalysis A: General, 524, 139–148. https://doi.org/10.1016/j.apcata.2016.06.030spa
dc.relation.referencesBezergianni, S., & Dimitriadis, A. (2013). Comparison between different types of renewable diesel. Renewable and Sustainable Energy Reviews, 21, 110–116. https://doi.org/10.1016/j.rser.2012.12.04spa
dc.relation.referencesBezergianni, S., Dimitriadis, A., & Chrysikou, L. P. (2014). Quality and sustainability comparison of one- vs. Two-step catalytic hydroprocessing of waste cooking oil. Fuel, 118, 300–307. https://doi.org/10.1016/j.fuel.2013.10.078spa
dc.relation.referencesBezergianni, S., Dimitriadis, A., Kalogianni, A., & Knudsen, K. G. (2011). Toward hydrotreating of waste cooking oil for biodiesel production. Effect of pressure, H2/oil ratio, and liquid hourly space velocity. Industrial and Engineering Chemistry Research, 50(7), 3874–3879. https://doi.org/10.1021/ie200251aspa
dc.relation.referencesBezergianni, S., Dimitriadis, A., Kikhtyanin, O., & Kubi, D. (2018). Refinery co-processing of renewable feeds. Progress in Energy and Combustion Science, 68, 29–64. https://doi.org/10.1016/j.pecs.2018.04.002spa
dc.relation.referencesBhaskar, T., & Pandey, A. (2015). Advances in Thermochemical Conversion of Biomass-Introduction. Recent Advances in Thermochemical Conversion of Biomass, 3–30. https://doi.org/10.1016/B978-0-444-63289-0.00001-6spa
dc.relation.referencesBie, Y., Lehtonen, J., & Kanervo, J. (2016). Hydrodeoxygenation (HDO) of methyl palmitate over bifunctional Rh/ZrO2 catalyst: Insights into reaction mechanism via kinetic modeling. Applied Catalysis A: General, 526, 183–190. https://doi.org/10.1016/j.apcata.2016.08.030spa
dc.relation.referencesBiswas, B., Kumar, J., & Bhaskar, T. (2019). Advanced hydrothermal liquefaction of biomass for bio-oil production. In Biomass, Biofuels, Biochemicals: Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels (2nd ed., pp. 245–266). Elsevier Inc. https://doi.org/10.1016/B978-0-12-816856-1.00010-5spa
dc.relation.referencesBockey, D. (2019). The significance and perspective of biodiesel production –A European and global view. OCL Journal, 26(40)spa
dc.relation.referencesBoda, L., Onyestyák, G., Solt, H., Lónyi, F., Valyon, J., & Thernesz, A. (2010). Catalytic hydroconversion of tricaprylin and caprylic acid as model reaction for biofuel production from triglycerides. Applied Catalysis A: General, 374(1–2), 158–169. https://doi.org/10.1016/j.apcata.2009.12.005spa
dc.relation.referencesBoffito, D. C., Galli, F., Pirola, C., & Patience, G. S. (2017). CaO and isopropanol transesterify and crack triglycerides to isopropyl esters and green diesel. Energy Conversion and Management, 139, 71–78. https://doi.org/10.1016/j.enconman.2017.02.008spa
dc.relation.referencesBond, G. C. (1987). Heterogeneous Catalysis: Principles and Aplications (Oxford University Press (ed.); Second Edi)spa
dc.relation.referencesBrieger, G., & Nestrick, T. J. (1974). Brieger, G., & Nestrick, T. J. (1974). Catalytic transfer hydrogenation. Chemical Reviews, 74, 567–580. http://doi.org/10.1021/cr60291a003. Chemical Reviews, 74, 567–580. https://doi.org/10.1021/cr60291a003spa
dc.relation.referencesBrown, B., & Radich, T. (2015). Renewable diesel production, planned projects on the rise. Biomass Magazine.spa
dc.relation.referencesBrowning, B., Afanasiev, P., Pitault, I., Couenne, F., & Tayakout-Fayolle, M. (2016). Detailed kinetic modelling of vacuum gas oil hydrocracking using bifunctional catalyst: A distribution approach. Chemical Engineering Journal, 284, 270–284. https://doi.org/10.1016/j.cej.2015.08.126spa
dc.relation.referencesBu, Q., Lei, H., Zacher, A. H., Wang, L., Ren, S., Liang, J., Wei, Y., Liu, Y., Tang, J., Zhang, Q., & Ruan, R. (2012). A review of catalytic hydrodeoxygenation of lignin-derived phenols from biomass pyrolysis. Bioresource Technology, 124, 470–477. https://doi.org/10.1016/j.biortech.2012.08.089spa
dc.relation.referencesBui, L., Luo, H., Gunther, W. R., & Román-Leshkov, Y. (2013). Domino reaction catalyzed by zeolites with Brønsted and Lewis acid sites for the production of γ-valerolactone from furfural. Angewandte Chemie - International Edition, 52(31), 8022–8025. https://doi.org/10.1002/anie.201302575spa
dc.relation.referencesCABA. (2019). A Roadmap for Eliminating Petroleum Diesel in California by 2030 (Issue January). caadvancedbiofuelsalliance.orgspa
dc.relation.referencesCalero, J., Luna, D., Sancho, E. D., Luna, C., Bautista, F. M., Romero, A. A., Posadillo, A., Berbel, J., & Verdugo-escamilla, C. (2015). An overview on glycerol-free processes for the production of renewable liquid biofuels , applicable in diesel engines. Renewable and Sustainable Energy Reviews, 42, 1437–1452. https://doi.org/10.1016/j.rser.2014.11.007spa
dc.relation.referencesCao, W., Luo, W., Ge, H., Su, Y., Wang, A., & Zhanga, T. (2017). UiO-66 derived Ru/ZrO2@C as a highly stable catalyst for hydrogenation of levulinic acid to γ-valerolactone. Green Chemistry, 19, 2201–2211. https://doi.org/10.1039/C7GC00512Aspa
dc.relation.referencesCao, X., Long, F., Zhai, Q., Liu, P., & Xu, J. (2020). Enhancement of fatty acids hydrodeoxygenation selectivity to diesel- range alkanes over the supported Ni-MoO x catalyst and elucidation of the active phase. Renewable Energy, 162, 2113–2125. https://doi.org/10.1016/j.renene.2020.10.052spa
dc.relation.referencesCastillo, E. (2015). Advanced Biofuels from Palm Oil. 18Th International Oil Palm Conference.spa
dc.relation.referencesCe, L., Ni, O., & Lee, C. (2012). Hydrogen production from oxidative steam reforming of ethanol on pyrochlore-type metal oxide ,. 1th International Conference on Renewable Energy Research and Applications, ICRERA 2012, 9–11.spa
dc.relation.referencesChang, X., Liu, A. F., Cai, B., Luo, J. Y., Pan, H., & Huang, Y. B. (2016). Catalytic Transfer Hydrogenation of Furfural to 2-Methylfuran and 2-Methyltetrahydrofuran over Bimetallic Copper–Palladium Catalysts. ChemSusChem, 9(23), 3330–3337. https://doi.org/10.1002/cssc.201601122spa
dc.relation.referencesCheah, K. W., Taylor, M. J., Osatiashtiani, A., Beaumont, S. K., Nowakowski, D. J., Yusup, S., Bridgwater, A. V., & Kyriakou, G. (2020). Monometallic and bimetallic catalysts based on Pd, Cu and Ni for hydrogen transfer deoxygenation of a prototypical fatty acid to diesel range hydrocarbons. Catalysis Today, 355(November 2018), 882–892. https://doi.org/10.1016/j.cattod.2019.03.017spa
dc.relation.referencesCheah, K. W., Yusup, S., Kyriakou, G., Ameen, M., Taylor, M. J., Nowakowski, D. J., Bridgwater, A. V., & Uemura, Y. (2019). In-situ hydrogen generation from 1,2,3,4-tetrahydronaphthalene for catalytic conversion of oleic acid to diesel fuel hydrocarbons: Parametric studies using Response Surface Methodology approach. International Journal of Hydrogen Energy, 44(37), 20678–20689. https://doi.org/10.1016/j.ijhydene.2018.05.112spa
dc.relation.referencesCheah, K. W., Yusup, S., Taylor, M. J., How, B. S., Osatiashtiani, A., Nowakowski, D. J., Bridgwater, A. V., Skoulou, V., Kyriakou, G., & Uemura, Y. (2020). Kinetic modelling of hydrogen transfer deoxygenation of a prototypical fatty acid over a bimetallic Pd60Cu40catalyst: An investigation of the surface reaction mechanism and rate limiting step. Reaction Chemistry and Engineering, 5(9), 1682–1693. https://doi.org/10.1039/d0re00214cspa
dc.relation.referencesChen, H., Chen, K., Fu, J., Lu, X., Huang, H., & Ouyang, P. (2017). Water-mediated promotion of the catalytic conversion of oleic acid to produce an alternative fuel using Pt/C without a H 2 source. Catalysis Communications, 98(April), 26–29. https://doi.org/10.1016/j.catcom.2017.04.044spa
dc.relation.referencesChen, H., Wang, Q., Zhang, X., & Wang, L. (2015). Effect of support on the NiMo phase and its catalytic hydrodeoxygenation of triglycerides. Fuel, 159, 430–435. https://doi.org/10.1016/j.fuel.2015.07.010spa
dc.relation.referencesChen, L., Zhu, Y., Zheng, H., Zhang, C., & Li, Y. (2012). Aqueous-phase hydrodeoxygenation of propanoic acid over the Ru/ZrO2 and Ru-Mo/ZrO2 catalysts. Applied Catalysis A: General, 411–412, 95–104. https://doi.org/10.1016/j.apcata.2011.10.026spa
dc.relation.referencesChen, L., Zhu, Y., Zheng, H., Zhang, C., Zhang, B., & Li, Y. (2011). Aqueous-phase hydrodeoxygenation of carboxylic acids to alcohols or alkanes over supported Ru catalysts. Journal of Molecular Catalysis A: Chemical, 351, 217–227. https://doi.org/10.1016/j.molcata.2011.10.015spa
dc.relation.referencesChen, N., Gong, S., & Qian, E. W. (2015). Effect of reduction temperature of NiMoO3-x/SAPO-11 on its catalytic activity in hydrodeoxygenation of methyl laurate. Applied Catalysis B: Environmental, 174–175, 253–263. https://doi.org/10.1016/j.apcatb.2015.03.011spa
dc.relation.referencesChen, R., & Wang, W. (2019). The production of renewable aviation fuel from waste cooking oil . Part I : Bio-alkane conversion through hydro-processing of oil. Renewable Energy, 135, 819–835. https://doi.org/10.1016/j.renene.2018.12.048spa
dc.relation.referencesChen, S., Zhou, G., & Miao, C. (2019). Green and renewable bio-diesel produce from oil hydrodeoxygenation: Strategies for catalyst development and mechanism. Renewable and Sustainable Energy Reviews, 101(December 2018), 568–589. https://doi.org/10.1016/j.rser.2018.11.027spa
dc.relation.referencesChen, X., Wang, X., Yao, S., & Mu, X. (2013). Hydrogenolysis of biomass-derived sorbitol to glycols and glycerol over Ni-MgO catalysts. Catalysis Communications, 39(3), 86–89. https://doi.org/10.1016/j.catcom.2013.05.012spa
dc.relation.referencesCheng, S., Wei, L., Radhi, M., Corbin, F., Julson, J., Boakye, E., & Raynie, D. (2018). In situ hydrodeoxygenation upgrading of pine sawdust bio-oil to hydrocarbon biofuel using Pd/C catalyst. Journal of the Energy Institute, 91(2), 163–171. https://doi.org/10.1016/j.joei.2017.01.004spa
dc.relation.referencesChheda, J. N., Huber, G. W., & Dumesic, J. A. (2007). Liquid-Phase Catalytic Processing of Biomass-Derived Oxygenated Hydrocarbons to Fuels and Chemicals Angewandte. 7164–7183. https://doi.org/10.1002/anie.200604274spa
dc.relation.referencesChia, M., & Dumesic, J. A. (2011). Liquid-phase catalytic transfer hydrogenation and cyclization of levulinic acid and its esters to γ-valerolactone over metal oxide catalysts. ChemComm, 47, 12233–12235. https://doi.org/10.1039/c1cc14748jspa
dc.relation.referencesChiappero, M., Thi, P., Do, M., Crossley, S., Lobban, L. L., & Resasco, D. E. (2011). Direct conversion of triglycerides to olefins and paraffins over noble metal supported catalysts. Fuel, 90(3), 1155–1165. https://doi.org/10.1016/j.fuel.2010.10.025spa
dc.relation.referencesChiu, Y. T., Wang, H., Lee, J., & Lin, K. Y. A. (2019). Reductive and adsorptive elimination of bromate from water using Ru/C, Pt/C and Pd/C in the absence of H2 : A comparative study. Process Safety and Environmental Protection, 127, 36–44. https://doi.org/10.1016/j.psep.2019.04.030spa
dc.relation.referencesChoi, I. H., Hwang, K. R., Choi, H. Y., & Lee, J. S. (2018). Catalytic deoxygenation of waste soybean oil over hybrid catalyst for production of bio-jet fuel: in situ supply of hydrogen by aqueous-phase reforming (APR) of glycerol. Research on Chemical Intermediates, 1–10. https://doi.org/10.1007/s11164-018-3376-2spa
dc.relation.referencesChoudhary, T. V., & Phillips, C. B. (2011). Renewable fuels via catalytic hydrodeoxygenation. Applied Catalysis A: General, 397(1–2), 1–12. https://doi.org/10.1016/j.apcata.2011.02.025spa
dc.relation.referencesCoronado, I., Stekrova, M., Reinikainen, M., Simell, P., Lefferts, L., & Lehtonen, J. (2016). A review of catalytic aqueous-phase reforming of oxygenated hydrocarbons derived from biorefinery water fractions. International Journal of Hydrogen Energy, 41(26), 11003–11032. https://doi.org/10.1016/j.ijhydene.2016.05.032spa
dc.relation.referencesCortright, R. D., Davda, R. R., & Dumesic, J. A. (2002). Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature, 418(6901), 964–967. https://doi.org/10.1038/nature01009spa
dc.relation.referencesCzernik, S., French, R., Feik, C., & Chornet, E. (2002). Hydrogen by catalytic steam reforming of liquid byproducts from biomass thermoconversion processes. Industrial and Engineering Chemistry Research, 41(17), 4209–4215. https://doi.org/10.1021/ie020107qspa
dc.relation.referencesda Mota, S. A. P., Mancio, A. A., Lhamas, D. E. L., de Abreu, D. H., da Silva, M. S., dos Santos, W. G., de Castro, D. A. R., de Oliveira, R. M., Araújo, M. E., Borges, L. E. P., & Machado, N. T. (2014). Production of green diesel by thermal catalytic cracking of crude palm oil (Elaeis guineensis Jacq) in a pilot plant. Journal of Analytical and Applied Pyrolysis, 110(1), 1–11. https://doi.org/10.1016/j.jaap.2014.06.011spa
dc.relation.referencesda Silva, V. T., & Sousa, L. A. (2013). Catalytic Upgrading of Fats and Vegetable Oils for the Production of Fuels. The Role of Catalysis for the Sustainable Production of Bio-Fuels and Bio-Chemicals, 67–92. https://doi.org/10.1016/B978-0-444-56330-9.00003-6spa
dc.relation.referencesDabros, T. M. H., Stummann, M. Z., Høj, M., Jensen, P. A., Grunwaldt, J.-D., Gabrielsen, J., Mortensen, P. M., & Jensen, A. D. (2018). Transportation fuels from biomass fast pyrolysis , catalytic hydrodeoxygenation , and catalytic fast hydropyrolysis. Progress in Energy and Combustion Science, 68, 268–309. https://doi.org/10.1016/j.pecs.2018.05.002spa
dc.relation.referencesDarpo Bioenergy. (2016). Diamond Green Diesel. https://www.darpro-bioenergy.com/solutions/diamond-green-diesel/spa
dc.relation.referencesDavda, R. R., Shabaker, J. W., Huber, G. W., Cortright, R. D., & Dumesic, J. A. (2005). A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts. Applied Catalysis B: Environmental, 56(1-2 SPEC. ISS.), 171–186. https://doi.org/10.1016/j.apcatb.2004.04.027spa
dc.relation.referencesDe Oliveira, F. C., & Coelho, S. T. (2016). History, evolution, and environmental impact of biodiesel in Brazil: A review. Renewable and Sustainable Energy Reviews, October, 0–1. https://doi.org/10.1016/j.rser.2016.10.060spa
dc.relation.referencesDe, S., Dutta, S., & Saha, B. (2012). One-pot conversions of lignocellulosic and algal biomass into liquid fuels. ChemSusChem, 5(9), 1826–1833. https://doi.org/10.1002/cssc.201200031spa
dc.relation.referencesDe, S., Saha, B., & Luque, R. (2015). Hydrodeoxygenation processes: Advances on catalytic transformations of biomass-derived platform chemicals into hydrocarbon fuels. Bioresource Technology, 178, 108–118. https://doi.org/10.1016/j.biortech.2014.09.065spa
dc.relation.referencesDelly, I., Vlasona, E. N., Nuzhdin, A. L., & Bukhtuyarova, G. A. (2011). The comparison of sulfide CoMo / γ -Al2O3 and NiMo / γ -Al2O3 catalysts in methyl palmitate and methyl heptanoate hydrodeoxygenation. Proceedings of the 2nd European Conference of Control, and Proceedings of the 2nd European Conference on Mechanical Engineering, February 2016, 24–29spa
dc.relation.referencesDeng, L., Li, J., Lai, D. M., Fu, Y., & Guo, Q. X. (2009). Catalytic Conversion of Biomass-Derived Carbohydrates into γ-Valerolactone without Using an External H2 Supply. Angewandte Chemie - International Edition, 48(35), 6529–6532. https://doi.org/10.1002/anie.200902281spa
dc.relation.referencesDeng, L., Zhao, Y., Li, J., Fu, Y., Liao, B., & Guo, Q. X. (2010). Conversion of levulinic acid and formic acid into γ-valerolactone over heterogeneous catalysts. ChemSusChem, 3(10), 1172–1175. https://doi.org/10.1002/cssc.201000163spa
dc.relation.referencesDepartament of Commerce, E. (2016). United States Patent and Trademark Office. USPTO Patent Full-Text and Image Database. http://patft.uspto.gov/netahtml/PTO/search-bool.htmspa
dc.relation.referencesDi, G., Nolfi, V., & Gallucci, K. (2021). Green Diesel Production by Catalytic Hydrodeoxygenation of Vegetables Oils.spa
dc.relation.referencesDickinson, J. G., Poberezny, J. T., & Savage, P. E. (2012). Deoxygenation of benzofuran in supercritical water over a platinum catalyst. Applied Catalysis B: Environmental, 123–124, 357–366. https://doi.org/10.1016/j.apcatb.2012.05.005spa
dc.relation.referencesDing, S., Li, Z., Li, F., Wang, Z., Li, J., Zhao, T., Lin, H., & Chen, C. (2018). Catalytic hydrogenation of stearic acid over reduced NiMo catalysts : Structure – activity relationship and e ff ect of the hydrogen-donor. Applied Catalysis A, General, 566(August), 146–154. https://doi.org/10.1016/j.apcata.2018.08.028spa
dc.relation.referencesDNP. (2017). Energy Demand Situation in Colombia.spa
dc.relation.referencesDNP. (2022). Política de Transición Energética - CONPES 4075. https://colaboracion.dnp.gov.co/CDT/Conpes/Económicos/4075.pdfspa
dc.relation.referencesDo, P. T., Chiappero, M., Lobban, L. L., & Resasco, D. E. (2009). Catalytic deoxygenation of methyl-octanoate and methyl-stearate on Pt/Al2O3. Catalysis Letters, 130(1–2), 9–18. https://doi.org/10.1007/s10562-009-9900-7spa
dc.relation.referencesDomínguez-Barroso, M. V., Herrera, C., Larrubia, M. A., & Alemany, L. J. (2016). Diesel oil-like hydrocarbon production from vegetable oil in a single process over Pt-Ni/Al2O3 and Pd/C combined catalysts. Fuel Processing Technology, 148, 110–116. https://doi.org/10.1016/j.fuproc.2016.02.032spa
dc.relation.referencesDonnis, B., Egeberg, R. G., Blom, P., & Knudsen, K. G. (2009). Hydroprocessing of bio-oils and oxygenates to hydrocarbons. Understanding the reaction routes. Topics in Catalysis, 52(3), 229–240. https://doi.org/10.1007/s11244-008-9159-zspa
dc.relation.referencesDragu, A., Kinayyigit, S., García-suárez, E. J., Florea, M., Stepan, E., & Velea, S. (2015). Deoxygenation of oleic acid: Influence of the synthesis route of Pd/mesoporous carbon nanocatalysts onto their activity and selectivity. “Applied Catalysis A, General,” 504, 81–91. https://doi.org/10.1016/j.apcata.2015.01.008spa
dc.relation.referencesDry, M. E. (2002). The Fischer - Tropsch process: 1950-2000. Catalysis Today, 71(3–4), 227–241. https://doi.org/10.1016/S0920-5861(01)00453-9spa
dc.relation.referencesDu, J., Zhang, J., Sun, Y., Jia, W., Si, Z., Gao, H., Tang, X., Zeng, X., Lei, T., Liu, S., & Lin, L. (2018). Catalytic transfer hydrogenation of biomass-derived furfural to furfuryl alcohol over in-situ prepared nano Cu-Pd/C catalyst using formic acid as hydrogen source. Journal of Catalysis, 368, 69–78. https://doi.org/10.1016/j.jcat.2018.09.025spa
dc.relation.referencesDu, X. L., He, L., Zhao, S., Liu, Y. M., Cao, Y., He, H. Y., & Fan, K. N. (2011). Hydrogen-independent reductive transformation of carbohydrate biomass into γ-valerolactone and pyrrolidone derivatives with supported gold catalysts. Angewandte Chemie - International Edition, 50(34), 7815–7819. https://doi.org/10.1002/anie.201100102spa
dc.relation.referencesDuan, J., Han, J., Sun, H., Chen, P., Lou, H., & Zheng, X. (2012). Diesel-like hydrocarbons obtained by direct hydrodeoxygenation of sunflower oil over Pd/Al-SBA-15 catalysts. Catalysis Communications, 17, 76–80. https://doi.org/10.1016/j.catcom.2011.10.009spa
dc.relation.referencesDuan, P., Bai, X., Xu, Y., Zhang, A., Wang, F., Zhang, L., & Miao, J. (2013). Catalytic upgrading of crude algal oil using platinum/gamma alumina in supercritical water. Fuel, 109, 225–233. https://doi.org/10.1016/j.fuel.2012.12.074spa
dc.relation.referencesDuan, P., Xu, Y., & Bai, X. (2013). Upgrading of crude duckweed bio-oil in subcritical water. Energy and Fuels, 27(8), 4729–4738. https://doi.org/10.1021/ef4009168spa
dc.relation.referencesDurán-Martín, D., Ojeda, M., Granados, M. L., Fierro, J. L. G., & Mariscal, R. (2013). Stability and regeneration of Cu-ZrO2 catalysts used in glycerol hydrogenolysis to 1,2-propanediol. Catalysis Today, 210(3), 98–105. https://doi.org/10.1016/j.cattod.2012.11.013spa
dc.relation.referencesECOPETROL. (2011). Biocombustibles: Una Apuesta Estratégica de Ecopetrol S.Aspa
dc.relation.referencesECOPETROL. (2012). Diesel Renovable: Una Nueva Opción en Biocombustibles. Entorno Verde. Departamento de Biocombustibles. Vol. 3.spa
dc.relation.referencesEdeh, I., Overton, T., & Bowra, S. (2019). Renewable diesel production by hydrothermal decarboxylation of fatty acids over platinum on carbon catalyst over platinum on carbon catalyst. Biofuels, 0(0), 1–8. https://doi.org/10.1080/17597269.2018.1560554spa
dc.relation.referencesEdeh, I., Overton, T., & Bowra, S. (2021a). Catalytic hydrothermal deoxygenation of fatty acids over palladium on activated carbon catalyst (Pd/C) for renewable diesel production. Biofuels, 12(9), 1075–1082. https://doi.org/10.1080/17597269.2019.1580971spa
dc.relation.referencesEdeh, I., Overton, T., & Bowra, S. (2021b). Catalytic hydrothermal deoxygenation of the lipid fraction of activated sludge. Biofuels, 12(8), 925–929. https://doi.org/10.1080/17597269.2018.1558842spa
dc.relation.referencesEEA. (2022). Transport and Environment Report 2021 (Issue 02). https://www.eea.europa.eu/publications/transport-and-environment-report-2021spa
dc.relation.referencesEIA. (2022). U.S. Renewable Diesel Fuel and Other Biofuels Plant Production Capacity (Vol. 2). https://www.eia.gov/biofuels/renewable/capacity/spa
dc.relation.referencesElAmin, B., Anantharamaiah, G. M., Royer, G. P., & Means, G. E. (1979). Removal of benzyl-type protecting groups from peptides by catalytic transfer hydrogenation with formic acid. J. Org. Chem., 44(19), 3442–3444. https://doi.org/10.1021/jo01333a048spa
dc.relation.referencesElliott, D. C., & Hart, T. R. (2009). Catalytic hydroprocessing of chemical models for bio-oil. Energy and Fuels, 23(2), 631–637. https://doi.org/10.1021/ef8007773spa
dc.relation.referencesEn, J., Rahman, A., Ng, A., Lup, K., & Kee, M. (2022). Palm fatty acid distillate derived biofuels via deoxygenation : Properties , catalysts and processes. Fuel Processing Technology, 236(March), 1–15. https://doi.org/10.1016/j.fuproc.2022.107394spa
dc.relation.referenceseni. (2014). Green Refinery: reinventing petroleum refineries.spa
dc.relation.referencesEnvironmental Protection Agency. (2010). Renewable Fuel Standard Program (RFS2) Regulatory Impact Analysis. In Program. https://doi.org/EPA-420-R-10-006., February 2010spa
dc.relation.referencesEPA, E. P. A. (United S. (2010). Renewable Fuel Standard Program (RFS2) Regulatory Impact Analysis.spa
dc.relation.referencesExxonMobil. (2021). Improving renewable diesel yield with BIDW TM dewaxing catalyst.spa
dc.relation.referencesFAO. (2011). El estado de los recursos de tierras y aguas del mundo para la alimentación y la agricultura. La gestión de los sistemas en situación de riesgo. In Mundi-Prensa Madrid.spa
dc.relation.referencesFAO, O. de las N. U. para la A. y la A. (2013). El desarrollo de los biocombustibles no debe comprometer la seguridad alimentaria.spa
dc.relation.referencesFeng, J., Yang, Z., Hse, C. yun, Su, Q., Wang, K., Jiang, J., & Xu, J. (2017). In situ catalytic hydrogenation of model compounds and biomass-derived phenolic compounds for bio-oil upgrading. Renewable Energy, 105, 140–148. https://doi.org/10.1016/j.renene.2016.12.054spa
dc.relation.referencesFossil Free Fuels F3. (2016). HEFA/HVO, Hydroprocessed Esters and Fatty Acids CnH2n+2. http://www.f3centre.se/fact-sheet/HVOspa
dc.relation.referencesFraga, G., Batalha, N., Kumar, A., Bhaskar, T., Konarova, M., & Perkins, G. (2022). Advances in liquefaction for the production of hydrocarbon biofuels. In Hydrocarbon Biorefinery: Sustainable Processing of Biomass for Hydrocarbon Biofuels (pp. 127–176). Elsevier Inc. https://doi.org/10.1016/B978-0-12-823306-1.00009-1spa
dc.relation.referencesFrench, R. J., Stunkel, J., & Baldwin, R. M. (2011). Mild hydrotreating of bio-oil: Effect of reaction severity and fate of oxygenated species. Energy and Fuels, 25(7), 3266–3274. https://doi.org/10.1021/ef200462vspa
dc.relation.referencesFu, J., Lu, X., & Savage, P. E. (2010). Catalytic Hydrothermal Deoxygenation of Palmitic Acid. Energy & Environmental Science, The Royal of Chemistry, 3, 311–317. https://doi.org/10.1039/c003390cspa
dc.relation.referencesFu, J., Lu, X., & Savage, P. E. (2011). Hydrothermal decarboxylation and hydrogenation of fatty acids over Pt/C. ChemSusChem, 4(4), 481–486. https://doi.org/10.1002/cssc.201000370spa
dc.relation.referencesFu, J., Shi, F., Thompson, L. T., Lu, X., & Savage, P. E. (2011). Activated Carbons for Hydrothermal Decarboxylation of Fatty Acids. 227–231.spa
dc.relation.referencesFu, J., Yang, C., Wu, J., Zhuang, J., Hou, Z., & Lu, X. (2015). Direct production of aviation fuels from microalgae lipids in water. Fuel, 139, 678–683. https://doi.org/10.1016/j.fuel.2014.09.025spa
dc.relation.referencesFurimsky, E. (2000). Catalytic hydrodeoxygenation. Applied Catalysis A: General, 199(2), 147–190. https://doi.org/10.1016/S0926-860X(99)00555-4spa
dc.relation.referencesFurimsky, E. (2013a). Hydroprocessing challenges in biofuels production. Catalysis Today, 217, 13–56. https://doi.org/10.1016/j.cattod.2012.11.008spa
dc.relation.referencesFurimsky, E. (2013b). Hydroprocessing in aqueous phase. Industrial and Engineering Chemistry Research, 52(50), 17695–17713. https://doi.org/10.1021/ie4034768spa
dc.relation.referencesGandarias, I., Arias, P. L., Fernández, S. G., Requies, J., El Doukkali, M., & Güemez, M. B. (2012). Hydrogenolysis through catalytic transfer hydrogenation: Glycerol conversion to 1,2-propanediol. Catalysis Today, 195(1), 22–31. https://doi.org/10.1016/j.cattod.2012.03.067spa
dc.relation.referencesGandarias, I., Arias, P. L., Requies, J., El Doukkali, M., & Güemez, M. B. (2011). Liquid-phase glycerol hydrogenolysis to 1,2-propanediol under nitrogen pressure using 2-propanol as hydrogen source. Journal of Catalysis, 282(1), 237–247. https://doi.org/10.1016/j.jcat.2011.06.020spa
dc.relation.referencesGandarias, I., Fernández, S. G., El Doukkali, M., Requies, J., & Arias, P. L. (2013). Physicochemical Study of Glycerol Hydrogenolysis Over a Ni–Cu/Al2O3 Catalyst Using Formic Acid as the Hydrogen Source. Topics in Catalysis, 56(11), 995–1007. https://doi.org/10.1007/s11244-013-0063-9spa
dc.relation.referencesGandarias, I., Requies, J., Arias, P. L., Armbruster, U., & Martin, A. (2012). Liquid-phase glycerol hydrogenolysis by formic acid over Ni-Cu/Al 2O 3 catalysts. Journal of Catalysis, 290, 79–89. https://doi.org/10.1016/j.jcat.2012.03.004spa
dc.relation.referencesGandía, L. M., Arzamendi, G., & Diéguez, P. M. (2013). Renewable Hydrogen Energy. In Renewable Hydrogen Technologies (pp. 1–17). Elsevier. https://doi.org/10.1016/B978-0-444-56352-1.00001-5spa
dc.relation.referencesGao, Y., Zhang, H., Han, A., Wang, J., Tan, H. R., Tok, E. S., Jaenicke, S., & Chuah, G. K. (2018). Ru/ZrO2 Catalysts for Transfer Hydrogenation of Levulinic Acid with Formic Acid/Formate Mixtures: Importance of Support Stability. ChemistrySelect, 3(5), 1343–1351. https://doi.org/10.1002/slct.201702152spa
dc.relation.referencesGao, Z., Yang, L., Fan, G., & Li, F. (2016). Promotional Role of Surface Defects on Carbon-Supported Ruthenium-Based Catalysts in the Transfer Hydrogenation of Furfural. ChemCatChem, 8(24), 3769–3779. https://doi.org/10.1002/cctc.201601070spa
dc.relation.referencesGarcía, J. R. (2016). VIAS CATALÍTICAS PARA MAXIMIZAR LA PRODUCCIÓN Y MEJORAR LA CALIDAD DEL CORTE LCO ( DIESEL ) EN EL CRAQUEO CATALÍTICO DE HIDROCARBUROS (FCC). Universidad Nacional del Litoral.spa
dc.relation.referencesGazsi, A., Bánsági, T., & Solymos, F. (2011). Decomposition and Reforming of Formic Acid on Supported Au Catalysts : Production of CO-Free H 2. The Journal of Physical Chemistry, 115, 15459–15466.spa
dc.relation.referencesGilkey, M. J., Panagiotopoulou, P., Mironenko, A. V, Jenness, G. R., Vlachos, D. G., & Xu, B. (2015). Mechanistic Insights into Metal Lewis Acid-Mediated Catalytic Transfer Hydrogenation of Furfural to 2 ‑ Methylfuran. ACS Catalysis, 5, 3988−3994. https://doi.org/10.1021/acscatal.5b00586spa
dc.relation.referencesGoddard, J. D., Yamaguchi, Y., & Schaefer, H. F. (1992). The decarboxylation and dehydration reactions of monomeric formic acid. The Journal of Chemical Physics, 96(2), 1158. https://doi.org/10.1063/1.462203spa
dc.relation.referencesGong, L.-H., Cai, Y.-Y., Li, X.-H., Zhang, Y.-N., Su, J., & Chen, J.-S. (2014). Room-temperature transfer hydrogenation and fast separation of unsaturated compounds over heterogeneous catalysts in an aqueous solution of formic acid. Green Chem., 16(8), 3746–3751. https://doi.org/10.1039/C4GC00981Aspa
dc.relation.referencesGong, S., Shinozaki, A., & Qian, E. Q. (2012). Effect of Support on Performance of NiMo Catalyst in Hydrotreating of Jatropha Oil. Industrial & Engineering Chemistry Research, American Chemical Society, 1–26.spa
dc.relation.referencesGong, W., Chen, C., Zhang, Y., Zhou, H., Wang, H., Zhang, H., Zhang, Y., Wang, G., & Zhao, H. (2017). Efficient Synthesis of Furfuryl Alcohol from H2-Hydrogenation/Transfer Hydrogenation of Furfural Using Sulfonate Group Modified Cu Catalyst. In ACS Sustainable Chemistry and Engineering (Vol. 5, Issue 3). https://doi.org/10.1021/acssuschemeng.6b02343spa
dc.relation.referencesGosselink, R. W., Hollak, S. A. W., Chang, S. W., Van Haveren, J., De Jong, K. P., Bitter, J. H., & Van Es, D. S. (2013). Reaction pathways for the deoxygenation of vegetable oils and related model compounds. ChemSusChem, 6(9), 1576–1594. https://doi.org/10.1002/cssc.201300370spa
dc.relation.referencesGreen Car Congress. (2013). ConocoPhillips begins production of renewable diesel fuel at whitegate refinery at Whitegate refinery, Ireland.spa
dc.relation.referencesGundupalli, M. P., Gundupalli, S. P., Somavarapu Thomas, A. S., Jayakumar, M., Bhattacharyya, D., & Gurunathan, B. (2022). Hydrothermal liquefaction of lignocellulosic biomass for production of biooil and by-products: current state of the art and challenges. In Biofuels and Bioenergy (pp. 61–84). Elsevier Inc. https://doi.org/10.1016/b978-0-323-85269-2.00001-0spa
dc.relation.referencesHan, J., Duan, J., Chen, P., Lou, H., Zheng, X., & Hong, H. (2011). Nanostructured molybdenum carbides supported on carbon nanotubes as efficient catalysts for one-step hydrodeoxygenation and isomerization of vegetable oils. Green Chemistry, 13(9), 2561. https://doi.org/10.1039/c1gc15421dspa
dc.relation.referencesHan, J., Duan, J., Chen, P., Lou, H., Zheng, X., & Hong, H. (2012). Carbon-supported molybdenum carbide catalysts for the conversion of vegetable oils. ChemSusChem, 5(4), 727–733. https://doi.org/10.1002/cssc.201100476spa
dc.relation.referencesHansen, T. S., Barta, K., Anastas, P. T., Ford, P. C., & Riisager, A. (2012). One-pot reduction of 5-hydroxymethylfurfural via hydrogen transfer from supercritical methanol. Green Chemistry, 14(9), 2457–2461. https://doi.org/10.1039/c2gc35667hspa
dc.relation.referencesHarmsen, J., & Powell, J. B. (2010). Sustanaible Development in the Process Industries. Cases and Impact (Wiley-AIChe (ed.)).spa
dc.relation.referencesHasan, M. M., & Rahman, M. M. (2017). Performance and emission characteristics of biodiesel–diesel blend and environmental and economic impacts of biodiesel production: A review. Renewable and Sustainable Energy Reviews, 74(October 2014), 938–948. https://doi.org/10.1016/j.rser.2017.03.045spa
dc.relation.referencesHe, C., Li, J., Zhang, X., Yin, L., Chen, J., & Gao, S. (2012). Highly active Pd-based catalysts with hierarchical pore structure for toluene oxidation : Catalyst property and reaction determining factor. Chemical Engineering Journal, 180, 46–56. https://doi.org/10.1016/j.cej.2011.10.099spa
dc.relation.referencesHe, J., Zhao, C., & Lercher, J. A. (2012). Ni-catalyzed cleavage of aryl ethers in the aqueous phase. Journal of the American Chemical Society, 134(51), 20768–20775. https://doi.org/10.1021/ja309915espa
dc.relation.referencesHe, L., Yang, J., & Chen, D. (2013). Hydrogen from Biomass: Advances in Thermochemical Processes. Renewable Hydrogen Technologies: Production, Purification, Storage, Applications and Safety, 111–133. https://doi.org/10.1016/B978-0-444-56352-1.00006-4spa
dc.relation.referencesHe, S., Barati, B., Hu, X., & Wang, S. (2023). Carbon migration of microalgae from cultivation towards biofuel production by hydrothermal technology: A review. Fuel Processing Technology, 240(September 2022), 107563. https://doi.org/10.1016/j.fuproc.2022.107563spa
dc.relation.referencesHe, Z., & Wang, X. (2012). Hydrodeoxygenation of model compounds and catalytic systems for pyrolysis bio-oils upgrading. Catalysis for Sustainable Energy, Versita, 1, 28–52. https://doi.org/10.2478/cse-2012-0004spa
dc.relation.referencesHengsawad, T., Jindarat, T., Resasco, D. E., & Jongpatiwut, S. (2018). Synergistic effect of oxygen vacancies and highly dispersed Pd nanoparticles over Pd-loaded TiO2 prepared by a single-step sol – gel process for deoxygenation of triglycerides. Applied Catalysis A, General, 566(May), 74–86. https://doi.org/10.1016/j.apcata.2018.08.007spa
dc.relation.referencesHengst, K., Arend, M., Pfützenreuter, R., & Hoelderich, W. F. (2015). Deoxygenation and cracking of free fatty acids over acidic catalysts by single step conversion for the production of diesel fuel and fuel blends. Applied Catalysis B: Environmental, 174–175, 383–394. https://doi.org/10.1016/j.apcatb.2015.03.009spa
dc.relation.referencesHermida, L., Abdullah, A. Z., & Mohamed, A. R. (2015). Deoxygenation of fatty acid to produce diesel-like hydrocarbons: A review of process conditions, reaction kinetics and mechanism. Renewable and Sustainable Energy Reviews, 42, 1223–1233. https://doi.org/10.1016/j.rser.2014.10.099spa
dc.relation.referencesHerskowitz, M., Landau, M. V, Reizner, Y., & Berger, D. (2013). A commercially-viable , one-step process for production of green diesel from soybean oil on Pt / SAPO-11. Fuel, 111, 157–164. https://doi.org/10.1016/j.fuel.2013.04.044spa
dc.relation.referencesHoekman, S. K., Broch, A., Robbins, C., Ceniceros, E., & Natarajan, M. (2012). Review of biodiesel composition, properties, and specifications. Renewable and Sustainable Energy Reviews, 16(1), 143–169. https://doi.org/10.1016/j.rser.2011.07.143spa
dc.relation.referencesHollak, S. A. W., Ariëns, M. A., De Jong, K. P., & Van Es, D. S. (2014). Hydrothermal deoxygenation of triglycerides over Pd/C aided by in situ hydrogen production from glycerol reforming. ChemSusChem, 7(4), 1057–1062. https://doi.org/10.1002/cssc.201301145spa
dc.relation.referencesHoneywell UOP. (2016). Honeywell Green DieselTM. https://www.uop.com/processing-solutions/renewables/green-diesel/#biodieselspa
dc.relation.referencesHong, D. Y., Miller, S. J., Agrawal, P. K., & Jones, C. W. (2010). Hydrodeoxygenation and coupling of aqueous phenolics over bifunctional zeolite-supported metal catalysts. Chemical Communications, 46(7), 1038–1040. https://doi.org/10.1039/b918209hspa
dc.relation.referencesHongloi, N., Prapainainar, P., & Prapainainar, C. (2022). Review of green diesel production from fatty acid deoxygenation over Ni-based catalysts. Molecular Catalysis, 523(September 2020), 111696. https://doi.org/10.1016/j.mcat.2021.111696spa
dc.relation.referencesHossain, M. Z., Chowdhury, M. B. I., Jhawar, A. K., Xu, W. Z., & Charpentier, P. A. (2018). Continuous low pressure decarboxylation of fatty acids to fuel-range hydrocarbons with in situ hydrogen production. Fuel, 212(June 2017), 470–478. https://doi.org/10.1016/j.fuel.2017.09.092spa
dc.relation.referencesHossain, M. Z., Jhawar, A. K., Chowdhury, M. B. I., Xu, W. Z., & Charpentier, P. A. (2018). Hydrothermal Decarboxylation of Corn Distillers Oil for Fuel-Grade Hydrocarbons. Energy Technology, 6(7), 1261–1274. https://doi.org/10.1002/ente.201700957spa
dc.relation.referencesHossain, Z., Jhawar, A. K., Chowdhury, M. B. I., Xu, W. Z., Wu, W., Hiscott, D., & Charpentier, P. A. (2017). Using subcritical water for decarboxylation of oleic acid into fuel range hydrocarbons. Energy & Fuels, 31(4), 4013–4023. https://doi.org/10.1021/acs.energyfuels.6b03418spa
dc.relation.referencesHu, C., Pulleri, J. K., Ting, S. W., & Chan, K. Y. (2014). Activity of Pd/C for hydrogen generation in aqueous formic acid solution. International Journal of Hydrogen Energy, 39(1), 381–390. https://doi.org/10.1016/j.ijhydene.2013.10.067spa
dc.relation.referencesHu, C., Ting, S. W., Chan, K. Y., & Huang, W. (2012). Reaction pathways derived from DFT for understanding catalytic decomposition of formic acid into hydrogen on noble metals. International Journal of Hydrogen Energy, 37(21), 15956–15965. https://doi.org/10.1016/j.ijhydene.2012.08.035spa
dc.relation.referencesHu, C., Ting, S. W., Chan, K. Y., & Huang, W. (2013). Insights into hydrogen generation from formic acid on PtRuBiOxin aqueous solution at room temperature. International Journal of Hydrogen Energy, 38(21), 8720–8731. https://doi.org/10.1016/j.ijhydene.2013.04.151spa
dc.relation.referencesHu, Z., Tan, S., Mi, R., Li, X., Bai, J., Guo, X., Hu, G., Hang, P., Li, J., Li, D., Yang, Y., & Yan, X. (2018). Formic Acid or Formate Derivatives as the In Situ Hydrogen Source in Au-Catalyzed Reduction of para-Chloronitrobenzene. ChemistrySelect, 3(10), 2850–2853. https://doi.org/10.1002/slct.201702863spa
dc.relation.referencesHuang, H., & Yuan, X. (2015). Recent progress in the direct liquefaction of typical biomass. Progress in Energy and Combustion Science, 49, 59–80. https://doi.org/10.1016/j.pecs.2015.01.003spa
dc.relation.referencesHuang, I. B., Keisler, J., & Linkov, I. (2011). Multi-criteria decision analysis in environmental sciences : Ten years of applications and trends. Science of the Total Environment, The, 409(19), 3578–3594. https://doi.org/10.1016/j.scitotenv.2011.06.022spa
dc.relation.referencesHuang, Y., Xu, J., Ma, X., Huang, Y., Li, Q., & Qiu, H. (2017). An effective low Pd-loading catalyst for hydrogen generation from formic acid. International Journal of Hydrogen Energy, 4–11. https://doi.org/10.1016/j.ijhydene.2017.04.138spa
dc.relation.referencesHuber, G. W., Shabaker, J. W., & Dumesic, J. A. (2003). Raney Ni-Sn catalyst for H2 production from biomass-derived hydrocarbons. Science, 300(5628), 2075–2077. https://doi.org/10.1126/science.1085597spa
dc.relation.referencesHwang, K., Choi, I., Choi, H., Han, J., Lee, K., & Lee, J. (2016). Bio fuel production from crude Jatropha oil; addition effect of formic acid as an in-situ hydrogen source. FUEL, 174, 107–113. https://doi.org/10.1016/j.fuel.2016.01.080spa
dc.relation.referencesIATA. (2018). Developing Sustainable Aviation Fuel (SAF). https://www.iata.org/en/programs/environment/sustainable-aviation-fuels/#tab-2spa
dc.relation.referencesIDEAM, Fundación Natura, PNUD, MADS, DNP, C. (2021). Tercer Informe Bienal de Actualización de Cambio Climático de Colombia (CMNUCC).spa
dc.relation.referencesIDEAM, I. de H. M. y E. A. (2012). Inventario Nacional de Emisiones de Gases de Efecto Invernadero.spa
dc.relation.referencesIdesh, S., Kudo, S., Norinaga, K., & Hayashi, J. I. (2013). Catalytic hydrothermal reforming of jatropha oil in subcritical water for the production of green fuels: Characteristics of reactions over Pt and Ni catalysts. Energy and Fuels, 27(8), 4796–4803. https://doi.org/10.1021/ef4011065spa
dc.relation.referencesIEA. (2021a). Global Hydrogen Review 2021. In Global Hydrogen Review 2021. https://doi.org/10.1787/39351842-enspa
dc.relation.referencesIEA. (2021b). Renewables 2021. In Publications International. www.iea.org/t&c/%0Ahttps://webstore.iea.org/download/direct/4329spa
dc.relation.referencesIEA. (2021c). Renewables 2021.spa
dc.relation.referencesIEA. (2021d). Renewables 2021 Data Explorer. https://www.iea.org/data-and-statistics/data-tools/renewables-2021-data-explorerspa
dc.relation.referencesIEA. (2022). Energy Statistics Data Browser. https://www.iea.org/data-and-statistics/data-tools/energy-statistics-data-browserspa
dc.relation.referencesImmer, J. G., Kelly, M. J., & Lamb, H. H. (2010). Catalytic reaction pathways in liquid-phase deoxygenation of C18 free fatty acids. Applied Catalysis A: General, 375(1), 134–139. https://doi.org/10.1016/j.apcata.2009.12.028spa
dc.relation.referencesInduplama. (2012). CATALOGO DE PRODUCTOS: ACEITE DE PALMA. In Aceite de palma (pp. 1–3). http://www.indupalma.com/aceite-de-palmaspa
dc.relation.referencesIRC, & NAS. (2003). International Critical Tables of Numerical Data, Physics, Chemistry and Technology (E. W. Washburn (ed.); First Elec). Knovel.spa
dc.relation.referencesIriondo, A., Barrio, V. L., Cambra, J. F., Arias, P. L., Güemez, M. B., Navarro, R. M., Sánchez-Sánchez, M. C., & Fierro, J. L. G. (2008). Hydrogen production from glycerol over nickel catalysts supported on Al2O3 modified by Mg, Zr, Ce or La. Topics in Catalysis, 49(1–2), 46–58. https://doi.org/10.1007/s11244-008-9060-9spa
dc.relation.referencesIriondo, A., Cambra, J. F., Barrio, V. L., Guemez, M. B., Arias, P. L., Sanchez-Sanchez, M. C., Navarro, R. M., & Fierro, J. L. G. (2011). Glycerol liquid phase conversion over monometallic and bimetallic catalysts: Effect of metal, support type and reaction temperatures. Applied Catalysis B: Environmental, 106(1–2), 83–93. https://doi.org/10.1016/j.apcatb.2011.05.009spa
dc.relation.referencesIRP-ONU. (2018). Eficiencia de los Recursos para el Desarrollo Sostenible: Mensajes Clave para el Grupo de los 20.spa
dc.relation.referencesIsa, K. M., Abdullah, T. A. T., & Ali, U. F. M. (2018). Hydrogen donor solvents in liquefaction of biomass: A review. Renewable and Sustainable Energy Reviews, 81(October 2016), 1259–1268. https://doi.org/10.1016/j.rser.2017.04.006spa
dc.relation.referencesIvanova, E., Mihaylov, M., Thibault-Starzyk, F., Daturi, M., & Hadjiivanov, K. (2007). FTIR spectroscopy study of CO and NO adsorption and co-adsorption on Pt/TiO2. Journal of Molecular Catalysis A: Chemical, 274(1–2), 179–184. https://doi.org/10.1016/j.molcata.2007.05.006spa
dc.relation.referencesJacobson, K., Maheria, K. C., & Kumar Dalai, A. (2013). Bio-oil valorization: A review. Renewable and Sustainable Energy Reviews, 23, 91–106. https://doi.org/10.1016/j.rser.2013.02.036spa
dc.relation.referencesJae, J., Zheng, W., Lobo, R. F., & Vlachos, D. G. (2013). Production of dimethylfuran from hydroxymethylfurfural through catalytic transfer hydrogenation with ruthenium supported on carbon. ChemSusChem, 6(7), 1158–1162. https://doi.org/10.1002/cssc.201300288spa
dc.relation.referencesJagadeesh, R. V., Natte, K., Junge, H., & Beller, M. (2015). Nitrogen-doped graphene-activated iron-oxide-based nanocatalysts for selective transfer hydrogenation of nitroarenes. ACS Catalysis, 5(3), 1526–1529. https://doi.org/10.1021/cs501916pspa
dc.relation.referencesJaimes, L. (2008). Desulfurization of FCC Gasoline : Novel Catalytic Processes with Zeolites Desulfurization of FCC. International Journal of Chemical Reactor Enginnering, 6, 1–69.spa
dc.relation.referencesJanampelli, S., & Darbha, S. (2017). Promotional Effect of WO x in Pt-WO x /AlPO 4 -5 Catalyzed Deoxygenation of Fatty Acids. ChemistrySelect, 2(5), 1895–1901. https://doi.org/10.1002/slct.201700159spa
dc.relation.referencesJȩczmionek, Ł., & Porzycka-Semczuk, K. (2014). Hydrodeoxygenation, decarboxylation and decarbonylation reactions while co-processing vegetable oils over a NiMo hydrotreatment catalyst. Part I: Thermal effects - Theoretical considerations. Fuel, 131, 1–5. https://doi.org/10.1016/j.fuel.2014.04.055spa
dc.relation.referencesJeon, H. jin, & Chung, Y. M. (2017). Hydrogen production from formic acid dehydrogenation over Pd/C catalysts: Effect of metal and support properties on the catalytic performance. Applied Catalysis B: Environmental, 210, 212–222. https://doi.org/10.1016/j.apcatb.2017.03.070spa
dc.relation.referencesJiang, K., Xu, K., Zou, S., & Cai, W. (2014). B ‑ Doped Pd Catalyst: Boosting Room-Temperature Hydrogen Production from Formic Acid − Formate Solutions. J. Am. Chem. Soc., 136(13), 4861–4864. https://doi.org/10.1021/ja5008917spa
dc.relation.referencesJin, F., Yun, J., Li, G., Kishita, A., Tohji, K., & Enomoto, H. (2008). Hydrothermal conversion of carbohydrate biomass into formic acid at mild temperatures. Green Chemistry, 10(6), 612–615. https://doi.org/10.1039/b802076kspa
dc.relation.referencesJin, M., & Choi, M. (2019). Hydrothermal deoxygenation of triglycerides over carbon-supported bimetallic PtRe catalysts without an external hydrogen source. Molecular Catalysis, 474(March), 110419. https://doi.org/10.1016/j.mcat.2019.110419spa
dc.relation.referencesJin, X. (2014). Catalytic Conversion of Biomass-Derived Polyols to Value-Added Chemicals : Catalysis and Kineticsspa
dc.relation.referencesJoshi, N., & Lawal, A. (2012). Hydrodeoxygenation of pyrolysis oil in a microreactor. Chemical Engineering Science, 74, 1–8. https://doi.org/10.1016/j.ces.2012.01.052spa
dc.relation.referencesJr, R. J. M., Aughenbaugh, J. M., & Paredis, C. J. J. (2009). Multi-attribute utility analysis in set-based conceptual design. Computer-Aided Design, 41(3), 214–227. https://doi.org/10.1016/j.cad.2008.06.004spa
dc.relation.referencesJyoti, L., & Mikkola, J. (2022). Carbon support effects on metal (Pd, Pt and Ru) catalyzed hydrothermal decarboxylation/ deoxygenation of triglycerides. Applied Catalysis A, General, 638(January), 118611. https://doi.org/10.1016/j.apcata.2022.118611spa
dc.relation.referencesKaewmeesri, R., Srifa, A., Itthibenchapong, V., & Faungnawakij, K. (2015). Deoxygenation of waste chicken fats to green diesel over Ni/Al2O3: Effect of water and free fatty acid content. Energy and Fuels, 29(2), 833–840. https://doi.org/10.1021/ef5023362spa
dc.relation.referencesKalnes, T. N., Marker, T., Shonnard, D. R., & Koers, K. P. (2008). Green diesel production by hydrorefining renewable feedstocks. Biofiuels Technology, 7–11. www.biofuels-tech.comspa
dc.relation.referencesKandel, K., Anderegg, J. W., Nelson, N. C., Chaudhary, U., & Slowing, I. I. (2014). Supported iron nanoparticles for the hydrodeoxygenation of microalgal oil to green diesel. Journal of Catalysis, 314, 142–148. https://doi.org/10.1016/j.jcat.2014.04.009spa
dc.relation.referencesKanie, Y., Akiyama, K., & Iwamoto, M. (2011). Reaction pathways of glucose and fructose on Pt nanoparticles in subcritical water under a hydrogen atmosphere. Catalysis Today, 178(1), 58–63. https://doi.org/10.1016/j.cattod.2011.07.031spa
dc.relation.referencesKato, Y., & Sekine, Y. (2013). One pot direct catalytic conversion of cellulose to hydrocarbon by decarbonation using Pt/H-beta zeolite catalyst at low temperature. Catalysis Letters, 143(5), 418–423. https://doi.org/10.1007/s10562-013-0992-8spa
dc.relation.referencesKay Lup, A. N., Abnisa, F., Daud, W. M. A. W., & Aroua, M. K. (2017). A review on reaction mechanisms of metal-catalyzed deoxygenation process in bio-oil model compounds. Applied Catalysis A: General, 541(May), 87–106. https://doi.org/10.1016/j.apcata.2017.05.002spa
dc.relation.referencesKemache, N., Hamoudi, S., Arul, J., Belkacemi, K., & La, V. (2010). Activity and Selectivity of Nanostructured Sulfur-Doped Pd / SBA-15 Catalyst for Vegetable Oil Hardening. Industrial & Engineering Chemistry Research, 49, 971–979. https://doi.org/10.1021/ie9006529spa
dc.relation.referencesKemache, N., Hamoudi, S., Arul, J., Belkacemi, K., & La, V. (2010). Activity and Selectivity of Nanostructured Sulfur-Doped Pd / SBA-15 Catalyst for Vegetable Oil Hardening. Industrial & Engineering Chemistry Research, 49, 971–979. https://doi.org/10.1021/ie9006529spa
dc.relation.referencesKi, S., Brand, S., Lee, H., Kim, Y., & Kim, J. (2013). Production of renewable diesel by hydrotreatment of soybean oil : Effect of reaction parameters. Chemical Engineering Journal, 228, 114–123. https://doi.org/10.1016/j.cej.2013.04.095spa
dc.relation.referencesKi, S., Young, J., Lee, H., Yum, T., Kim, Y., & Kim, J. (2014). Production of renewable diesel via catalytic deoxygenation of natural triglycerides : Comprehensive understanding of reaction intermediates and hydrocarbons. Applied Energy, 116, 199–205. https://doi.org/10.1016/j.apenergy.2013.11.062spa
dc.relation.referencesKim, D., Vardon, D. R., Murali, D., Sharma, B. K., & Strathmann, T. J. (2016). Valorization of Waste Lipids through Hydrothermal Catalytic Conversion to Liquid Hydrocarbon Fuels with in Situ Hydrogen Production. ACS Sustainable Chemistry and Engineering, 4(3), 1775–1784. https://doi.org/10.1021/acssuschemeng.5b01768spa
dc.relation.referencesKim, M. S., Simanjuntak, F. S. H., Lim, S., Jae, J., Ha, J. M., & Lee, H. (2017). Synthesis of alumina–carbon composite material for the catalytic conversion of furfural to furfuryl alcohol. Journal of Industrial and Engineering Chemistry, 52, 59–65. https://doi.org/10.1016/j.jiec.2017.03.024spa
dc.relation.referencesKing, D. L., Zhang, L., Xia, G., Karim, A. M., Heldebrant, D. J., Wang, X., Peterson, T., & Wang, Y. (2010). Aqueous phase reforming of glycerol for hydrogen production over Pt-Re supported on carbon. Applied Catalysis B: Environmental, 99(1–2), 206–213. https://doi.org/10.1016/j.apcatb.2010.06.021spa
dc.relation.referencesKleinert, M., Gasson, J. R., & Barth, T. (2009). Optimizing solvolysis conditions for integrated depolymerisation and hydrodeoxygenation of lignin to produce liquid biofuel. Journal of Analytical and Applied Pyrolysis, 85(1–2), 108–117. https://doi.org/10.1016/j.jaap.2008.09.019spa
dc.relation.referencesKondarides, D. I., & Verykios, X. E. (2013). Photocatalytic Production of Renewable Hydrogen. In The Role of Catalysis for the Sustainable Production of Bio-fuels and Bio-chemicals (pp. 397–443). Elsevier. https://doi.org/10.1016/B978-0-444-56330-9.00012-7spa
dc.relation.referencesKonwar, L. J., Oliani, B., Samikannu, A., Canu, P., & Mikkola, J. (2020). Efficient hydrothermal deoxygenation of tall oil fatty acids into n-paraffinic hydrocarbons and alcohols in the presence of aqueous formic acid. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-020-01103-3spa
dc.relation.referencesKotrba, R. (2015). A Transformative Project: Total’s La Mède Conversion. Biodiesel Magazine.spa
dc.relation.referencesKouzu, M., Kojima, M., Mori, K., & Yamanaka, S. (2021). Catalytic deoxygenation of triglyceride into drop-in fuel under hydrothermal condition with the help of in-situ hydrogen production by APR of glycerol by-produced. Fuel Processing Technology, 217(January), 106831. https://doi.org/10.1016/j.fuproc.2021.106831spa
dc.relation.referencesKubacka, A. (2016). Catalytic hydrogen production through WGS or steam reforming of alcohols over Cu , Ni and Co catalysts. “Applied Catalysis A, General,” 518, 2–17. https://doi.org/10.1016/j.apcata.2016.01.027spa
dc.relation.referencesKubička, D., Bejblová, M., & Vlk, J. (2010). Conversion of Vegetable Oils into Hydrocarbons over CoMo/MCM-41 Catalysts. Topics in Catalysis, 53(3–4), 168–178. https://doi.org/10.1007/s11244-009-9421-zspa
dc.relation.referencesKubicka, D., Horacek, J., Setnicka, M., Bulanek, R., Zukal, A., & Kubicková, I. (2014). Effect of support-active phase interactions on the catalyst activity and selectivity in deoxygenation of triglycerides. Applied Catalysis B: Environmental, 145, 101–107. https://doi.org/10.1016/j.apcatb.2013.01.012spa
dc.relation.referencesKubicka, D., Simácek, P., & Zilkova, N. (2009). Transformation of vegetable oils into hydrocarbons over mesoporous-alumina-supported CoMo catalysts. Topics in Catalysis, 52(1–2), 161–168. https://doi.org/10.1007/s11244-008-9145-5spa
dc.relation.referencesKubičková, I., & Kubička, D. (2010). Utilization of triglycerides and related feedstocks for production of clean hydrocarbon fuels and petrochemicals: A review. Waste and Biomass Valorization, 1(3), 293–308. https://doi.org/10.1007/s12649-010-9032-8spa
dc.relation.referencesKumar, P., Verma, D., Sibi, M. G., Butolia, P., & Maity, S. K. (2022). Hydrodeoxygenation of triglycerides for the production of green diesel : Role of heterogeneous catalysis. In Hydrocarbon Biorefinery (pp. 97–126). Elsevier Inc. https://doi.org/10.1016/B978-0-12-823306-1.00013-3spa
dc.relation.referencesKunze, R., Deane, P., Haasz, T., Jonatan, J. G., Fraboulet, D., Fahl, U., & Mulholland, E. (2020). Perspectives on decarbonizing the transport sector in the EU-28. Energy Strategy Reviews, 20(2018), 124–132. https://doi.org/10.1016/j.esr.2017.12.007spa
dc.relation.referencesLaboratorium, K. O., & Section, E. D. (1973). Ni AND Co-II IODATES OF CRYSTAL STRUCTURES and the optical properties of nickel and cobalt iodate hydrates . The nickel di- hydrate is known to be a weak ferromagnet with N6el temperature TN = 3 . 08 K [ 2 ]. In an attempt to determine its magnetic struct. 35(1972), 3183–3189.spa
dc.relation.referencesLam, M. K., & Lee, K. T. (2011). Chapter 15 - Production of Biodiesel Using Palm Oil. In Biofuels (pp. 353–374). https://doi.org/http://dx.doi.org/10.1016/B978-0-12-385099-7.00016-4spa
dc.relation.referencesLane, J. (2016). Renewable jet fuel, competitive cost, at scale: The Digest’s Multi-Slide Guide to AltAir. Biofuels Digest. http://www.biofuelsdigest.com/bdigest/2016/05/19/63308/spa
dc.relation.referencesLaurent, E., & Delmon, B. (1994). Study of the hydrodeoxygenation of carbonyl, carboxylic and guaiacyl groups over sulfided CoMo/[gamma]-Al2O3 and NiMo/[gamma]-Al2O3 catalysts: I. Catalytic reaction schemes. Applied Catalysis A: General, 109(1), 77–96. https://doi.org/Doi 10.1016/0926-860x(94)85005-4spa
dc.relation.referencesLavrenov, A. V., Bogdanets, E. N., Chumachenko, Y. A., & Likholobov, V. A. (2011). Catalytic processes for the production of hydrocarbon biofuels from oil and fatty raw materials: Contemporary approaches. Catalysis in Industry, 3(3), 250–259. https://doi.org/10.1134/S2070050411030044spa
dc.relation.referencesLeClerc, H. O., Tompsett, G. A., Paulsen, A. D., McKenna, A. M., Niles, S. F., Reddy, C. M., Nelson, R. K., Cheng, F., Teixeira, A. R., & Timko, M. T. (2022). Hydroxyapatite catalyzed hydrothermal liquefaction transforms food waste from an environmental liability to renewable fuel. IScience, 25(9), 104916. https://doi.org/10.1016/j.isci.2022.104916spa
dc.relation.referencesLee, J., Xu, Y., & Huber, G. W. (2013). High-throughput screening of monometallic catalysts for aqueous-phase hydrogenation of biomass-derived oxygenates. Applied Catalysis B: Environmental, 140–141, 98–107. https://doi.org/10.1016/j.apcatb.2013.03.031spa
dc.relation.referencesLehnert, K., & Claus, P. (2008). Influence of Pt particle size and support type on the aqueous-phase reforming of glycerol. Catalysis Communications, 9(15), 2543–2546. https://doi.org/10.1016/j.catcom.2008.07.002spa
dc.relation.referencesLeifeng, G., Yuan, L. Ü., Yunjie, D., Ronghe, L. I. N., Jingwei, L. I., Wenda, D., Tao, W., & Weimiao, C. (2009). Solvent Effect on Selective Dehydroxylation of Glycerol to 1 , 3-Propanediol over a Pt/WO3/ZrO2 Catalyst. Chinese Journal of Catalysis, 30(12), 1189–1191. https://doi.org/10.1016/S1872-2067(08)60142-4spa
dc.relation.referencesLemonidou, A. A., Kechagiopoulos, P., Heracleous, E., & Voutetakis, S. (2013). Chapter 14: Steam Reforming of Bio-oils to Hydrogen. In The Role of Catalysis for the Sustainable Production 467 of Bio-fuels and Bio-chemicals (pp. 467–493).spa
dc.relation.referencesLi, F., Yuan, Y., Huang, Z., Chen, B., & Wang, F. (2015). Sustainable production of aromatics from bio-oils through combined catalytic upgrading with in situ generated hydrogen. Applied Catalysis B: Environmental, 165, 547–554. https://doi.org/10.1016/j.apcatb.2014.10.050spa
dc.relation.referencesLi, G., Yang, H., Zhang, H., Qi, Z., Chen, M., Hu, W., Tian, L., Nie, R., & Huang, W. (2018). Encapsulation of Nonprecious Metal into Ordered Mesoporous N-Doped Carbon for Efficient Quinoline Transfer Hydrogenation with Formic Acid. ACS Catalysis, 8(9), 8396–8405. https://doi.org/10.1021/acscatal.8b01404spa
dc.relation.referencesLi, G., Zhang, F., Chen, L., Zhang, C., Huang, H., & Li, X. (2015). Highly Selective Hydrodecarbonylation of Oleic Acid into n-Heptadecane over a Supported Nickel/Zinc Oxide-Alumina Catalyst. ChemCatChem, 7(17), 2646–2653. https://doi.org/10.1002/cctc.201500418spa
dc.relation.referencesLi, J., Chen, W., Zhao, H., Zheng, X., Wu, L., Pan, H., Zhu, J., Chen, Y., & Lu, J. (2017). Size-dependent catalytic activity over carbon-supported palladium nanoparticles in dehydrogenation of formic acid. Journal of Catalysis, 352, 371–381. https://doi.org/10.1016/j.jcat.2017.06.007spa
dc.relation.referencesLi, S., Li, N., Li, G., Li, L., Wang, A., Cong, Y., Wang, X., Xu, G., & Zhang, T. (2015). Protonated titanate nanotubes as a highly active catalyst for the synthesis of renewable diesel and jet fuel range alkanes. Applied Catalysis B: Environmental, 170–171, 124–134. https://doi.org/10.1016/j.apcatb.2015.01.022spa
dc.relation.referencesLi, S., Zhou, Y., Kang, X., Liu, D., Gu, L., & Zhang, Q. (2019). A Simple and Effective Principle for a Rational Design of Heterogeneous Catalysts for Dehydrogenation of Formic Acid. Advanced Materials, 1806781, 1–7. https://doi.org/10.1002/adma.201806781spa
dc.relation.referencesLindfors, L. P. (2010). High Quality Transportation Fuels From Renewable Feedstock. XXIst World Energy Congress Montreal, 1–12. http://www.worldenergy.org/documents/congresspapers/178.pdfspa
dc.relation.referencesLiu, C., Liu, J., Zhou, G., Tian, W., & Rong, L. (2013). A cleaner process for hydrocracking of jatropha oil into green diesel. Journal of the Taiwan Institute of Chemical Engineers, 44(2), 221–227. https://doi.org/10.1016/j.jtice.2012.10.006spa
dc.relation.referencesLiu, J., He, J., Wang, L., Li, R., Chen, P., Rao, X., Deng, L., & Rong, L. (2016). NiO-PTA supported on ZIF-8 as a highly effective catalyst for hydrocracking of Jatropha oil. Nature Publishing Group, 1–11. https://doi.org/10.1038/srep23667spa
dc.relation.referencesLiu, X., Li, S., Liu, Y., & Cao, Y. (2015). Formic acid : A versatile renewable reagent for green and sustainable chemical synthesis. Chinese Journal of Catalysis, 36(9), 1461–1475. https://doi.org/10.1016/S1872-2067(15)60861-0spa
dc.relation.referencesLiu, Z., Dong, W., Cheng, S., Guo, S., Shang, N., Gao, S., Feng, C., Wang, C., & Wang, Z. (2017). Pd9Ag1-N-doped-MOF-C: An efficient catalyst for catalytic transfer hydrogenation of nitro-compounds. Catalysis Communications, 95, 50–53. https://doi.org/10.1016/j.catcom.2017.02.019spa
dc.relation.referencesLodeng, R., Hannevold, L., Bergem, H., & Stöcker, M. (2013). Catalytic Hydrotreatment of Bio-Oils for High-Quality Fuel Production. In The Role of Catalysis for the Sustainable Production of Bio-Fuels and Bio-Chemicals (pp. 351–396). https://doi.org/10.1016/B978-0-444-56330-9.00011-5spa
dc.relation.referencesLöfstedt, J., Dahlstrand, C., Orebom, A., Meuzelaar, G., Sawadjoon, S., Galkin, M. V., Agback, P., Wimby, M., Corresa, E., Mathieu, Y., Sauvanaud, L., Eriksson, S., Corma, A., & Samec, J. S. M. (2016). Green Diesel from Kraft Lignin in Three Steps. ChemSusChem, 9(12), 1392–1396. https://doi.org/10.1002/cssc.201600172spa
dc.relation.referencesLong, F., Liu, W., Jiang, X., Zhai, Q., Cao, X., & Jiang, J. (2021). State-of-the-art technologies for biofuel production from triglycerides : A review. Renewable and Sustainable Energy Reviews, 148(April), 111269. https://doi.org/10.1016/j.rser.2021.111269spa
dc.relation.referencesLourenço, J., Willimann, C., Camargo, M. D. O., Duarte, R. B., Aparecida, O., Mario, L., & Jorge, D. M. (2021). A novel kinetic model applied to heterogeneous fatty acid deoxygenation. Chemical Engineering Science, 230, 1–10. https://doi.org/10.1016/j.ces.2020.116192spa
dc.relation.referencesLu, J., Behtash, S., Faheem, M., & Heyden, A. (2013). Microkinetic modeling of the decarboxylation and decarbonylation of propanoic acid over Pd(1 1 1) model surfaces based on parameters obtained from first principles. Journal of Catalysis, 305, 56–66. https://doi.org/10.1016/j.jcat.2013.04.026spa
dc.relation.referencesLu, J., Faheem, M., Behtash, S., & Heyden, A. (2015). Theoretical investigation of the decarboxylation and decarbonylation mechanism of propanoic acid over a Ru(0001) model surface. Journal of Catalysis, 324, 14–24. https://doi.org/10.1016/j.jcat.2015.01.005spa
dc.relation.referencesLuo, Q., Zhang, W., Fu, C. F., & Yang, J. (2018). Single Pd atom and Pd dimer embedded graphene catalyzed formic acid dehydrogenation: A first-principles study. International Journal of Hydrogen Energy, 43(14), 6997–7006. https://doi.org/10.1016/j.ijhydene.2018.02.129spa
dc.relation.referencesMadsen, A. T., Ahmed, E. H., Christensen, C. H., Fehrmann, R., & Riisager, A. (2011). Hydrodeoxygenation of waste fat for diesel production : Study on model feed with Pt / alumina catalyst. Fuel, 90(11), 3433–3438. https://doi.org/10.1016/j.fuel.2011.06.005spa
dc.relation.referencesMäki-Arvela, P., Kubickova, I., Snåre, M., Eränen, K., & Murzin, D. Y. (2007). Catalytic deoxygenation of fatty acids and their derivatives. Energy & Fuels, 21(1), 30–41. https://doi.org/10.1021/ef060455vspa
dc.relation.referencesMäki-Arvela, P., Kuusisto, J., Sevilla, E. M., Simakova, I., Mikkola, J. P., Myllyoja, J., Salmi, T., & Murzin, D. Y. (2008). Catalytic hydrogenation of linoleic acid to stearic acid over different Pd- and Ru-supported catalysts. Applied Catalysis A: General, 345(2), 201–212. https://doi.org/10.1016/j.apcata.2008.04.042spa
dc.relation.referencesMalins, C., & Sandford, C. (2022). Animal, Vegetable or Mineral (oil)? Exploring the potential impacts of new renewable diesel capacity on oil and fat markets in the United States. Cerulogy. https://doi.org/10.1080/00221345508982847spa
dc.relation.referencesMane, R. B., & Rode, C. V. (2012). Continuous dehydration and hydrogenolysis of glycerol over non-chromium copper catalyst: Laboratory-scale process studies. Organic Process Research and Development, 16(5), 1043–1052. https://doi.org/10.1021/op200383rspa
dc.relation.referencesMao, J., Jiang, D., Fang, Z., Wu, X., Ni, J., & Li, X. (2017). Efficient hydrothermal hydrodeoxygenation of triglycerides with in situ generated hydrogen for production of diesel-like hydrocarbons. Catalysis Communications, 90, 47–50. https://doi.org/10.1016/j.catcom.2016.11.017spa
dc.relation.referencesMardhiah, H. H., Chyuan, H., Masjuki, H. H., Lim, S., & Lee, H. V. (2017). A review on latest developments and future prospects of heterogeneous catalyst in biodiesel production from non-edible oils. Renewable and Sustainable Energy Reviews, 67, 1225–1236. https://doi.org/10.1016/j.rser.2016.09.036spa
dc.relation.referencesMartin, A., Armbruster, U., Gandarias, I., & Arias, P. L. (2013). Glycerol hydrogenolysis into propanediols using in situ generated hydrogen - A critical review. European Journal of Lipid Science and Technology, 115(1), 9–27. https://doi.org/10.1002/ejlt.201200207spa
dc.relation.referencesMartínez-Merino, V., Gil, M. J., & Cornejo, A. (2013). Biomass Sources for Hydrogen Production. In Renewable Hydrogen Technologies (pp. 87–110). Elsevier. https://doi.org/10.1016/B978-0-444-56352-1.00005-2spa
dc.relation.referencesMasel, R. I. (2001). Chemical Kinetcis and Catalysis (Wiley-Interscience (ed.)).spa
dc.relation.referencesMatsumura, Y. (2015). Hydrothermal Gasification of Biomass. In Recent Advances in Thermochemical Conversion of Biomass (pp. 251–267). https://doi.org/10.1016/B978-0-444-63289-0.00009-0spa
dc.relation.referencesMauriello, F., Ariga, H., Musolino, M. G., Pietropaolo, R., Takakusagi, S., & Asakura, K. (2015). Exploring the catalytic properties of supported palladium catalysts in the transfer hydrogenolysis of glycerol. Applied Catalysis B: Environmental, 166–167, 121–131. https://doi.org/10.1016/j.apcatb.2014.11.014spa
dc.relation.referencesMavrikakis, M., & Barteau, M. A. (1998). Oxygenate reaction pathways on transition metal surfaces. Journal of Molecular Catalysis A: Chemical, 131(1–3), 135–147. https://doi.org/10.1016/S1381-1169(97)00261-6spa
dc.relation.referencesMayorga, M. A., Cadavid, J. G., López, C. A., Suárez, O. Y., Bonilla, J. A., López, M., Trujillo, C. A., & Durán, H. A. (2020). Definition of the Catalyst Family for the Production of Green Diesel by Hydrotreatment In Situ of Triglycerides. Chemical Engineering Transactions, 80(June), 241–246. https://doi.org/10.3303/CET2080041spa
dc.relation.referencesMayorga, M. A., Cadavid, J. G., Suárez, O. Y., Vargas, J. C., Castellanos, C. J., Suarez, L. A., & Narváez, P. C. (2020). Bio-hydrogen production using metallic catalysts. Revista Mexicana de Ingeniería Química, 19(3), 1103–1115. https://doi.org/10.24275/rmiq/Cat652 issn-e:spa
dc.relation.referencesMayorga, M. A., Cadavid, J. G., Suárez Palacios, O. Y., Vargas, J. C., Narvaez, P. C., & Rodríguez, L. I. (2020). Selection of Hydrogen Donors for the Production of Renewable Diesel by In Situ Catalytic Deoxygenation of Palm Oil. Chemical Engineering Transactions, 80(June 2020), 61–66. https://doi.org/10.3303/CET2080011spa
dc.relation.referencesMayorga, M. A., Cadavid, J. G., Suarez Palacios, O. Y., Vargas, J., González, J., & Narváez, P. C. (2019). Production of Renewable Diesel by Hydrotreating of Palm Oil with Noble Metallic Catalysts. Chemical Engineering Transactions, 74(June 2019), 7–12. https://doi.org/10.3303/CET1974002spa
dc.relation.referencesMears, D. E. (1971). Tests for Transport limitations in Experimental Catalytic Reactors. Industrial & Engineering Chemistry Process Design and Development, 10(4), 541–547.spa
dc.relation.referencesMekhaev, A. V., Butin, F. N., Pervova, M. G., Taran, O. P., Simakova, I. L., & Parmon, V. N. (2014). Pd/Sibunit as efficient hydrogen transfer catalyst in hydrodechlorination of polychlorobiphenyls. Russian Journal of Organic Chemistry, 50(6), 900–901. https://doi.org/10.1134/S1070428014060244spa
dc.relation.referencesMeller, E., Green, U., Aizenshtat, Z., & Sasson, Y. (2014). Catalytic deoxygenation of castor oil over Pd / C for the production of cost effective biofuel. FUEL, 133, 89–95. https://doi.org/10.1016/j.fuel.2014.04.094spa
dc.relation.referencesMiller, P., & Kumar, A. (2014). Techno-economic assessment of hydrogenation-derived renewable diesel production from canola and camelina. SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 6, 105–115. https://doi.org/10.1016/j.seta.2014.01.008spa
dc.relation.referencesMitra, J., Zhou, X., & Rauchfuss, T. (2015). Pd/C-catalyzed reactions of HMF: Decarbonylation, hydrogenation, and hydrogenolysis. Green Chemistry, 17(1), 307–313. https://doi.org/10.1039/c4gc01520gspa
dc.relation.referencesMohammad, M., Kandaramath Hari, T., Yaakob, Z., Chandra Sharma, Y., & Sopian, K. (2013). Overview on the production of paraffin based-biofuels via catalytic hydrodeoxygenation. Renewable and Sustainable Energy Reviews, 22(X), 121–132. https://doi.org/10.1016/j.rser.2013.01.026spa
dc.relation.referencesMonnier, J., Sulimma, H., Dalai, A., & Caravaggio, G. (2010). Hydrodeoxygenation of oleic acid and canola oil over alumina-supported metal nitrides. Applied Catalysis A: General, 382(2), 176–180. https://doi.org/10.1016/j.apcata.2010.04.035spa
dc.relation.referencesMonteiro, R. R. C., Silvia, S. O., Cavalcante, L., Luna, F. M. T. De, Bolivar, J. M., Vieira, R. S., Fernandez-lafuente, R., & Pesquisa, G. De. (2022). Biosynthesis of alkanes / alkenes from fatty acids or derivatives ( triacylglycerols or fatty aldehydes ). 61(September). https://doi.org/10.1016/j.biotechadv.2022.108045spa
dc.relation.referencesMurata, K., Liu, Y., Inaba, M., & Takahara, I. (2010). Production of synthetic diesel by hydrotreatment of jatropha oils using Pt-Re/H-ZSM-5 catalyst. Energy and Fuels, 24(4), 2404–2409. https://doi.org/10.1021/ef901607tspa
dc.relation.referencesMusolino, M. G., Scarpino, L. A., Mauriello, F., & Pietropaolo, R. (2009). Selective transfer hydrogenolysis of glycerol promoted by palladium catalysts in absence of hydrogen. Green Chemistry, 11, 1511–1513. https://doi.org/10.1039/b915745jspa
dc.relation.referencesMusolino, M. G., Scarpino, L. A., Mauriello, F., & Pietropaolo, R. (2011). Glycerol hydrogenolysis promoted by supported palladium catalysts. ChemSusChem, 4(8), 1143–1150. https://doi.org/10.1002/cssc.201100063spa
dc.relation.referencesNagpure, A. S., Venugopal, A. K., Lucas, N., Manikandan, M., Thirumalaiswamy, R., & Chilukuri, S. (2015). Renewable fuels from biomass-derived compounds: Ru-containing hydrotalcites as catalysts for conversion of HMF to 2,5-dimethylfuran. Catalysis Science and Technology, 5(3), 1463–1472. https://doi.org/10.1039/c4cy01376jspa
dc.relation.referencesNakagoe, O., Furukawa, Y., & Tanabe, S. (2012). Hydrogen production from steam reforming of woody biomass with cobalt catalyst. 1th International Conference on Renewable Energy Research and Applications, ICRERA 2012, 2–5.spa
dc.relation.referencesNarváez, P. C., Rincón, S. M., Castañeda, L. Z., & Sánchez, F. J. (2008). Determination of Some Physical and Transport Properties of Palm Oil and of Its Methyl Esters. Latin American Applied Research, 38, 1–6.spa
dc.relation.referencesNeste Oil. (2013a). Neste oil’s Singapore refinery – the world’s largest and most advanced. https://www.google.ca/url?sa¼t&rct¼j&q¼&esrc¼s&source¼ web&cd¼4&ved¼0CEMQFjAD&url¼http%253A%252F%252Fwww.nesteoil.com%25 2Fbinary.asp%253Fpath%253D1%253B41%253B540%253B2384%253B18010%253B21058%25spa
dc.relation.referencesNeste Oil. (2013b). Production capacity. http://www.nesteoil.com/default.asp?path¼ 1,41,11991,22708,22720⟩; [accessed October 2013].spa
dc.relation.referencesNeste Oil. (2016). No TitNeste oil’s renewable diesel plant in Rotterdam – the largest and most advanced in Europe.spa
dc.relation.referencesNie, R., Peng, X., Zhang, H., Yu, X., Lu, X., Zhou, D., & Xia, Q. (2017). Transfer hydrogenation of bio-fuel with formic acid over biomass-derived N-doped carbon supported acid-resistant Pd catalyst. Catalysis Science and Technology, 7(3), 627–634. https://doi.org/10.1039/c6cy02461kspa
dc.relation.referencesNie, R., Tao, Y., Nie, Y., Lu, T., Wang, J., Zhang, Y., Lu, X., & Xu, C. C. (2021). Recent Advances in Catalytic Transfer Hydrogenation with Formic Acid over Heterogeneous Transition Metal Catalysts. ACS Catalysis, 11(3), 1071–1095. https://doi.org/10.1021/acscatal.0c04939spa
dc.relation.referencesNigam, P. S., & Singh, A. (2011). Production of liquid biofuels from renewable resources. Progress in Energy and Combustion Science, 37(1), 52–68. https://doi.org/10.1016/j.pecs.2010.01.003spa
dc.relation.referencesNuñez Isaza, M. L., & ECOPETROL. (2009). Proceso para obtencion de Diesel a Partir de Aceites Vegetales o Animales por Hidrotratamiento con Tiempos de Residencia Reducidos y Productos Obtenidos a Partir del Mismo (Patent No. WO 2009068981 A1).spa
dc.relation.referencesOECD. (2012). OECD Environmental Outlook to 2050. https://doi.org/10.1787/9789264122246-enspa
dc.relation.referencesOh, Y. K., Hwang, K. R., Kim, C., Kim, J. R., & Lee, J. S. (2018). Recent developments and key barriers to advanced biofuels: A short review. Bioresource Technology, 257(December 2017), 320–333. https://doi.org/10.1016/j.biortech.2018.02.089spa
dc.relation.referencesOhta, H., Kobayashi, H., Hara, K., & Fukuoka, A. (2011). Hydrodeoxygenation of phenols as lignin models under acid-free conditions with carbon-supported platinum catalysts. Chemical Communications, 47(44), 12209–12211. https://doi.org/10.1039/c1cc14859aspa
dc.relation.referencesOi, L. E., Choo, M. Y., Lee, H. V., Taufiq-Yap, Y. H., Cheng, C. K., & Juan, J. C. (2020). Catalytic deoxygenation of triolein to green fuel over mesoporous TiO2 aided by in situ hydrogen production. International Journal of Hydrogen Energy, 45(20), 11605–11614. https://doi.org/10.1016/j.ijhydene.2019.07.172spa
dc.relation.referencesOndrey, G. (2014). Making renewable diesel and biopropane from vegetable oil. Chemical Engineering, 11. www.chemengonline.comspa
dc.relation.referencesOnishi, N., Laurenczy, G., Beller, M., & Himeda, Y. (2018). Recent progress for reversible homogeneous catalytic hydrogen storage in formic acid and in methanol. Coordination Chemistry Reviews, 373, 317–332. https://doi.org/10.1016/j.ccr.2017.11.021spa
dc.relation.referencesONU. (2015). Objetivo 7: Garantizar el acceso a una energía asequible, segura, sostenible y moderna. Objetivos y Metas de Desarrollo Sostenible. https://www.un.org/sustainabledevelopment/es/energyspa
dc.relation.referencesONU. (2021). La COP26 termina con un acuerdo, pero se queda corta en acción climática. UNEP. https://www.unep.org/es/noticias-y-reportajes/reportajes/la-cop26-termina-con-un-acuerdo-pero-se-queda-corta-en-accionspa
dc.relation.referencesONU. (2022). Informe de los Objetivos de Desarrollo Sostenible 2022. https://acortar.link/ZD8YIDspa
dc.relation.referencesOudenhuijzen, M. K., Kooyman, P. J., Tappel, B., Van Bokhoven, J. A., & Koningsberger, D. C. (2002). Understanding the influence of the pretreatment procedure on platinum particle size and particle-size distribution for SiO2impregnated with [Pt2+(NH3)4](NO3−)2: A combination of HRTEM, mass spectrometry, and quick EXAFS. Journal of Catalysis, 205(1), 135–146. https://doi.org/10.1006/jcat.2001.3433spa
dc.relation.referencesPan, Z., Wang, R., & Chen, J. (2018). Deoxygenation of methyl laurate as a model compound on Ni-Zn alloy and intermetallic compound catalysts: Geometric and electronic effects of oxophilic Zn. Applied Catalysis B: Environmental, 224(October 2017), 88–100. https://doi.org/10.1016/j.apcatb.2017.10.040spa
dc.relation.referencesPan, Z., Wang, R., Nie, Z., & Chen, J. (2015). Effect of a second metal (Co, Fe, Mo and W) on performance of Ni2P/SiO2 for hydrodeoxygenation of methyl laurate. Journal of Energy Chemistry, 25, 418–426. https://doi.org/10.1016/j.jechem.2016.02.007spa
dc.relation.referencesPanagiotopoulou, P., Martin, N., & Vlachos, D. G. (2014). Effect of hydrogen donor on liquid phase catalytic transfer hydrogenation of furfural over a Ru/RuO2/C catalyst. Journal of Molecular Catalysis A: Chemical, 392, 223–228. https://doi.org/10.1016/j.molcata.2014.05.016spa
dc.relation.referencesParyjczak, T., & Szymura, J. A. (1979). Electron Microscopic and Chemisorption Comparison Studies on the Metal Dispersion of Pd , Rh , and I r Supported Catalysts. Zeitschrift Für Anorganische Und Allgemeine Chemie (ZAAC), 449(1), 105–114.spa
dc.relation.referencesPatel, M., & Kumar, A. (2016). Production of renewable diesel through the hydroprocessing of lignocellulosic biomass-derived bio-oil : A review. Renewable and Sustainable Energy Reviews, 58, 1293–1307. https://doi.org/10.1016/j.rser.2015.12.146spa
dc.relation.referencesPatil, P. T., Armbruster, U., Richter, M., & Martin, A. (2011). Heterogeneously catalyzed hydroprocessing of organosolv lignin in sub- and supercritical solvents. Energy and Fuels, 25(10), 4713–4722. https://doi.org/10.1021/ef2009875spa
dc.relation.referencesPerego, C., & Peratello, S. (1999). Experimental methods in catalytic kinetics. Catalysis Today, 52, 133–145.spa
dc.relation.referencesPérez-cisneros, E. S., Sales-cruz, M., & Ochoa-tapia, A. (2016). A Systematic Approach For The Hydrotreating of Biodiesel and Petroleum-Diesel Blends. Computer Aided Process Engineering - ESCAPE 26, 38, 1756–1761. https://doi.org/10.1016/B978-0-444-63428-3.50297-6spa
dc.relation.referencesPerkins, G., Batalha, N., Kumar, A., Bhaskar, T., & Konarova, M. (2019). Recent advances in liquefaction technologies for production of liquid hydrocarbon fuels from biomass and carbonaceous wastes. Renewable and Sustainable Energy Reviews, 115(March), 109400. https://doi.org/10.1016/j.rser.2019.109400spa
dc.relation.referencesPestman, R., Koster, R. M., Pieterse, J. A. Z., & Ponec, V. (1997). Reactions of Carboxylic Acids on Oxides: 1. Selective Hydrogenation of Acetic Acid to Acetaldehyde. Journal of Cataly, 168, 255–264spa
dc.relation.referencesPipitone, G., Zoppi, G., Pirone, R., & Bensaid, S. (2022). A critical review on catalyst design for aqueous phase reforming. International Journal of Hydrogen Energy, 47(1), 151–180. https://doi.org/10.1016/j.ijhydene.2021.09.206spa
dc.relation.referencesPoling, B. E., Prausnitz, J. M., & O’Connell, J. P. (2001). THE PROPERTIES OF GASES AND LIQUIDS (McGRAW-HILL (ed.); Fifthspa
dc.relation.referencesPopov, S., & Kumar, S. (2015). Rapid hydrothermal deoxygenation of oleic acid over activated carbon in a continuous flow process. Energy and Fuels, 29(5), 3377–3384. https://doi.org/10.1021/acs.energyfuels.5b00308spa
dc.relation.referencesQin, Y., Chen, P., Duan, J., Han, J., Lou, H., Zheng, X., & Hong, H. (2013). Carbon Nanofibers Supported Molybdenum Carbide Catalysts for Hydrodeoxygenation of Vegetable Oils. RSC Advances, 3(38), 17485. https://doi.org/10.1039/c3ra42434kspa
dc.relation.referencesQuiroga, I. G. (2004). Introducción al Equilibrio Termodinámico y de Fases (U. N. de Colombia (ed.))spa
dc.relation.referencesRabaev, M., Landau, M. V., Vidruk-Nehemya, R., Goldbourt, A., & Herskowitz, M. (2015). Improvement of hydrothermal stability of Pt/SAPO-11 catalyst in hydrodeoxygenation-isomerization-aromatization of vegetable oil. Journal of Catalysis, 332, 164–176. https://doi.org/10.1016/j.jcat.2015.10.005spa
dc.relation.referencesRahman, M. M., Liu, R., & Cai, J. (2018). Catalytic fast pyrolysis of biomass over zeolites for high quality bio-oil – A review. Fuel Processing Technology, 180(June), 32–46. https://doi.org/10.1016/j.fuproc.2018.08.002spa
dc.relation.referencesRaikova, S., Le, C. D., Wagner, J. L., Ting, V. P., & Chuck, C. J. (2016). Towards an Aviation Fuel Through the Hydrothermal Liquefaction of Algae. In Biofuels for Aviation (pp. 217–239). Elsevier. https://doi.org/10.1016/B978-0-12-804568-8.00009-3spa
dc.relation.referencesRambabu, K., Bharath, G., Sivarajasekar, N., Velu, S., Sudha, P. N., Wongsakulphasatch, S., & Banat, F. (2023). Sustainable production of bio-jet fuel and green gasoline from date palm seed oil via hydroprocessing over tantalum phosphate. Fuel, 331(P1), 125688. https://doi.org/10.1016/j.fuel.2022.125688spa
dc.relation.referencesRamirez-Corredores, M. M. (2013). Pathways and Mechanisms of Fast Pyrolysis: Impact on Catalyst Research. The Role of Catalysis for the Sustainable Production of Bio-Fuels and Bio-Chemicals, 161–216. https://doi.org/10.1016/B978-0-444-56330-9.00006-1spa
dc.relation.referencesRana, B. S., Kumar, R., Tiwari, R., Kumar, R., Joshi, R. K., Garg, M. O., & Sinha, A. K. (2013). Transportation fuels from co-processing of waste vegetable oil and gas oil mixtures. Biomass and Bioenergy, 56, 43–52. https://doi.org/10.1016/j.biombioe.2013.04.029spa
dc.relation.referencesRichardson, J. T. (1992). Principles of Catalyst Development (Springer Science+Business (ed.); Second).spa
dc.relation.referencesRobin, T., Jones, J. M., & Ross, A. B. (2017). Catalytic hydrothermal processing of lipids using metal doped zeolites. Biomass and Bioenergy, 98, 26–36. https://doi.org/10.1016/j.biombioe.2017.01.012spa
dc.relation.referencesRobinson, A. M., Hensley, J. E., & Will Medlin, J. (2016). Bifunctional Catalysts for Upgrading of Biomass-Derived Oxygenates: A Review. ACS Catalysis, 6(8), 5026–5043. https://doi.org/10.1021/acscatal.6b00923spa
dc.relation.referencesRoquero, P. (2011). Carbon-Supported Platinum Molybdenum Electro-Catalysts and Their Electro-Activity Toward Ethanol Oxidation. June.spa
dc.relation.referencesRuddy, D. A., Schaidle, J. A., Ferrell III, J. R., Wang, J., Moens, L., & Hensley, J. E. (2014). Recent advances in heterogeneous catalysts for bio-oil upgrading via “ex situ catalytic fast pyrolysis”: catalyst development through the study of model compounds. Green Chem., 16(2), 454–490. https://doi.org/10.1039/C3GC41354Cspa
dc.relation.referencesSaha, B., & Abu-Omar, M. M. (2015). Current Technologies, Economics, and Perspectives for 2,5-Dimethylfuran Production from Biomass-Derived Intermediates. ChemSusChem, 8(7), 1133–1142. https://doi.org/10.1002/cssc.201403329spa
dc.relation.referencesSahu, R., Song, B. J., Im, J. S., Jeon, Y. P., & Lee, C. W. (2015). A review of recent advances in catalytic hydrocracking of heavy residues. Journal of Industrial and Engineering Chemistry, 27, 12–24. https://doi.org/10.1016/j.jiec.2015.01.011spa
dc.relation.referencesSantillan-Jimenez, E., & Crocker, M. (2012a). Catalytic deoxygenation of fatty acids and their derivatives to hydrocarbon fuels via decarboxylation / decarbonylation. Journal of Chemical Technology and Biotechnology, February, 1–10. https://doi.org/10.1002/jctb.3775spa
dc.relation.referencesSantillan-Jimenez, E., & Crocker, M. (2012b). Catalytic deoxygenation of fatty acids and their derivatives to hydrocarbon fuels via decarboxylation / decarbonylation. Journal of Chemical Technology and Biotechnology, February, 1–10. https://doi.org/10.1002/jctb.3775spa
dc.relation.referencesSantillan-jimenez, E., Morgan, T., Lacny, J., Mohapatra, S., & Crocker, M. (2013). Catalytic deoxygenation of triglycerides and fatty acids to hydrocarbons over carbon-supported nickel. Fuel, 103, 1010–1017. https://doi.org/10.1016/j.fuel.2012.08.035spa
dc.relation.referencesSantis, L. (2017). Reformado catalítico en fase acuosa de glicerina, sobre catalizadores: Pt, Rh y Pt-Rh, soportados en óxidos mixtos Ce-Zr-Co. Universidad Nacional de Colombia.spa
dc.relation.referencesSari, E., Kim, M., Salley, S. O., & Ng, K. Y. S. (2013). A highly active nanocomposite silica-carbon supported palladium catalyst for decarboxylation of free fatty acids for green diesel production: Correlation of activity and catalyst properties. Applied Catalysis A: General, 467, 261–269. https://doi.org/10.1016/j.apcata.2013.07.053spa
dc.relation.referencesSatyarthi, J. K., Chiranjeevi, T., Gokak, D. T., & Viswanathan, P. S. (2013). An overview of catalytic conversion of vegetable oils/fats into middle distillates. Catalysis Science & Technology, 3(70), 70–80. https://doi.org/10.1039/c2cy20415kspa
dc.relation.referencesSavage, P. E., Duan, P., & Savage, P. E. (2011). Hydrothermal Liquefaction of a Microalga with Heterogeneous Catalysts. Industrial & Engineering Chemistry Research, 50(January 2011), 52–61.spa
dc.relation.referencesSawangkeaw, R., & Ngamprasertsith, S. (2013). A review of lipid-based biomasses as feedstocks for biofuels production. Renewable and Sustainable Energy Reviews, 25, 97–108. https://doi.org/10.1016/j.rser.2013.04.007spa
dc.relation.referencesScaldaferri, C. A., Márcia, V., & Pasa, D. (2019). Production of jet fuel and green diesel range biohydrocarbons by hydroprocessing of soybean oil over niobium phosphate catalyst. Fuel, 245(December 2018), 458–466. https://doi.org/10.1016/j.fuel.2019.01.179spa
dc.relation.referencesScholz, D., Aellig, C., & Hermans, I. (2014). Catalytic transfer hydrogenation/hydrogenolysis for reductive upgrading of furfural and 5-(hydroxymethyl)furfural. ChemSusChem, 7(1), 268–275. https://doi.org/10.1002/cssc.201300774spa
dc.relation.referencesScott Fogler, H. (2021). Elements of chemical reaction engineering (Pearson (ed.); Sixth). https://doi.org/10.1016/0009-2509(87)80130-6spa
dc.relation.referencesSerrano-Ruiz, J. C., Luque, R., & Clark, J. H. (2013). Chapter 17 - The Role of Heterogeneous Catalysis in the Biorefinery of the Future. In The Role of Catalysis for the Sustainable Production of Bio-fuels and Bio-chemicals: Vol. #volume# (pp. 557–576). © 2013 Elsevier B.V. All rights reserved. https://doi.org/10.1016/B978-0-444-56330-9.00017-6spa
dc.relation.referencesShi, N., Liu, Q. Y., Jiang, T., Wang, T. J., Ma, L. L., Zhang, Q., & Zhang, X. H. (2012). Hydrodeoxygenation of vegetable oils to liquid alkane fuels over Ni/HZSM-5 catalysts: Methyl hexadecanoate as the model compound. Catalysis Communications, 20, 80–84. https://doi.org/10.1016/j.catcom.2012.01.007spa
dc.relation.referencesSimakova, I. L., & Murzin, D. Y. (2016). Transformation of bio-derived acids into fuel-like alkanes via ketonic decarboxylation and hydrodeoxygenation: Design of multifunctional catalyst, kinetic and mechanistic aspects. Journal of Energy Chemistry, 25(2), 208–224. https://doi.org/10.1016/j.jechem.2016.01.004spa
dc.relation.referencesSingh, R., Prakash, A., Balagurumurthy, B., & Bhaskar, T. (2015). Hydrothermal Liquefaction of Biomass. In Elsevier B.V. (Ed.), Recent Advances in Thermochemical Conversion of Biomass (pp. 269–291). https://doi.org/10.1016/B978-0-444-63289-0.00010-7spa
dc.relation.referencesSinha, A. K., Anand, M., & Farooqui, S. A. (2016). Chapter 5 – Aviation Biofuels Through Lipid Hydroprocessing. In Biofuels for Aviation. Elsevier Inc. https://doi.org/10.1016/B978-0-12-804568-8.00005-6spa
dc.relation.referencesSkoda, F., Astier, M. P., & Paj, G. M. (1994). Surface characterization of palladium--copper bimetallic catalysts by FTIR spectroscopy and test reactions. Catalysis Letters, 29, 159–168.spa
dc.relation.referencesSlinn, M., Kendall, K., Mallon, C., & Andrews, J. (2008). Steam reforming of biodiesel by-product to make renewable hydrogen. Bioresource Technology, 99(13), 5851–5858. https://doi.org/10.1016/j.biortech.2007.10.003spa
dc.relation.referencesSmirnova, M. Y., Kikhtyanin, O. V., Smirnov, M. Y., Kalinkin, A. V., Titkov, A. I., Ayupov, A. B., & Ermakov, D. Y. (2015). Effect of calcination temperature on the properties of Pt/SAPO-31 catalyst in one-stage transformation of sunflower oil to green diesel. Applied Catalysis A: General, 505, 524–531. https://doi.org/10.1016/j.apcata.2015.06.019spa
dc.relation.referencesSnåre, M., Kubičková, I., Mäki-Arvela, P., Eränen, K., & Murzin, D. Y. (2006). Heterogeneous Catalytic Deoxygenation of Stearic Acid for Production of Biodiesel. Industrial & Engineering Chemistry Research, 45(16), 5708–5715. https://doi.org/10.1021/ie060334ispa
dc.relation.referencesSon, P. A., Nishimura, S., & Ebitani, K. (2014). Production of γ-valerolactone from biomass-derived compounds using formic acid as a hydrogen source over supported metal catalysts in water solvent. RSC Advances, 4(21), 10525–10530. https://doi.org/10.1039/c3ra47580hspa
dc.relation.referencesSotelo-boyás, R., Trejo-zárraga, F., & Hernández-loyo, F. D. J. (2012). Hydroconversion of Triglycerides into Green Liquid Fuels. In InTech (Ed.), Hydrogenation (pp. 187–216).spa
dc.relation.referencesSpeight, J. G. (2005). Petroleum and Petrochemicals. In McGraw-Hill (Ed.), Handbook of Industrial Chemistry: Organic Chemicals (First, p. 628).spa
dc.relation.referencesSpeight, J. G. (2005). Petroleum and Petrochemicals. In McGraw-Hill (Ed.), Handbook of Industrial Chemistry: Organic Chemicals (First, p. 628). Srifa, A., Faungnawakij, K., Itthibenchapong, V., & Viriya-empikul, N. (2014). Production of bio-hydrogenated diesel by catalytic hydrotreating of palm oil over NiMoS2/c-Al2O3 catalys. BIORESOURCE TECHNOLOGY, 158, 81–90. https://doi.org/10.1016/j.biortech.2014.01.100spa
dc.relation.referencesSuarez Palacios, O. Y. (2011). Producción y modelamiento de gliceril-ésteres como plastificantes para PVC. [Universidad Nacional de Colombia]. http://www.bdigital.unal.edu.co/4241/%0Aspa
dc.relation.referencesSuárez Palacios, O. Y. (2011). Producción y Modelamiento de Gliceril-Ésteres como Plastificantes para PVC [Universidad Nacional de Colombia]. http://www.bdigital.unal.edu.co/4241/%0Aspa
dc.relation.referencesSun, H. J., Pan, Y. J., Jiang, H. B., Li, S. H., Zhang, Y. X., Liu, S. C., & Liu, Z. Y. (2013). Effect of transition metals (Cr, Mn, Fe, Co, Ni, Cu and Zn) on the hydrogenation properties of benzene over Ru-based catalyst. Applied Catalysis A: General, 464–465, 464–465. https://doi.org/10.1016/j.apcata.2013.05.021spa
dc.relation.referencesSuresh, M., Jawahar, C. P., & Richard, A. (2018). A review on biodiesel production , combustion , performance , and emission characteristics of non-edible oils in variable compression ratio diesel engine using biodiesel and its blends. Renewable and Sustainable Energy Reviews, 92(March), 38–49. https://doi.org/10.1016/j.rser.2018.04.048spa
dc.relation.referencesSutton, J. E., Panagiotopoulou, P., Verykios, X. E., & Vlachos, D. G. (2013). Combined DFT, Microkinetic, and Experimental Study of Ethanol Steam Reforming on Pt. 3.spa
dc.relation.referencesSzeto, W., & Leung, D. Y. C. (2022). Is hydrotreated vegetable oil a superior substitute for fossil diesel ? A comprehensive review on physicochemical properties , engine performance and emissions. Fuel, 327(July), 125065. https://doi.org/10.1016/j.fuel.2022.125065spa
dc.relation.referencesTai, L., Caprariis, B. De, Filippis, P. De, & Hamidi, R. (2021). In Situ Hydrodeoxygenation of Guaiacol using Magnetic Catalysts and Heterogeneous Hydrogen Producer. 86(April), 85–90. https://doi.org/10.3303/CET2186015spa
dc.relation.referencesTan, Z., Xu, X., Liu, Y., Zhang, C., Zhai, Y., Liu, P., Li, Y., & Zhang, R. (2014). Upgrading bio-oil model compounds phenol and furfural with in situ generated hydrogen. Environmental Progress and Sustainable Energy, 33(3), 751–755. https://doi.org/10.1002/ep.11915spa
dc.relation.referencesTang, X., Zeng, X., Li, Z., Hu, L., Sun, Y., Liu, S., Lei, T., & Lin, L. (2014). Production of γ-valerolactone from lignocellulosic biomass for sustainable fuels and chemicals supply. Renewable and Sustainable Energy Reviews, 40, 608–620. https://doi.org/10.1016/j.rser.2014.07.209spa
dc.relation.referencesTazli, M., Ahmad, K., Husainni, M., & Ameen, M. (2016). Thermodynamic Equilibrium Analysis of Triolein Hydrodeoxygenation for Green Diesel Production. Procedia Engineering, 148, 1369–1376. https://doi.org/10.1016/j.proeng.2016.06.603spa
dc.relation.referencesTedsree, K., Chan, C. W. A., Jones, S., Cuan, Q., Li, W.-K., Gong, X.-Q., & Tsang, S. C. E. (2014). 13C NMR Guides Rational Design of Nanocatalysts via Chemisorption Evaluation in Liquid Phase. Sciencie, 332(2011), 224–228. https://doi.org/10.1126/science.1202364spa
dc.relation.referencesG. D. W., & Tsang, S. C. E. (2011). Hydrogen production from formic acid decomposition at room temperature using a Ag-Pd core-shell nanocatalyst. Nature Nanotechnology, 6(5), 302–307. https://doi.org/10.1038/nnano.2011.42spa
dc.relation.referencesThananatthanachon, T., & Rauchfuss, T. B. (2010). Efficient Production of the Liquid Fuel 2,5-Dimethylfuran from Fructose Using Formic Acid as a Reagent. Angewandte Chemie, 122(37), 6766–6768. https://doi.org/10.1002/ange.201002267spa
dc.relation.referencesThe European Parliament and the Council of the European Union. (2009). Directive 2009/28/EC. https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:%0AL:2009:140:0016:0062:en:PDF.spa
dc.relation.referencesThe European Parliament and the Council of the European Union. (2018). DIRECTIVE (EU) 2018/2001 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 11 December 2018 on the promotion of the use of energy from renewable sources. Official Journal of the European Union, 2001, 82–209. https://eur-lex.europa.eu/%0Alegal-content/EN/TXT/?uri=uriserv:OJ.L_.2018.328.01.0082.01.%0AENG.spa
dc.relation.referencesThe European Parliament and the Council of the European Union. (2019). Quality of petrol and diesel fuel used for road transport in the European Union (Vol. 15, Issue 2)spa
dc.relation.referencesThe European Parliament and the Council of the European Union. (2021). European Climate Law. In Official Journal of the European Union (Vol. 2021, Issue June). https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32021R1119spa
dc.relation.referencesThomas, J. M., & Thomas, W. J. (1997). Principles and Practice of Heterogenous Catalysis (VCH (ed.); First).spa
dc.relation.referencesTian, Q., Qiao, K., Zhou, F., Chen, K., Wang, T., Fu, J., Lu, X., & Ouyang, P. (2016). Direct Production of Aviation Fuel Range Hydrocarbons and Aromatics from Oleic Acid without an Added Hydrogen Donor. Energy and Fuels, 30(9), 7291–7297. https://doi.org/10.1021/acs.energyfuels.6b00978spa
dc.relation.referencesTian, Q., Zhang, Z., Zhou, F., Chen, K., Fu, J., Lu, X., & Ouyang, P. (2017). Role of Solvent in Catalytic Conversion of Oleic Acid to Aviation Biofuels. Energy Fuels, 31, 6163−6172. https://doi.org/10.1021/acs.energyfuels.7b00586spa
dc.relation.referencesTimilsina, G. R., & Shrestha, A. (2011). How much hope should we have for biofuels? Energy, 36(4), 2055–2069. https://doi.org/10.1016/j.energy.2010.08.023spa
dc.relation.referencesToba, M., Abe, Y., Kuramochi, H., Osako, M., Mochizuki, T., & Yoshimura, Y. (2011). Hydrodeoxygenation of waste vegetable oil over sulfide catalysts. Catalysis Today, 164(1), 533–537. https://doi.org/10.1016/j.cattod.2010.11.049spa
dc.relation.referencesToledano, A., Serrano, L., Labidi, J., Pineda, A., Balu, A. M., & Luque, R. (2013). Heterogeneously Catalysed Mild Hydrogenolytic Depolymerisation of Lignin Under Microwave Irradiation with Hydrogen-Donating Solvents. ChemCatChem, 5(4), 977–985. https://doi.org/10.1002/cctc.201200616spa
dc.relation.referencesTrimm, D. L. (1980). Design of Industrial Catalysts (E. S. P. Company (ed.); First)spa
dc.relation.referencesTuteja, J., Choudhary, H., Nishimura, S., & Ebitani, K. (2014). Direct synthesis of 1,6-hexanediol from HMF over a heterogeneous Pd/ZrP catalyst using formic acid as hydrogen source. ChemSusChem, 7(1), 96–100. https://doi.org/10.1002/cssc.201300832spa
dc.relation.referencesU.S. Congress. (2007). Energy independence and security act of 2007. In Public Law. https://doi.org/papers2://publication/uuid/364DB882-E966-450B-959F-AEAD6E702F42spa
dc.relation.referencesU.S. Government Accountability Office. (2016). RENEWABLE FUEL STANDARD Program Unlikely to Meet Its Targets for Reducing Greenhouse Gas Emissions.spa
dc.relation.referencesUNEP. (2017). Resource Efficiency: Potential and Economic Implications. In P. Ekins, N. Hughes, S. Bringezu, C. Arden Clarke, M. Fischer-Kowalski, T. Graedel, M. Hajer, S. Hashimoto, S. Hatfield-Dodds, P. Havlik, E. Hertwich, J. Ingram, K. Kruit, B. Milligan, Y. Moriguchi, N. Nasr, D. Newth, M. Obersteiner, A. Ramaswami, … A. Pedroza (Eds.), A report of the International Resource Panel (UNEP). http://www.resourcepanel.org/sites/default/files/documents/document/media/resource_efficiency_report_march_2017_web_res.pdfspa
dc.relation.referencesUnited Nations Industrial Development Organization. (1976). Catalyst Manual : a User’s Guide to Calysts for the Petrochemical and Fertilizer Industrie (J. U.-R. Centre (ed.)).spa
dc.relation.referencesUPME. (2019). Plan Energético Nacional 2020-2050. In Handbook of Pediatric Retinal OCT and the Eye-Brain Connection. PEN 2050 www.upme.gov.co /spa
dc.relation.referencesUSDA. (2020). Biofuels Annual - Colombia. In CO2022-0012 (Issue August 01). https://www.fas.usda.gov/data/colombia-biofuels-annual-8spa
dc.relation.referencesUSDA. (2021a). Biofuels Annual China. In United States Department of Agriculture: Foreign Agricultural Service.spa
dc.relation.referencesUSDA. (2021b). Report Name : Biofuels Annual. In GAIN Global Agricultural Information Network. USDA. (2022a). Biofuels Annual - Brazil (Vols. BR2021-003, Issue April 2020).spa
dc.relation.referencesUSDA. (2022a). Biofuels Annual - Brazil (Vols. BR2021-003, Issue April 2020).spa
dc.relation.referencesUSDA. (2022b). Biofuels Annual European Union (Vols. E42022-004).spa
dc.relation.referencesUSDA. (2022c). Report Name : Biofuels Annual India. In Unites States Department of Agriculture Foreign Agriculture Service (Issue May). https://www.fas.usda.gov/data/malaysia-biofuels-annual-3spa
dc.relation.referencesValencia, D., García-cruz, I., Hugo, V., Ramírez-verduzco, L. F., Amezcua-allieri, M. A., & Aburto, J. (2018). Unravelling the chemical reactions of fatty acids and triacylglycerides under hydrodeoxygenation conditions based on a comprehensive thermodynamic analysis. Biomass and Bioenergy, 112(August 2017), 37–44. https://doi.org/10.1016/j.biombioe.2018.02.014spa
dc.relation.referencesVallinayagam, R., Vedharaj, S., Yang, W. M., Lee, P. S., Chua, K. J. E., & Chou, S. K. (2014). Pine oil-biodiesel blends: A double biofuel strategy to completely eliminate the use of diesel in a diesel engine. Applied Energy, 130, 466–473. https://doi.org/10.1016/j.apenergy.2013.11.025spa
dc.relation.referencesVannice, M. A. (2005). Kinetics of Catalytic Reactions (Springer Science+Business Media (ed.)).spa
dc.relation.referencesVardon, D. R., Sharma, B. K., Jaramillo, H., Kim, D., Choe, J. K., Ciesielski, P. N., & Strathmann, T. J. (2014). Hydrothermal catalytic processing of saturated and unsaturated fatty acids to hydrocarbons with glycerol for in situ hydrogen production. Green Chemistry, 16(3), 1507. https://doi.org/10.1039/c3gc41798kspa
dc.relation.referencesVasiliadou, E., & Lemonidou, A. (2014). Catalytic Glycerol Hydrodeoxygenation under Inert Atmosphere: Ethanol as a Hydrogen Donor. Catalysts, 4(4), 397–413. https://doi.org/10.3390/catal4040397spa
dc.relation.referencesVeriansyah, B., Young, J., Ki, S., Hong, S., Jun, Y., Sung, J., Shu, Y., Oh, S., & Kim, J. (2012). Production of renewable diesel by hydroprocessing of soybean oil : Effect of catalysts. Fuel, 94, 578–585. https://doi.org/10.1016/j.fuel.2011.10.057spa
dc.relation.referencesViêgas, C. V., Hachemi, I., Freitas, S. P., Mäki-Arvela, P., Aho, A., Hemming, J., Smeds, A., Heinmaa, I., Fontes, F. B., Da Silva Pereira, D. C., Kumar, N., Aranda, D. A. G., & Murzin, D. Y. (2015). A route to produce renewable diesel from algae: Synthesis and characterization of biodiesel via in situ transesterification of Chlorella alga and its catalytic deoxygenation to renewable diesel. Fuel, 155, 144–154. https://doi.org/10.1016/j.fuel.2015.03.064spa
dc.relation.referencesVillaverde, M. M., Garetto, T. F., & Marchi, A. J. (2015). Liquid-phase transfer hydrogenation of furfural to furfuryl alcohol on Cu-Mg-Al catalysts. Catalysis Communications, 58, 6–10. https://doi.org/10.1016/j.catcom.2014.08.021spa
dc.relation.referencesVutolkina, A. V., Baigildin, I. G., Glotov, A. P., Pimerzin, A. A., Akopyan, A. V., Maximov, A. L., & Karakhanov, E. A. (2022). Hydrodeoxygenation of guaiacol via in situ H2 generated through a water gas shift reaction over dispersed NiMoS catalysts from oil-soluble precursors: Tuning the selectivity towards cyclohexene. Applied Catalysis B: Environmental, 312(April), 121403. https://doi.org/10.1016/j.apcatb.2022.121403spa
dc.relation.referencesWai, K., Yusup, S., Chun, A., Loy, M., Shen, B., Skoulou, V., & Taylor, M. J. (2022). Recent advances in the catalytic deoxygenation of plant oils and prototypical fatty acid models compounds : Catalysis , process , and kinetics. Molecular Catalysis, 523(September 2020), 111469. https://doi.org/10.1016/j.mcat.2021.111469spa
dc.relation.referencesWan, H., Chaudhari, R. V., & Subramaniam, B. (2012). Catalytic hydroprocessing of p-cresol: Metal, solvent and mass-transfer effects. Topics in Catalysis, 55(3–4), 129–139. https://doi.org/10.1007/s11244-012-9782-6spa
dc.relation.referencesWan, H., Chaudhari, R. V., & Subramaniam, B. (2013). Aqueous phase hydrogenation of acetic acid and its promotional effect on p-cresol hydrodeoxygenation. Energy and Fuels, 27(1), 487–493. https://doi.org/10.1021/ef301400cspa
dc.relation.referencesWang, B., Hou, H., & Gu, Y. (2000). New mechanism for the catalyzed thermal decomposition of formic acid. Journal of Physical Chemistry A, 104(45), 10526–10528. https://doi.org/10.1021/jp001173dspa
dc.relation.referencesWang, D., & Astruc, D. (2015). The Golden Age of Transfer Hydrogenation. Chemical Reviews, 115(13), 6621–6686. https://doi.org/10.1021/acs.chemrev.5b00203spa
dc.relation.referencesWang, F., Xu, H., Yu, S., Zhu, H., Du, Y., Zhang, Z., You, C., Jiang, X., & Jiang, J. (2022). Fe-promoted Ni catalyst with extremely high loading and oxygen vacancy for lipid deoxygenation into green diesel. Renewable Energy, 197(July), 40–49. https://doi.org/10.1016/j.renene.2022.07.079spa
dc.relation.referencesWang, F., & Zhang, Z. (2017). Catalytic Transfer Hydrogenation of Furfural into Furfuryl Alcohol over Magnetic γ-Fe2O3@HAP Catalyst. ACS Sustainable Chemistry and Engineering, 5(1), 942–947. https://doi.org/10.1021/acssuschemeng.6b02272spa
dc.relation.referencesWang, H., Chi, Y., Gao, D., Wang, Z., Wang, C., & Wang, L. (2019). Applied Catalysis B : Environmental Enhancing formic acid dehydrogenation for hydrogen production with the metal / organic interface. Applied Catalysis B: Environmental, 255(April), 117776. https://doi.org/10.1016/j.apcatb.2019.117776spa
dc.relation.referencesWang, H., Male, J., & Wang, Y. (2013). Recent advances in hydrotreating of pyrolysis bio-oil and its oxygen-containing model compounds. ACS Catalysis, 3(5), 1047–1070. https://doi.org/10.1021/cs400069zspa
dc.relation.referencesWang, H., Yan, S., Salley, S. O., & Ng, K. Y. S. (2013). Support effects on hydrotreating of soybean oil over NiMo carbide catalyst. Fuel, 111, 81–87. https://doi.org/10.1016/j.fuel.2013.04.066spa
dc.relation.referencesWang, J., Li, X., Zheng, J., Cao, J., Hao, X., Wang, Z., Abudula, A., & Guan, G. (2018). Non-precious molybdenum-based catalyst derived from biomass: CO-free hydrogen production from formic acid at low temperature. Energy Conversion and Management, 164(December 2017), 122–131. https://doi.org/10.1016/j.enconman.2018.02.092spa
dc.relation.referencesWang, J., Xu, L., Nie, R., Lyu, X., & Lu, X. (2020). Bifunctional CuNi / CoO x catalyst for mild-temperature in situ hydrodeoxygenation of fatty acids to alkanes using isopropanol as hydrogen source. Fuel, 265(December 2019), 116913. https://doi.org/10.1016/j.fuel.2019.116913spa
dc.relation.referencesWang, L., Liu, Q., Jing, C., Mominou, N., Li, S., & Wang, H. (2018). In-situ hydrodeoxygenation of a mixture of oxygenated compounds with hydrogen donor over ZrNi / Ir-ZSM-5 þ Pd / C. Journal of Alloys and Compounds, 753, 664–672. https://doi.org/10.1016/j.jallcom.2018.03.356spa
dc.relation.referencesWang, L., Zhang, B., Meng, X., Su, D. S., & Xiao, F. S. (2014). Hydrogenation of biofuels with formic acid over a palladium-based ternary catalyst with two types of active sites. ChemSusChem, 7(6), 1537–1541. https://doi.org/10.1002/cssc.201400039spa
dc.relation.referencesWang, Q., Sun, G. Q., Jiang, L. H., Xin, Q., Sun, S. G., Jiang, Y. X., Chen, S. P., Jusysb, Z., & Behm, R. J. (2007). Adsorption and oxidation of ethanol on colloid-based Pt/C, PtRu/C and Pt3Sn/C catalysts: In situ FTIR spectroscopy and on-line DEMS studiesw. Physical Chemistry Chemical Physics, 9, 2686–2696. https://doi.org/10.1039/b700676bspa
dc.relation.referencesWang, T., Du, J., Sun, Y., Tang, X., Wei, Z. J., Zeng, X., Liu, S. J., & Lin, L. (2021). Catalytic transfer hydrogenation of biomass-derived furfural to furfuryl alcohol with formic acid as hydrogen donor over CuCs-MCM catalyst. Chinese Chemical Letters, 32(3), 1186–1190. https://doi.org/10.1016/j.cclet.2020.07.044spa
dc.relation.referencesWang, T., Zhang, J., Xie, W., Tang, Y., Guo, D., & Ni, Y. (2017). Catalytic transfer hydrogenation of biobased HMF to 2,5-bis-(hydroxymethyl)furan over Ru/Co3O4. Catalysts, 7(3), 1–8. https://doi.org/10.3390/catal7030092spa
dc.relation.referencesWang, W., Thapaliya, N., Campos, A., Stikeleather, L. F., & Roberts, W. L. (2012). Hydrocarbon fuels from vegetable oils via hydrolysis and thermo-catalytic decarboxylation. Fuel, 95, 622–629. https://doi.org/10.1016/j.fuel.2011.12.041spa
dc.relation.referencesWang, X., Meng, Q., Gao, L., Jin, Z., Ge, J., Liu, C., & Xing, W. (2018). Recent progress in hydrogen production from formic acid decomposition. International Journal of Hydrogen Energy, 43(14), 7055–7071. https://doi.org/10.1016/j.ijhydene.2018.02.146spa
dc.relation.referencesWang, X., Qi, G., Tan, C., Li, Y., Guo, J., Pang, X., & Zhang, S. (2014). Pd/C nanocatalyst with high turnover frequency for hydrogen generation from the formic acid–formate mixtures. International Journal of Hydrogen Energy, 39(2), 837–843. https://doi.org/10.1016/j.ijhydene.2013.10.154spa
dc.relation.referencesWang, X., Qiu, Z., Liu, Q., Chen, X., Tao, S., Shi, C., Pang, M., & Liang, C. (2017). Heterogeneous Catalytic Transfer Partial-Hydrogenation with Formic Acid as Hydrogen Source Over the Schiff-Base Modified Gold Nano-Catalyst. Catalysis Letters, 147(2), 517–524. https://doi.org/10.1007/s10562-016-1929-9spa
dc.relation.referencesWang, Z. L., Yan, J. M., Wang, H. L., Ping, Y., & Jiang, Q. (2012). Pd/C synthesized with citric acid: An efficient catalyst for hydrogen generation from formic acid/sodium formate. Scientific Reports, 2, 1–6. https://doi.org/10.1038/srep00598spa
dc.relation.referencesWang, Z., Zeng, Y., Lin, W., & Song, W. (2017a). In-situ hydrodeoxygenation of phenol by supported Ni catalyst – explanation for catalyst performance. International Journal of Hydrogen Energy, 42(33), 21040–21047. https://doi.org/10.1016/j.ijhydene.2017.07.053spa
dc.relation.referencesWang, Z., Zeng, Y., Lin, W., & Song, W. (2017b). In-situ hydrodeoxygenation of phenol by supported Ni catalyst – explanation for catalyst performance. International Journal of Hydrogen Energy, 42(33), 21040–21047. https://doi.org/10.1016/j.ijhydene.2017.07.053spa
dc.relation.referencesWatanabe, M., Iida, T., & Inomata, H. (2006). Decomposition of a long chain saturated fatty acid with some additives in hot compressed water. Energy Conversion and Management, 47(18–19), 3344–3350. https://doi.org/10.1016/j.enconman.2006.01.009spa
dc.relation.referencesWiener, H., Sasson, Y., & Blum, J. (1986). Palladium-catalyzed decomposition of aqueous alkali metal formate solutions. Journal of Molecular Catalysis, 35(3), 277–284. https://doi.org/10.1016/0304-5102(86)87075-4spa
dc.relation.referencesWilches Flórez, Á. M. (2011). Biocombustibles: ¿son realmente amigables con el medio ambiente? Revista Colombiana de Bioética, 6(1), 89–102. http://www.redalyc.org/articulo.oa?id=55140109spa
dc.relation.referencesWilliams, R., Crandall, R. S., & Bloom, A. (1978). Use of carbon dioxide in energy storage. Applied Physics Letters, 33(5), 381–383. https://doi.org/10.1063/1.90403spa
dc.relation.referencesWind, J., Auckett, J. E., Withers, R. L., Piltz, R. O., & Ling, C. D. (2015). commensurate modulation that stabilizes the fast- ion conducting delta phase of bismuth oxide. 679–687. https://doi.org/10.1107/S2052520615018351spa
dc.relation.referencesWMO. (2022). State of the Global Climate 2021 (Issue WMO-No. 1290). https://library.wmo.int/index.php?lvl=notice_display&id=21880#.YHg0ABMzZR0spa
dc.relation.referencesWu, J., Wang, T., Fu, J., Hou, Z., & Lu, X. (2016). Mechanism for the Controllable Production of Heptadecane by Hydrothermal In-Situ Hydrogenation and Decarboxylation of Oleic Acid with Methanol. Energy and Environment Focus, 5(3), 163-168(6). https://doi.org/10.1166/eef.2016.1208spa
dc.relation.referencesXia, S., Yuan, Z., Wang, L., Chen, P., & Hou, Z. (2011). Applied Catalysis A : General Hydrogenolysis of glycerol on bimetallic Pd-Cu / solid-base catalysts prepared via layered double hydroxides precursors. “Applied Catalysis A, General,” 403(1–2), 173–182. https://doi.org/10.1016/j.apcata.2011.06.026spa
dc.relation.referencesXia, S., Zheng, L., Wang, L., Chen, P., & Hou, Z. (2013). Hydrogen-free synthesis of 1,2-propanediol from glycerol over Cu–Mg–Al catalysts. RSC Advances, 3(37), 16569. https://doi.org/10.1039/c3ra42543fspa
dc.relation.referencesXie, S., Jia, C., Prakash, A., Palafox, M. I., Pfaendtner, J., & Lin, H. (2019). Generic Biphasic Catalytic Approach for Producing Renewable Diesel from Fatty Acids and Vegetable Oils [Research-article]. ACS Catalysis, 9, 3753–3763. https://doi.org/10.1021/acscatal.9b00215spa
dc.relation.referencesXiong, W., Fu, Y., Zeng, F., & Guo, Q. (2011). An in situ reduction approach for bio-oil hydroprocessing. Fuel Processing Technology, 92(8), 1599–1605. https://doi.org/10.1016/j.fuproc.2011.04.005spa
dc.relation.referencesXu, L., Nie, R., Lyu, X., Wang, J., & Lu, X. (2020). Selective hydrogenation of furfural to furfuryl alcohol without external hydrogen over N-doped carbon confined Co catalysts. Fuel Processing Technology, 197(May 2019), 106205. https://doi.org/10.1016/j.fuproc.2019.106205spa
dc.relation.referencesXu, X., Luo, J., Li, L., Zhang, D., Wang, Y., & Li, G. (2018). Unprecedented catalytic performance in amine syntheses: Via Pd/g-C3N4 catalyst-assisted transfer hydrogenation. Green Chemistry, 20(9), 2038–2046. https://doi.org/10.1039/c8gc00144hspa
dc.relation.referencesXu, Y., Li, Y., Wang, C., Wang, C., Ma, L., & Wang, T. (2017). In-situ hydrogenation of model compounds and raw bio-oil over Ni / CMK-3 catalyst. Fuel Processing Technology, 161, 226–231. https://doi.org/10.1016/j.fuproc.2016.08.018spa
dc.relation.referencesXu, Y., Long, J., Liu, Q., Li, Y., Wang, C., Zhang, Q., Lv, W., Zhang, X., Qiu, S., Wang, T., & Ma, L. (2015). In situ hydrogenation of model compounds and raw bio-oil over Raney Ni catalyst. Energy Conversion and Management, 89, 188–196. https://doi.org/10.1016/j.enconman.2014.09.017spa
dc.relation.referencesYanase, S., & Oi, T. (2008). Lithium Isotope Effect Accompanying Electrochemical Insertion of Lithium into Liquid Gallium. May 2014. https://doi.org/10.1016/j.pnucene.2007.11.034spa
dc.relation.referencesYang, C., Nie, R., Fu, J., Hou, Z., & Lu, X. (2013). Production of aviation fuel via catalytic hydrothermal decarboxylation of fatty acids in microalgae oil. Bioresource Technology, 146, 569–573. https://doi.org/10.1016/j.biortech.2013.07.131spa
dc.relation.referencesYang, P., Xia, Q., Liu, X., & Wang, Y. (2017). Catalytic transfer hydrogenation/hydrogenolysis of 5-hydroxymethylfurfural to 2,5-dimethylfuran over Ni-Co/C catalyst. Fuel, 187, 159–166. https://doi.org/10.1016/j.fuel.2016.09.026spa
dc.relation.referencesYang, Y., Ochoa-Hernández, C., Pizarro, P., de la Peña O’Shea, V. A., Coronado, J. M., & Serrano, D. P. (2015). Influence of the Ni/P ratio and metal loading on the performance of NixPy/SBA-15 catalysts for the hydrodeoxygenation of methyl oleate. Fuel, 144, 60–70. https://doi.org/10.1016/j.fuel.2014.12.008spa
dc.relation.referencesYang, Y., Wang, Q., Chen, H., & Zhang, X. (2014). Enhancing selective hydroconversion of C 18 fatty acids into hydrocarbons by hydrogen-donors. FUEL, 133, 241–244. https://doi.org/10.1016/j.fuel.2014.05.044spa
dc.relation.referencesYang, Z., Huang, Y. B., Guo, Q. X., & Fu, Y. (2013). Raney® Ni catalyzed transfer hydrogenation of levulinate esters to γ-valerolactone at room temperature. Chemical Communications, 49(46), 5328–5330. https://doi.org/10.1039/c3cc40980espa
dc.relation.referencesYeh, T. M., Dickinson, J. G., Franck, A., Linic, S., Thompson, L. T., & Savage, P. E. (2013). Hydrothermal catalytic production of fuels and chemicals from aquatic biomass. Journal of Chemical Technology and Biotechnology, 88(1), 13–24. https://doi.org/10.1002/jctb.3933spa
dc.relation.referencesYenumala, S. R., Maity, S. K., & Shee, D. (2017). Reaction mechanism and kinetic modeling for the hydrodeoxygenation of triglycerides over alumina supported nickel catalyst. Reaction Kinetics, Mechanisms and Catalysis, 120(1), 109–128. https://doi.org/10.1007/s11144-016-1098-2spa
dc.relation.referencesYigezu, Z. D., & Muthukumar, K. (2014). Catalytic cracking of vegetable oil with metal oxides for biofuel production. Energy Conversion and Management, 84, 326–333. https://doi.org/10.1016/j.enconman.2014.03.084spa
dc.relation.referencesYou, S. J., Baek, I. G., & Park, E. D. (2013). Hydrogenolysis of cellulose into polyols over Ni/W/SiO2 catalysts. Applied Catalysis A: General, 466, 161–168. https://doi.org/10.1016/j.apcata.2013.06.053spa
dc.relation.referencesYu, J. L., & Savage, P. E. (1998). Decomposition of formic acid under hydrothermal conditions. Industrial & Engineering Chemistry Research, 37(1), 2–10. https://doi.org/10.1021/ie970182espa
dc.relation.referencesYuan, J., Li, S. S., Yu, L., Liu, Y. M., Cao, Y., He, H. Y., & Fan, K. N. (2013). Copper-based catalysts for the efficient conversion of carbohydrate biomass into γ-valerolactone in the absence of externally added hydrogen. Energy and Environmental Science, 6(11), 3308–3313. https://doi.org/10.1039/c3ee40857dspa
dc.relation.referencesYuan, J., Li, S., Yu, L., Liu, Y., & Cao, Y. (2013). Efficient catalytic hydrogenolysis of glycerol using formic acid as hydrogen source. Cuihua Xuebao/Chinese Journal of Catalysis, 34(11), 2066–2074. https://doi.org/10.1016/S1872-2067(12)60656-1spa
dc.relation.referencesYuan, M., Long, Y., Yang, J., Hu, X., Xu, D., Zhu, Y., & Dong, Z. (2018). Biomass Sucrose-Derived Cobalt@Nitrogen-Doped Carbon for Catalytic Transfer Hydrogenation of Nitroarenes with Formic Acid. ChemSusChem, 11(23), 4156–4165. https://doi.org/10.1002/cssc.201802163spa
dc.relation.referencesZarchin, R., Rabaev, M., Vidruk-Nehemya, R., Landau, M. V., & Herskowitz, M. (2015). Hydroprocessing of soybean oil on nickel-phosphide supported catalysts. Fuel, 139, 684–691. https://doi.org/10.1016/j.fuel.2014.09.053spa
dc.relation.referencesZeng, Y., Wang, Z., Lin, W., Song, W., Christensen, J. M., & Jensen, A. D. (2016). Hydrodeoxygenation of phenol over Pd catalysts by in-situ generated hydrogen from aqueous reforming of formic acid. Catalysis Communications, 82, 46–49. https://doi.org/10.1016/j.catcom.2016.04.018spa
dc.relation.referencesZhang, C., Leng, Y., Jiang, P., Li, J., & Du, S. (2017). Immobilizing Palladium Nanoparticles on Nitrogen-Doped Carbon for Promotion of Formic Acid Dehydrogenation and Alkene Hydrogenation. ChemistrySelect, 2(20), 5469–5474. https://doi.org/10.1002/slct.201701176spa
dc.relation.referencesZhang, G., Peng, Z., & Li, C. (2016). A study of thermal behavior of cesium phosphate. Journal of Thermal Analysis and Calorimetry, 124(2), 1063–1070. https://doi.org/10.1007/s10973-015-5192-xspa
dc.relation.referencesZhang, H., Lin, H., Wang, W., Zheng, Y., & Hu, P. (2014). Hydroprocessing of waste cooking oil over a dispersed nano catalyst: Kinetics study and temperature effect. Applied Catalysis B: Environmental, 150–151, 238–248. https://doi.org/10.1016/j.apcatb.2013.12.006spa
dc.relation.referencesZhang, J., Huo, X., Li, Y., & Strathmann, T. J. (2019). Catalytic Hydrothermal Decarboxylation and Cracking of Fatty Acids and Lipids over Ru/C. ACS Sustainable Chemistry & Engineering, 7, 14400−14410. https://doi.org/10.1021/acssuschemeng.9b00215spa
dc.relation.referencesZhang, J., & Zhao, C. (2015). A new approach for bio-jet fuel generation from palm oil and limonene in the absence of hydrogen. Chemical Communications, 51(97), 17249–17252. https://doi.org/10.1039/c5cc06601hspa
dc.relation.referencesZhang, L., Wu, W., Jiang, Z., & Fang, T. (2018). A review on liquid ‑ phase heterogeneous dehydrogenation of formic acid : recent advances and perspectives. Chemical Papers. https://doi.org/10.1007/s11696-018-0469-8spa
dc.relation.referencesZhang, S., Yan, Y., Li, T., & Ren, Z. (2005). Upgrading of liquid fuel from the pyrolysis of biomass. Bioresource Technology, 96(5), 545–550. https://doi.org/10.1016/j.biortech.2004.06.015spa
dc.relation.referencesZhang, Y., Gyngazova, M. S., Lolli, A., Grazia, L., Tabanelli, T., Cavani, F., & Albonetti, S. (2019a). Hydrogen Transfer Reaction as an Alternative Reductive Process for the Valorization of Biomass-Derived Building Blocks. In Studies in Surface Science and Catalysis (1st ed., Vol. 178). Elsevier B.V. https://doi.org/10.1016/B978-0-444-64127-4.00010-0spa
dc.relation.referencesZhang, Y., Gyngazova, M. S., Lolli, A., Grazia, L., Tabanelli, T., Cavani, F., & Albonetti, S. (2019b). Hydrogen Transfer Reaction as an Alternative Reductive Process for the Valorization of Biomass-Derived Building Blocks. In Studies in Surface Science and Catalysis (1st ed., Vol. 178, pp. 195–214). Elsevier B.V. https://doi.org/10.1016/B978-0-444-64127-4.00010-0spa
dc.relation.referencesZhang, Z., Chen, H., Wang, C., Chen, K., Lu, X., Ouyang, P., & Fu, J. (2018). Efficient and stable Cu-Ni/ZrO2 catalysts for in situ hydrogenation and deoxygenation of oleic acid into heptadecane using methanol as a hydrogen donor. Fuel, 230(May), 211–217. https://doi.org/10.1016/j.fuel.2018.05.018spa
dc.relation.referencesZhang, Z., Wang, F., Jiang, J., Zhu, H., Du, Y., Feng, J., Li, H., & Jiang, X. (2023). LDH derived Co-Al nanosheet for lipid hydrotreatment to produce green diesel. Fuel, 333(P1), 126341. https://doi.org/10.1016/j.fuel.2022.126341spa
dc.relation.referencesZhang, Z., Yang, Q., Chen, H., Chen, K., Lu, X., Ouyang, P., Fu, J., & Chen, J. G. (2018). In situ hydrogenation and decarboxylation of oleic acid into heptadecane over a Cu-Ni alloy catalyst using methanol as a hydrogen carrier. Green Chemistry, 20(1), 197–206. https://doi.org/10.1039/c7gc02774espa
dc.relation.referencesZhao, C., He, J., Lemonidou, A. A., Li, X., & Lercher, J. A. (2011). Aqueous-phase hydrodeoxygenation of bio-derived phenols to cycloalkanes. Journal of Catalysis, 280(1), 8–16. https://doi.org/10.1016/j.jcat.2011.02.001spa
dc.relation.referencesZhao, C., Kou, Y., Lemonidou, A. A., Li, X., & Lercher, J. A. (2009). Highly selective catalytic conversion of phenolic bio-oil to alkanes. Angewandte Chemie - International Edition, 48(22), 3987–3990. https://doi.org/10.1002/anie.200900404spa
dc.relation.referencesZhao, C., Kou, Y., Lemonidou, A. A., Li, X., & Lercher, J. A. (2010). Hydrodeoxygenation of bio-derived phenols to hydrocarbons using RANEY® Ni and Nafion/SiO2 catalysts. Chemical Communications, 46(3), 412–414. https://doi.org/10.1039/b916822bspa
dc.relation.referencesZhao, C., & Lercher, J. A. (2013). Catalytic Depolymerization and Deoxygenation of Lignin. 289–320.spa
dc.relation.referencesZhao, Z., Zhang, L., Tan, Q., Faria, J., & Resasco, D. (2019). Synergistic Bimetallic Ru – Pt Catalysts for the Low-Temperature Aqueous Phase Reforming of Ethanol. 65(1), 151–160. https://doi.org/10.1002/aic.16430spa
dc.relation.referencesZhou, L., & Lawal, A. (2014). Evaluation of Presulfided NiMo/γ-Al2O3 for Hydrodeoxygenation of Microalgae Oil To Produce Green Diesel. Energy & Fuels, American Chemical Sociesty, xxx, xxx–xxx. https://doi.org/10.1021/ef502258qspa
dc.relation.referencesZhou, L., & Lawal, A. (2017). Kinetic study of hydrodeoxygenation of palmitic acid as a model compound for microalgae oil over Pt/γ-Al2O3. Applied Catalysis A: General, 532, 40–49. https://doi.org/10.1016/j.apcata.2016.12.014spa
dc.relation.referencesZhou, M., Tian, L., Niu, L., Li, C., Xiao, G., & Xiao, R. (2014). Upgrading of liquid fuel from fast pyrolysis of biomass over modi fi ed Ni / CNT catalysts. Fuel Processing Technology, 126, 12–18. https://doi.org/10.1016/j.fuproc.2014.04.015spa
dc.relation.referencesZhou, W., Xin, H., Yang, H., Du, X., Yang, R., Li, D., & Hu, C. (2018). The Deoxygenation Pathways of Palmitic Acid into Hydrocarbons on Silica-Supported Ni12P5 and Ni2P Catalysts. Catalysts, 153(8), 1–20. https://doi.org/10.3390/catal8040153spa
dc.relation.referencesZhou, X., Huang, Y., Xing, W., Liu, C., Liao, J., & Lu, T. (2008). High-quality hydrogen from the catalyzed decomposition of formic acid by Pd-Au/C and Pd-Ag/C. Chemical Communications (Cambridge, England), 30, 3540–3542. https://doi.org/10.1039/b803661fspa
dc.relation.referencesZhu, S., Qiu, Y., Zhu, Y., Hao, S., Zheng, H., & Li, Y. (2013). Hydrogenolysis of glycerol to 1,3-propanediol over bifunctional catalysts containing Pt and heteropolyacids. Catalysis Today, 212, 120–126. https://doi.org/10.1016/j.cattod.2012.09.011spa
dc.relation.referencesZoppi, G., Pipitone, G., Pirone, R., & Bensaid, S. (2022). Aqueous phase reforming process for the valorization of wastewater streams: Application to different industrial scenarios. Catalysis Today, 387, 224–236. https://doi.org/10.1016/j.cattod.2021.06.002spa
dc.relation.referencesŽula, M., Grilc, M., & Likozar, B. (2022). Hydrocracking, hydrogenation and hydro-deoxygenation of fatty acids, esters and glycerides: Mechanisms, kinetics and transport phenomena. Chemical Engineering Journal, 444(February), 1–25. https://doi.org/10.1016/j.cej.2022.136564spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc660 - Ingeniería química::661 - Tecnología de químicos industrialesspa
dc.subject.ddc660 - Ingeniería química::665 - Tecnología de aceites, grasas, ceras, gases industrialesspa
dc.subject.ddc660 - Ingeniería química::668 - Tecnología de otros productos orgánicosspa
dc.subject.ddc540 - Química y ciencias afines::547 - Química orgánicaspa
dc.subject.ddc620 - Ingeniería y operaciones afines::628 - Ingeniería sanitariaspa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.lembEnergía biomásicaspa
dc.subject.lembVital forceeng
dc.subject.lembBiomass energyeng
dc.subject.proposalDiésel renovablespa
dc.subject.proposalDonantespa
dc.subject.proposalDesoxigenación catalíticaspa
dc.subject.proposalGeneración de hidrógeno in situspa
dc.subject.proposalAceite de palmaspa
dc.subject.proposalHidrogenación por transferencia catalíticaspa
dc.subject.proposalReformado en fase acuosaspa
dc.subject.proposalGreen dieseleng
dc.subject.proposalDonoreng
dc.subject.proposalCatalytic deoxygenationeng
dc.subject.proposalOn-site hydrogen generationeng
dc.subject.proposalPalm oileng
dc.subject.proposalCatalytic transfer hydrogenation (CTH)eng
dc.subject.proposalAqueous phase reforming (APR)eng
dc.titleProducción de biodiésel no éster mediante desoxigenación catalítica de aceite de palma con generación de hidrógeno in situspa
dc.title.translatedNon-ester biodiesel production by catalytic deoxygenation of palm oil with in situ hydrogen generationeng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentDataPaperspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleProducción de Biodiésel No Éster Mediante Desoxigenación Catalítica de Aceite de Palma con Generación de Hidrógeno In Situ - Convocatoria Nacional de Proyectos para el Fortalecimiento de la Investigación, Creación e Innovación de la Universidad Nacional de Colombia 2016-20 (Código Hermes 37622)spa
oaire.awardtitleProducción de Biodiésel No Éster Mediante Desoxigenación Catalítica de Aceite de Palma con Generación de Hidrógeno In Situ - crédito-beca de la Convocatoria Doctorado Nacional 647 de 2014 (asignado mediante la Resolución 23 de 2015 de la Vicerrectoría Académica de la Universidad Nacional de Colombia)spa
oaire.fundernameMinisterio de Ciencia, Tecnología e Innovaciónspa
oaire.fundernameUniversidad Nacional de Colombiaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
79729627.2023.pdf
Tamaño:
5.01 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: