Control de un motor de inducción sin sensores de velocidad con rechazo activo de perturbaciones para aplicaciones en vehículos eléctricos

dc.contributor.advisorCortés Romero, John Alexander
dc.contributor.advisorBeltrán Pulido, Andrés Felipe
dc.contributor.authorNeira García, Jorge Enrique
dc.date.accessioned2022-07-19T00:40:11Z
dc.date.available2022-07-19T00:40:11Z
dc.date.issued2022
dc.descriptionilustraciones, fotografías, graficasspa
dc.description.abstractLos vehículos eléctricos (EV) deben cumplir con altos estándares de confiabilidad y seguridad. Una forma de cumplir con esos estándares es desarrollando estrategias de control sin sensores para motores de inducción (IM), atendiendo sus retos existentes alrededor de la estimación de velocidad y el control robusto. Esto incluye la distorsión introducida por esquemas de filtrado, los efectos de la saturación, la complejidad del modelo y las variaciones en sus parámetros. Los métodos algebraicos y los diseños de control por rechazo activo de perturbaciones (ADRC) pueden enfrentar esos desafíos gracias a capacidades de filtrado inherentes y a flexibilidades de diseño para abordar sistemas complejos de forma robusta. El objetivo de este documento es establecer un estimador algebraico y un diseño ADRC sin sensores para un IM en el contexto de los vehículos eléctricos. Nuestro enfoque es el siguiente, primero, desarrollamos y analizamos una estrategia de estimación algebraica para la velocidad del rotor partiendo de un modelo dinámico clásico del IM. Posteriormente, diseñamos un esquema ADRC para el seguimiento y manejo de saturación del IM basado en controladores proporcionales-integrales generalizados (GPI). Evaluamos con simulaciones y experimentos algunas propiedades y el desempeño del esquema de control sin sensores y su estimador de velocidad. Los estudios utilizan un ciclo de conducción y un par de carga dinámico estándar para emular el tren motriz de un EV a pequeña escala. La comparación con un método de estimación de velocidad basado en sistema adaptativo por modelo de referencia (MRAS) revela ventajas para nuestra propuesta. El diseño ADRC-GPI y su estimador algebraico evidencian errores de seguimiento menores al 1%. Por lo tanto, los resultados sugieren que nuestra estrategia de control sin sensores se destaca con facilidades de sintonización, funciona en un amplio rango de velocidades y provee un desempeño adecuado bajo el contexto de los EV. (Texto tomado de la fuente)spa
dc.description.abstractElectric vehicles (EVs) must meet high reliability and safety standards. One way to meet those standards is to develop sensorless control strategies for induction motors (IM), addressing its existing challenges around rotor speed estimation and robust control. That includes distortion introduced by filter schemes, saturation effects, the model complexity, and the variations in its parameters. Algebraic methods and Active Disturbance Rejection Control (ADRC) designs can meet those challenges given the inherent filtering capabilities and design flexibilities to face complex systems robustly. This paper aims to set forth an algebraic estimator and a sensorless ADRC design for an IM in the context of electric vehicles. Our approach is as follows. First, we develop and analyze an algebraic estimation strategy for the rotor speed from a classical IM dynamical model. Subsequently, we design an ADRC scheme for IM tracking and anti-windup tasks based on generalized proportional-integral controllers (GPI). We evaluate with simulations and experiments some properties and performance of the sensorless control scheme and its speed estimator. The studies use a standard drive cycle and dynamic torque load to emulate a small-scale EV power train. A comparison against another speed estimation method using the model reference adaptive system (MRAS) reveals advantages for our proposal. The ADRC-GPI design and its algebraic estimator show lower than 1% tracking error values. Thus, the results suggest that our sensorless control strategy stands out with tuning facilities, works over a wide speed range, and provides adequate performance in the EV context.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Automatización Industrialspa
dc.description.researchareaTeoría y aplicación de controlspa
dc.format.extentxviii, 83 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81706
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería Eléctrica y Electrónicaspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Automatización Industrialspa
dc.relation.referencesM. Hannan, J. A. Ali, A. Mohamed, and A. Hussain, "Optimization techniques to enhance the performance of induction motor drives: A review," Renewable and Sustainable Energy Reviews, vol. 81, DOI 10.1016/j.rser.2017.05.240, pp. 1611–1626, 2018.spa
dc.relation.referencesE. Dehghan-Azad, S. Gadoue, D. Atkinson, H. Slater, P. Barrass, and F. Blaabjerg, "Sensorless control of im based on stator-voltage mras for limp-home ev applications," IEEE Transactions on Power Electronics, vol. 33, DOI 10.1109/TPEL.2017.2695259, no. 3, pp. 1911–1921, 2018.spa
dc.relation.referencesI. M. Alsofyani and N. Idris, "A review on sensorless techniques for sustainable reliablity and efficient variable frequency drives of induction motors," Renewable and Sustainable Energy Reviews, vol. 24, DOI 10.1016/j.rser.2013.03.051, pp. 111–121, 2013.spa
dc.relation.referencesJ. Holtz, "Sensorless control of induction machines with or without signal injection?" IEEE Transactions on Industrial Electronics, vol. 53, DOI 10.1109/TIE.2005.862324, no. 1, pp. 7–30, 2006.spa
dc.relation.referencesR. Kumar, S. Das, P. Syam, and A. K. Chattopadhyay, "Review on model reference adaptive system for sensorless vector control of induction motor drives," IET Electric Power Applications, vol. 9, DOI 10.1049/iet-epa.2014.0220, no. 7, pp. 496–511, 2015.spa
dc.relation.referencesT. Orlowska-Kowalska and M. Dybkowski, "Stator-current-based mras estimator for a wide range speed-sensorless induction-motor drive," IEEE Transactions on Industrial Electronics, vol. 57, DOI 10.1109/TIE.2009.2031134, no. 4, pp. 1296–1308, 2010.spa
dc.relation.referencesM. S. Zaky and M. K. Metwaly, "Sensorless torque/speed control of induction motor drives at zero and low frequencies with stator and rotor resistance estimations," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 4, DOI 10.1109/JESTPE. 2016.2597003, no. 4, pp. 1416–1429, 2016.spa
dc.relation.referencesE. Zerdali and M. Barut, "The comparisons of optimized extended kalman filters for speed-sensorless control of induction motors," IEEE Transactions on Industrial Electronics, vol. 64, DOI 10.1109/TIE.2017.2674579, no. 6, pp. 4340–4351, 2017.spa
dc.relation.referencesL. Zhao, J. Huang, H. Liu, B. Li, and W. Kong, "Second-order sliding-mode observer with online parameter identification for sensorless induction motor drives," IEEE Transactions on Industrial Electronics, vol. 61, DOI 10.1109/TIE.2014.2301730, no. 10, pp. 5280–5289, 2014.spa
dc.relation.referencesL. Harnefors and M. Hinkkanen, "Stabilization methods for sensorless induction motor drives a survey," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 2, DOI 10.1109/JESTPE.2013.2294377, no. 2, pp. 132–142, 2014.spa
dc.relation.referencesY. Zhang, Z. Zhao, T. Lu, L. Yuan, W. Xu, and J. Zhu, "A comparative study of luenberger observer, sliding mode observer and extended kalman filter for sensorless vector control of induction motor drives," in 2009 IEEE Energy Conversion Congress and Exposition, DOI 10.1109/ECCE.2009.5316508, pp. 2466–2473, 2009.spa
dc.relation.referencesS. Maiti, V. Verma, C. Chakraborty, and Y. Hori, "An adaptive speed sensorless induction motor drive with artificial neural network for stability enhancement," IEEE Transactions on Industrial Informatics, vol. 8, DOI 10.1109/TII.2012.2210229, no. 4, pp. 757–766, 2012.spa
dc.relation.referencesD. Stojic, M. Milinkovic, S. Veinovic, and I. Klasnic, "Improved stator flux estimator for speed sensorless induction motor drives," IEEE Transactions on Power Electronics, vol. 30, DOI 10.1109/TPEL.2014.2328617, no. 4, pp. 2363–2371, 2015.spa
dc.relation.referencesJ. Holtz and J. Quan, "Sensorless vector control of induction motors at very low speed using a nonlinear inverter model and parameter identification," IEEE Transactions on Industry Applications, vol. 38, DOI 10.1109/TIA.2002.800779, no. 4, pp. 1087–1095, 2002.spa
dc.relation.referencesM. Fliess and H. Sira-Ramírez, "An algebraic framework for linear identification," ESAIM: COCV, vol. 9, DOI 10.1051/cocv:2003008, pp. 151–168, 2003.spa
dc.relation.referencesM. Fliess, C. Join, and H. Sira-Ramirez, "Non-linear estimation is easy," International Journal of Modelling, Identification and Control, vol. 4, DOI 10.1504/IJMIC. 2008.020996, no. 1, pp. 12–27, 2008.spa
dc.relation.referencesH. Sira-Ramírez, C. García-Rodríguez, J. Cortés-Romero, and A. Luviano-Juárez, Algebraic Identification and Estimation Methods in Feedback Control Systems. Chichester, UK: John Wiley & Sons, Ltd, Apr. 2014.spa
dc.relation.referencesJ. Cortés-Romero, C. García-Rodríguez, A. Luviano-Juárez, and H. Sira-Ramírez, "Algebraic parameter identification for induction motors," in IECON 2011 - 37th Annual Conference of the IEEE Industrial Electronics Society, DOI 10.1109/IECON.2011.6119568, pp. 1734–1740, 2011.spa
dc.relation.referencesJ. Cortés-Romero, A. Jimenez-Triana, H. Coral-Enriquez, and H. Sira-Ramírez, "Algebraic estimation and active disturbance rejection in the control of flat systems," Control Engineering Practice, vol. 61, DOI 10.1016/j.conengprac.2017.02.009, pp. 173–182, 2017.spa
dc.relation.referencesD. Casadei, F. Profumo, G. Serra, and A. Tani, "Foc and dtc: two viable schemes for induction motors torque control," IEEE Transactions on Power Electronics, vol. 17, DOI 10.1109/TPEL.2002.802183, no. 5, pp. 779–787, 2002.spa
dc.relation.referencesJ. Chiasson, Modeling and High-Performance Control of Electric Machines. Hoboken, NJ, USA: John Wiley & Sons, Inc., Mar. 2005.spa
dc.relation.referencesJ. Han, "From pid to active disturbance rejection control," IEEE Transactions on Industrial Electronics, vol. 56, DOI 10.1109/TIE.2008.2011621, no. 3, pp. 900–906, 2009.spa
dc.relation.referencesH. Sira-Ramírez, A. Luviano-Juárez, M. Ramírez-Neria, and E. W. Zurita-Bustamante, Active Disturbance Rejection Control of Dynamic Systems A Flatness Based Approach. Butterworth-Heinemann, 2017.spa
dc.relation.referencesG. Feng, Y.-F. Liu, and L. Huang, "A new robust algorithm to improve the dynamic performance on the speed control of induction motor drive," IEEE Transactions on Power Electronics, vol. 19, DOI 10.1109/TPEL.2004.836619, no. 6, pp. 1614–1627, 2004.spa
dc.relation.referencesH. Sira-Ramírez, F. González-Montañez, J. A. Cortés-Romero, and A. Luviano- Juárez, "A robust linear field-oriented voltage control for the induction motor: Experimental results," IEEE Transactions on Industrial Electronics, vol. 60, DOI 10.1109/TIE.2012.2201430, no. 8, pp. 3025–3033, 2013.spa
dc.relation.referencesJ. Li, H.-P. Ren, and Y.-R. Zhong, "Robust speed control of induction motor drives using first-order auto-disturbance rejection controllers," IEEE Transactions on Industry Applications, vol. 51, DOI 10.1109/TIA.2014.2330062, no. 1, pp. 712–720, 2015.spa
dc.relation.referencesF. Alonge, M. Cirrincione, F. D’Ippolito, M. Pucci, and A. Sferlazza, "Active disturbance rejection control of linear induction motor," IEEE Transactions on Industry Applications, vol. 53, DOI 10.1109/TIA.2017.2697845, no. 5, pp. 4460–4471, 2017.spa
dc.relation.referencesC. Du, Z. Yin, Y. Zhang, J. Liu, X. Sun, and Y. Zhong, "Research on active disturbance rejection control with parameter autotune mechanism for induction motors based on adaptive particle swarm optimization algorithm with dynamic inertia weight," IEEE Transactions on Power Electronics, vol. 34, DOI 10.1109/TPEL.2018.2841869, no. 3, pp. 2841–2855, 2019.spa
dc.relation.referencesH. Sira-Ramírez and S. K. Agrawal, Differentially Flat Systems (1st ed.). CRC Press, 2004.spa
dc.relation.referencesH. Sira-Ramírez, A. Luviano-Juárez, M. Ramírez-Neria, and E. W. Zurita-Bustamante, "Appendix b - generalized proportional integral control," in Active Disturbance Rejection Control of Dynamic Systems, pp. 299–337. Butterworth-Heinemann, 2017.spa
dc.relation.referencesP. March and M. C. Turner, "Anti-windup compensator designs for nonsalient permanent-magnet synchronous motor speed regulators," IEEE Transactions on Industry Applications, vol. 45, DOI 10.1109/TIA.2009.2027157, no. 5, pp. 1598–1609, 2009.spa
dc.relation.referencesH.-B. Shin and J.-G. Park, "Anti-Windup PID Controller With Integral State Predictor for Variable-Speed Motor Drives," IEEE Transactions on Industrial Electronics, vol. 59, DOI 10.1109/TIE.2011.2163911, no. 3, pp. 1509–1516, Mar. 2012.spa
dc.relation.referencesR. de Castro, R. E. Araújo, and D. Freitas, "Wheel slip control of evs based on sliding mode technique with conditional integrators," IEEE Transactions on Industrial Electronics, vol. 60, DOI 10.1109/TIE.2012.2202357, no. 8, pp. 3256–3271, 2013.spa
dc.relation.referencesD. G. Torres-Lamus, "Evaluación de la estabilidad y desempeño en controladores con rechazo activo de perturbaciones sobre un modelo de UAV," Tesis de Maestría, Universidad Nacional de Colombia, 2019. [Online]. Available: https: //repositorio.unal.edu.co/handle/unal/76094spa
dc.relation.referencesC. Canudas De Wit, A. Youssef, J. Barbot, P. Martin, and F. Malrait, "Observability conditions of induction motors at low frequencies," in Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187), vol. 3, DOI 10.1109/CDC.2000.914093, pp. 2044–2049 vol.3, 2000.spa
dc.relation.referencesL. Trefethen, Numerical linear algebra. Philadelphia: Society for Industrial and Applied Mathematics, 1997.spa
dc.relation.referencesG. Park, S. Lee, S. Jin, and S. Kwak, "Integrated modeling and analysis of dynamics for electric vehicle powertrains," Expert Systems with Applications, vol. 41, DOI 10.1016/j.eswa.2013.10.007, no. 5, pp. 2595–2607, 2014.spa
dc.relation.referencesA. Haddoun, M. E. H. Benbouzid, D. Diallo, R. Abdessemed, J. Ghouili, and K. Srairi, "A loss-minimization dtc scheme for ev induction motors," IEEE Transactions on Vehicular Technology, vol. 56, DOI 10.1109/TVT.2006.889562, no. 1, pp. 81–88, 2007.spa
dc.relation.referencesG. Abad, J. López, M. Rodríguez, L. Marroyo, and G. Iwanski, Doubly Fed Induction Machine: Modeling and Control for Wind Energy Generation Applications. Wiley IEEE Press, 2011.spa
dc.relation.referencesC. Chakraborty and V. Verma, "Speed and current sensor fault detection and isolation technique for induction motor drive using axes transformation," IEEE Transactions on Industrial Electronics, vol. 62, DOI 10.1109/TIE.2014.2345337, no. 3, pp. 1943–1954, 2015.spa
dc.relation.referencesM. Fliess and C. Join, "Intelligent pid controllers," in 2008 16th Mediterranean Conference on Control and Automation, DOI 10.1109/MED.2008.4601995, pp. 326–331, 2008.spa
dc.relation.referencesM. Fliess, R. Marquez, E. Delaleau, and H. Sira-Ramírez, "Correcteurs proportionnelsintégraux généralisés," ESAIM: COCV, vol. 7, DOI 10.1051/cocv:2002002, pp. 23–41, 2002.spa
dc.relation.referencesC. J. O’Rourke, M. M. Qasim, M. R. Overlin, and J. L. Kirtley, "A geometric interpretation of reference frames and transformations: dq0, clarke, and park," IEEE Transactions on Energy Conversion, vol. 34, DOI 10.1109/TEC.2019.2941175, no. 4, pp. 2070–2083, 2019.spa
dc.relation.referencesJ. A. Cortes-Romero, A. Luviano-Juarez, and H. Sira-Ramírez, "Robust gpi controller for trajectory tracking for induction motors," in 2009 IEEE International Conference on Mechatronics, DOI 10.1109/ICMECH.2009.4957221, pp. 1–6, 2009.spa
dc.relation.referencesH. Sira-Ramírez, C. García-Rodríguez, J. Cortés-Romero, and A. Luviano-Juárez, "Generalized proportional integral control," in Algebraic Identification and Estimation Methods in Feedback Control Systems, ch. D, pp. 357–368. John Wiley & Sons, Ltd, 2014.spa
dc.relation.referencesH. Sira-Ramírez, "From flatness, gpi observers, gpi control and flat filters to observerbased adrc," Control Theory and Technology, vol. 16, DOI 10.1007/s11768-018-8134-x, no. 4, pp. 249–260, 2018.spa
dc.relation.referencesY. Kim, L. Keel, and S. Bhattacharyya, "Transient response control via characteristic ratio assignment," IEEE Transactions on Automatic Control, vol. 48, DOI 10.1109/TAC.2003.820153, no. 12, pp. 2238–2244, 2003.spa
dc.relation.referencesK. J. Åström and R. M. Murray, Feedback Systems An Introduction for Scientists and Engineers, second ed. ed. Princeton University Press, 2021. [Online]. Available: https://fbsbook.orgspa
dc.relation.referencesL. Zaccarian and A. R. Teel, Modern Anti-windup Synthesis: Control Augmentation for Actuator Saturation. Princeton University Press, 2011.spa
dc.relation.referencesY. Srinivasa Rao and M. C. Chandorkar, "Real-time electrical load emulator using optimal feedback control technique," IEEE Transactions on Industrial Electronics, vol. 57, DOI 10.1109/TIE.2009.2037657, no. 4, pp. 1217–1225, 2010.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.lembAutomobiles - electric equipmenteng
dc.subject.lembAUTOMOVILES-EQUIPO ELECTRICOspa
dc.subject.lembElectric shockeng
dc.subject.lembCHOQUE ELECTRICOspa
dc.subject.proposalEstimación algebraica de estadosspa
dc.subject.proposalControl por rechazo activo de perturbacionesspa
dc.subject.proposalManejo de saturaciónspa
dc.subject.proposalVehículos eléctricosspa
dc.subject.proposalControladores proporcionales-integrales generalizadosspa
dc.subject.proposalMotores de inducciónspa
dc.subject.proposalControl sin sensoresspa
dc.subject.proposalAlgebraic state estimationeng
dc.subject.proposalActive disturbance rejection control (ADRC)eng
dc.subject.proposalAnti-windup (AW)eng
dc.subject.proposalElectric vehicles (EV)eng
dc.subject.proposalGeneralized proportional-integral (GPI) controleng
dc.subject.proposalInduction motors (IM)eng
dc.subject.proposalSensorless controleng
dc.titleControl de un motor de inducción sin sensores de velocidad con rechazo activo de perturbaciones para aplicaciones en vehículos eléctricosspa
dc.title.translatedSensorless induction motor control with active disturbance rejection for electric vehicle applicationseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032496599.2022.pdf
Tamaño:
7.13 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Automatización industrial

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: