Patterns and drivers of tree community diversification in three biodiversity hotspots of northwestern South America

dc.contributor.advisorSánchez Sáenz, Mauricio
dc.contributor.advisorDuque Montoya, Álvaro Javier
dc.contributor.authorPalacios Hurtado, Andrés Camilo
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001371785
dc.contributor.googlescholarCamilo Palacios Hurtado
dc.contributor.orcidPalacios Hurtado, Andrés Camilo [0009-0001-9726-7945]
dc.contributor.orcidSánchez Sáenz, Mauricio [0000-0002-4983-436X]
dc.contributor.orcidDuque Montoya, Álvaro Javier [0000-0001-5464-2058]
dc.contributor.researchgroupConservación, Uso y Biodiversidad
dc.coverage.regionSur América
dc.date.accessioned2025-09-03T20:13:34Z
dc.date.available2025-09-03T20:13:34Z
dc.date.issued2025-09
dc.descriptionIlustraciones, gráficosspa
dc.description.abstractThis study aims the relative influence of current climate and biogeographic history on tree species accumulation across three biodiversity hotspots in northwestern South America: the Amazon, the Andes, and the Chocó. Our objectives were: (1) to analyze patterns of taxonomic and phylogenetic diversity within each region, and (2) to explore the role of climatic and biogeographic factors in the accumulation of phylogenetic lineages using the standardized effect size of phylogenetic diversity (ses.PD). Based on data from 49 1-ha forest plots (18 in the Amazon, 18 in the Andes, and 13 in the Chocó), we assessed how phylogenetic diversity and dispersion shape tree community composition. At the local scale, the highest species richness and diversity were observed in the Amazon, followed by the Chocó and the Andes, with no significant difference between the latter two. At the regional scale, the Amazon exhibited the highest rates of species and accumulation of phylogenetic richness. ses.PD values revealed low diversification in the Amazon, dominated by closely related clades, while the Andes and Chocó showed greater diversification with phylogenetically distant species. A linear mixed-effects model indicated that precipitation seasonality and historical biogeographic factors significantly influence phylogenetic diversity. In the Amazon, high diversity appears to result from long-term speciation within dominant clades, whereas in the Andes and Chocó, historical dispersal has played a key role in species accumulation in the Chocó and Andes, historical dispersal played a key role in species accumulation. (Tomado de la fuente)eng
dc.description.abstractEste estudio examina la influencia relativa del clima actual y los factores biogeográficos en la acumulación de especies arbóreas en tres hotspots de biodiversidad del noroeste de Sudamérica: Amazonas, Andes y Chocó. Nuestros objetivos fueron: (1) analizar los patrones de diversidad taxonómica y filogenética en cada región y (2) explorar el papel de los factores climáticos y biogeográficos en la acumulación de clados filogenéticos, empleando el tamaño del efecto estandarizado de la Diversidad Filogenética (ses.PD). Utilizando datos de 49 parcelas de 1 ha (18 en la Amazonía, 18 en los Andes y 13 en el Chocó), evaluamos cómo la diversidad filogenética y la dispersión determinan la composición de las comunidades arbóreas. A escala local, la mayor riqueza y diversidad de especies se registró en la Amazonía, seguida del Chocó y los Andes, sin diferencias significativas entre estos últimos. A escala regional, la Amazonía presentó las tasas más altas de acumulación de especies y riqueza filogenética. Los valores de ses.PD indicaron baja diversificación en la Amazonía, con clados estrechamente relacionados, mientras que en los Andes y Chocó predominó una mayor diversificación con especies filogenéticamente distantes. Un modelo lineal mixto reveló que la estacionalidad de la precipitación y los factores biogeográficos históricos influyen significativamente en la diversidad filogenética. En la Amazonía, la alta diversidad se debe a la especiación en clados dominantes a lo largo del tiempo, mientras que, en el Chocó y Andes, la dispersión histórica desempeñó un papel clave en la acumulación de especies.spa
dc.description.curricularareaBosques Y Conservación Ambiental.Sede Medellín
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Bosques y Conservación Ambiental
dc.description.researchareaEcología de bosques tropicales
dc.format.extent59 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88589
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.publisher.facultyFacultad de Ciencias Agrarias
dc.publisher.placeMedellín, Colombia
dc.publisher.programMedellín - Ciencias Agrarias - Maestría en Bosques y Conservación Ambiental
dc.relation.indexedLaReferencia
dc.relation.referencesAntonelli, A., & Sanmartín, I. (2011). Why are there so many plant species in the Neotropics? Taxon, 60(2), 403-414.
dc.relation.referencesAntonelli, A., Zizka, A., Carvalho, F. A., Scharn, R., Bacon, C. D., Silvestro, D., & Condamine, F. L. (2018). Amazonia is the primary source of Neotropical biodiversity. Proceedings of the National Academy of Sciences, 115(23), 6034-6039. https://doi.org/10.1073/pnas.1713819115
dc.relation.referencesBacon, C. D., Silvestro, D., Jaramillo, C., Smith, B. T., Chakrabarty, P., & Antonelli, A. (2015). Biological evidence supports an early and complex emergence of the Isthmus of Panama. Proceedings of the National Academy of Sciences, 112(19), 6110-6115. https://doi.org/10.1073/pnas.1423853112
dc.relation.referencesBadgley, C., Smiley, T. M., Terry, R., Davis, E. B., DeSantis, L. R. G., Fox, D. L., Hopkins, S. S. B., Jezkova, T., Matocq, M. D., Matzke, N., McGuire, J. L., Mulch, A., Riddle, B. R., Roth, V. L., Samuels, J. X., Strömberg, C. A. E., & Yanites, B. J. (2017). Biodiversity and Topographic Complexity: Modern and Geohistorical Perspectives. Trends in Ecology & Evolution, 32(3), 211-226. https://doi.org/10.1016/j.tree.2016.12.010
dc.relation.referencesBaker, T. R., Adu-Bredu, S., Affum-Baffoe, K., Aiba, S., Akite, P., Alexiades, M., Almeida, E., de Oliveira, E. A., Davila, E. A., Amani, C., Andrade, A., Aragao, L., Araujo-Murakami, A., Arets, E., Arroyo, L., Ashton, P., Ifo, S. A. A., Aymard, G. A. C., Baisie, M., … Zemagho, L. (2025). Large range sizes link fast life histories with high species richness across wet tropical tree floras. Scientific Reports, 15(1), 4695. https://doi.org/10.1038/s41598-024-84367-3
dc.relation.referencesBates, D., Maechler, M., Bolker, B., & Walker, S. (2023). Package ‘lme4’ (Versión 1.1-35.1) [Dataset]. CRAN.
dc.relation.referencesCarvalho, M. R., Jaramillo, C., de la Parra, F., Caballero-Rodríguez, D., Herrera, F., Wing, S., Turner, B. L., D’Apolito, C., Romero-Báez, M., Narváez, P., Martínez, C., Gutierrez, M., Labandeira, C., Bayona, G., Rueda, M., Paez-Reyes, M., Cárdenas, D., Duque, Á., Crowley, J. L., … Silvestro, D. (2021). Extinction at the end-Cretaceous and the origin of modern Neotropical rainforests. Science, 372(6537), 63-68. https://doi.org/10.1126/science.abf1969
dc.relation.referencesCediel, F. (2019). Phanerozoic Orogens of Northwestern South America: Cordilleran-Type Orogens. Taphrogenic Tectonics. The Maracaibo Orogenic Float. The Chocó-Panamá Indenter. En F. Cediel & R. P. Shaw (Eds.), Geology and Tectonics of Northwestern South America: The Pacific-Caribbean-Andean Junction (pp. 3-95). Springer International Publishing. https://doi.org/10.1007/978-3-319-76132-9_1
dc.relation.referencesChase, J. M., & Myers, J. A. (2011). Disentangling the importance of ecological niches from stochastic processes across scales. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1576). https://doi.org/10.1098/rstb.2011.0063
dc.relation.referencesChase, M. W., Christenhusz, M. J. M., Fay, M. F., Byng, J. W., Judd, W. S., Soltis, D. E., Mabberley, D. J., Sennikov, A. N., Soltis, P. S., Stevens, P. F., Briggs, B., Brockington, S., Chautems, A., Clark, J. C., Conran, J., Haston, E., Möller, M., Moore, M., Olmstead, R., … Weber, A. (2016). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society. https://doi.org/10.1111/boj.12385
dc.relation.referencesChown, S. L., Gaston, K. J., Chown, S. L., Gaston, K. J., Chown, S. L., & Gaston, K. J. (2000). Areas, cradles and museums: The latitudinal gradient in species richness. Trends in Ecology & Evolution, 15(8), 311-315. https://doi.org/10.1016/S0169-5347(00)01910-8
dc.relation.referencesCondit, R., Hubbell, S. P., Lafrankie, J. V., Sukumar, R., Manokaran, N., Foster, R. B., & Ashton, P. S. (1996). Species-Area and Species-Individual Relationships for Tropical Trees: A Comparison of Three 50-ha Plots. Journal of Ecology, 84(4), 549-562. https://doi.org/10.2307/2261477
dc.relation.referencesCondit, R., Pitman, N., Leigh, E. G., Chave, J., Terborgh, J., Foster, R. B., Núñez, P. V., Aguilar, S., Valencia, R., Villa, G., Muller-Landau, H. C., Losos, E., & Hubbell, S. P. (2002). Beta-diversity in tropical forest trees. Science. https://doi.org/10.1126/science.1066854
dc.relation.referencesCooper, D. L. M., Lewis, S. L., Sullivan, M. J. P., Prado, P. I., ter Steege, H., Barbier, N., Slik, F., Sonké, B., Ewango, C. E. N., Adu-Bredu, S., Affum-Baffoe, K., de Aguiar, D. P. P., Ahuite Reategui, M. A., Aiba, S.-I., Albuquerque, B. W., de Almeida Matos, F. D., Alonso, A., Amani, C. A., do Amaral, D. D., … Zent, S. (2024). Consistent patterns of common species across tropical tree communities. Nature, 625(7996), 728-734. https://doi.org/10.1038/s41586-023-06820-z
dc.relation.referencesCopete, J. C., Sánchez, M., Cámara-Leret, R., & Balslev, H. (2019). Diversity of palm communities in the biogeographic chocó and its relation with precipitation. Caldasia. https://doi.org/10.15446/caldasia.v41n2.66576
dc.relation.referencesCupertino-Eisenlohr, M. A., Oliveira-Filho, A. T., & Simon, M. F. (2021). Patterns of variation in tree composition and richness in Neotropical Non-Flooded Evergreen Forests. Applied Vegetation Science, 24(1), e12522. https://doi.org/10.1111/avsc.12522
dc.relation.referencesDexter, K. G., Lavin, M., Torke, B. M., Twyford, A. D., Kursar, T. A., Coley, P. D., Drake, C., Hollands, R., & Pennington, R. T. (2017). Dispersal assembly of rain forest tree communities across the Amazon basin. Proceedings of the National Academy of Sciences of the United States of America, 114(10), 2645-2650.
dc.relation.referencesDexter, K. G., Terborgh, J. W., & Cunningham, C. W. (2012). Historical effects on beta diversity and community assembly in Amazonian trees. Proceedings of the National Academy of Sciences of the United States of America, 109(20), 7787-7792.
dc.relation.referencesDuque, Á., Phillips, J. F., Von Hildebrand, P., Posada, C. A., Prieto, A., Rudas, A., Suescún, M., & Stevenson, P. (2009). Distance decay of tree species similarity in protected areas on terra firme forests in Colombian Amazonia. Biotropica, 41(5), 599-607. https://doi.org/10.1111/j.1744-7429.2009.00516.x
dc.relation.referencesFaith, D. P., D. P. (1992). Conservation evaluation and phylogenetic diversity. Biological conservation, 61(1), 1-10.
dc.relation.referencesFeeley, K. J., Silman, M. R., Bush, M. B., Farfan, W., Cabrera, K. G., Malhi, Y., Meir, P., Revilla, N. S., Quisiyupanqui, M. N. R., & Saatchi, S. (2011). Upslope migration of Andean trees. Journal of Biogeography, 38(4), 783-791. https://doi.org/10.1111/j.1365-2699.2010.02444.x
dc.relation.referencesFine, PaulV. A., Daly, D. C., & Cameron, K. M. (2005). THE CONTRIBUTION OF EDAPHIC HETEROGENEIYT TO THE EVOLUTION AND DIVERSITY OF BURSERACEAR TREES IN THE WESTERN AMAZON. Evolution, 59(7), 1464-1478. https://doi.org/10.1111/j.0014-3820.2005.tb01796.x
dc.relation.referencesGaston, K. j. (2009). Geographic range limits of species. Proceedings of the Royal Society B: Biological Sciences, 276(1661), 1391-1393. https://doi.org/10.1098/rspb.2009.0100
dc.relation.referencesGentry, A. H. (1982). Neotropical floristic diversity: Phytogeographical connections between Central and South America, Pleistocene climatic fluctuations, or an accident of the Andean orogeny? Annals of the Missouri Botanical garden, 69(3), 557-593.
dc.relation.referencesGentry, A. H. (1986). Species richness and floristic composition of Choco Region plant communities Species richness and floristic composition of Choco Region plant communities. Caldasia, 15(71-75), 71-91.
dc.relation.referencesGentry, A. H. (1988). Changes in Plant Community Diversity and Floristic Composition on Environmental and Geographical Gradients. Annals of the Missouri Botanical Garden. https://doi.org/10.2307/2399464
dc.relation.referencesGivnish, T. J. (1999). On the causes of gradients in tropical tree diversity. Journal of Ecology, 87(2), 193-210. https://doi.org/10.1046/j.1365-2745.1999.00333.x
dc.relation.referencesGonzález-Caro, S., Duque, Á., Feeley, K. J., Cabrera, E., Phillips, J., Ramirez, S., & Yepes, A. (2020). The legacy of biogeographic history on the composition and structure of Andean forests. Ecology, 101(10), e03131. https://doi.org/10.1002/ecy.3131
dc.relation.referencesGonzález-Caro, S., Tello, J. S., Myers, J. A., Feeley, K., Blundo, C., Calderón-Loor, M., Carilla, J., Cayola, L., Cuesta, F., Farfán, W., Fuentes, A. F., Garcia-Cabrera, K., Grau, R., Idarraga, Á., Loza, M. I., Malhi, Y., Malizia, A., Malizia, L., Osinaga-Acosta, O., … Duque, Á. (2023). Historical Assembly of Andean Tree Communities. Plants, 12(20), Article 20. https://doi.org/10.3390/plants12203546
dc.relation.referencesGonzález-Orozco, C. E. (2023). Unveiling evolutionary cradles and museums of flowering plants in a neotropical biodiversity hotspot. Royal Society Open Science, 10(10), 230917. https://doi.org/10.1098/rsos.230917
dc.relation.referencesGotelli, N. J. (2000). Null Model Analysis of Species Co-Occurrence Patterns. Ecology, 81(9), 2606-2621. https://doi.org/10.1890/0012-9658(2000)081[2606:NMAOSC]2.0.CO;2
dc.relation.referencesGotelli, N. J., & Colwell, R. K. (2001). Quantifying biodiversity: Procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters, 4(4), 379-391. https://doi.org/10.1046/j.1461-0248.2001.00230.x
dc.relation.referencesHammond, D. S. (2005). Ancient land in a modern world. En Tropical forests of the Guiana shield: Ancient forests in a modern world (pp. 1-14). https://doi.org/10.1079/9780851995366.0001
dc.relation.referencesHonorio Coronado, E. N., Dexter, K. G., Pennington, R. T., Chave, J., Lewis, S. L., Alexiades, M. N., Alvarez, E., Alves de Oliveira, A., Amaral, I. L., Araujo-Murakami, A., Arets, E. J. M. M., Aymard, G. A., Baraloto, C., Bonal, D., Brienen, R., Cerón, C., Cornejo Valverde, F., Di Fiore, A., Farfan-Rios, W., … Phillips, O. L. (2015). Phylogenetic diversity of Amazonian tree communities. Diversity and Distributions, 21(11), 1295-1307. https://doi.org/10.1111/ddi.12357
dc.relation.referencesHoorn, C., Wesselingh, F. P., ter Steege, H., Bermudez, M. A., Mora, A., Sevink, J., Sanmartín, I., Sanchez-Meseguer, A., Anderson, C. L., Figueiredo, J. P., Jaramillo, C., Riff, D., Negri, F. R., Hooghiemstra, H., Lundberg, J., Stadler, T., Särkinen, T., & Antonelli, A. (2010). Amazonia Through Time: Andean Uplift, Climate Change, Landscape Evolution, and Biodiversity. Science, 330(6006), 927-931. https://doi.org/10.1126/science.1194585
dc.relation.referencesJablonski, D., Roy, K., & Valentine, J. W. (2006). Out of the Tropics: Evolutionary Dynamics of the Latitudinal Diversity Gradient. Science, 314(5796), 102-106. https://doi.org/10.1126/science.1130880
dc.relation.referencesJaramillo, C. (2023). The evolution of extant South American tropical biomes. New Phytologist, 239(2), 477-493. https://doi.org/10.1111/nph.18931
dc.relation.referencesJin, Y., & Qian, H. (2019). V.PhyloMaker: An R package that can generate very large phylogenies for vascular plants. Ecography, 42(8), 1353-1359. https://doi.org/10.1111/ecog.04434
dc.relation.referencesJost, L. (2007). Partitioning diversity into independent alpha and beta components. Ecology. https://doi.org/10.1890/06-1736.1
dc.relation.referencesKarger, D. N., Lange, S., Hari, C., Reyer, C. P. O., & Zimmermann, N. E. (2022). CHELSA-W5E5 v1.0: W5E5 v1.0 downscaled with CHELSA v2.0. [Dataset]. ISIMIP Repository. https://doi.org/10.48364/ISIMIP.836809.1
dc.relation.referencesKembel, S. W., Cowan, P. D., Helmus, M. R., Cornwell, W. K., Morlon, H., Ackerly, D. D., Blomberg, S. P., & Webb, C. O. (2010). Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 26(11), 1463-1464. https://doi.org/10.1093/bioinformatics/btq166
dc.relation.referencesKeylock, C. J. (2005). Simpson diversity and the Shannon–Wiener index as special cases of a generalized entropy. Oikos, 109(1), 203-207. https://doi.org/10.1111/j.0030-1299.2005.13735.x
dc.relation.referencesKreft, H., & Jetz, W. (2007). Global patterns and determinants of vascular plant diversity. Proceedings of the National Academy of Sciences, 104(14), 5925-5930. https://doi.org/10.1073/pnas.0608361104
dc.relation.referencesKursar, T. A., Dexter, K. G., Lokvam, J., Pennington, R. T., Richardson, J. E., Weber, M. G., Murakami, E. T., Drake, C., McGregor, R., & Coley, P. D. (2009). The Evolution of Antiherbivore Defenses and Their Contribution to Species Coexistence in the Tropical Tree Genus Inga. Proceedings of the National Academy of Sciences of the United States of America, 106(43), 18073-18078.
dc.relation.referencesLinan, A. G., Myers, J. A., Edwards, C. E., Zanne, A. E., Smith, S. A., Arellano, G., Cayola, L., Farfan-Ríos, W., Fuentes, A. F., García-Cabrera, K., González-Caro, S., Loza, M. I., Macía, M. J., Malhi, Y., Nieto-Ariza, B., Salinas, N., Silman, M., & Tello, J. S. (2021). The evolutionary assembly of forest communities along environmental gradients: Recent diversification or sorting of pre-adapted clades? New Phytologist, 232(6), 2506-2519. https://doi.org/10.1111/nph.17674
dc.relation.referencesLuebert, F., & Weigend, M. (2014). Phylogenetic insights into Andean plant diversification. Frontiers in Ecology and Evolution, 2. https://doi.org/10.3389/fevo.2014.00027
dc.relation.referencesLuize, B. G., Bauman, D., ter Steege, H., Palma-Silva, C., do Amaral, I. L., de Souza Coelho, L., de Almeida Matos, F. D., de Andrade Lima Filho, D., Salomão, R. P., Wittmann, F., Castilho, C. V., de Jesus Veiga Carim, M., Guevara, J. E., Phillips, O. L., Magnusson, W. E., Sabatier, D., Revilla, J. D. C., Molino, J.-F., Irume, M. V., … Dexter, K. G. (2024). Geography and ecology shape the phylogenetic composition of Amazonian tree communities. Journal of Biogeography, n/a(n/a). https://doi.org/10.1111/jbi.14816
dc.relation.referencesMargrove, J. A., Burslem, D. F. R. P., Ghazoul, J., Khoo, E., Kettle, C. J., & Maycock, C. R. (2015). Impacts of an Extreme Precipitation Event on Dipterocarp Mortality and Habitat Filtering in a Bornean Tropical Rain Forest. Biotropica, 47(1), 66-76. https://doi.org/10.1111/btp.12189
dc.relation.referencesMontes, C., Cardona, A., McFadden, R., Morón, S. E., Silva, C. A., Restrepo-Moreno, S., Ramírez, D. A., Hoyos, N., Wilson, J., Farris, D., Bayona, G. A., Jaramillo, C. A., Valencia, V., Bryan, J., & Flores, J. A. (2012). Evidence for middle Eocene and younger land emergence in central Panama: Implications for Isthmus closure. GSA Bulletin, 124(5-6), 780-799. https://doi.org/10.1130/B30528.1
dc.relation.referencesMyers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403(6772), Article 6772. https://doi.org/10.1038/35002501
dc.relation.referencesO’Dea, A., Lessios, H. A., Coates, A. G., Eytan, R. I., Restrepo-Moreno, S. A., Cione, A. L., Collins, L. S., de Queiroz, A., Farris, D. W., Norris, R. D., Stallard, R. F., Woodburne, M. O., Aguilera, O., Aubry, M.-P., Berggren, W. A., Budd, A. F., Cozzuol, M. A., Coppard, S. E., Duque-Caro, H., … Jackson, J. B. C. (2016). Formation of the Isthmus of Panama. Science Advances, 2(8), e1600883. https://doi.org/10.1126/sciadv.1600883
dc.relation.referencesPalmer, M. W. (2005). Distance decay in an old-growth neotropical forest. Journal of Vegetation Science. https://doi.org/10.1658/1100-9233(2005)016[0161:ddiaon]2.0.co;2
dc.relation.referencesPennington, R. T., & Dick, C. W. (2010). Diversification of the Amazonian flora and its relation to key geological and environmental events: A molecular perspective. Blackwell. http://deepblue.lib.umich.edu/handle/2027.42/83292
dc.relation.referencesPennington, R. T., Lavin, M., Särkinen, T., Lewis, G. P., Klitgaard, B. B., & Hughes, C. E. (2010). Contrasting plant diversification histories within the Andean biodiversity hotspot. Proceedings of the National Academy of Sciences, 107(31), 13783-13787. https://doi.org/10.1073/pnas.1001317107
dc.relation.referencesPérez-Escobar, O. A., Lucas, E., Jaramillo, C., Monro, A., Morris, S. K., Bogarín, D., Greer, D., Dodsworth, S., Aguilar-Cano, J., Sanchez Meseguer, A., & Antonelli, A. (2019). The Origin and Diversification of the Hyperdiverse Flora in the Chocó Biogeographic Region. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2019.01328
dc.relation.referencesPinheiro, J., & Bates, D. (2006). Mixed-Effects Models in S and S-PLUS. Springer Science & Business Media.
dc.relation.referencesPitman, N. C. A., Terborgh, J. W., Silman, M. R., Núñez, P. V., Neill, D. A., Cerón, C. E., Palacios, W. A., & Aulestia, M. (2001). Dominance and distribution of tree species in upper Amazonian terra firme forests. Ecology. https://doi.org/10.1890/0012-9658(2001)082[2101:DADOTS]2.0.CO;2
dc.relation.referencesPontara, V., Bueno, M. L., Rezende, V. L., de Oliveira-Filho, A. T., Gastauer, M., & Meira-Neto, J. A. A. (2018). Evolutionary history of campo rupestre: An approach for conservation of woody plant communities. Biodiversity and Conservation, 27(11), 2877-2896. https://doi.org/10.1007/s10531-018-1574-2
dc.relation.referencesQian, H., Kessler, M., Zhang, J., Jin, Y., & Jiang, M. (2023). Global patterns and climatic determinants of phylogenetic structure of regional fern floras. New Phytologist, 239(1), 415-428. https://doi.org/10.1111/nph.18920
dc.relation.referencesRamírez, S., González-Caro, S., Phillips, J., Cabrera, E., Feeley, K. J., & Duque, Á. (2019). The influence of historical dispersal on the phylogenetic structure of tree communities in the tropical Andes. Biotropica, 51(4), 500-508. https://doi.org/10.1111/BTP.12661
dc.relation.referencesRichardson, J. E., Pennington, R. T., Pennington, T. D., & Hollingsworth, P. M. (2001). Rapid Diversification of a Species-Rich Genus of Neotropical Rain Forest Trees. Science, 293(5538), 2242-2245. https://doi.org/10.1126/science.1061421
dc.relation.referencesRicklefs, R. E. (2004). A comprehensive framework for global patterns in biodiversity. Ecology Letters, 7(1), 1-15. https://doi.org/10.1046/j.1461-0248.2003.00554.x
dc.relation.referencesRingelberg, J. J., Koenen, E. J. M., Sauter, B., Aebli, A., Rando, J. G., Iganci, J. R., de Queiroz, L. P., Murphy, D. J., Gaudeul, M., Bruneau, A., Luckow, M., Lewis, G. P., Miller, J. T., Simon, M. F., Jordão, L. S. B., Morales, M., Bailey, C. D., Nageswara-Rao, M., Nicholls, J. A., … Hughes, C. E. (2023). Precipitation is the main axis of tropical plant phylogenetic turnover across space and time. Science Advances, 9(7), eade4954. https://doi.org/10.1126/sciadv.ade4954
dc.relation.referencesRosenzweig, M. L. (1995). Species Diversity in Space and Time. Cambridge University Press. https://doi.org/10.1017/CBO9780511623387
dc.relation.referencesSantos, A. B. M., Maia, V. A., de Souza, C. R., Fagundes, N. C. A., Gianasi, F. M., Pais, A. de J. R., de Aguiar-Campos, N., Pires, G. G., Girardelli, D. T., Morel, J. D., Morelli, M. C. M., Araújo, F. de C., & dos Santos, R. M. (2021). Disentangling spatial, environmental and historical effects on tropical forest tree species turnover. Journal of Plant Ecology, 14(4), 717-729. https://doi.org/10.1093/jpe/rtab027
dc.relation.referencesSchley, R. J., de la Estrella, M., Pérez-Escobar, O. A., Bruneau, A., Barraclough, T., Forest, F., & Klitgård, B. (2018). Is Amazonia a ‘museum’ for Neotropical trees? The evolution of the Brownea clade (Detarioideae, Leguminosae). Molecular Phylogenetics and Evolution, 126, 279-292. https://doi.org/10.1016/j.ympev.2018.04.029
dc.relation.referencesSchluter, D., & Pennell, M. W. (2017). Speciation gradients and the distribution of biodiversity. Nature, 546(7656), Article 7656. https://doi.org/10.1038/nature22897
dc.relation.referencesSegovia, R. A., Pennington, R. T., Baker, T. R., Coelho de Souza, F., Neves, D. M., Davis, C. C., Armesto, J. J., Olivera-Filho, A. T., & Dexter, K. G. (2020). Freezing and water availability structure the evolutionary diversity of trees across the Americas. Science Advances, 6(19), eaaz5373. https://doi.org/10.1126/sciadv.aaz5373
dc.relation.referencesSlik, J. W. F., Arroyo-Rodríguez, V., Aiba, S.-I., Alvarez-Loayza, P., Alves, L. F., Ashton, P., Balvanera, P., Bastian, M. L., Bellingham, P. J., van den Berg, E., Bernacci, L., da Conceição Bispo, P., Blanc, L., Böhning-Gaese, K., Boeckx, P., Bongers, F., Boyle, B., Bradford, M., Brearley, F. Q., … Venticinque, E. M. (2015). An estimate of the number of tropical tree species. Proceedings of the National Academy of Sciences, 112(24), 7472-7477. https://doi.org/10.1073/pnas.1423147112
dc.relation.referencesSlik, J. W. F., Franklin, J., Arroyo-Rodríguez, V., Field, R., Aguilar, S., Aguirre, N., Ahumada, J., Aiba, S.-I., Alves, L. F., K, A., Avella, A., Mora, F., Aymard C., G. A., Báez, S., Balvanera, P., Bastian, M. L., Bastin, J.-F., Bellingham, P. J., van den Berg, E., … Zang, R. (2018). Phylogenetic classification of the world’s tropical forests. Proceedings of the National Academy of Sciences, 115(8), 1837-1842. https://doi.org/10.1073/pnas.1714977115
dc.relation.referencesSmith, B. T., McCormack, J. E., Cuervo, A. M., Hickerson, M. J., Aleixo, A., Cadena, C. D., Pérez-Emán, J., Burney, C. W., Xie, X., Harvey, M. G., Faircloth, B. C., Glenn, T. C., Derryberry, E. P., Prejean, J., Fields, S., & Brumfield, R. T. (2014). The drivers of tropical speciation. Nature, 515(7527), Article 7527. https://doi.org/10.1038/nature13687
dc.relation.referencesSmith, S. A., & Brown, J. W. (2018). Constructing a broadly inclusive seed plant phylogeny. American Journal of Botany, 105(3), 302-314. https://doi.org/10.1002/ajb2.1019
dc.relation.referencesSpikings, R., Cochrane, R., Villagomez, D., Van der Lelij, R., Vallejo, C., Winkler, W., & Beate, B. (2015). The geological history of northwestern South America: From Pangaea to the early collision of the Caribbean Large Igneous Province (290–75 Ma). Gondwana Research, 27(1), 95-139. https://doi.org/10.1016/j.gr.2014.06.004
dc.relation.referencesSwenson, N. G., Erickson, D. L., Mi, X., Bourg, N. A., Forero-Montaña, J., Ge, X., Howe, R., Lake, J. K., Liu, X., Ma, K., Pei, N., Thompson, J., Uriarte, M., Wolf, A., Wright, S. J., Ye, W., Zhang, J., Zimmerman, J. K., & Kress, W. J. (2012). Phylogenetic and functional alpha and beta diversity in temperate and tropical tree communities. Ecology, 93(sp8), S112-S125. https://doi.org/10.1890/11-0402.1
dc.relation.referencesTer Steege, H., Pitman, N. C. A., Sabatier, D., Baraloto, C., Salomão, R. P., Guevara, J. E., Phillips, O. L., Castilho, C. V., Magnusson, W. E., Molino, J. F., Monteagudo, A., Vargas, P. N., Montero, J. C., Feldpausch, T. R., Coronado, E. N. H., Killeen, T. J., Mostacedo, B., Vasquez, R., Assis, R. L., … Silman, M. R. (2013). Hyperdominance in the Amazonian tree flora. Science. https://doi.org/10.1126/science.1243092
dc.relation.referencesTownsend, A., & Soberón, J. (2012). Ecological niches and geographic distributions. Choice Reviews Online. https://doi.org/10.5860/choice.49-6266
dc.relation.referencesVargas, O. M., & Dick, C. W. (2020). Diversification History of Neotropical Lecythidaceae, an Ecologically Dominant Tree Family of Amazon Rain Forest. En V. Rull & A. C. Carnaval (Eds.), Neotropical Diversification: Patterns and Processes (pp. 791-809). Springer International Publishing. https://doi.org/10.1007/978-3-030-31167-4_29
dc.relation.referencesVaughan, I. P., & Ormerod, S. J. (2005). The continuing challenges of testing species distribution models. Journal of Applied Ecology, 42(4), 720-730. https://doi.org/10.1111/j.1365-2664.2005.01052.x
dc.relation.referencesWebb, C. O., Ackerly, D. D., McPeek, M. A., & Donoghue, M. J. (2002). Phylogenies and Community Ecology. Annual Review of Ecology and Systematics, 33(1), 475-505. https://doi.org/10.1146/annurev.ecolsys.33.010802.150448
dc.relation.referencesWu, G., & Wiens, J. J. (2022). The origins of climate-diversity relationships and richness patterns in Chinese plants. Ecology and Evolution, 12(12), e9607. https://doi.org/10.1002/ece3.960
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc570 - Biología::577 - Ecología
dc.subject.ddc570 - Biología::576 - Genética y evolución
dc.subject.ddc580 - Plantas
dc.subject.lembDiversidad biológica - América del sur
dc.subject.lembFilogenia - América del sur
dc.subject.lembArboles - Identificación - América del sur
dc.subject.proposalPhylogenetic diversityeng
dc.subject.proposalCradles and Museumseng
dc.subject.proposalHyperdominanceeng
dc.subject.proposalEvolutionary dispersaleng
dc.subject.proposalAmazonasspa
dc.subject.proposalAndesspa
dc.subject.proposalChocóspa
dc.subject.proposalCunas y museosspa
dc.subject.proposalHiperdominanciaspa
dc.subject.proposalDiversidad filogenéticaspa
dc.subject.proposalDispersión evolutivaspa
dc.titlePatterns and drivers of tree community diversification in three biodiversity hotspots of northwestern South Americaeng
dc.title.translatedPatrones y factores impulsores de la diversificación de las comunidades arbóreas en tres hotspots de biodiversidad del noroeste de Sudaméricaspa
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis de Maestría en Bosques y Conservación Ambiental
Tamaño:
1.66 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: