Control de un motor de inducción sin sensores de velocidad con rechazo activo de perturbaciones para aplicaciones en vehículos eléctricos
dc.contributor.advisor | Cortés Romero, John Alexander | |
dc.contributor.advisor | Beltrán Pulido, Andrés Felipe | |
dc.contributor.author | Neira García, Jorge Enrique | |
dc.date.accessioned | 2022-07-19T00:40:11Z | |
dc.date.available | 2022-07-19T00:40:11Z | |
dc.date.issued | 2022 | |
dc.description | ilustraciones, fotografías, graficas | spa |
dc.description.abstract | Los vehículos eléctricos (EV) deben cumplir con altos estándares de confiabilidad y seguridad. Una forma de cumplir con esos estándares es desarrollando estrategias de control sin sensores para motores de inducción (IM), atendiendo sus retos existentes alrededor de la estimación de velocidad y el control robusto. Esto incluye la distorsión introducida por esquemas de filtrado, los efectos de la saturación, la complejidad del modelo y las variaciones en sus parámetros. Los métodos algebraicos y los diseños de control por rechazo activo de perturbaciones (ADRC) pueden enfrentar esos desafíos gracias a capacidades de filtrado inherentes y a flexibilidades de diseño para abordar sistemas complejos de forma robusta. El objetivo de este documento es establecer un estimador algebraico y un diseño ADRC sin sensores para un IM en el contexto de los vehículos eléctricos. Nuestro enfoque es el siguiente, primero, desarrollamos y analizamos una estrategia de estimación algebraica para la velocidad del rotor partiendo de un modelo dinámico clásico del IM. Posteriormente, diseñamos un esquema ADRC para el seguimiento y manejo de saturación del IM basado en controladores proporcionales-integrales generalizados (GPI). Evaluamos con simulaciones y experimentos algunas propiedades y el desempeño del esquema de control sin sensores y su estimador de velocidad. Los estudios utilizan un ciclo de conducción y un par de carga dinámico estándar para emular el tren motriz de un EV a pequeña escala. La comparación con un método de estimación de velocidad basado en sistema adaptativo por modelo de referencia (MRAS) revela ventajas para nuestra propuesta. El diseño ADRC-GPI y su estimador algebraico evidencian errores de seguimiento menores al 1%. Por lo tanto, los resultados sugieren que nuestra estrategia de control sin sensores se destaca con facilidades de sintonización, funciona en un amplio rango de velocidades y provee un desempeño adecuado bajo el contexto de los EV. (Texto tomado de la fuente) | spa |
dc.description.abstract | Electric vehicles (EVs) must meet high reliability and safety standards. One way to meet those standards is to develop sensorless control strategies for induction motors (IM), addressing its existing challenges around rotor speed estimation and robust control. That includes distortion introduced by filter schemes, saturation effects, the model complexity, and the variations in its parameters. Algebraic methods and Active Disturbance Rejection Control (ADRC) designs can meet those challenges given the inherent filtering capabilities and design flexibilities to face complex systems robustly. This paper aims to set forth an algebraic estimator and a sensorless ADRC design for an IM in the context of electric vehicles. Our approach is as follows. First, we develop and analyze an algebraic estimation strategy for the rotor speed from a classical IM dynamical model. Subsequently, we design an ADRC scheme for IM tracking and anti-windup tasks based on generalized proportional-integral controllers (GPI). We evaluate with simulations and experiments some properties and performance of the sensorless control scheme and its speed estimator. The studies use a standard drive cycle and dynamic torque load to emulate a small-scale EV power train. A comparison against another speed estimation method using the model reference adaptive system (MRAS) reveals advantages for our proposal. The ADRC-GPI design and its algebraic estimator show lower than 1% tracking error values. Thus, the results suggest that our sensorless control strategy stands out with tuning facilities, works over a wide speed range, and provides adequate performance in the EV context. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Automatización Industrial | spa |
dc.description.researcharea | Teoría y aplicación de control | spa |
dc.format.extent | xviii, 83 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/81706 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.department | Departamento de Ingeniería Eléctrica y Electrónica | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Automatización Industrial | spa |
dc.relation.references | M. Hannan, J. A. Ali, A. Mohamed, and A. Hussain, "Optimization techniques to enhance the performance of induction motor drives: A review," Renewable and Sustainable Energy Reviews, vol. 81, DOI 10.1016/j.rser.2017.05.240, pp. 1611–1626, 2018. | spa |
dc.relation.references | E. Dehghan-Azad, S. Gadoue, D. Atkinson, H. Slater, P. Barrass, and F. Blaabjerg, "Sensorless control of im based on stator-voltage mras for limp-home ev applications," IEEE Transactions on Power Electronics, vol. 33, DOI 10.1109/TPEL.2017.2695259, no. 3, pp. 1911–1921, 2018. | spa |
dc.relation.references | I. M. Alsofyani and N. Idris, "A review on sensorless techniques for sustainable reliablity and efficient variable frequency drives of induction motors," Renewable and Sustainable Energy Reviews, vol. 24, DOI 10.1016/j.rser.2013.03.051, pp. 111–121, 2013. | spa |
dc.relation.references | J. Holtz, "Sensorless control of induction machines with or without signal injection?" IEEE Transactions on Industrial Electronics, vol. 53, DOI 10.1109/TIE.2005.862324, no. 1, pp. 7–30, 2006. | spa |
dc.relation.references | R. Kumar, S. Das, P. Syam, and A. K. Chattopadhyay, "Review on model reference adaptive system for sensorless vector control of induction motor drives," IET Electric Power Applications, vol. 9, DOI 10.1049/iet-epa.2014.0220, no. 7, pp. 496–511, 2015. | spa |
dc.relation.references | T. Orlowska-Kowalska and M. Dybkowski, "Stator-current-based mras estimator for a wide range speed-sensorless induction-motor drive," IEEE Transactions on Industrial Electronics, vol. 57, DOI 10.1109/TIE.2009.2031134, no. 4, pp. 1296–1308, 2010. | spa |
dc.relation.references | M. S. Zaky and M. K. Metwaly, "Sensorless torque/speed control of induction motor drives at zero and low frequencies with stator and rotor resistance estimations," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 4, DOI 10.1109/JESTPE. 2016.2597003, no. 4, pp. 1416–1429, 2016. | spa |
dc.relation.references | E. Zerdali and M. Barut, "The comparisons of optimized extended kalman filters for speed-sensorless control of induction motors," IEEE Transactions on Industrial Electronics, vol. 64, DOI 10.1109/TIE.2017.2674579, no. 6, pp. 4340–4351, 2017. | spa |
dc.relation.references | L. Zhao, J. Huang, H. Liu, B. Li, and W. Kong, "Second-order sliding-mode observer with online parameter identification for sensorless induction motor drives," IEEE Transactions on Industrial Electronics, vol. 61, DOI 10.1109/TIE.2014.2301730, no. 10, pp. 5280–5289, 2014. | spa |
dc.relation.references | L. Harnefors and M. Hinkkanen, "Stabilization methods for sensorless induction motor drives a survey," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 2, DOI 10.1109/JESTPE.2013.2294377, no. 2, pp. 132–142, 2014. | spa |
dc.relation.references | Y. Zhang, Z. Zhao, T. Lu, L. Yuan, W. Xu, and J. Zhu, "A comparative study of luenberger observer, sliding mode observer and extended kalman filter for sensorless vector control of induction motor drives," in 2009 IEEE Energy Conversion Congress and Exposition, DOI 10.1109/ECCE.2009.5316508, pp. 2466–2473, 2009. | spa |
dc.relation.references | S. Maiti, V. Verma, C. Chakraborty, and Y. Hori, "An adaptive speed sensorless induction motor drive with artificial neural network for stability enhancement," IEEE Transactions on Industrial Informatics, vol. 8, DOI 10.1109/TII.2012.2210229, no. 4, pp. 757–766, 2012. | spa |
dc.relation.references | D. Stojic, M. Milinkovic, S. Veinovic, and I. Klasnic, "Improved stator flux estimator for speed sensorless induction motor drives," IEEE Transactions on Power Electronics, vol. 30, DOI 10.1109/TPEL.2014.2328617, no. 4, pp. 2363–2371, 2015. | spa |
dc.relation.references | J. Holtz and J. Quan, "Sensorless vector control of induction motors at very low speed using a nonlinear inverter model and parameter identification," IEEE Transactions on Industry Applications, vol. 38, DOI 10.1109/TIA.2002.800779, no. 4, pp. 1087–1095, 2002. | spa |
dc.relation.references | M. Fliess and H. Sira-Ramírez, "An algebraic framework for linear identification," ESAIM: COCV, vol. 9, DOI 10.1051/cocv:2003008, pp. 151–168, 2003. | spa |
dc.relation.references | M. Fliess, C. Join, and H. Sira-Ramirez, "Non-linear estimation is easy," International Journal of Modelling, Identification and Control, vol. 4, DOI 10.1504/IJMIC. 2008.020996, no. 1, pp. 12–27, 2008. | spa |
dc.relation.references | H. Sira-Ramírez, C. García-Rodríguez, J. Cortés-Romero, and A. Luviano-Juárez, Algebraic Identification and Estimation Methods in Feedback Control Systems. Chichester, UK: John Wiley & Sons, Ltd, Apr. 2014. | spa |
dc.relation.references | J. Cortés-Romero, C. García-Rodríguez, A. Luviano-Juárez, and H. Sira-Ramírez, "Algebraic parameter identification for induction motors," in IECON 2011 - 37th Annual Conference of the IEEE Industrial Electronics Society, DOI 10.1109/IECON.2011.6119568, pp. 1734–1740, 2011. | spa |
dc.relation.references | J. Cortés-Romero, A. Jimenez-Triana, H. Coral-Enriquez, and H. Sira-Ramírez, "Algebraic estimation and active disturbance rejection in the control of flat systems," Control Engineering Practice, vol. 61, DOI 10.1016/j.conengprac.2017.02.009, pp. 173–182, 2017. | spa |
dc.relation.references | D. Casadei, F. Profumo, G. Serra, and A. Tani, "Foc and dtc: two viable schemes for induction motors torque control," IEEE Transactions on Power Electronics, vol. 17, DOI 10.1109/TPEL.2002.802183, no. 5, pp. 779–787, 2002. | spa |
dc.relation.references | J. Chiasson, Modeling and High-Performance Control of Electric Machines. Hoboken, NJ, USA: John Wiley & Sons, Inc., Mar. 2005. | spa |
dc.relation.references | J. Han, "From pid to active disturbance rejection control," IEEE Transactions on Industrial Electronics, vol. 56, DOI 10.1109/TIE.2008.2011621, no. 3, pp. 900–906, 2009. | spa |
dc.relation.references | H. Sira-Ramírez, A. Luviano-Juárez, M. Ramírez-Neria, and E. W. Zurita-Bustamante, Active Disturbance Rejection Control of Dynamic Systems A Flatness Based Approach. Butterworth-Heinemann, 2017. | spa |
dc.relation.references | G. Feng, Y.-F. Liu, and L. Huang, "A new robust algorithm to improve the dynamic performance on the speed control of induction motor drive," IEEE Transactions on Power Electronics, vol. 19, DOI 10.1109/TPEL.2004.836619, no. 6, pp. 1614–1627, 2004. | spa |
dc.relation.references | H. Sira-Ramírez, F. González-Montañez, J. A. Cortés-Romero, and A. Luviano- Juárez, "A robust linear field-oriented voltage control for the induction motor: Experimental results," IEEE Transactions on Industrial Electronics, vol. 60, DOI 10.1109/TIE.2012.2201430, no. 8, pp. 3025–3033, 2013. | spa |
dc.relation.references | J. Li, H.-P. Ren, and Y.-R. Zhong, "Robust speed control of induction motor drives using first-order auto-disturbance rejection controllers," IEEE Transactions on Industry Applications, vol. 51, DOI 10.1109/TIA.2014.2330062, no. 1, pp. 712–720, 2015. | spa |
dc.relation.references | F. Alonge, M. Cirrincione, F. D’Ippolito, M. Pucci, and A. Sferlazza, "Active disturbance rejection control of linear induction motor," IEEE Transactions on Industry Applications, vol. 53, DOI 10.1109/TIA.2017.2697845, no. 5, pp. 4460–4471, 2017. | spa |
dc.relation.references | C. Du, Z. Yin, Y. Zhang, J. Liu, X. Sun, and Y. Zhong, "Research on active disturbance rejection control with parameter autotune mechanism for induction motors based on adaptive particle swarm optimization algorithm with dynamic inertia weight," IEEE Transactions on Power Electronics, vol. 34, DOI 10.1109/TPEL.2018.2841869, no. 3, pp. 2841–2855, 2019. | spa |
dc.relation.references | H. Sira-Ramírez and S. K. Agrawal, Differentially Flat Systems (1st ed.). CRC Press, 2004. | spa |
dc.relation.references | H. Sira-Ramírez, A. Luviano-Juárez, M. Ramírez-Neria, and E. W. Zurita-Bustamante, "Appendix b - generalized proportional integral control," in Active Disturbance Rejection Control of Dynamic Systems, pp. 299–337. Butterworth-Heinemann, 2017. | spa |
dc.relation.references | P. March and M. C. Turner, "Anti-windup compensator designs for nonsalient permanent-magnet synchronous motor speed regulators," IEEE Transactions on Industry Applications, vol. 45, DOI 10.1109/TIA.2009.2027157, no. 5, pp. 1598–1609, 2009. | spa |
dc.relation.references | H.-B. Shin and J.-G. Park, "Anti-Windup PID Controller With Integral State Predictor for Variable-Speed Motor Drives," IEEE Transactions on Industrial Electronics, vol. 59, DOI 10.1109/TIE.2011.2163911, no. 3, pp. 1509–1516, Mar. 2012. | spa |
dc.relation.references | R. de Castro, R. E. Araújo, and D. Freitas, "Wheel slip control of evs based on sliding mode technique with conditional integrators," IEEE Transactions on Industrial Electronics, vol. 60, DOI 10.1109/TIE.2012.2202357, no. 8, pp. 3256–3271, 2013. | spa |
dc.relation.references | D. G. Torres-Lamus, "Evaluación de la estabilidad y desempeño en controladores con rechazo activo de perturbaciones sobre un modelo de UAV," Tesis de Maestría, Universidad Nacional de Colombia, 2019. [Online]. Available: https: //repositorio.unal.edu.co/handle/unal/76094 | spa |
dc.relation.references | C. Canudas De Wit, A. Youssef, J. Barbot, P. Martin, and F. Malrait, "Observability conditions of induction motors at low frequencies," in Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187), vol. 3, DOI 10.1109/CDC.2000.914093, pp. 2044–2049 vol.3, 2000. | spa |
dc.relation.references | L. Trefethen, Numerical linear algebra. Philadelphia: Society for Industrial and Applied Mathematics, 1997. | spa |
dc.relation.references | G. Park, S. Lee, S. Jin, and S. Kwak, "Integrated modeling and analysis of dynamics for electric vehicle powertrains," Expert Systems with Applications, vol. 41, DOI 10.1016/j.eswa.2013.10.007, no. 5, pp. 2595–2607, 2014. | spa |
dc.relation.references | A. Haddoun, M. E. H. Benbouzid, D. Diallo, R. Abdessemed, J. Ghouili, and K. Srairi, "A loss-minimization dtc scheme for ev induction motors," IEEE Transactions on Vehicular Technology, vol. 56, DOI 10.1109/TVT.2006.889562, no. 1, pp. 81–88, 2007. | spa |
dc.relation.references | G. Abad, J. López, M. Rodríguez, L. Marroyo, and G. Iwanski, Doubly Fed Induction Machine: Modeling and Control for Wind Energy Generation Applications. Wiley IEEE Press, 2011. | spa |
dc.relation.references | C. Chakraborty and V. Verma, "Speed and current sensor fault detection and isolation technique for induction motor drive using axes transformation," IEEE Transactions on Industrial Electronics, vol. 62, DOI 10.1109/TIE.2014.2345337, no. 3, pp. 1943–1954, 2015. | spa |
dc.relation.references | M. Fliess and C. Join, "Intelligent pid controllers," in 2008 16th Mediterranean Conference on Control and Automation, DOI 10.1109/MED.2008.4601995, pp. 326–331, 2008. | spa |
dc.relation.references | M. Fliess, R. Marquez, E. Delaleau, and H. Sira-Ramírez, "Correcteurs proportionnelsintégraux généralisés," ESAIM: COCV, vol. 7, DOI 10.1051/cocv:2002002, pp. 23–41, 2002. | spa |
dc.relation.references | C. J. O’Rourke, M. M. Qasim, M. R. Overlin, and J. L. Kirtley, "A geometric interpretation of reference frames and transformations: dq0, clarke, and park," IEEE Transactions on Energy Conversion, vol. 34, DOI 10.1109/TEC.2019.2941175, no. 4, pp. 2070–2083, 2019. | spa |
dc.relation.references | J. A. Cortes-Romero, A. Luviano-Juarez, and H. Sira-Ramírez, "Robust gpi controller for trajectory tracking for induction motors," in 2009 IEEE International Conference on Mechatronics, DOI 10.1109/ICMECH.2009.4957221, pp. 1–6, 2009. | spa |
dc.relation.references | H. Sira-Ramírez, C. García-Rodríguez, J. Cortés-Romero, and A. Luviano-Juárez, "Generalized proportional integral control," in Algebraic Identification and Estimation Methods in Feedback Control Systems, ch. D, pp. 357–368. John Wiley & Sons, Ltd, 2014. | spa |
dc.relation.references | H. Sira-Ramírez, "From flatness, gpi observers, gpi control and flat filters to observerbased adrc," Control Theory and Technology, vol. 16, DOI 10.1007/s11768-018-8134-x, no. 4, pp. 249–260, 2018. | spa |
dc.relation.references | Y. Kim, L. Keel, and S. Bhattacharyya, "Transient response control via characteristic ratio assignment," IEEE Transactions on Automatic Control, vol. 48, DOI 10.1109/TAC.2003.820153, no. 12, pp. 2238–2244, 2003. | spa |
dc.relation.references | K. J. Åström and R. M. Murray, Feedback Systems An Introduction for Scientists and Engineers, second ed. ed. Princeton University Press, 2021. [Online]. Available: https://fbsbook.org | spa |
dc.relation.references | L. Zaccarian and A. R. Teel, Modern Anti-windup Synthesis: Control Augmentation for Actuator Saturation. Princeton University Press, 2011. | spa |
dc.relation.references | Y. Srinivasa Rao and M. C. Chandorkar, "Real-time electrical load emulator using optimal feedback control technique," IEEE Transactions on Industrial Electronics, vol. 57, DOI 10.1109/TIE.2009.2037657, no. 4, pp. 1217–1225, 2010. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería | spa |
dc.subject.lemb | Automobiles - electric equipment | eng |
dc.subject.lemb | AUTOMOVILES-EQUIPO ELECTRICO | spa |
dc.subject.lemb | Electric shock | eng |
dc.subject.lemb | CHOQUE ELECTRICO | spa |
dc.subject.proposal | Estimación algebraica de estados | spa |
dc.subject.proposal | Control por rechazo activo de perturbaciones | spa |
dc.subject.proposal | Manejo de saturación | spa |
dc.subject.proposal | Vehículos eléctricos | spa |
dc.subject.proposal | Controladores proporcionales-integrales generalizados | spa |
dc.subject.proposal | Motores de inducción | spa |
dc.subject.proposal | Control sin sensores | spa |
dc.subject.proposal | Algebraic state estimation | eng |
dc.subject.proposal | Active disturbance rejection control (ADRC) | eng |
dc.subject.proposal | Anti-windup (AW) | eng |
dc.subject.proposal | Electric vehicles (EV) | eng |
dc.subject.proposal | Generalized proportional-integral (GPI) control | eng |
dc.subject.proposal | Induction motors (IM) | eng |
dc.subject.proposal | Sensorless control | eng |
dc.title | Control de un motor de inducción sin sensores de velocidad con rechazo activo de perturbaciones para aplicaciones en vehículos eléctricos | spa |
dc.title.translated | Sensorless induction motor control with active disturbance rejection for electric vehicle applications | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1032496599.2022.pdf
- Tamaño:
- 7.13 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Automatización industrial
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 3.98 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: