Patterns and drivers of tree community diversification in three biodiversity hotspots of northwestern South America
dc.contributor.advisor | Sánchez Sáenz, Mauricio | |
dc.contributor.advisor | Duque Montoya, Álvaro Javier | |
dc.contributor.author | Palacios Hurtado, Andrés Camilo | |
dc.contributor.cvlac | https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001371785 | |
dc.contributor.googlescholar | Camilo Palacios Hurtado | |
dc.contributor.orcid | Palacios Hurtado, Andrés Camilo [0009-0001-9726-7945] | |
dc.contributor.orcid | Sánchez Sáenz, Mauricio [0000-0002-4983-436X] | |
dc.contributor.orcid | Duque Montoya, Álvaro Javier [0000-0001-5464-2058] | |
dc.contributor.researchgroup | Conservación, Uso y Biodiversidad | |
dc.coverage.region | Sur América | |
dc.date.accessioned | 2025-09-03T20:13:34Z | |
dc.date.available | 2025-09-03T20:13:34Z | |
dc.date.issued | 2025-09 | |
dc.description | Ilustraciones, gráficos | spa |
dc.description.abstract | This study aims the relative influence of current climate and biogeographic history on tree species accumulation across three biodiversity hotspots in northwestern South America: the Amazon, the Andes, and the Chocó. Our objectives were: (1) to analyze patterns of taxonomic and phylogenetic diversity within each region, and (2) to explore the role of climatic and biogeographic factors in the accumulation of phylogenetic lineages using the standardized effect size of phylogenetic diversity (ses.PD). Based on data from 49 1-ha forest plots (18 in the Amazon, 18 in the Andes, and 13 in the Chocó), we assessed how phylogenetic diversity and dispersion shape tree community composition. At the local scale, the highest species richness and diversity were observed in the Amazon, followed by the Chocó and the Andes, with no significant difference between the latter two. At the regional scale, the Amazon exhibited the highest rates of species and accumulation of phylogenetic richness. ses.PD values revealed low diversification in the Amazon, dominated by closely related clades, while the Andes and Chocó showed greater diversification with phylogenetically distant species. A linear mixed-effects model indicated that precipitation seasonality and historical biogeographic factors significantly influence phylogenetic diversity. In the Amazon, high diversity appears to result from long-term speciation within dominant clades, whereas in the Andes and Chocó, historical dispersal has played a key role in species accumulation in the Chocó and Andes, historical dispersal played a key role in species accumulation. (Tomado de la fuente) | eng |
dc.description.abstract | Este estudio examina la influencia relativa del clima actual y los factores biogeográficos en la acumulación de especies arbóreas en tres hotspots de biodiversidad del noroeste de Sudamérica: Amazonas, Andes y Chocó. Nuestros objetivos fueron: (1) analizar los patrones de diversidad taxonómica y filogenética en cada región y (2) explorar el papel de los factores climáticos y biogeográficos en la acumulación de clados filogenéticos, empleando el tamaño del efecto estandarizado de la Diversidad Filogenética (ses.PD). Utilizando datos de 49 parcelas de 1 ha (18 en la Amazonía, 18 en los Andes y 13 en el Chocó), evaluamos cómo la diversidad filogenética y la dispersión determinan la composición de las comunidades arbóreas. A escala local, la mayor riqueza y diversidad de especies se registró en la Amazonía, seguida del Chocó y los Andes, sin diferencias significativas entre estos últimos. A escala regional, la Amazonía presentó las tasas más altas de acumulación de especies y riqueza filogenética. Los valores de ses.PD indicaron baja diversificación en la Amazonía, con clados estrechamente relacionados, mientras que en los Andes y Chocó predominó una mayor diversificación con especies filogenéticamente distantes. Un modelo lineal mixto reveló que la estacionalidad de la precipitación y los factores biogeográficos históricos influyen significativamente en la diversidad filogenética. En la Amazonía, la alta diversidad se debe a la especiación en clados dominantes a lo largo del tiempo, mientras que, en el Chocó y Andes, la dispersión histórica desempeñó un papel clave en la acumulación de especies. | spa |
dc.description.curriculararea | Bosques Y Conservación Ambiental.Sede Medellín | |
dc.description.degreelevel | Maestría | |
dc.description.degreename | Magíster en Bosques y Conservación Ambiental | |
dc.description.researcharea | Ecología de bosques tropicales | |
dc.format.extent | 59 páginas | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88589 | |
dc.language.iso | eng | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | |
dc.publisher.faculty | Facultad de Ciencias Agrarias | |
dc.publisher.place | Medellín, Colombia | |
dc.publisher.program | Medellín - Ciencias Agrarias - Maestría en Bosques y Conservación Ambiental | |
dc.relation.indexed | LaReferencia | |
dc.relation.references | Antonelli, A., & Sanmartín, I. (2011). Why are there so many plant species in the Neotropics? Taxon, 60(2), 403-414. | |
dc.relation.references | Antonelli, A., Zizka, A., Carvalho, F. A., Scharn, R., Bacon, C. D., Silvestro, D., & Condamine, F. L. (2018). Amazonia is the primary source of Neotropical biodiversity. Proceedings of the National Academy of Sciences, 115(23), 6034-6039. https://doi.org/10.1073/pnas.1713819115 | |
dc.relation.references | Bacon, C. D., Silvestro, D., Jaramillo, C., Smith, B. T., Chakrabarty, P., & Antonelli, A. (2015). Biological evidence supports an early and complex emergence of the Isthmus of Panama. Proceedings of the National Academy of Sciences, 112(19), 6110-6115. https://doi.org/10.1073/pnas.1423853112 | |
dc.relation.references | Badgley, C., Smiley, T. M., Terry, R., Davis, E. B., DeSantis, L. R. G., Fox, D. L., Hopkins, S. S. B., Jezkova, T., Matocq, M. D., Matzke, N., McGuire, J. L., Mulch, A., Riddle, B. R., Roth, V. L., Samuels, J. X., Strömberg, C. A. E., & Yanites, B. J. (2017). Biodiversity and Topographic Complexity: Modern and Geohistorical Perspectives. Trends in Ecology & Evolution, 32(3), 211-226. https://doi.org/10.1016/j.tree.2016.12.010 | |
dc.relation.references | Baker, T. R., Adu-Bredu, S., Affum-Baffoe, K., Aiba, S., Akite, P., Alexiades, M., Almeida, E., de Oliveira, E. A., Davila, E. A., Amani, C., Andrade, A., Aragao, L., Araujo-Murakami, A., Arets, E., Arroyo, L., Ashton, P., Ifo, S. A. A., Aymard, G. A. C., Baisie, M., … Zemagho, L. (2025). Large range sizes link fast life histories with high species richness across wet tropical tree floras. Scientific Reports, 15(1), 4695. https://doi.org/10.1038/s41598-024-84367-3 | |
dc.relation.references | Bates, D., Maechler, M., Bolker, B., & Walker, S. (2023). Package ‘lme4’ (Versión 1.1-35.1) [Dataset]. CRAN. | |
dc.relation.references | Carvalho, M. R., Jaramillo, C., de la Parra, F., Caballero-Rodríguez, D., Herrera, F., Wing, S., Turner, B. L., D’Apolito, C., Romero-Báez, M., Narváez, P., Martínez, C., Gutierrez, M., Labandeira, C., Bayona, G., Rueda, M., Paez-Reyes, M., Cárdenas, D., Duque, Á., Crowley, J. L., … Silvestro, D. (2021). Extinction at the end-Cretaceous and the origin of modern Neotropical rainforests. Science, 372(6537), 63-68. https://doi.org/10.1126/science.abf1969 | |
dc.relation.references | Cediel, F. (2019). Phanerozoic Orogens of Northwestern South America: Cordilleran-Type Orogens. Taphrogenic Tectonics. The Maracaibo Orogenic Float. The Chocó-Panamá Indenter. En F. Cediel & R. P. Shaw (Eds.), Geology and Tectonics of Northwestern South America: The Pacific-Caribbean-Andean Junction (pp. 3-95). Springer International Publishing. https://doi.org/10.1007/978-3-319-76132-9_1 | |
dc.relation.references | Chase, J. M., & Myers, J. A. (2011). Disentangling the importance of ecological niches from stochastic processes across scales. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1576). https://doi.org/10.1098/rstb.2011.0063 | |
dc.relation.references | Chase, M. W., Christenhusz, M. J. M., Fay, M. F., Byng, J. W., Judd, W. S., Soltis, D. E., Mabberley, D. J., Sennikov, A. N., Soltis, P. S., Stevens, P. F., Briggs, B., Brockington, S., Chautems, A., Clark, J. C., Conran, J., Haston, E., Möller, M., Moore, M., Olmstead, R., … Weber, A. (2016). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society. https://doi.org/10.1111/boj.12385 | |
dc.relation.references | Chown, S. L., Gaston, K. J., Chown, S. L., Gaston, K. J., Chown, S. L., & Gaston, K. J. (2000). Areas, cradles and museums: The latitudinal gradient in species richness. Trends in Ecology & Evolution, 15(8), 311-315. https://doi.org/10.1016/S0169-5347(00)01910-8 | |
dc.relation.references | Condit, R., Hubbell, S. P., Lafrankie, J. V., Sukumar, R., Manokaran, N., Foster, R. B., & Ashton, P. S. (1996). Species-Area and Species-Individual Relationships for Tropical Trees: A Comparison of Three 50-ha Plots. Journal of Ecology, 84(4), 549-562. https://doi.org/10.2307/2261477 | |
dc.relation.references | Condit, R., Pitman, N., Leigh, E. G., Chave, J., Terborgh, J., Foster, R. B., Núñez, P. V., Aguilar, S., Valencia, R., Villa, G., Muller-Landau, H. C., Losos, E., & Hubbell, S. P. (2002). Beta-diversity in tropical forest trees. Science. https://doi.org/10.1126/science.1066854 | |
dc.relation.references | Cooper, D. L. M., Lewis, S. L., Sullivan, M. J. P., Prado, P. I., ter Steege, H., Barbier, N., Slik, F., Sonké, B., Ewango, C. E. N., Adu-Bredu, S., Affum-Baffoe, K., de Aguiar, D. P. P., Ahuite Reategui, M. A., Aiba, S.-I., Albuquerque, B. W., de Almeida Matos, F. D., Alonso, A., Amani, C. A., do Amaral, D. D., … Zent, S. (2024). Consistent patterns of common species across tropical tree communities. Nature, 625(7996), 728-734. https://doi.org/10.1038/s41586-023-06820-z | |
dc.relation.references | Copete, J. C., Sánchez, M., Cámara-Leret, R., & Balslev, H. (2019). Diversity of palm communities in the biogeographic chocó and its relation with precipitation. Caldasia. https://doi.org/10.15446/caldasia.v41n2.66576 | |
dc.relation.references | Cupertino-Eisenlohr, M. A., Oliveira-Filho, A. T., & Simon, M. F. (2021). Patterns of variation in tree composition and richness in Neotropical Non-Flooded Evergreen Forests. Applied Vegetation Science, 24(1), e12522. https://doi.org/10.1111/avsc.12522 | |
dc.relation.references | Dexter, K. G., Lavin, M., Torke, B. M., Twyford, A. D., Kursar, T. A., Coley, P. D., Drake, C., Hollands, R., & Pennington, R. T. (2017). Dispersal assembly of rain forest tree communities across the Amazon basin. Proceedings of the National Academy of Sciences of the United States of America, 114(10), 2645-2650. | |
dc.relation.references | Dexter, K. G., Terborgh, J. W., & Cunningham, C. W. (2012). Historical effects on beta diversity and community assembly in Amazonian trees. Proceedings of the National Academy of Sciences of the United States of America, 109(20), 7787-7792. | |
dc.relation.references | Duque, Á., Phillips, J. F., Von Hildebrand, P., Posada, C. A., Prieto, A., Rudas, A., Suescún, M., & Stevenson, P. (2009). Distance decay of tree species similarity in protected areas on terra firme forests in Colombian Amazonia. Biotropica, 41(5), 599-607. https://doi.org/10.1111/j.1744-7429.2009.00516.x | |
dc.relation.references | Faith, D. P., D. P. (1992). Conservation evaluation and phylogenetic diversity. Biological conservation, 61(1), 1-10. | |
dc.relation.references | Feeley, K. J., Silman, M. R., Bush, M. B., Farfan, W., Cabrera, K. G., Malhi, Y., Meir, P., Revilla, N. S., Quisiyupanqui, M. N. R., & Saatchi, S. (2011). Upslope migration of Andean trees. Journal of Biogeography, 38(4), 783-791. https://doi.org/10.1111/j.1365-2699.2010.02444.x | |
dc.relation.references | Fine, PaulV. A., Daly, D. C., & Cameron, K. M. (2005). THE CONTRIBUTION OF EDAPHIC HETEROGENEIYT TO THE EVOLUTION AND DIVERSITY OF BURSERACEAR TREES IN THE WESTERN AMAZON. Evolution, 59(7), 1464-1478. https://doi.org/10.1111/j.0014-3820.2005.tb01796.x | |
dc.relation.references | Gaston, K. j. (2009). Geographic range limits of species. Proceedings of the Royal Society B: Biological Sciences, 276(1661), 1391-1393. https://doi.org/10.1098/rspb.2009.0100 | |
dc.relation.references | Gentry, A. H. (1982). Neotropical floristic diversity: Phytogeographical connections between Central and South America, Pleistocene climatic fluctuations, or an accident of the Andean orogeny? Annals of the Missouri Botanical garden, 69(3), 557-593. | |
dc.relation.references | Gentry, A. H. (1986). Species richness and floristic composition of Choco Region plant communities Species richness and floristic composition of Choco Region plant communities. Caldasia, 15(71-75), 71-91. | |
dc.relation.references | Gentry, A. H. (1988). Changes in Plant Community Diversity and Floristic Composition on Environmental and Geographical Gradients. Annals of the Missouri Botanical Garden. https://doi.org/10.2307/2399464 | |
dc.relation.references | Givnish, T. J. (1999). On the causes of gradients in tropical tree diversity. Journal of Ecology, 87(2), 193-210. https://doi.org/10.1046/j.1365-2745.1999.00333.x | |
dc.relation.references | González-Caro, S., Duque, Á., Feeley, K. J., Cabrera, E., Phillips, J., Ramirez, S., & Yepes, A. (2020). The legacy of biogeographic history on the composition and structure of Andean forests. Ecology, 101(10), e03131. https://doi.org/10.1002/ecy.3131 | |
dc.relation.references | González-Caro, S., Tello, J. S., Myers, J. A., Feeley, K., Blundo, C., Calderón-Loor, M., Carilla, J., Cayola, L., Cuesta, F., Farfán, W., Fuentes, A. F., Garcia-Cabrera, K., Grau, R., Idarraga, Á., Loza, M. I., Malhi, Y., Malizia, A., Malizia, L., Osinaga-Acosta, O., … Duque, Á. (2023). Historical Assembly of Andean Tree Communities. Plants, 12(20), Article 20. https://doi.org/10.3390/plants12203546 | |
dc.relation.references | González-Orozco, C. E. (2023). Unveiling evolutionary cradles and museums of flowering plants in a neotropical biodiversity hotspot. Royal Society Open Science, 10(10), 230917. https://doi.org/10.1098/rsos.230917 | |
dc.relation.references | Gotelli, N. J. (2000). Null Model Analysis of Species Co-Occurrence Patterns. Ecology, 81(9), 2606-2621. https://doi.org/10.1890/0012-9658(2000)081[2606:NMAOSC]2.0.CO;2 | |
dc.relation.references | Gotelli, N. J., & Colwell, R. K. (2001). Quantifying biodiversity: Procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters, 4(4), 379-391. https://doi.org/10.1046/j.1461-0248.2001.00230.x | |
dc.relation.references | Hammond, D. S. (2005). Ancient land in a modern world. En Tropical forests of the Guiana shield: Ancient forests in a modern world (pp. 1-14). https://doi.org/10.1079/9780851995366.0001 | |
dc.relation.references | Honorio Coronado, E. N., Dexter, K. G., Pennington, R. T., Chave, J., Lewis, S. L., Alexiades, M. N., Alvarez, E., Alves de Oliveira, A., Amaral, I. L., Araujo-Murakami, A., Arets, E. J. M. M., Aymard, G. A., Baraloto, C., Bonal, D., Brienen, R., Cerón, C., Cornejo Valverde, F., Di Fiore, A., Farfan-Rios, W., … Phillips, O. L. (2015). Phylogenetic diversity of Amazonian tree communities. Diversity and Distributions, 21(11), 1295-1307. https://doi.org/10.1111/ddi.12357 | |
dc.relation.references | Hoorn, C., Wesselingh, F. P., ter Steege, H., Bermudez, M. A., Mora, A., Sevink, J., Sanmartín, I., Sanchez-Meseguer, A., Anderson, C. L., Figueiredo, J. P., Jaramillo, C., Riff, D., Negri, F. R., Hooghiemstra, H., Lundberg, J., Stadler, T., Särkinen, T., & Antonelli, A. (2010). Amazonia Through Time: Andean Uplift, Climate Change, Landscape Evolution, and Biodiversity. Science, 330(6006), 927-931. https://doi.org/10.1126/science.1194585 | |
dc.relation.references | Jablonski, D., Roy, K., & Valentine, J. W. (2006). Out of the Tropics: Evolutionary Dynamics of the Latitudinal Diversity Gradient. Science, 314(5796), 102-106. https://doi.org/10.1126/science.1130880 | |
dc.relation.references | Jaramillo, C. (2023). The evolution of extant South American tropical biomes. New Phytologist, 239(2), 477-493. https://doi.org/10.1111/nph.18931 | |
dc.relation.references | Jin, Y., & Qian, H. (2019). V.PhyloMaker: An R package that can generate very large phylogenies for vascular plants. Ecography, 42(8), 1353-1359. https://doi.org/10.1111/ecog.04434 | |
dc.relation.references | Jost, L. (2007). Partitioning diversity into independent alpha and beta components. Ecology. https://doi.org/10.1890/06-1736.1 | |
dc.relation.references | Karger, D. N., Lange, S., Hari, C., Reyer, C. P. O., & Zimmermann, N. E. (2022). CHELSA-W5E5 v1.0: W5E5 v1.0 downscaled with CHELSA v2.0. [Dataset]. ISIMIP Repository. https://doi.org/10.48364/ISIMIP.836809.1 | |
dc.relation.references | Kembel, S. W., Cowan, P. D., Helmus, M. R., Cornwell, W. K., Morlon, H., Ackerly, D. D., Blomberg, S. P., & Webb, C. O. (2010). Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 26(11), 1463-1464. https://doi.org/10.1093/bioinformatics/btq166 | |
dc.relation.references | Keylock, C. J. (2005). Simpson diversity and the Shannon–Wiener index as special cases of a generalized entropy. Oikos, 109(1), 203-207. https://doi.org/10.1111/j.0030-1299.2005.13735.x | |
dc.relation.references | Kreft, H., & Jetz, W. (2007). Global patterns and determinants of vascular plant diversity. Proceedings of the National Academy of Sciences, 104(14), 5925-5930. https://doi.org/10.1073/pnas.0608361104 | |
dc.relation.references | Kursar, T. A., Dexter, K. G., Lokvam, J., Pennington, R. T., Richardson, J. E., Weber, M. G., Murakami, E. T., Drake, C., McGregor, R., & Coley, P. D. (2009). The Evolution of Antiherbivore Defenses and Their Contribution to Species Coexistence in the Tropical Tree Genus Inga. Proceedings of the National Academy of Sciences of the United States of America, 106(43), 18073-18078. | |
dc.relation.references | Linan, A. G., Myers, J. A., Edwards, C. E., Zanne, A. E., Smith, S. A., Arellano, G., Cayola, L., Farfan-Ríos, W., Fuentes, A. F., García-Cabrera, K., González-Caro, S., Loza, M. I., Macía, M. J., Malhi, Y., Nieto-Ariza, B., Salinas, N., Silman, M., & Tello, J. S. (2021). The evolutionary assembly of forest communities along environmental gradients: Recent diversification or sorting of pre-adapted clades? New Phytologist, 232(6), 2506-2519. https://doi.org/10.1111/nph.17674 | |
dc.relation.references | Luebert, F., & Weigend, M. (2014). Phylogenetic insights into Andean plant diversification. Frontiers in Ecology and Evolution, 2. https://doi.org/10.3389/fevo.2014.00027 | |
dc.relation.references | Luize, B. G., Bauman, D., ter Steege, H., Palma-Silva, C., do Amaral, I. L., de Souza Coelho, L., de Almeida Matos, F. D., de Andrade Lima Filho, D., Salomão, R. P., Wittmann, F., Castilho, C. V., de Jesus Veiga Carim, M., Guevara, J. E., Phillips, O. L., Magnusson, W. E., Sabatier, D., Revilla, J. D. C., Molino, J.-F., Irume, M. V., … Dexter, K. G. (2024). Geography and ecology shape the phylogenetic composition of Amazonian tree communities. Journal of Biogeography, n/a(n/a). https://doi.org/10.1111/jbi.14816 | |
dc.relation.references | Margrove, J. A., Burslem, D. F. R. P., Ghazoul, J., Khoo, E., Kettle, C. J., & Maycock, C. R. (2015). Impacts of an Extreme Precipitation Event on Dipterocarp Mortality and Habitat Filtering in a Bornean Tropical Rain Forest. Biotropica, 47(1), 66-76. https://doi.org/10.1111/btp.12189 | |
dc.relation.references | Montes, C., Cardona, A., McFadden, R., Morón, S. E., Silva, C. A., Restrepo-Moreno, S., Ramírez, D. A., Hoyos, N., Wilson, J., Farris, D., Bayona, G. A., Jaramillo, C. A., Valencia, V., Bryan, J., & Flores, J. A. (2012). Evidence for middle Eocene and younger land emergence in central Panama: Implications for Isthmus closure. GSA Bulletin, 124(5-6), 780-799. https://doi.org/10.1130/B30528.1 | |
dc.relation.references | Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403(6772), Article 6772. https://doi.org/10.1038/35002501 | |
dc.relation.references | O’Dea, A., Lessios, H. A., Coates, A. G., Eytan, R. I., Restrepo-Moreno, S. A., Cione, A. L., Collins, L. S., de Queiroz, A., Farris, D. W., Norris, R. D., Stallard, R. F., Woodburne, M. O., Aguilera, O., Aubry, M.-P., Berggren, W. A., Budd, A. F., Cozzuol, M. A., Coppard, S. E., Duque-Caro, H., … Jackson, J. B. C. (2016). Formation of the Isthmus of Panama. Science Advances, 2(8), e1600883. https://doi.org/10.1126/sciadv.1600883 | |
dc.relation.references | Palmer, M. W. (2005). Distance decay in an old-growth neotropical forest. Journal of Vegetation Science. https://doi.org/10.1658/1100-9233(2005)016[0161:ddiaon]2.0.co;2 | |
dc.relation.references | Pennington, R. T., & Dick, C. W. (2010). Diversification of the Amazonian flora and its relation to key geological and environmental events: A molecular perspective. Blackwell. http://deepblue.lib.umich.edu/handle/2027.42/83292 | |
dc.relation.references | Pennington, R. T., Lavin, M., Särkinen, T., Lewis, G. P., Klitgaard, B. B., & Hughes, C. E. (2010). Contrasting plant diversification histories within the Andean biodiversity hotspot. Proceedings of the National Academy of Sciences, 107(31), 13783-13787. https://doi.org/10.1073/pnas.1001317107 | |
dc.relation.references | Pérez-Escobar, O. A., Lucas, E., Jaramillo, C., Monro, A., Morris, S. K., Bogarín, D., Greer, D., Dodsworth, S., Aguilar-Cano, J., Sanchez Meseguer, A., & Antonelli, A. (2019). The Origin and Diversification of the Hyperdiverse Flora in the Chocó Biogeographic Region. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2019.01328 | |
dc.relation.references | Pinheiro, J., & Bates, D. (2006). Mixed-Effects Models in S and S-PLUS. Springer Science & Business Media. | |
dc.relation.references | Pitman, N. C. A., Terborgh, J. W., Silman, M. R., Núñez, P. V., Neill, D. A., Cerón, C. E., Palacios, W. A., & Aulestia, M. (2001). Dominance and distribution of tree species in upper Amazonian terra firme forests. Ecology. https://doi.org/10.1890/0012-9658(2001)082[2101:DADOTS]2.0.CO;2 | |
dc.relation.references | Pontara, V., Bueno, M. L., Rezende, V. L., de Oliveira-Filho, A. T., Gastauer, M., & Meira-Neto, J. A. A. (2018). Evolutionary history of campo rupestre: An approach for conservation of woody plant communities. Biodiversity and Conservation, 27(11), 2877-2896. https://doi.org/10.1007/s10531-018-1574-2 | |
dc.relation.references | Qian, H., Kessler, M., Zhang, J., Jin, Y., & Jiang, M. (2023). Global patterns and climatic determinants of phylogenetic structure of regional fern floras. New Phytologist, 239(1), 415-428. https://doi.org/10.1111/nph.18920 | |
dc.relation.references | Ramírez, S., González-Caro, S., Phillips, J., Cabrera, E., Feeley, K. J., & Duque, Á. (2019). The influence of historical dispersal on the phylogenetic structure of tree communities in the tropical Andes. Biotropica, 51(4), 500-508. https://doi.org/10.1111/BTP.12661 | |
dc.relation.references | Richardson, J. E., Pennington, R. T., Pennington, T. D., & Hollingsworth, P. M. (2001). Rapid Diversification of a Species-Rich Genus of Neotropical Rain Forest Trees. Science, 293(5538), 2242-2245. https://doi.org/10.1126/science.1061421 | |
dc.relation.references | Ricklefs, R. E. (2004). A comprehensive framework for global patterns in biodiversity. Ecology Letters, 7(1), 1-15. https://doi.org/10.1046/j.1461-0248.2003.00554.x | |
dc.relation.references | Ringelberg, J. J., Koenen, E. J. M., Sauter, B., Aebli, A., Rando, J. G., Iganci, J. R., de Queiroz, L. P., Murphy, D. J., Gaudeul, M., Bruneau, A., Luckow, M., Lewis, G. P., Miller, J. T., Simon, M. F., Jordão, L. S. B., Morales, M., Bailey, C. D., Nageswara-Rao, M., Nicholls, J. A., … Hughes, C. E. (2023). Precipitation is the main axis of tropical plant phylogenetic turnover across space and time. Science Advances, 9(7), eade4954. https://doi.org/10.1126/sciadv.ade4954 | |
dc.relation.references | Rosenzweig, M. L. (1995). Species Diversity in Space and Time. Cambridge University Press. https://doi.org/10.1017/CBO9780511623387 | |
dc.relation.references | Santos, A. B. M., Maia, V. A., de Souza, C. R., Fagundes, N. C. A., Gianasi, F. M., Pais, A. de J. R., de Aguiar-Campos, N., Pires, G. G., Girardelli, D. T., Morel, J. D., Morelli, M. C. M., Araújo, F. de C., & dos Santos, R. M. (2021). Disentangling spatial, environmental and historical effects on tropical forest tree species turnover. Journal of Plant Ecology, 14(4), 717-729. https://doi.org/10.1093/jpe/rtab027 | |
dc.relation.references | Schley, R. J., de la Estrella, M., Pérez-Escobar, O. A., Bruneau, A., Barraclough, T., Forest, F., & Klitgård, B. (2018). Is Amazonia a ‘museum’ for Neotropical trees? The evolution of the Brownea clade (Detarioideae, Leguminosae). Molecular Phylogenetics and Evolution, 126, 279-292. https://doi.org/10.1016/j.ympev.2018.04.029 | |
dc.relation.references | Schluter, D., & Pennell, M. W. (2017). Speciation gradients and the distribution of biodiversity. Nature, 546(7656), Article 7656. https://doi.org/10.1038/nature22897 | |
dc.relation.references | Segovia, R. A., Pennington, R. T., Baker, T. R., Coelho de Souza, F., Neves, D. M., Davis, C. C., Armesto, J. J., Olivera-Filho, A. T., & Dexter, K. G. (2020). Freezing and water availability structure the evolutionary diversity of trees across the Americas. Science Advances, 6(19), eaaz5373. https://doi.org/10.1126/sciadv.aaz5373 | |
dc.relation.references | Slik, J. W. F., Arroyo-Rodríguez, V., Aiba, S.-I., Alvarez-Loayza, P., Alves, L. F., Ashton, P., Balvanera, P., Bastian, M. L., Bellingham, P. J., van den Berg, E., Bernacci, L., da Conceição Bispo, P., Blanc, L., Böhning-Gaese, K., Boeckx, P., Bongers, F., Boyle, B., Bradford, M., Brearley, F. Q., … Venticinque, E. M. (2015). An estimate of the number of tropical tree species. Proceedings of the National Academy of Sciences, 112(24), 7472-7477. https://doi.org/10.1073/pnas.1423147112 | |
dc.relation.references | Slik, J. W. F., Franklin, J., Arroyo-Rodríguez, V., Field, R., Aguilar, S., Aguirre, N., Ahumada, J., Aiba, S.-I., Alves, L. F., K, A., Avella, A., Mora, F., Aymard C., G. A., Báez, S., Balvanera, P., Bastian, M. L., Bastin, J.-F., Bellingham, P. J., van den Berg, E., … Zang, R. (2018). Phylogenetic classification of the world’s tropical forests. Proceedings of the National Academy of Sciences, 115(8), 1837-1842. https://doi.org/10.1073/pnas.1714977115 | |
dc.relation.references | Smith, B. T., McCormack, J. E., Cuervo, A. M., Hickerson, M. J., Aleixo, A., Cadena, C. D., Pérez-Emán, J., Burney, C. W., Xie, X., Harvey, M. G., Faircloth, B. C., Glenn, T. C., Derryberry, E. P., Prejean, J., Fields, S., & Brumfield, R. T. (2014). The drivers of tropical speciation. Nature, 515(7527), Article 7527. https://doi.org/10.1038/nature13687 | |
dc.relation.references | Smith, S. A., & Brown, J. W. (2018). Constructing a broadly inclusive seed plant phylogeny. American Journal of Botany, 105(3), 302-314. https://doi.org/10.1002/ajb2.1019 | |
dc.relation.references | Spikings, R., Cochrane, R., Villagomez, D., Van der Lelij, R., Vallejo, C., Winkler, W., & Beate, B. (2015). The geological history of northwestern South America: From Pangaea to the early collision of the Caribbean Large Igneous Province (290–75 Ma). Gondwana Research, 27(1), 95-139. https://doi.org/10.1016/j.gr.2014.06.004 | |
dc.relation.references | Swenson, N. G., Erickson, D. L., Mi, X., Bourg, N. A., Forero-Montaña, J., Ge, X., Howe, R., Lake, J. K., Liu, X., Ma, K., Pei, N., Thompson, J., Uriarte, M., Wolf, A., Wright, S. J., Ye, W., Zhang, J., Zimmerman, J. K., & Kress, W. J. (2012). Phylogenetic and functional alpha and beta diversity in temperate and tropical tree communities. Ecology, 93(sp8), S112-S125. https://doi.org/10.1890/11-0402.1 | |
dc.relation.references | Ter Steege, H., Pitman, N. C. A., Sabatier, D., Baraloto, C., Salomão, R. P., Guevara, J. E., Phillips, O. L., Castilho, C. V., Magnusson, W. E., Molino, J. F., Monteagudo, A., Vargas, P. N., Montero, J. C., Feldpausch, T. R., Coronado, E. N. H., Killeen, T. J., Mostacedo, B., Vasquez, R., Assis, R. L., … Silman, M. R. (2013). Hyperdominance in the Amazonian tree flora. Science. https://doi.org/10.1126/science.1243092 | |
dc.relation.references | Townsend, A., & Soberón, J. (2012). Ecological niches and geographic distributions. Choice Reviews Online. https://doi.org/10.5860/choice.49-6266 | |
dc.relation.references | Vargas, O. M., & Dick, C. W. (2020). Diversification History of Neotropical Lecythidaceae, an Ecologically Dominant Tree Family of Amazon Rain Forest. En V. Rull & A. C. Carnaval (Eds.), Neotropical Diversification: Patterns and Processes (pp. 791-809). Springer International Publishing. https://doi.org/10.1007/978-3-030-31167-4_29 | |
dc.relation.references | Vaughan, I. P., & Ormerod, S. J. (2005). The continuing challenges of testing species distribution models. Journal of Applied Ecology, 42(4), 720-730. https://doi.org/10.1111/j.1365-2664.2005.01052.x | |
dc.relation.references | Webb, C. O., Ackerly, D. D., McPeek, M. A., & Donoghue, M. J. (2002). Phylogenies and Community Ecology. Annual Review of Ecology and Systematics, 33(1), 475-505. https://doi.org/10.1146/annurev.ecolsys.33.010802.150448 | |
dc.relation.references | Wu, G., & Wiens, J. J. (2022). The origins of climate-diversity relationships and richness patterns in Chinese plants. Ecology and Evolution, 12(12), e9607. https://doi.org/10.1002/ece3.960 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | |
dc.subject.ddc | 570 - Biología::577 - Ecología | |
dc.subject.ddc | 570 - Biología::576 - Genética y evolución | |
dc.subject.ddc | 580 - Plantas | |
dc.subject.lemb | Diversidad biológica - América del sur | |
dc.subject.lemb | Filogenia - América del sur | |
dc.subject.lemb | Arboles - Identificación - América del sur | |
dc.subject.proposal | Phylogenetic diversity | eng |
dc.subject.proposal | Cradles and Museums | eng |
dc.subject.proposal | Hyperdominance | eng |
dc.subject.proposal | Evolutionary dispersal | eng |
dc.subject.proposal | Amazonas | spa |
dc.subject.proposal | Andes | spa |
dc.subject.proposal | Chocó | spa |
dc.subject.proposal | Cunas y museos | spa |
dc.subject.proposal | Hiperdominancia | spa |
dc.subject.proposal | Diversidad filogenética | spa |
dc.subject.proposal | Dispersión evolutiva | spa |
dc.title | Patterns and drivers of tree community diversification in three biodiversity hotspots of northwestern South America | eng |
dc.title.translated | Patrones y factores impulsores de la diversificación de las comunidades arbóreas en tres hotspots de biodiversidad del noroeste de Sudamérica | spa |
dc.type | Trabajo de grado - Maestría | |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Investigadores | |
dcterms.audience.professionaldevelopment | Maestros | |
dcterms.audience.professionaldevelopment | Público general | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Tesis de Maestría en Bosques y Conservación Ambiental
- Tamaño:
- 1.66 MB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: