Evaluación de la cedencia y la resistencia al corte en suelos provenientes de cenizas volcánicas con diferentes contenidos de alófana

dc.contributor.advisorColmenares Montañez, Julio Estebanspa
dc.contributor.authorNavarrete Redondo, Diego Nicolasspa
dc.contributor.researchgroupGeotechnical Engineering Knowledge and Innovation Genkieng
dc.date.accessioned2024-06-19T01:34:31Z
dc.date.available2024-06-19T01:34:31Z
dc.date.issued2024-06
dc.descriptionilustraciones, diagramas, fotografías, mapasspa
dc.description.abstractLos depósitos de ceniza volcánica expuestos a las condiciones medioambientales atraviesan un proceso de meteorización química que lleva a la formación de minerales como la alófana, la imogolita y la haloisita; la presencia de estos minerales condiciona la fábrica, la estructura y el comportamiento mecánico de los suelos derivados de cenizas volcánicas. Con el fin de evaluar las características físicas, la composición, el comportamiento de la resistencia al corte y la cedencia de este tipo de materiales en condición inalterada, se tomaron muestras de suelo en el Municipio de Montenegro, Quindío. Se realizaron ensayos de caracterización química, se evaluaron sus propiedades índice y se efectuaron ensayos de compresión triaxial, consolidación unidimensional e isotrópica, con el fin de obtener los parámetros de resistencia y deformabilidad de los suelos derivados de ceniza volcánica objeto de estudio. A partir de los resultados obtenidos, se logró identificar la importancia y la influencia de la alófana en el comportamiento geomecánico de este tipo de suelos, analizando sus causas y posibles implicaciones en el desarrollo de la cedencia y la resistencia al corte. Posteriormente, se evaluó la capacidad de predecir la cedencia inicial de los materiales estudiados, mediante la implementación del criterio de falla Mohr Coulomb y de los modelos del estado crítico Cam-Clay (CC), Cam-Clay Modificado (MCC) y Clay and Sand Model (CASM), identificando que el modelo CASM logra estimar adecuadamente la superficie de decencia en el espacio p’-q. (Texto tomado de la fuente).spa
dc.description.abstractVolcanic ash deposits exposed to environmental conditions undergo a chemical weathering process that leads to the formation of minerals such as allophane, imogolite and haloisite; the presence of those minerals condition the fabric, the structure, and the mechanical behavior of volcanic ash soils. In order to evaluate the physical characteristics, the soil composition, the shear strength behavior and the yielding of this type of material in unaltered condition, soil samples taken from Montenegro, Quindío. Chemical characterization tests were carried out, their index properties were evaluated and triaxial compression, one-dimensional and isotropic consolidation tests were performed, in order to obtain the strength and deformability parameters of the volcanic ash soils under study. From the results obtained, it was possible to identify the importance and influence of allophane in the geomechanical behavior of this type of soils, analyzing its causes and possible implications in the development of yielding and shear strength. Subsequently, the capability of predicting the initial yielding of the materials studied was evaluated by implementing the Mohr Coulomb failure criterion and the critical state models Cam-Clay (CC), Modified Cam-Clay (MCC) and Clay And Sand Model (CASM), identifying that the CASM model is able to adequately estimate the yield surface in the p'-q space.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Geotecniaspa
dc.description.researchareaInvestigación basica en suelos residuales y parcialmente saturadosspa
dc.format.extentxvii, 126 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86267
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Geotecniaspa
dc.relation.referencesAllbrook, R. F. (1985). The effect of allophane on soil properties. Applied Clay Science, 1(1–2), 65–69. https://doi.org/10.1016/0169-1317(85)90562-9spa
dc.relation.referencesASTM International. (1998). Wet Preparation of Soil Samples for Particle-Size Analysis and Determination of Soil Constants, ASTM D2217.spa
dc.relation.referencesASTM International. (2002). Standard Test Methods for Specific Gravity of Soil Solids by the Water Displacement Method, ASTM D854.spa
dc.relation.referencesASTM International. (2011). Standard Test Method for Consolidated Undrained Triaxial Compression Test for Cohesive Soils, ASTM D4767-11.spa
dc.relation.referencesASTM International. (2018). Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils, ASTM D4318-17.spa
dc.relation.referencesASTM International. (2019). Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass, ASTM D2216-19 (ASTM D2216-19).spa
dc.relation.referencesASTM International. (2020). Standard Test Method for Consolidated Drained Triaxial Compression Test for Soils, ASTM D7181-20.spa
dc.relation.referencesASTM International. (2021). Standard Test Methods for Laboratory Determination of Density and Unit Weight of Soil Specimens, ASTM D7263-21.spa
dc.relation.referencesAtkins, P., de Paula, J., & Smith, D. (2017). Elements of Physical Chemistry (7th ed.). Oxford University Press.spa
dc.relation.referencesAtkinson, J. (2007). The Mechanics of Soils and Foundations (Taylor & Francis (ed.); 2th ed.).spa
dc.relation.referencesBasto Urbina, D. F. (2022). Influencia de la cementación en la resistencia al corte de un suelo de la Orinoquía colombiana [Tesis de Maestría, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/82921spa
dc.relation.referencesBecker, D. E., Crooks, J. H. A., Been, K., & Jefferies, M. (1987). Work as a criterion for determining in situ and yield stresses in clays. Canadian Geotechnical Journal, 24(4), 549–564. doi.org/10.1139/t87-070spa
dc.relation.referencesBeen, K., & Jefferies, M. G. (1985). A state parameter for sands. Geotechnique, 35(2), 99–112.spa
dc.relation.referencesBesoain, E. (1967). Imogolite in Volcanic Soils of Chile. Geoderma, 2, 151–169.spa
dc.relation.referencesBesoain, E. (1985). Mineralogía de arcillas de suelos. Instituto Interamericano de Cooperación para la Agricultura (IICA).spa
dc.relation.referencesBlight, G. E., & Leong, E. C. (2012). Mechanics of Residual Soils. In Environmental & Engineering Geoscience (Second Edi). Taylor & Francis Group. https://doi.org/10.2113/gseegeosci.v.2.255spa
dc.relation.referencesBradley, M. S. (2007). Curve Fitting in Raman and IR Spectroscopy: Basic Theory of Line Shapes and Applications. Thermo Fisher Scientific, Applicatio, 1–4.spa
dc.relation.referencesBudhu, M. (2010). Soil mechanics and foundations (3th ed.). John Wiley & Sons, Inc.spa
dc.relation.referencesBuiles, M. A., Gomez, D. V., & Millan, Á. A. (2009). Inherent anisotropy in allophane clay in Colombia. In IOS Press (Ed.), 17th International Conference on Soil Mechanics and Geotechnical Engineering (pp. 193–196). IOS Press.spa
dc.relation.referencesBurland, J. B. (1990). On the compressibility and shear strength of natural clays. Geotechnique, 40(3), 329–378.spa
dc.relation.referencesBurland, J. B., Rampello, S., Georgiannou, V. N., & Calabresi, G. (1996). A laboratory study of the strength of four stiff clays. Geotechnique, 46(3), 491–514.spa
dc.relation.referencesCardona Lindo, C. M., & Roman, N. L. (2002). Caracterización parcial de suelos con fines forenses en la Comuna 4 de Armenia - Quindío [Tesis de Grado, Universidad del Quindío]. https://bdigital.uniquindio.edu.co/handle/001/5022spa
dc.relation.referencesClabel, J. L., Nicolodelli, G., Senesi, G. S., Montes, C. R., Perruci, F., Bezzon, V. D. N., Balogh, D. T., & Milori, D. M. B. P. (2020). Organo-mineral associations in a Spodosol from northern Brazil. Geoderma Regional, 22(e00303).spa
dc.relation.referencesCraig, R. F. (2004). Craig’s Soil Mechanics (7th ed.). Spon Press.spa
dc.relation.referencesDeere, D. V., & Patton, F. D. (1971). Slope stability in residual soils. 4th Panamerican Conf. Soil Mechanics and Foundation Engineering, 87–170.spa
dc.relation.referencesDev, K. L., Pillai, R. J., & Robinson, R. G. (2013). Estimation of Critical State Parameters from One-dimensional Consolidation and Triaxial Compression Tests. Indian Geotechnical Journal, 43(3), 229–237.spa
dc.relation.referencesDixon, J. B., Schulze, D. G., Harsh, J., Chorover, J., & Nizeyimana, E. (2002). Allophane and Imogolite. In Soil Mineralogy with Environmental Applications (pp. 291–322). Soil Science Society of America, Inc.spa
dc.relation.referencesDomínguez Soto, J. M., Serrano Lopez, S. S., Acevedo Sandoval, O. A., & Román Gutiérrez, A. D. (2012). Estudio físico-químico y micromorfologíco de suelos de Denganthza, Valle del Mezquital, Hidalgo. MULTICIENCIAS, 12(2), 146–155.spa
dc.relation.referencesFAO. (1998). Mineral Soils conditioned by Parent Material. The World Reference Base for Soil Resources. http://www.fao.org/3/y1899e/y1899e06.htmspa
dc.relation.referencesFiantis, D., Nelsonb, M., Shamshuddinc, J., Gohd, T. B., & Van Ranst, E. (2010). Determination of the geochemical Weathering Indices and trace elements content of new volcanic ash deposits from Mt. Talang (West Sumatra) Indonesia. Eurasian Soil Science, 43(13), 1477–1485.spa
dc.relation.referencesFieldes, M., & Perrott, K. W. (1966). The nature of allophane in soils. New Zealand Journal of Science, 9, 623–629.spa
dc.relation.referencesGalvis Castro, A. C. (2018). Estudio del comportamiento esfuerzo – deformación – tiempo de un suelo derivado de ceniza volcánica [Tesis de Maestria, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/69230spa
dc.relation.referencesGarcía-Leal, J. C. (2004). Efecto de los cambios de humedad en la resistencia de un suelo parcialmente saturado derivado de ceniza volcánica [Tesis de Maestria, Universidad Nacional de Colombia]. Repositorio Institucional UNspa
dc.relation.referencesGarcía-Leal, J. C., & Colmenares, J. E. (2011). Predicción de la resistencia al corte en los suelos naturales derivados de ceniza volcánica. 2011 Pan-Am CGS Geotechnical Conference, 8.spa
dc.relation.referencesGobernación del Quindío. (2023). Montenegro. https://quindio.gov.co/montenegro/montenegrospa
dc.relation.referencesGonzález Molano, N. A. (2011). Development of a family of constitutive models for geotechnical applications [Tesis de Doctorado, Universitat Politècnica de Catalunya]. https://www.educacion.gob.es/teseo/mostrarRef.do?ref=339453spa
dc.relation.referencesGriffiths, V. D., & Gioda, G. (2001). Advanced Numerical Applications and Plasticity in Geomechanics (Springer-Verlag Wien GmbH (ed.); CISM Cours). Springer-Verlag Wien GmbH.spa
dc.relation.referencesGriffiths, V. D., & Smith, I. M. (2014). Programming the Finite Element Method (John Wiley & Sons Ltd (ed.); Fifth). John Wiley & Sons Ltd.spa
dc.relation.referencesHandy, R. L. (2007). Geotechnical Engineering: Soil and Foundation Principles and Practice (McGraw-Hill (ed.); 5th ed.). McGraw-Hill.spa
dc.relation.referencesHerrera, M. C. (2006). Suelos derivados de cenizas volcánicas en Colombia : Estudio fundamental e implicaciones en ingenieria [Tesis de Doctorado, Universidad de los Andes]. http://hdl.handle.net/1992/7812spa
dc.relation.referencesHuang, P. M., Li, Y., & Sumner, M. E. (2012). Handbook of Soil Sciences: Properties and Processes (P. M. Huang, Y. Li, & M. E. Sumner (eds.); second). CRC Press.spa
dc.relation.referencesHuat, B. B. K., Toll, D. G., & Prasad, A. (2013). Handbook of Tropical Residual Soils Engineering. Taylor & Francis Group.spa
dc.relation.referencesHumberto Caballero A., G. Z. G. et. al. (1984). Geología y Geoquímica de la plancha 224 Pereira escala 1:100.000.spa
dc.relation.referencesNGEOMINAS, & FOREC. (2000). Zonificación de amenazas geológicas para los municipios del Eje Cafetero afectados por el sismo del 25 de enero de 1999 Volumen II - Zonificación Regional.spa
dc.relation.referencesINVIAS. (2013). Normas de ensayo de materiales para carreteras, Sección 100 - Suelos (INVIAS (ed.)). INVIAS.spa
dc.relation.referencesIyoda, F., Hayashi, S., Arakawa, S., John, B., Okamoto, M., Hayashi, H., & Yuan, G. (2012). Synthesis and adsorption characteristics of hollow spherical allophane nano-particles. In Applied Clay Science (Vol. 56, pp. 77–83). https://doi.org/10.1016/j.clay.2011.11.025spa
dc.relation.referencesJacquet, D. (1990). Sensitivity to Remoulding of Some Volcanic Ash Soils in New Zealand. Engineering Geology, 28, 1–25.spa
dc.relation.referencesKauppinen, J. K., Moffatt, D. J., Mantsch, H. H., & Cameron, D. . (1981). Fourier Self-Deconvolution: A Method for Resolving Intrinsically Overlapped Bands. Applied Spectroscopy, 35(3), 271–276.spa
dc.relation.referencesKitagawa, Y. (1976). Determination of allophane and amorphous inorganic matter in clay fraction of soils. Soil Science and Plant Nutrition, 22(2), 137–147.spa
dc.relation.referencesLade, P. V. (2016). Triaxial Testing of Soils (John Wiley & Sons Ltd (ed.); 1st ed.). John Wiley & Sons, Ltd.spa
dc.relation.referencesLambe, W., & Robert, W. (1991). Soil Mechanics. John Wiley & Sons, Inc.spa
dc.relation.referencesLatorre, A. M., Murillo, C. A., & Cruz, J. A. (2020). Comportamiento Volumétrico de un Suelo no Saturado Derivado de Cenizas Volcánicas del Departamento del Cauca, Colombia [Tesis de Maestria, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/77532spa
dc.relation.referencesLeroueil, S., & Vaughan, P. R. (1990). The general and congruent effects of structure in natural soils and weak rocks. Geotechnique, 40(3), 467–488.spa
dc.relation.referencesLevard, C., Doelsch, E., Basile-Doelsch, ⁎I., Abidin, Z., Miche, H., Masion, A., Rose, J., Borschneck, D., & Bottero, J.-Y. (2012). Structure and distribution of allophanes, imogolite and proto-imogolite in volcanic soils. Geoderma, 183–184, 100–108.spa
dc.relation.referencesLittle, A. L. (1969). The engineering classification of residual tropical soils. Proceedings of 7th International Conference of Soil Mechanics and Foundation Engineering, 1, 1–10.spa
dc.relation.referencesLizcano, A., & Herrera, M. C. (2006). Suelos derivados de cenizas volcánicas en Colombia. Rev. Int. de Desastres Naturales, Accidentes e Infraestructura Civil, 6(2), 167–198.spa
dc.relation.referencesLuna, C. (1969). Aspectos genéticos de “andosoles” en Colombia. In Suelos derivados de cenizas volcánicas de América Latina (pp. 55–67). Centro de Enseñanza e Investigación;Escuela para Graduados del IICA, Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO).spa
dc.relation.referencesMaeda, T., Takenaka, H., & Warkentin, B. (1977). Physical Properties of Allophane Soils. Advances in Agronomy, 229–264.spa
dc.relation.referencesMaeda, T., & Warkentin, B. (1974). Physical properties of allophone soils from the West Indies and Japan. Soil Science Society of American Proceedings, 38, 372.spa
dc.relation.referencesMc.Court, W. J. M., Mosquera T, D., Nivia G., A., & Nuñez, A. (1985). Reseña explicativa del mapa geológico preliminar plancha 243 Armenia escala 1:100.000. INGEOMINAS.spa
dc.relation.referencesMitchell, J. K., & Soga, K. (2005). Fundamentals of Soil Behavior (I. John Wiley & Sons (ed.); 3rd ed.). John Wiley & Sons, Inc.spa
dc.relation.referencesMoreno, M., Vergara, H., & Avila, G. (1993). Amenazas geológicas, zonificación geotécnica y aptitud para el desarrollo urbano de la ciudad de Armenia, Quindío, Colombia. VI Congreso Colombiano de Geologia.spa
dc.relation.referencesNaranjo Henao, C. E. (2016). Comportamiento volumétrico de suelos compactados derivados de ceniza volcánica [Tesis de Maestria, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/56206spa
dc.relation.referencesNieto Leal, A., Camacho Tauta, J., & Ruiz Blanco, E. (2009). Determinación de parámetros para los modelos elastoplásticos mohr-coulomb y hardening soil en suelos arcillosos. Revista de Ingenierías: Universidad de Medellín, 8(15), 75–91.spa
dc.relation.referencesPaineau, E. (2018). Imogolite nanotubes: A flexible nanoplatform with multipurpose applications. Applied Sciences (Switzerland), 8(10). https://doi.org/10.3390/app8101921spa
dc.relation.referencesParfitt, R. L., & Henmi, T. (1982). Comparison of an oxalate-extraction methon and an infrared spectroscopic method for determining allophane in soll clays. Soil Science and Plant Nutrition, 28(2), 183–190.spa
dc.relation.referencesParfitt, R. L., & Wilson, A. D. (1985). Estimation of allophane and halloysite in three sequences of volcanic soils, New Zealand. Volcanic Soils,Weathering and Landscape Relationships of Soils on Tephra and Basalt. E. Fernandez-Caldas and D.H. Yaalon (Eds.), Catena. Su, 1–8.spa
dc.relation.referencesParker, A. (1970). An Index of Weathering for Silicate Rock. Geological Magazine, 107(6), 501–504.spa
dc.relation.referencesPierce, J. A., Jackson, R. S., Van Every, K. W., Griffiths, P. R., & Gao, H. (1990). Combined Deconvolution and Curve Fitting for Quantitative Analysis of Unresolved Spectral Bands. Analytical Chemistry, 62(5), 477–484.spa
dc.relation.referencesRamsey, M. S., & Christensen, P. R. (1998). Mineral abundance determination: Quantitative deconvolution of thermal emission spectra. Journal of Geophysical Research: Solid Earth, 103(B1), 489–1005.spa
dc.relation.referencesRao, S. M. (1995). Mechanistic approach to the shear strength behaviour of allophanic soils. Engineering Geology, 40(3–4), 215–221. https://doi.org/10.1016/0013-7952(95)00036-4spa
dc.relation.referencesRao, S. M. (1996). Correlations between plasticity angle and engineering properties of volcanic ash soils. Soils and Foundation, 36(2), 123–127.spa
dc.relation.referencesRealpe, I. B., Campo, E., & Arboleda, C. A. (2016). Alófanos causa de indisponibilidad de aniones en suelos del departamento del Cauca – Colombia. Suelos Ecuatoriales, 46(1 y2), 13–30.spa
dc.relation.referencesRendón, M. I., Viviescas, J. C., Osorio, J. P., & Hernández, M. S. (2020). Chemical, Mineralogical and Geotechnical Index Properties Characterization of Volcanic Ash Soils. Geotechnical and Geological Engineering, 38(3), 3231–3244. https://doi.org/10.1007/s10706-020-01219-3spa
dc.relation.referencesRocsience. (2013). Cam Clay and Modified Cam Clay Material Models. Overview of RS2 Theory.spa
dc.relation.referencesRoscoe, K. H., & Burland, J. B. (1968). On the generalised stress-strain behaviour of ‘wet’ clay. Engineering Plasticity.spa
dc.relation.referencesRoscoe, K. H., Schofield, A. N., & Wroth, C. P. (1958). On the yielding of soils. Geotechnique, 8(1), 22–53. https://doi.org/10.1680/geot.1958.8.1.22spa
dc.relation.referencesRouse, W. C., Reading, A. J., & Walsh, R. P. D. (1986). Volcanic soil properties in Dominica, West Indies. Engineering Geology, 23, 1–28.spa
dc.relation.referencesSánchez, A. M. (2008). Evaluación del método de hilf para el control de compactación de mezclas con suelos volcánicos del Aeropuerto del Café, en Palestina, Caldas. Universidad Nacional de Colombia, Sede Manizales.spa
dc.relation.referencesSchofield, A. N., & Wroth, C. P. (1968). Critical state soil mechanics. In Lecturers in Engineering at Cambridge University.spa
dc.relation.referencesSchrader, B. (1995). Infrared and Raman Spectroscopy. VCH Verlagsgesellschaft mbH.spa
dc.relation.referencesSGC. (2020). Mapa Geológico Colombiano 2020. https://srvags.sgc.gov.co/JSViewer/Mapa_Geologico_Colombiano_2020/spa
dc.relation.referencesShoji, S., Nanzyo, M., & Dahlgren, R. (1993). Volcanic Ash Soils Genesis, Properties and Utilization. Elsevier.spa
dc.relation.referencesSo, E.-K. (1998). Statistical correlation between allophane content and index properties for volcanic cohesive soil. Soils and Foundation, 38(4), 85–93.spa
dc.relation.referencesSparks, D. L., Page, A. L., Helmke, P. A., Loeppert, R. H., Johnston, C. T., & Aochi, Y. O. (1996). Fourier Transform Infrared and Raman Spectroscopy. In Methods of Soil Analysis Part 3—Chemical Methods (pp. 269–321). Soil Science Society of America, Inc.spa
dc.relation.referencesStrawn, D. G., Bohn, H. L., & O’Connor, G. A. (2020). Soil Chemistry (5 th Editi). John Wiley & Sons Ltd.spa
dc.relation.referencesStuart, B. H. (2004). Infrared Spectroscopy: Fundamentals and Applications (L. John Wiley & Sons (ed.)). John Wiley & Sons, Ltd.spa
dc.relation.referencesSuarez, J. (2009). Suelos Residuales. In Universidad Industrial de Santander UIS (Ed.), Deslizamientos. Analisis geotecnico (p. 50). Ediciones UIS.spa
dc.relation.referencesSulastri, Y., & Rahardjo, P. P. (2021). Study of Anisotropy Characteristics of Bogor Volcanic Soil. UKaRsT, 5(1), 95–109.spa
dc.relation.referencesTakahashi, T., & Shoji, S. (2002). Distribution and classification of volcanic ash soils. Global. Environ. Res., 6(2), 83–97. http://ns.airies.or.jp/publication/ger/pdf/06-2-10.pdfspa
dc.relation.referencesTheng, B. K. G., & Yuan, G. (2008). Nanoparticles in the soil environment. Elements, 4(6), 395–399. https://doi.org/10.2113/gselements.4.6.395spa
dc.relation.referencesThrall, F. (1981). Geotechnical Significance of Poorly Crystalline Soils Derived from Volcanic Ash [Tesis de Doctorado, Oregon State University]. https://ir.library.oregonstate.edu/downloads/rx913t33qspa
dc.relation.referencesTi, K. S., Huat, B. B., Noorzaei, S., Jaafar, S., & Sew, G. S. (2009). A review of Basic Soil Constitutive Models for Geotechnical Application. Electronic Journal of Geotechnical Engineering, 14.spa
dc.relation.referencesViveros, L. (2014). Influencia del proceso de compactación en la resistencia al corte de un suelo derivado de ceniza volcánica [Tesis de Maestria, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/60252spa
dc.relation.referencesWada, K. (1990). Minerals and mineral formation in soils derived from volcanic ash in the tropics. Sciences Geologiques - Memoire, 85, 69–78.spa
dc.relation.referencesWesley, L. D. (1973). Some basic engineering properties of halloysite and allophane clays in Java, Indonesia. Geotechnique, 23(4), 471–494.spa
dc.relation.referencesWesley, L. D. (1977). Shear strength properties of halloysite and allophane clays in Java, Indonesia. Geotechnique, 27(2), 125–136.spa
dc.relation.referencesWesley, L. D. (1988). Engineering classification of residual soils. In Proceedings of the 2nd international conference on geomechanics in tropical soils.spa
dc.relation.referencesWesley, L. D. (1990). Influence of Structure and Composition on Residual Soils. Journal of Geotechnical Engineering, 116(4), 589–603.spa
dc.relation.referencesWesley, L. D. (2001). Consolidation behaviour of allophane clays. Géotechnique, 51(10), 901–904.spa
dc.relation.referencesWesley, L. D. (2009). Fundamentals of Soil Mechanics for Sedimentary and Residual Soils. In Fundamentals of Soil Mechanics for Sedimentary and Residual Soils. John Wiley & Sons, Inc. https://doi.org/10.1002/9780470549056spa
dc.relation.referencesWesley, L. D. (2010). Geotechnical Engineering in Residual Soils. In Geotechnical Engineering in Residual Soils. John Wiley & Sons, Inc. https://doi.org/10.1002/9780470943113spa
dc.relation.referencesWood, D. M. (1994). Soil Behaviour and Critical State Soil Mechanics (Cambridge University Press (ed.)). Cambridge University Press.spa
dc.relation.referencesYu, H. S. (1998). CASM: a unified state parameter model for clay and sand. International Journal for Numerical and Analytical Methods in Geomechanics, 22(8), 621–653. https://doi.org/10.1002/(sici)1096-9853(199808)22:8<621::aid-nag937>3.3.co;2-#spa
dc.relation.referencesYu, H. S. (2006). Plasticity and Geotechnics (D. Gao & R. Ogden (eds.); 13th ed.). Springer Science.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::624 - Ingeniería civilspa
dc.subject.proposalSuelos derivados de cenizas volcánicasspa
dc.subject.proposalAlófanaspa
dc.subject.proposalComportamiento mecánicospa
dc.subject.proposalSuperficie de cedenciaspa
dc.subject.proposalCASMspa
dc.subject.proposalCASMeng
dc.subject.proposalVolcanic ash soilseng
dc.subject.proposalAllophaneeng
dc.subject.proposalMechanical behavioreng
dc.subject.proposalYield surfaceeng
dc.subject.unescoSuelos volcánicosspa
dc.subject.unescoVolcanic soilseng
dc.subject.wikidataAllofanitaspa
dc.subject.wikidataallophaneeng
dc.subject.wikidataMecánica de suelosspa
dc.subject.wikidatasoil mechanicseng
dc.titleEvaluación de la cedencia y la resistencia al corte en suelos provenientes de cenizas volcánicas con diferentes contenidos de alófanaspa
dc.title.translatedEvaluation of yielding and shear strength of volcanic ash soils with different allophane contentseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1000950270.2024.pdf
Tamaño:
8.61 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Geotecnia

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: