Variabilidad de rasgos funcionales en especies arbóreas del bosque seco tropical de Colombia

dc.contributor.advisorMaría Claudia, Díez Gómez
dc.contributor.advisorThomas, Evert
dc.contributor.authorRivera Agudelo, Claudia Marcela
dc.contributor.orcidRivera Agudelo, Claudia Marcela [0009-0000-0235-6033]spa
dc.coverage.countryColombia
dc.date.accessioned2025-05-08T16:53:30Z
dc.date.available2025-05-08T16:53:30Z
dc.date.issued2019-10
dc.descriptionIlustraciones, fotografías, mapasspa
dc.description.abstractEl bosque seco tropical es un bioma de tierras bajas que se caracteriza por tener un periodo de sequía muy marcado al año. Su distribución natural ha disminuido considerablemente y solo queda el 8% de su cobertura original en Colombia. Por tanto, son de suma importancia proponer estrategias de conservación y restauración de este ecosistema. Nuestros objetivos fueron cuantificar la variabilidad inter e intraespecífica de rasgos funcionales de especies arbóreas en el bosque seco tropical de Colombia y evaluar las correlaciones de rasgos funcionales y la integridad fenotípica con variables ambientales. Para esto, medimos tres rasgos funcionales (área foliar específica, contenido foliar de materia seca y densidad de madera en fuste) y dos rasgos arquitectónicos (profundidad y diámetro de copa) a 14 especies arbóreas del bosque seco tropical en 17 sitios de seis bioregiones en Colombia. Nuestros resultados muestran que para la mayoría de los rasgos la variación intraespecífica fue más alta en las especies evaluadas. También se encontró que a pesar de la existencia de varias correlaciones significativas estadísticamente entre ambiente y rasgos e integridad el patrón de relacionamiento no fue muy claro. (Tomado de la fuente)spa
dc.description.abstractThe tropical dry forest is a lowland biome that is characterized by a very marked drought period every year. Its natural distribution has decreased considerably and only 8% of its original cover remains in Colombia. Therefore, conservation strategies and restoration of this ecosystem are very important. Our objectives were to quantify the inter and intraspecific variability of functional traits of tree species in the tropical dry forest of Colombia and evaluate the correlations of functional traits and phenotypic integrity with environmental variables. For this, we measured 3 functional traits (specific leaf area, leaf dry matter content and wood density) and 2 architectural features (depth and canopy diameter) to 14 tree species of the tropical dry forest at 17 sites of 6 bioregions in Colombia. Our results show that for most traits the intraspecific variability was higher in the species evaluated. It was also found that despite the existence of several statistically significant correlations between environment and traits and integrity the relationship pattern was not very clear.eng
dc.description.curricularareaBosques Y Conservación Ambiental.Sede Medellínspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Bosques y Conservación ambientalspa
dc.description.sponsorshipEcopetrol, Empresas Públicas de Medellín (EPM) y la Gobernación de Antioquia, administrado por Bioversity International y apoyado por Forestpaspa
dc.format.extent76 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88155
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias Agrarias - Maestría en Bosques y Conservación Ambientalspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAlbert, C.H., Bello, F. De, Boulangeat, I., Pellet, G., Lavorel, S., 2012. On the importance of intraspecific variability for the quantification of functional diversity 116–126. https://doi.org/10.1111/j.1600-0706.2011.19672.xspa
dc.relation.referencesAlbert, C.H., Grassein, F., Schurr, F.M., Vieilledent, G., Violle, C., 2011. When and how should intraspecific variability be considered in trait-based plant ecology? Perspect. Plant Ecol. Evol. Syst. 217.spa
dc.relation.referencesAlbert, C.H., Thuiller, W., Yoccoz, N.G., Douzet, R., Aubert, S., Lavorel, S., 2010a. A multi-trait approach reveals the structure and the relative importance of intra-vs. interspecific variability in plant traits. Funct. Ecol. 24, 1192.spa
dc.relation.referencesAlbert, C.H., Thuiller, W., Yoccoz, N.G., Soudant, A., Boucher, F., Saccone, P., Lavorel, S., 2010b. Intraspecific functional variability: extent, structure and sources of variation. J. Ecol. 98, 604.spa
dc.relation.referencesAlzate-Marin, A., Ferreira-Ramos, R., Guidugli, M., Martinez, C., Mestriner, M., 2011. Genetic diversity assessed in individuals of Aspidosperma polyneuron and Cariniana estrellensis used as seed donors in an forest gene bank. BMC Proc. 5, P8. https://doi.org/10.1186/1753-6561-5-S7-P8spa
dc.relation.referencesArmbruster, W.S., Pélabon, C., Bolstad, G.H., Hansen, T.F., 2014. Integrated phenotypes: Understanding trait covariation in plants and animals. Philos. Trans. R. Soc. B Biol. Sci. 369. https://doi.org/10.1098/rstb.2013.0245spa
dc.relation.referencesBanin, L., Feldpausch, T.R., Phillips, O.L., Baker, T.R., Lloyd, J., Affum‐Baffoe, K., Arets, E.J.M.M., Berry, N.J., Bradford, M., Brienen, R.J.W., Davies, S., Drescher, M., Higuchi, N., Hilbert, D.W., Hladik, A., Iida, Y., Salim, K.A., Kassim, A.R., King, D.A., Lopez‐Gonzalez, G., Metcalfe, D., Nilus, R., Peh, K.S. ‐H., Reitsma, J.M., Sonké, B., Taedoumg, H., Tan, S., White, L., Wöll, H., Lewis, S.L., 2012. What controls tropical forest architecture? Testing environmental, structural and floristic drivers. Glob. Ecol. Biogeogr. 21, 1179–1190. https://doi.org/10.1111/j.1466-8238.2012.00778.xspa
dc.relation.referencesBarrientos-Ramírez, L., Vargas-Radillo, J.J., Segura-Nieto, M., Manríquez-González, R., López-Dellamary Toral, F.A., 2015. Nutritional evaluation of mature seeds of Enterolobium cyclocarpum (parota) from diverse ecological zones in western Mexico. Bosque (Valdivia) 36, 95–103. https://doi.org/10.4067/S0717-92002015000100010spa
dc.relation.referencesBecknell, J.M., Powers, J.S., 2014. Stand age and soils as drivers of plant functional traits and aboveground biomass in secondary tropical dry forest. Can. J. For. Res. 613, 604–613. https://doi.org/10.1139/cjfr-2013-0331spa
dc.relation.referencesBorchert, R., 1994. Soil and Stem Water Storage Determine Phenology and Distribution of Tropical Dry Forest Trees. Ecology 75, 1437–1449. https://doi.org/10.2307/1937467spa
dc.relation.referencesBurns, R.M., Honkala, B.H., 1990. Silvics of North America - Volume 2, Hardwoods.spa
dc.relation.referencesButterfield, B.J., Suding, K.N., 2013. Single‐trait functional indices outperform multi‐trait indices in linking environmental gradients and ecosystem services in a complex landscape. J. Ecol. 101, 9–17. https://doi.org/10.1111/1365-2745.12013spa
dc.relation.referencesCárdenas-Henao, M., Londoño-Lemos, V., Llano-Almario, M., González-Colorado, Á.M., Rivera-Hernández, K.L., Vargas-Figueroa, J.A., Palacio, O.L.D.-, Torres-González, A.M., Jiménez-Taquinas, Á.C., Moreno-Cavazos, M.P., 2015. Fenología de cuatro especies arbóreas de bosque seco tropical en el Jardín Botánico Universitario, Universidad del Valle (Cali), Colombia. Actual. Biológicas, Vol 37, Iss 103, Pp 121-130 VO - 37 121. https://doi.org/10.17533/udea.acbi.v37n103a01spa
dc.relation.referencesCárdenas L, D., Salinas, N.R., 2006. Libro Rojo de las Plantas de Colombia. Especies maderables amenazadas I parte. Libr. rojo plantas Colomb. 234.spa
dc.relation.referencesCarvalho, P.E.R. De, 2004. Peroba-rosa - Aspidosperma polyneuron. Circ. Técnica 12.spa
dc.relation.referencesCastaño-Arboleda, N., Cárdenas, D., Rodriguez, E.O., 2007. Ecología, aprovechamiento y manejo sostenible de nueve especies de plantas del departamento del Amazonas, generadoras de productos maderables y no maderables. Convenio marco de cooperación interadministrativo No/002/2005.spa
dc.relation.referencesCavers, S., Navarro, C., Lowe, A.J., 2004. Targeting genetic resource conservation in widespread species: A case study of Cedrela odorata L. For. Ecol. Manage. 197, 285–294. https://doi.org/10.1016/j.foreco.2004.05.019spa
dc.relation.referencesChave, Coomes, D., Jansen, S., Sl, L., Ng, S., Ae, Z., 2009. Towards a worldwide wood economics spectrum.spa
dc.relation.referencesCole, T.G., Ewel, J.J., 2006. Allometric equations for four valuable tropical tree species. For. Ecol. Manage. 229, 351–360. https://doi.org/10.1016/j.foreco.2006.04.017spa
dc.relation.referencesCornelissen, J.H.C.A., Lavorel, S.B., Garnier, E.B., Díaz, S.C., Buchmann, N.D., Gurvich, D.E.C., Reich, P.B.E., Steege, H.F., Morgan, H.D.G., A, M.G.A.V.D.H., Pausas, J.G.H., Poorter, H.I., 2003. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide 335–380.spa
dc.relation.referencesDamasceno, J.O., Ruas, E.A., Rodrigues, L.A., Ruas, C.F., Bianchini, E., Pimenta, J.A., Ruas, P.M., 2011. Genetic differentiation in Aspidosperma polyneuron (Apocynaceae) over a short geographic distance as assessed by AFLP markers. Genet. Mol. Res. 10, 1180–1187. https://doi.org/10.4238/vol10-2gmr1126spa
dc.relation.referencesDíaz, S., Hodgson, J.G., Thompson, K., Cabido, M., Cornelissen, J.H.C., Jalili, A., Montserrat-Martí, G., Grime, J.P., Zarrinkamar, F., Asri, Y., Band, S.R., Basconcelo, S., Castro-Díez, P., Funes, G., Hamzehee, B., Khoshnevi, M., Pérez-Harguindeguy, N., Pérez-Rontomé, M.C., Shirvany, F.A., Vendramini, F., Yazdani, S., Abbas-Azimi, R., Bogaard, A., Boustani, S., Charles, M., Dehghan, M., Torres-Espuny, L. de, Falczuk, V., Guerrero-Campo, J., Hynd, A., Jones, G., Kowsary, E., Kazemi-Saeed, F., Maestro-Martínez, M., Romo-Díez, A., Shaw, S., Siavash, B., Villar-Salvador, P., Zak, M.R., 2004. The Plant Traits That Drive Ecosystems: Evidence from Three Continents. J. Veg. Sci. 15, 295.spa
dc.relation.referencesDick, C.W., Bermingham, E., Lemes, M.R., Gribel, R., 2007. Extreme long-distance dispersal of the lowland tropical rainforest tree Ceiba pentandra L. (Malvaceae) in Africa and the Neotropics. Mol. Ecol. 16, 3039–3049. https://doi.org/10.1111/j.1365-294X.2007.03341.xspa
dc.relation.referencesDirzo, R., Young, H.S., Mooney, H. a., Ceballos, G., 2011. Seasonallly Dry Tropical Forests - Ecology and Conservation.spa
dc.relation.referencesDonovan, L.A., Maherali, H., Caruso, C.M., Huber, H., Kroon, H. De, 2011. The evolution of the worldwide leaf economics spectrum 26. https://doi.org/10.1016/j.tree.2010.11.011spa
dc.relation.referencesDurr, P.A., 2001. The biology, ecology and agroforestry potential of the raintree, Samanea saman (Jacq.) Merr. Agrofor. Syst. 51, 223–237. https://doi.org/10.1023/A:1010765022497spa
dc.relation.referencesEamus, D., 1999. Ecophysiological traits of deciduous and evergreen woody species in the seasonally dry tropics. https://doi.org/10.1016/S0169-5347(98)01532-8spa
dc.relation.referencesFonseca, M.G., Martini, a M.Z., dos Santos, F. a M., 2004. Spatial structure of Aspidosperma polyneuron in two semi-deciduous forests in Southeast Brazil. J. Veg. Sci. 15, 41–48. https://doi.org/10.1658/1100-9233(2004)015[0041:SSOAPI]2.0.CO;2spa
dc.relation.referencesForoughbakhch, R., Alvarado-V??zquez, M.A., Hern??ndez-Pi??ero, J.L., Rocha-Estrada, A., Guzm??n-Lucio, M.A., Trevi??o-Garza, E.J., 2006. Establishment, growth and biomass production of 10 tree woody species introduced for reforestation and ecological restoration in northeastern Mexico. For. Ecol. Manage. 235, 194–201. https://doi.org/10.1016/j.foreco.2006.08.012spa
dc.relation.referencesFrancis, J.K., Lowe, C.A., Trabanino, S., 2000a. Bioecología de Arboles Nativos y Exóticos de Puerto Rico y las Indias Occidentales Silvics of Native and Exotic Trees of Puerto Rico and the Caribbean Islands.spa
dc.relation.referencesFrancis, J.K., Lowe, C.A., Trabanino, S., 2000b. Enterolobium cyclocarpum (Jacq.) Griseb, in: Bioecología de Árboles Nativos y Exóticos de Puerto Rico y Las Indias Occidentales. Departamento de Agricultura de los Estados Unidos, Río Piedras, Puerto Rico, pp. 195–199.spa
dc.relation.referencesFreschet, T., Cornelissen, J.H.C., Logtestijn, R.S.P. Van, 2010. Evidence of the ‘ plant economics spectrum ’ in a subarctic flora 362–373. https://doi.org/10.1111/j.1365-2745.2009.01615.xspa
dc.relation.referencesGardarin, A., Dürr, C., Colbach, N., 2011. Prediction of germination rates of weed species: Relationships between germination speed parameters and species traits. Ecol. Modell. 222, 626–636. https://doi.org/10.1016/j.ecolmodel.2010.10.005spa
dc.relation.referencesGómez Restrepo, M.L., Toro Murillo, J.L., Piedrahita Cardona, E., 2013. Propagación y conservación de especies arbóreas nativas.spa
dc.relation.referencesGonzález-M, R., Garcia, H., Isaacs, P., Cuadros, H., López-Camacho, R., Rodriguez, N., Pérez, K., Mijares, F., Castano-Naranjo, A., Jurado, R., Idárraga-Piedrahita, A., Rojas, A., Vergara, H., Pizano, C., 2018. Disentangling the environmental heterogeneity, floristic distinctiveness and current threats of tropical dry forests in Colombia. Environ. Res. Lett. 13. https://doi.org/10.1088/1748-9326/aaad74spa
dc.relation.referencesGourlet-fleury, S., Rossi, V., Rejou-mechain, M., Freycon, V., Cornu, G., Ge, J., Fayolle, A., Saint-andre, L., Billand, A., Fauvet, N., Sarrailh, J., Flores, O., Gally, M., Henry, M., Hubert, D., Pasquier, A., 2011. Environmental filtering of dense-wooded species controls above-ground biomass stored in African moist forests 981–990. https://doi.org/10.1111/j.1365-2745.2011.01829.xspa
dc.relation.referencesHavermaet, R. Van, 2015. Faculty Bioscience Engineering Characterization of functional diversity of priority tree species across their distribution ranges in Colombian tropical dry forest to inform ecological restoration practice and in situ conservation strategies Master in Bios.spa
dc.relation.referencesHulshof, C.M., Swenson, N.G., 2010. Variation in leaf functional trait values within and across individuals and species: An example from a Costa Rican dry forest. Funct. Ecol. 24, 217–223. https://doi.org/10.1111/j.1365-2435.2009.01614.xspa
dc.relation.referencesIAvH, 2014. El Bosque Seco Tropical en Colombia. https://doi.org/10.1007/s13398-014-0173-7.2spa
dc.relation.referencesIdowy, A.B., Babaloa, O.D., Ademolu, K.O., 2006. The Physiological Impact on the consumption of Albizia saman Pods by Albino Rats. J. Anim. Vet. Adv. 7, 585–589.spa
dc.relation.referencesJager, M.M., Richardson, S.J., Bellingham, P.J., Clearwater, M.J., Laughlin, D.C., 2015. Soil fertility induces coordinated responses of multiple independent functional traits. J. Ecol. 103, 374–385. https://doi.org/10.1111/1365-2745.12366spa
dc.relation.referencesJanzen, D.H., 1981. Enterolobium Cyclocarpum Seed Passage Rate and Survival in Horses , Costa Rican Pleistocene Seed Dispersal Agents. Ecology 62, 593–601.spa
dc.relation.referencesJiménez-Escobar, N.D., Estupiñán-González, A.C., de Albuquerque, U.P., Alves, R.R.N., 2011. Useful trees of the Caribbean Region of Colombia. Bioremediation, Biodivers. Bioavailab. 5, 65–79.spa
dc.relation.referencesJopaul, G., Panzou, L., Ligot, G., Fleury, S.G., Louis, J., Eric, D., Jean, F., Loumeto, J., Fayolle, A., 2018. Architectural differences associated with functional traits among 45 coexisting tree species in Central Africa 2583–2593. https://doi.org/10.1111/1365-2435.13198spa
dc.relation.referencesJung, V., Albert, C.H., Violle, C., Kunstler, G., Loucougaray, G., Spiegelberger, T., 2014. Intraspecific trait variability mediates the response of subalpine grassland communities to extreme drought events. J. Ecol. 102, 45–53. https://doi.org/10.1111/1365-2745.12177spa
dc.relation.referencesJung, V., Violle, C., Mondy, C., Hoffmann, L., Muller, S., 2010. Intraspecific variability and trait‐based community assembly. J. Ecol. 98, 1134–1140. https://doi.org/10.1111/j.1365-2745.2010.01687.xspa
dc.relation.referencesKasthurirengan, S., Xie, L., Li, C.H., Fong, Y.K., Hong, Y., 2013. In vitro propagation and assessment of genetic stability of micropropagated Samanea saman (rain tree) using microsatellite markers. Acta Physiol. Plant. 35, 2467–2474. https://doi.org/10.1007/s11738-013-1281-2spa
dc.relation.referencesKeddy, P.A., 1992. Assembly and Response Rules: Two Goals for Predictive Community Ecology. J. Veg. Sci. 3, 157.spa
dc.relation.referencesKhurana, E., Singh, J.S., 2001. Ecology of tree seed and seedlings: Implications for tropical forest conservation and restoration. Curr. Sci. 80, 748–757. https://doi.org/10.1177/0263276402019004003spa
dc.relation.referencesKichenin, E., Wardle, D.A., Peltzer, D.A., Morse, C.W., Freschet, G.T., 2013. Contrasting effects of plant inter‐ and intraspecific variation on community‐level trait measures along an environmental gradient. Funct. Ecol. 27, 1254–1261. https://doi.org/10.1111/1365-2435.12116spa
dc.relation.referencesLaborde, J., Corrales-Ferrayola, I., 2012. Direct seeding of Brosimum alicastrum Sw. (Moraceae) and Enterolobium cyclocarpum (Jacq.) Griseb. (mimosaceae) in different habitats in the dry tropics of Central Veracruz. Acta Bot. Mex. 100, 107–134.spa
dc.relation.referencesLacerda, A.E.B. de, Kanashiro, M., Sebbenn, A.M., 2008. Effects of Reduced Impact Logging on genetic diversity and spatial genetic structure of a Hymenaea courbaril population in the Brazilian Amazon Forest. For. Ecol. Manage. 255, 1034–1043. https://doi.org/10.1016/j.foreco.2007.10.009spa
dc.relation.referencesLasky, J.R., Uriarte, M., Muscarella, R., 2016. Synchrony, compensatory dynamics, and the functional trait basis of phenological diversity in a tropical dry forest tree community: effects of rainfall seasonality. Environ. Res. Lett. 11, 115003. https://doi.org/10.1088/1748-9326/11/11/115003spa
dc.relation.referencesLecerf, A., Chauvet, E., 2008. Intraspecific variability in leaf traits strongly affects alder leaf decomposition in a stream. Basic Appl. Ecol. 9, 598–605. https://doi.org/https://doi.org/10.1016/j.baae.2007.11.003spa
dc.relation.referencesLohbeck, M., Lebrija-Trejos, E., Martínez-Ramos, M., Meave, J.A., Poorter, L., Bongers, F., 2015. Functional Trait Strategies of Trees in Dry and Wet Tropical Forests Are Similar but Differ in Their Consequences for Succession. PLoS One 10, e0123741. https://doi.org/10.1371/journal.pone.0123741spa
dc.relation.referencesLongui, E.L., Gondo, C.C.S., de Lima, I.L., Freitas, M.L.M., Florsheim, S.M.B., Zanatto, A.C.S., Garcia, J.N., 2016. Some properties of Astronium graveolens wood along the stem. Floresta e Ambient. 23, 142–149. https://doi.org/10.1590/2179-8087.109714spa
dc.relation.referencesMarkesteijn, L., 2010. Drought tolerance of tropical trees species: Functional Traits , Trade-offs and Species Distribution. Wageningen University.spa
dc.relation.referencesMartinez Pacheco, M.M., Del Rio, R.E., Flores Garcia, A., Martinez Muñoz, R.E., Ron Echeverria, O.A., Raya Gonzalez, D., 2012. Enterolobium cyclocarpum (Jacq.) Griseb.: The biotechnological profile of a tropical tree . Bol. Latinoam. y del Caribe Plantas Med. y Aromat. 11, 385–399.spa
dc.relation.referencesMéndez-Toribio, M., Ibarra-Manríquez, G., Navarrete-Segueda, A., Paz, H., 2017. Topographic position, but not slope aspect, drives the dominance of functional strategies of tropical dry forest trees. Environ. Res. Lett. 12.spa
dc.relation.referencesMéndez-Toribio, M., Zermeño-Hernández, I., Ibarra-Manríquez, G.(, Meave, J.A., 2016. Effects of slope aspect and topographic position on environmental variables, disturbance regime and tree community attributes in a seasonal tropical dry forest. J. Veg. Sci. 27, 1094–1103. https://doi.org/10.1111/jvs.12455spa
dc.relation.referencesMessier, J., Lechowicz, M.J., McGill, B.J., Violle, C., Enquist, B.J., 2017a. Interspecific integration of trait dimensions at local scales: the plant phenotype as an integrated network. J. Ecol. 105, 1775–1790. https://doi.org/10.1111/1365-2745.12755spa
dc.relation.referencesMessier, J., McGill, B.J., Enquist, B.J., Lechowicz, M.J., 2017b. Trait variation and integration across scales: is the leaf economic spectrum present at local scales? Ecography (Cop.). 40, 685–697. https://doi.org/10.1111/ecog.02006spa
dc.relation.referencesMessier, J., McGill, B.J., Lechowicz, M.J., 2010. How do traits vary across ecological scales? A case for trait-based ecology. Ecol. Lett. 13, 838–848. https://doi.org/10.1111/j.1461-0248.2010.01476.xspa
dc.relation.referencesMessier, J., Violle, C., Enquist, B.J., Lechowicz, M.J., McGill, B.J., 2018. Similarities and differences in intrapopulation trait correlations of co‐occurring tree species: consistent water‐use relationships amid widely different correlation patterns. Am. J. Bot. 105, 1477–1490. https://doi.org/10.1002/ajb2.1146spa
dc.relation.referencesMiles, L., Newton, A.C., DeFries, R.S., Ravilious, C., May, I., Blyth, S., Kapos, V., Gordon, J.E., 2006. A global overview of the conservation status of tropical dry forests. J. Biogeogr. 33, 491–505. https://doi.org/10.1111/j.1365-2699.2005.01424.xspa
dc.relation.referencesMurphy, P.G., Lugo, A.E., 1986. Ecology of Tropical Dry Forest. Ann. Rev. Ecol. Syst. 17, 67–88.spa
dc.relation.referencesMurren, C.J., 2002. Phenotypic integration in plants. Plant Species Biol. 17, 89–99. https://doi.org/10.1046/j.1442-1984.2002.00079.xspa
dc.relation.referencesNavarro, C., Montagnini, F., Hernández, G., 2004. Genetic variability of Cedrela odorata Linnaeus: Results of early performance of provenances and families from Mesoamerica grown in association with coffee. For. Ecol. Manage. 192, 217–227. https://doi.org/10.1016/j.foreco.2004.01.037spa
dc.relation.referencesNiklas, K.J., 1995. Size-dependent Allometry of Tree Height, Diameter and Trunk-taper. Ann. Bot. 75, 217.spa
dc.relation.referencesNoguchi, D.K., Nunes, G.P., Sartori, Â.L.B., 2009. Florística e síndromes de dispersão de espécies arbóreas em remanescentes de Chaco de Porto Murtinho, Mato Grosso do Sul, Brasil. Rodriguésia, 60.spa
dc.relation.referencesOkolie, P.N., Uaboi-Egbenni, P.O., Ajekwene, a E., 2012. Extraction and Quality Evaluation of Sandbox Tree Seed ( Hura crepitan ) Oil. World J. Agric. Sci. 8, 359–365. https://doi.org/10.5829/idosi.wjas.2012.8.4.1119spa
dc.relation.referencesOni, A.O., Onkuwa, C.F.I., Oduguwa, O.O., Onifade, O.S., Arigbede, O.M., Oni, O.O., Anele, U.Y., 2006. Nutrients intake and digestibility by West African dwarf goats fed Enterolobium cyclocarpum (Jacq.) Griseb. Basal diet and citrus pulp-based diets. J. Anim. Vet. Adv. 5, 828–831.spa
dc.relation.referencesPandey, S.K., Singh, H., Singh, J.S., 2013. Contrasting leaf phenology of woody species of dry tropical forest. Plant Biosyst. - An Int. J. Deal. with all Asp. Plant Biol. 148, 655–665. https://doi.org/10.1080/11263504.2013.788092spa
dc.relation.referencesPennington, R., Lewis, G., Ratter, J., 2006. Neotropical Savannas and Seasonally Dry Forests: Plant diversity, biogeography, and conservation. https://doi.org/10.1201/9781420004496spa
dc.relation.referencesPérez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., Bret-Harte, M.S., Cornwell, W.K., Craine, J.M., Gurvich, D.E., Urcelay, C., Veneklaas, E.J., Reich, P.B., Poorter, L., Wright, I.J., Ray, P., Enrico, L., Pausas, J.G., De Vos, a. C., Buchmann, N., Funes, G., Quétier, F., Hodgson, J.G., Thompson, K., Morgan, H.D., Ter Steege, H., Van Der Heijden, M.G. a, Sack, L., Blonder, B., Poschlod, P., Vaieretti, M. V., Conti, G., Staver, a. C., Aquino, S., Cornelissen, J.H.C., 2013. New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 61, 167–234. https://doi.org/10.1071/BT12225spa
dc.relation.referencesPigliucci, M., 2003. Phenotypic integration: studying the ecology and evolution of complex phenotypes. Ecol. Lett. VO - 6 265.spa
dc.relation.referencesPizano, C., García, H., 2014. El bosque seco tropical en Colombia. Bogotá Instituto de Investigación de Recursos Biológicos Alexander Von Humboldt Ministerio de Ambiente y Desarrollo Sostenible, 2014.spa
dc.relation.referencesPoorter, L., 2009. Leaf Traits Show Different Relationships with Shade Tolerance in Moist versus Dry Tropical Forests. New Phytol. 181, 890. https://doi.org/10.1111/j.1469-8137.2008.02715.xspa
dc.relation.referencesPoorter, L., Bongers, F., Sterck, F.J., Wöll, H., 2003. Architecture of 53 Rain Forest Tree Species Differing in Adult Stature and Shade Tolerance. Ecology 84, 602.spa
dc.relation.referencesPoorter, L., Bongers, L., Bongers, F., 2006. Architecture of 54 moist-forest tree species: Traits, trade-offs, and functional groups. Ecology 87, 1289–1301. https://doi.org/10.1890/0012-9658(2006)87[1289:AOMTST]2.0.CO;2spa
dc.relation.referencesPoorter, L., Castilho, C. V, Schietti, J., Oliveira, R.S., 2018. Can traits predict individual growth performance ? A test in a hyperdiverse tropical forest 109–121. https://doi.org/10.1111/nph.15206spa
dc.relation.referencesPoorter, L., Markesteijn, L., 2008. Seedling Traits Determine Drought Tolerance of Tropical Tree Species 40, 321–331.spa
dc.relation.referencesPoorter, L., McDonald, I., Alarcón, A., Fichtler, E., Licona, J.C., Peña-Claros, M., Sterck, F., Villegas, Z., Sass-Klaassen, U., 2010. The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. New Phytol. 185, 481–492. https://doi.org/10.1111/j.1469-8137.2009.03092.xspa
dc.relation.referencesPoorter, L., Rozendaal, D.M.A., Bongers, F., de Almeida-Cortez, J.S., Almeyda Zambrano, A.M., Álvarez, F.S., Andrade, J.L., Villa, L.F.A., Balvanera, P., Becknell, J.M., Bentos, T. V, Bhaskar, R., Boukili, V., Brancalion, P.H.S., Broadbent, E.N., César, R.G., Chave, J., Chazdon, R.L., Colletta, G.D., Craven, D., de Jong, B.H.J., Denslow, J.S., Dent, D.H., DeWalt, S.J., García, E.D., Dupuy, J.M., Durán, S.M., Espírito Santo, M.M., Fandiño, M.C., Fernandes, G.W., Finegan, B., Moser, V.G., Hall, J.S., Hernández-Stefanoni, J.L., Jakovac, C.C., Junqueira, A.B., Kennard, D., Lebrija-Trejos, E., Letcher, S.G., Lohbeck, M., Lopez, O.R., Marín-Spiotta, E., Martínez-Ramos, M., Martins, S. V, Massoca, P.E.S., Meave, J.A., Mesquita, R., Mora, F., de Souza Moreno, V., Müller, S.C., Muñoz, R., Muscarella, R., de Oliveira Neto, S.N., Nunes, Y.R.F., Ochoa-Gaona, S., Paz, H., Peña-Claros, M., Piotto, D., Ruíz, J., Sanaphre-Villanueva, L., Sanchez-Azofeifa, A., Schwartz, N.B., Steininger, M.K., Thomas, W.W., Toledo, M., Uriarte, M., Utrera, L.P., van Breugel, M., van der Sande, M.T., van der Wal, H., Veloso, M.D.M., Vester, H.F.M., Vieira, I.C.G., Villa, P.M., Williamson, G.B., Wright, S.J., Zanini, K.J., Zimmerman, J.K., Westoby, M., 2019. Wet and dry tropical forests show opposite successional pathways in wood density but converge over time. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-019-0882-6spa
dc.relation.referencesPowers, J.S., Becknell, J.M., Irving, J., Pèrez-Aviles, D., 2009. Diversity and structure of regenerating tropical dry forests in Costa Rica: Geographic patterns and environmental drivers. For. Ecol. Manage. 258, 959–970. https://doi.org/10.1016/j.foreco.2008.10.036spa
dc.relation.referencesQuesada, M., Sanchez-Azofeifa, G.A., Alvarez-Añorve, M., Stoner, K.E., Avila-Cabadilla, L., Calvo-Alvarado, J., Castillo, A., Espírito-Santo, M.M., Fagundes, M., Fernandes, G.W., Gamon, J., Lopezaraiza-Mikel, M., Lawrence, D., Morellato, L.P.C., Powers, J.S., Neves, F.D.S., Rosas-Guerrero, V., Sayago, R., Sanchez-Montoya, G., 2009. Succession and management of tropical dry forests in the Americas: Review and new perspectives. For. Ecol. Manage. 258, 1014–1024. https://doi.org/10.1016/j.foreco.2009.06.023spa
dc.relation.referencesReich, P.B., Wright, I.J., Cavender‐Bares, J., Craine, J.M., Oleksyn, J., Westoby, M., Walters, M.B., 2003. The Evolution of Plant Functional Variation: Traits, Spectra, and Strategies. Int. J. Plant Sci. 164, S143–S164. https://doi.org/10.1086/374368spa
dc.relation.referencesRk, C., Sk, P., Bhadouria, R., Singh, S., As, R., 2018. Woody species in tropical dry forest exhibit plasticity in physiological traits in response to variations in soil properties. https://doi.org/10.15406/mojes.2018.03.00114spa
dc.relation.referencesRomán, F., De Liones, R., Sautu, A., Deago, J., Hall, J.S., 2012. Guía para la propagación de 120 especies de árboles nativos de Panamá y el Neotrópico. Environmental Leadership and Training Iniative - ELTI.spa
dc.relation.referencesSalgado-Negret, B., Paz, H., 2015. Escalando de los rasgos funcionales a procesos poblacionales, comunitarios y ecosistémicos, La ecología funcional como aproximación al estudio, manejo y conservación de la biodiversidad: protocolos y aplicaciones.spa
dc.relation.referencesSalgado Negret, B., 2016. La ecología funcional como aproximación al estudio, manejo y conservación de la biodiversidad : protocolos y aplicaciones. Bogotá Instituto Alexander von Humboldt, 2016.spa
dc.relation.referencesSalinas-Melgoza, M., Skutsch, M., Lovett, J., 2018. Predicting aboveground forest biomass with topographic variables in human-impacted tropical dry forest landscapes. Ecosphere 9. https://doi.org/10.1002/ecs2.2063spa
dc.relation.referencesSánchez-Azofeifa, A., Powers, J.S., Fernandes, G.W., Quesada, M., 2014. Tropical dry forests in the Americas : ecology, conservation, and management. Boca Raton, Fl CRC Press, ©2014.spa
dc.relation.referencesSchöb, C., Armas, C., Guler, M., Prieto, I., Pugnaire, F.I., 2013. Variability in functional traits mediates plant interactions along stress gradients. J. Ecol. 101, 753–762. https://doi.org/10.1111/1365-2745.12062spa
dc.relation.referencesShipley, B., Vu, T., 2002. Dry matter content as a measure of dry matter concentration in plants and their parts. New Phytol. 153, 359–364. https://doi.org/10.1046/j.0028-646X.2001.00320.xspa
dc.relation.referencesSiefert, A., Ritchie, M.E., 2016. Intraspecific trait variation drives functional responses of old-field plant communities to nutrient enrichment. Oecologia 181, 245–255. https://doi.org/10.1007/s00442-016-3563-zspa
dc.relation.referencesSiefert, A., Violle, C., Chalmandrier, L., Albert, C.H., Taudiere, A., Fajardo, A., Aarssen, L.W., Baraloto, C., Carlucci, M.B., Cianciaruso, M. V, Dantas, V.L., Bello, F., Duarte, L.D.S., Fonseca, C.R., Freschet, G.T., Gaucherand, S., Gross, N., Hikosaka, K., Jackson, B., Jung, V., Kamiyama, C., Katabuchi, M., Kembel, S.W., Kichenin, E., Kraft, N.J.B., Lagerström, A., Bagousse‐Pinguet, Y. Le, Li, Y., Mason, N., Messier, J., Nakashizuka, T., Overton, J.M., Peltzer, D.A., Pérez‐Ramos, I.M., Pillar, V.D., Prentice, H.C., Richardson, S., Sasaki, T., Schamp, B.S., Schöb, C., Shipley, B., Sundqvist, M., Sykes, M.T., Vandewalle, M., Wardle, D.A., 2015. A global meta‐analysis of the relative extent of intraspecific trait variation in plant communities. Ecol. Lett. 18, 1406–1419. https://doi.org/10.1111/ele.12508spa
dc.relation.referencesSlot, M., Poorter, L., 2007. Diversity of Tropical Tree Seedling Responses to Drought 39, 683–690. https://doi.org/doi:10.1111/j.1744-7429.2007.00328.xspa
dc.relation.referencesThomas, E., Jalonen, R., Loo, J., Boshier, D., Gallo, L., Cavers, S., Bordács, S., Smith, P., Bozzano, M., 2014. Genetic considerations in ecosystem restoration using native tree species. For. Ecol. Manage. 2020. https://doi.org/10.1016/j.foreco.2014.07.015spa
dc.relation.referencesUlibarri, E.A., 1996. Sipnosis de Caesalpinia y Hoffmannseggia (Leguminosae-Caesalpinoideae) de Sudamérica. Darwiniana 34, 299–348.spa
dc.relation.referencesVillacís, J., Casanoves, F., Hang, S., Keesstra, S., Armas, C., 2016. Selection of forest species for the rehabilitation of disturbed soils in oil fields in the Ecuadorian Amazon. Sci. Total Environ. 566–567, 761–770. https://doi.org/http://dx.doi.org/10.1016/j.scitotenv.2016.05.102spa
dc.relation.referencesViolle, C., Navas, M., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., Garnier, E., 2007. Let the concept of trait be functional! Oikos 116, 882–892. https://doi.org/10.1111/j.0030-1299.2007.15559.xspa
dc.relation.referencesWright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J.H.C., Diemer, M., Flexas, J., Garnier, E., Groom, P.K., Gulias, J., Hikosaka, K., Lamont, B.B., Lee, T., Lee, W., Lusk, C., Midgley, J.J., Navas, M.-L., Niinemets, Ü., Oleksyn, J., Osada, N., Poorter, H., Poot, P., Prior, L., Pyankov, V.I., Roumet, C., Thomas, S.C., Tjoelker, M.G., Veneklaas, E.J., Villar, R., 2004. The worldwide leaf economics spectrum. Nature 428, 821–827. https://doi.org/10.1038/nature02403spa
dc.relation.referencesXu, X., Medvigy, D., Powers, J.S., Becknell, J.M., Guan, K., 2016. Diversity in plant hydraulic traits explains seasonal and inter-annual variations of vegetation dynamics in seasonally dry tropical forests.spa
dc.relation.referencesZahawi, R.A., Holl, K.D., 2009. Comparing the performance of tree stakes and seedlings to restore abandoned tropical pastures. Restor. Ecol. 17, 854–864. https://doi.org/10.1111/j.1526-100X.2008.00423.xspa
dc.relation.referencesZuur, A.F., Ieno, E.N., Elphick, C.S., 2010. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14. https://doi.org/10.1111/j.2041-210X.2009.00spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc570 - Biología::577 - Ecologíaspa
dc.subject.ddc580 - Plantasspa
dc.subject.ddc330 - Economía::333 - Economía de la tierra y de la energíaspa
dc.subject.lembBosques tropicales - Colombia
dc.subject.lembEcosistemas vulnerables - Colombia
dc.subject.lembConservación de los recursos naturales - Colombia
dc.subject.lembGestión de ecosistemas - Colombia
dc.subject.lembArboles - Colombia
dc.subject.proposalBosque seco tropicalspa
dc.subject.proposalrasgos funcionalesspa
dc.subject.proposalvariabilidad interespecífica e intraespecíficaspa
dc.subject.proposalvariables ambientalesspa
dc.subject.proposalTropical dry foresteng
dc.subject.proposalfunctional traitseng
dc.subject.proposalinterspecific and intraspecific variabilityeng
dc.subject.proposalenvironmental variableseng
dc.titleVariabilidad de rasgos funcionales en especies arbóreas del bosque seco tropical de Colombiaspa
dc.title.translatedVariability of functional traits in tree species of the tropical dry forest of Colombiaeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleDesarrollo de protocolos de restauración ecológica de la diversidad florística y genética del bosque seco tropical de Colombiaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1036638841.2019.pdf
Tamaño:
2.78 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Bosques y Conservación Ambiental

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: