Relaciones entre la tolerancia térmica y los rasgos foliares: comparando grupos ecológicos en bosques altoandinos

dc.contributor.advisorSalgado Negret, Beatrizspa
dc.contributor.authorGonzález Argüello, Mónica Liliana
dc.contributor.cvlacGonzález Argüello, Mónica [0001857560]spa
dc.coverage.cityGuascaspa
dc.coverage.countryColombiaspa
dc.coverage.regionCundinamarcaspa
dc.date.accessioned2024-08-01T20:48:28Z
dc.date.available2024-08-01T20:48:28Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas, mapas, tablasspa
dc.description.abstractEl mundo enfrenta actualmente un acelerado aumento en las temperaturas globales debido al cambio climático, lo que conlleva a un incremento esperado en la temperatura media mundial y una mayor frecuencia de olas de calor. El estrés térmico, al exceder los umbrales de tolerancia de cada especie, tiene consecuencias negativas en el crecimiento, la supervivencia y la reproducción de las plantas. Por lo tanto, comprender los mecanismos que subyacen a la tolerancia térmica a través de los rasgos foliares es de vital importancia. En este estudio, examinamos la variación de la tolerancia térmica entre diecisiete especies leñosas de un bosque altoandino y su relación con rasgos foliares anatómicos, morfológicos y estomáticos. Encontramos que los tejidos foliares más gruesos contribuyeron al aumento de T50 y Tcrit, brindando un aislamiento efectivo contra el calor ambiental. Asimismo, observamos que la densidad estomática foliar aumentó T50, mejorando la termorregulación. A pesar de las expectativas, las características anatómicas relacionadas con el manejo del agua no mostraron correlación con la tolerancia térmica. Estos resultados resaltan la importancia crítica de los rasgos foliares en la regulación térmica y la adaptabilidad de las plantas frente al cambio climático. Sus implicaciones tienen un alcance significativo para las estrategias de restauración y conservación de los bosques altoandinos (Texto tomado de la fuente).spa
dc.description.abstractThe world is currently facing a rapid increase in global temperatures due to climate change, leading to a predicted rise in the average global temperature and a greater frequency of heat waves. Thermal stress, when exceeding the tolerance thresholds of each species, has negative consequences on plant growth, survival, and reproduction. Therefore, understanding the mechanisms underlying thermal tolerance through leaf traits is of vital importance. In this study, we examined the variation in thermal tolerance among seventeen woody species from a high Andean forest and its relationship with anatomical, morphological, and stomatal leaf traits. We found that thicker leaf tissues contributed to increased T50 and Tcrit, providing effective insulation against ambient heat. Likewise, we observed that higher stomatal density increased T50, improving thermoregulation. Despite expectations, anatomical traits related to water management did not show a correlation with thermal tolerance. These results highlight the critical importance of leaf traits in thermal regulation and plant adaptability to climate change. Their implications are significant for restoration and conservation strategies in high Andean forests.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Biologíaspa
dc.description.researchareaEcología y ecofisiologíaspa
dc.format.extent54 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86680
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Biologíaspa
dc.relation.referencesAbdelmageed, A., Gruda, N., 2009. Influence of high temperatures on gas exchange rate and growth of eight tomato cultivars under controlled heat stress conditions. Eur. J. Hortic. Sci. 74, 152–159spa
dc.relation.referencesAnderson, E. P., Marengo, J., Villalba, R., Halloy, S., Young, B., Cordero, D.,...Ruiz, D. (2010). Consequences of climate change for ecosystems and ecosystems services in the tropical Andes. En S. K. Herzog, R Martínez, P. Jorgensen, y H. Tiessen (eds.), Climate Change and Biodiversity in the Tropical Andes. Stanford, CA, USA: MacArthur Foundation, Inter American Institute for Global Change Research y Scientifi c Comittee on Problems of the Environment (SCOPE). 348 pspa
dc.relation.referencesAraújo, M. B., Ferri-Yáñez, F., Bozinovic, F., Marquet, P. A., Valladares, F., & Chown, S. L. (2013). Heat freezes niche evolution. Ecology Letters, 16(9), 1206–1219. https://doi.org/10.1111/ele.12155spa
dc.relation.referencesBarua, D., Heckathorn, S.A., Coleman, J.S., 2008. Variation in heat-shock proteins and photosynthetic thermotolerance among natural populations of Chenopodium album L. from contrasting thermal environments: implications for plant responses to global warming. J. Integr. Plant Biol. 50, 1440–1451. https://doi.org/10.1111/j.17447909.2008.00756.xspa
dc.relation.referencesBilger, W., Schreiber, U., & Bock, M. (1997). Determination of the quantum efficiency of photosystem II and of non-photochemical quenching of chlorophyll fluorescence in the field. Oecologia, 109(2), 183-193. doi:10.1007/s004420050074spa
dc.relation.referencesBrodribb, T. J., Feild, T. S., & Jordan, G. J. (2007). Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant physiology, 144(4), 1890-1898. ISO 690spa
dc.relation.referencesBusta L, Hegebarth D, Kroc E, Jetter R. Changes in cuticular wax coverage and composition on developing Arabidopsis leaves are influenced by wax biosynthesis gene expression levels and trichome density. Planta. 2017; 245(2):297–311spa
dc.relation.referencesBuytaert, W., Cuesta-Camacho, F., y Tobón, C. (2011). Potential impacts of climate change on the environmental services of humid tropical alpine regions. Global Ecology and Biogeography, 20(1), 19-33spa
dc.relation.referencesCamejo, D., Jiménez, A., Alarcón, J.J., Torres, W., Gómez, J.M., Sevilla, F., 2006. Changes in photosynthetic parameters and antioxidant activities following heat-shock treatment in tomato plants. Funct. Plant Biol. 33, 177–187spa
dc.relation.referencesCordero-Solórzano, R., Wulfing, S., Hernández, G., García-Robledo, C. & Molina-Bravo, R. (2019). Tolerancia térmica de las plantas a través de la sensibilidad de la fluorescencia de la clorofila. En Y. Morales-López (Ed.), Memorias del I Congreso Internacional de Ciencias Exactas y Naturales de la Universidad Nacional, Costa Rica, 2019 (e181, pp. 1-3). Heredia: Universidad Nacional. doi http://dx.doi.org/10.15359/cicen.1.51spa
dc.relation.referencesCortés-Ballén, L.; Camacho-Ballesteros, S.; Matoma-Cardona, M. 2020. Estudio de la composición y estructura del bosque andino localizado en Potrero Grande, Chipaque (Colombia). Rev. U.D.C.A Act. & Div. Cient. 23(1):e148spa
dc.relation.referencesCurtis, E. M., Leigh, A. & Rayburg, S. Relationships among leaf traits of Australian arid zone plants: Alternative modes of thermal protection. Aust. J. Bot. 60, 471–483 (2012)spa
dc.relation.referencesDrake, J., Tjoelker, M., Vårhammar, A., Medlyn, B., Reich, P., Leigh, A., Pfautsch, S., Blackman, C., López, R., Aspinwall, M., Crous, K., Duursma, R., Kumarathunge, D., Kauwe, M., Jiang, M., Nicotra, A., Tissue, D., Choat, B., Atkin, O., & Barton, C. (2018). Trees tolerate an extreme heatwave via sustained transpirational cooling and increased leaf thermal tolerance. Global Change Biology, 24, 2390 - 2402. https://doi.org/10.1111/gcb.14037spa
dc.relation.referencesDoughty, C. E., Field, C. B., & McMillan, A. M. S. (2010). Can crop albedo be increased through the modification of leaf trichomes, and could this cool regional climate? Climatic Change, 104(2), 379–387. doi:10.1007/s10584-010-9936-0spa
dc.relation.referencesFadrique, B.; Báez, S.; Duque, Á.; Malizia, A.; Blundo, C.; Carilla, J.; Osinaga-Acosta, O.; Malizia, L.; Silman, M.; Farfán-Ríos, W.; et al. Widespread but heterogeneous responses of Andean forests to climate change. Nature 2018, 564, 207–212spa
dc.relation.referencesFaralli M, Matthews J, Lawson T. 2019. Exploiting natural variation and genetic manipulation of stomatal conductance for crop improvement. Current Opinion in Plant Biology 49, 1–7spa
dc.relation.referencesFaralli M, Bontempo L, Bianchedi PL, Moser C, Bertamini M, Lawson T, Camin F, Stefanini M, Varotto C. Natural variation in stomatal dynamics drives divergence in heat stress tolerance and contributes to seasonal intrinsic water-use efficiency in Vitis vinifera (subsp. sativa and sylvestris). J Exp Bot. 2022 May 23;73(10):3238-3250. doi: 10.1093/jxb/erab552. PMID: 34929033spa
dc.relation.referencesFauset, S., Freitas, H. C., Galbraith, D. R., Sullivan, M. J., Aidar, M. P., Joly, C. A., … Gloor, M. U. (2018). Differences in leaf thermoregulation and water use strategies between three co-occurring Atlantic forest tree species. Plant, Cell & Environment, 41(7), 1618–1631spa
dc.relation.referencesFeeley, KJ Migraciones distributivas, expansiones y contracciones de especies de plantas tropicales según lo revelado en registros de herbario fechados. Globo. Chang. Biol. 2012 , 18 , 1335–1341spa
dc.relation.referencesFeeley KJ, Bernal-Escobar M, Fortier R, Kullberg AT. Tropical Trees Will Need to Acclimate to Rising Temperatures—But Can They? Plants. 2023; 12(17):3142. https://doi.org/10.3390/plants12173142spa
dc.relation.referencesFeeley, K., Martínez-Villa, J., Perez, T., Duque, A., Gonzalez, D., & Duque, Á. (2020). The Thermal Tolerances, Distributions, and Performances of Tropical Montane Tree Species. , 3. https://doi.org/10.3389/ffgc.2020.00025spa
dc.relation.referencesFranco-V., L., Delgado, J., y Andrade, G. (2013). Factores de la vulnerabilidad de los humedales altoandinos de Colombia al cambio climático Global. Cuadernos de Geografía - Revista Colombiana de Geografía, 22(2), 69-85spa
dc.relation.referencesFreeman, B.G.; Song, Y.; Feeley, K.J.; Zhu, K. Montane species track rising temperatures better in the tropics than in the temperate zone. Ecol. Lett. 2021, 24, 1697–1708spa
dc.relation.referencesGeange, S.R., Arnold, P.A., Catling, A.A., Coast, O., Cook, A.M., Gowland, K.M., Leigh, A., Notarnicola, R.F., Posch, B.C., Venn, S.E., Zhu, L., Nicotra, A.B., 2021. The thermal tolerance of photosynthetic tissues: a global systematic review and agenda for future research. New Phytologist 229, 2497–2513.. doi:10.1111/nph.17052spa
dc.relation.referencesGuariguata, M. R., & Ostertag, R. (2001). Neotropical secondary forest succession: changes in structural and functional characteristics. Forest Ecology and Management, 148(1-3), 185–206. doi:10.1016/s0378-1127(00)00535-1spa
dc.relation.referencesGupta, S., Ram, J. y Singh, H. (2018) Estudio comparativo de la transpiración en el efecto de enfriamiento de especies de árboles en la atmósfera. Revista de Geociencias y Protección del Medio Ambiente , 6 , 151-166. doi: 10.4236/gep.2018.68011spa
dc.relation.referencesGutiérrez-Fernandez, L.F., Martínez-Daza, S., Gómez Acosta, C., Gil Perez, V., Cabezas Pinzón, L.V., 2021. Cálculo de la capacidad de carga y capacidad de acogida turística multicriterio para la reserva biológica El Encenillo, Guasca, Cundinamarca, Colombia. Investigaciones Turísticas 224.. doi:10.14198/inturi2021.21.11spa
dc.relation.referencesHasanuzzaman, M., Nahar, K., Alam, M., Roychowdhury, R., & Fujita, M. (2013). Physiological, Biochemical, and Molecular Mechanisms of Heat Stress Tolerance in Plants. International Journal of Molecular Sciences, 14, 9643 - 9684. https://doi.org/10.3390/ijms14059643spa
dc.relation.referencesAllen, C.D., Macalady, A.K., Chenchouni, H., Bachelet, D., Mcdowell, N., Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D.D., Hogg, E.H. (Ted) ., Gonzalez, P., Fensham, R., Zhang, Z., Castro, J., Demidova, N., Lim, J.-H., Allard, G., Running, S.W., Semerci, A., Cobb, N., 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management 259, 660–684.. https://doi.org/10.1016/j.foreco.2009.09.001spa
dc.relation.referencesAlvear, M., Betancur, J., & Franco-Rossell, P. (2010). Diversidad florística y estructura de remanentes de bosque andino en la zona de amortiguación del parque nacional natural los nevados, cordillera central colombiana. Caldasia, 32(1), 39-63.spa
dc.relation.referencesBaird, A., Anderegg, L., Lacey, M., HilleRisLambers, J., & Volkenburgh, E. (2017). Comparative leaf growth strategies in response to low-water and low-light availability: variation in leaf physiology underlies variation in leaf mass per area in Populus tremuloides. Tree Physiology, 37, 1140–1150. https://doi.org/10.1093/treephys/tpx035spa
dc.relation.referencesBertolino LT, Caine RS, & Gray JE (2019). Impact of stomatal density and morphology on water-use efficiency in a changing world. Frontiers in Plant Science, 10, 225spa
dc.relation.referencesBorsuk, A., Roddy, A., Théroux-Rancourt, G., & Brodersen, C. (2022). Structural organization of the spongy mesophyll. The New Phytologist, 234, 946-960. https://doi.org/10.1111/nph.17971spa
dc.relation.referencesBrodribb, T.J., Mcadam, S.A., & Carins Murphy, M.R. (2017). Xylem and stomata, coordinated through time and space. Plant, Cell & Environment, 40, 872–880. https://doi.org/10.1111/pce.12817spa
dc.relation.referencesCastellanos-Castro, Carolina, & Bonilla, María Argenis. (2011). Grupos funcionales de plantas con potencial uso para la restauración en bordes de avance de un bosque altoandino. Acta Biológica Colombiana, 16(1), 175-184spa
dc.relation.referencesHe, N., Liu, C., Tian, M., Li, M., Yang, H., Yu, G., Guo, D., Smith, M.D., Yu, Q., Hou, J., 2018. Variation in leaf anatomical traits from tropical to cold‐temperate forests and linkage to ecosystem functions. Functional Ecology 32, 10–19.. https://doi.org/10.1111/1365-2435.12934spa
dc.relation.referencesHegebarth, D., Buschhaus, C., Wu, M., Bird, D. A., & Jetter, R. (2016). The composition of surface wax on trichomes of Arabidopsis thaliana differs from wax on other epidermal cells. The Plant Journal, 88(5), 762–774spa
dc.relation.referencesHooper, E. (2008). Factors affecting the species richness and composition of neotropical secondary succession: A case study of abandoned agricultural land in Panama. In R. W. Myster (Ed.), Post-agricultural succession in the Neotropics (pp. 141–163). Springerspa
dc.relation.referencesHowarth, C. J. (2005). Genetic improvements of tolerance to high temperature. In M. Ashraf & P. J. C. Harris (Eds.), Abiotic Stresses: Plant Resistance Through Breeding and Molecular Approaches. Howarth Press Incspa
dc.relation.referencesHüve, K., Bichele, I., Rasulov, B., & Niinemets, Ü. (2011). When it is too hot for photosynthesis: Heat-induced instability of photosynthesis in relation to respiratory burst, cell permeability changes and H2O2 formation. Plant, Cell & Environment, 34, 113–126. https://doi.org/10.1111/j.1365-3040.2010.02229.xspa
dc.relation.referencesHurtado‐M, A. B., Echeverry‐Galvis, M. Á., Salgado‐Negret, B., Muñoz, J. C., Posada, J. M., & Norden, N. (2021). Little trace of floristic homogenization in peri‐urban Andean secondary forests despite high anthropogenic transformation. Journal of Ecology, 109, 1468–1478. https://doi.org/10.1111/1365-2745.13570spa
dc.relation.referencesIntergovernmental Panel on Climate Change. (2007). Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and A. Reisinger (eds.)]. IPCCspa
dc.relation.referencesJezkova, T., & Wiens, J. J. (2016). Rates of change in climatic niches in plant and animal populations are much slower than projected climate change. Proceedings of the Royal Society B: Biological Sciences, 283(1838), 20162104spa
dc.relation.referencesJohansen, D. A. (1940). Plan Microtechnique. McGraw-Hillspa
dc.relation.referencesJones, H. G. (2013). Plants and microclimate: A quantitative approach to environmental plant physiology (3rd ed.). Cambridge, England: Cambridge University Pressspa
dc.relation.referencesKaur, J., & Kariyat, R. (2020). Role of Trichomes in Plant Stress Biology. En: . (pp. 15–35). https://doi.org/10.1007/978-3-030-46012-9_2spa
dc.relation.referencesKnight, C. A., & Ackerly, D. D. (2003). Evolution and plasticity of photosynthetic thermal tolerance, specific leaf area and leaf size: congeneric species from desert and coastal environments. New Phytologist, 160, 337–347. https://doi.org/10.1046/j.14698137.2003.00880.xspa
dc.relation.referencesKrause, G., & Santarius, K. (1975). Relative thermostability of the chloroplast envelope. Planta, 127, 285–299spa
dc.relation.referencesKrause, G., Heinrich, K., Winter, K., Krause, B., & Virgo, A. (2010). High-temperature tolerance of a tropical tree, Ficus insipida: Methodological reassessment and climate change considerations. Functional Plant Biology, 37, 890-900spa
dc.relation.referencesKrause, G. H., Cheesman, A. W., Winter, K., Krause, B., & Virgo, A. (2013). Thermal tolerance, net CO2 exchange and growth of a tropical tree species, Ficus insipida, cultivated at elevated daytime and nighttime temperatures. Journal of Plant Physiology, 170, 822–827. https://doi.org/10.1016/j.jplph.2013.01.005spa
dc.relation.referencesLawson, T., & Blatt, M. R. (2014). Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiology, 164, 1556–1570spa
dc.relation.referencesLauter, D. J., & Munns, D. N. (1986). Water Loss via the Glandular Trichomes of Chickpea (Cicer arietinumL.). Journal of Experimental Botany, 37(5), 640–649. https://doi.org/10.1093/jxb/37.5.640spa
dc.relation.referencesLeón-García, I. V., & Lasso, E. (2019). High heat tolerance in plants from the Andean highlands: Implications for paramos in a warmer world. PloS One, 14(12), e0224218spa
dc.relation.referencesLeigh, A., Sevanto, S., Close, J. D., & Nicotra, A. B. (2017). The influence of leaf size and shape on leaf thermal dynamics: Does theory hold up under natural conditions? Plant, Cell & Environment, 40, 237–248. https://doi.org/10.1111/pce.12857spa
dc.relation.referencesLi, X., Wen, Y., Chen, X., Qie, Y., Cao, K.-F., & Wee, A.K.S. (2022). Correlations between photosynthetic heat tolerance and leaf anatomy and climatic niche in Asian mangrove trees. Plant Biology Journal, 24, 960-966. https://doi.org/10.1111/plb.13460spa
dc.relation.referencesLin, H., Chen, Y., Zhang, H., Fu, P., & Fan, Z. (2017). Stronger cooling effects of transpiration and leaf physical traits of plants from a hot dry habitat than from a hot wet habitat. Functional Ecology, 31, 2202–2211. https://doi.org/10.1111/1365-2435.12923spa
dc.relation.referencesLiu, W., Zheng, L., & Qi, D. (2020). Variation in leaf traits at different altitudes reflects the adaptive strategy of plants to environmental changes. Ecology and Evolution, 10, 8166–8175. https://doi.org/10.1002/ece3.6519spa
dc.relation.referencesLohbeck, M., et al. (2013). Successional changes in functional composition contrast for dry and wet tropical forest. Ecology, 94, 1211-1216spa
dc.relation.referencesLoik, M. E., & Harte, J. (1996). High-temperature tolerance of Artemisia tridentata and Potentilla gracilis under a climate change manipulation. Oecologia, 108(2), 224–231. https://doi.org/10.1007/bf00334645spa
dc.relation.referencesLopera Doncel, M. C. (2018). Los ecosistemas de alta montaña frente al cambio climático. En Jardín Botánico de Bogotá (Ed.), Ecología y cambio climático en ecosistemas de alta montaña en Colombia (pp. 13-15)spa
dc.relation.referencesLüdecke, D. (2018). sjPlot: Data Visualization for Statistics in Social Science [Software]. Recuperado de https://CRAN.R-project.org/package=sjPlotspa
dc.relation.referencesMartínez, X., Rincón, D., Galvis, P., & Monje, C. (2005). Valoración biofísica y planificación predial para la conformación de la Reserva Encenillo, Guasca – Cundinamarca. Informe Fundación Natura, p. 73spa
dc.relation.referencesMathur, S., Jajoo, A., Mehta, P., & Bharti, S. (2011). Analysis of elevated temperature-induced inhibition of photosystem II using chlorophyll a fluorescence induction kinetics in wheat leaves (Triticum aestivum). Plant Biology, 13, 1–6spa
dc.relation.referencesMakowski, D. (2019). ggpredict: Predictive Plots [Software]. Recuperado de https://CRAN.R-project.org/package=ggpredictspa
dc.relation.referencesMelgarejo, L., Romero, M., Hernández, S., Barrera, J., Solarte, M., Suárez, D., Pérez, L., Rojas, A., Cruz, M., Moreno, L., Crespo, S., & Pérez, W. (2010). Experimentos en fisiología vegetal. Universidad Nacional de Colombiaspa
dc.relation.referencesMichaletz, S., Weiser, M., McDowell, N., et al. (2016). Los orígenes energéticos y económicos del carbono de la termorregulación foliar. Plantas de la Naturaleza, 2, 16129. https://doi.org/10.1038/nplants.2016.129spa
dc.relation.referencesMomayyezi, M., Borsuk, A., Brodersen, C., Gilbert, M., Théroux-Rancourt, G., Kluepfel, D., & McElrone, A. (2022). Desiccation of the leaf mesophyll and its implications for CO2 diffusion and light processing. Plant, Cell & Environment, 45, 1362-1381. https://doi.org/10.1111/pce.14287spa
dc.relation.referencesMonteiro, M. V., Blanusa, T., Verhoef, A., Hadley, P., & Cameron, R. W. F. (2016). Relative importance of transpiration rate and leaf morphological traits for the regulation of leaf temperature. Australian Journal of Botany, 64, 32–44spa
dc.relation.referencesMünchinger, I., Hajek, P., Akdogan, B., et al. (2023). Leaf thermal tolerance and sensitivity of temperate tree species are correlated with leaf physiological and functional drought resistance traits. J. Para. Res., 34, 63–76. https://doi.org/10.1007/s11676-022-01594-yspa
dc.relation.referencesMuñiz-Castro, M. A., Williams-Linera, G., & Martínez-Ramos, M. (2011). Dispersal mode, shade tolerance, and phytogeographical affinity of tree species during secondary succession in tropical montane cloud forest. Plant Ecology, 213(2), 339–353. https://doi.org/10.1007/s11258-011-9980-5spa
dc.relation.referencesNatarajan, S., & Kuehny, J. S. (2008). Morphological, Physiological, and Anatomical Characteristics Associated with Heat Preconditioning and Heat Tolerance in Salvia splendens. Journal of the American Society for Horticultural Science, 133(4), 527-534spa
dc.relation.referencesNing QR, Li Q, Zhang HP, Jin Y, Gong XW, Jiao RF, Bakpa EP, Zhao H, Liu H. (2024). Weak correlations among leaf thermal metrics, economic traits and damages under natural heatwaves. Science of the Total Environment, 916, 170022. https://doi.org/10.1016/j.scitotenv.2024.170022spa
dc.relation.referencesNievola, C. C., Carvalho, C. P., Carvalho, V., & Rodrigues, E. (2017). Rapid responses of plants to temperature changes. Temperature, 4(4), 371–405. https://doi.org/10.1080/23328940.2017.1377812spa
dc.relation.referencesOutlaw, W., & Fisher, D. (1975). Compartmentation in Vicia faba Leaves. III. Photosynthesis in the Spongy and Palisade Parenchyma. Functional Plant Biology, 2, 435-439. https://doi.org/10.1071/PP9750435spa
dc.relation.referencesParmesan, C., & Hanley, M. E. (2015). Plants and climate change: complexities and surprises. Annals of Botany, 116(6), 849–864. https://doi.org/10.1093/aob/mcv169spa
dc.relation.referencesPark, C., & Seo, Y. (2015). Heat Shock Proteins: A Review of the Molecular Chaperones for Plant Immunity. The Plant Pathology Journal, 31, 323 - 333. https://doi.org/10.5423/PPJ.RW.08.2015.0150spa
dc.relation.referencesPeace, W. J. H., & Macdonald, F. D. (1981). An Investigation of the Leaf Anatomy, Foliar Mineral Levels, and Water Relations of Trees of a Sarawak Forest. Biotropica, 13(2), 100. https://doi.org/10.2307/2387711spa
dc.relation.referencesPerez, T., & Feeley, K. (2021a). Weak phylogenetic and climatic signals in plant heat tolerance. Journal of Biogeography, 48, 91–100. https://doi.org/10.1111/jbi.13984spa
dc.relation.referencesPerez, T., Stroud, J. T., & Feeley, K. J. (2016). Thermal trouble in the tropics. Science, 351, 1392–1393. https://doi.org/10.1126/science.aaf3343spa
dc.relation.referencesPerez, T., Feeley, K., Michaletz, S., & Slot, M. (2021b). Methods matter for assessing global variation in plant thermal tolerance. Proceedings of the National Academy of Sciences, 118. https://doi.org/10.1073/pnas.2024636118spa
dc.relation.referencesPerez Harguindeguy, Natalia; Diaz, Sandra Myrna; Garnier, Eric; Lavorel, Sandra; Poorter, Hendrik; et al.; New handbook for standardised measurement of plant functional traits worldwide; Csiro Publishing; Australian Journal Of Botany; 61; 3; 5-2013; 167-234spa
dc.relation.referencesOgweno, J.O., Song, X.S., Shi, K., Hu, W.H., Mao, W.H., Zhou, Y.H., Yu, J.Q., Nogués, S., 2008. Brassinosteroids alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum. J. Plant Growth Regul. 27, 49–57spa
dc.relation.referencesRamírez-Morán, N. A., León-Gómez, M., & Lücking, R. (2016). Uso de biotipos de líquenes como bioindicadores de perturbación en fragmentos de bosque altoandino (Reserva Biológica "Encenillo", Colombia): Use of lichen biotypes as bioindicators of perturbation in fragments of high Andean forest ("Encenillo" Biological Reserve, Colombia). Caldasia, 38(1), 31–52spa
dc.relation.referencesRobles, A., Raz, L., & Marquínez, X. (2016). Anatomía floral de Peristethium leptostachyum (Loranthaceae). Revista de Biología Tropical, 64, 341–352spa
dc.relation.referencesSchrader, S.M., Kleinbeck, K.R., Sharkey, T.D., 2007. Rapid heating of intact leaves reveals initial effects of stromal oxidation on photosynthesis. Plant Cell Environ. 30,671–678. https://doi.org/10.1111/j.1365-3040.2007.01657.xspa
dc.relation.referencesSaini, N., Nikalje, G., Zargar, S., & Suprasanna, P. (2021). Molecular insights into sensing, regulation and improving of heat tolerance in plants. Plant Cell Reports, 41, 799-813. https://doi.org/10.1007/s00299-021-02793-3spa
dc.relation.referencesSalgado-Negret, B., Rodríguez, E.N.P., Cabrera, M., Osorio, C.R., & Paz, H. (2016). Protocolo para la medición de rasgos funcionales en plantas. In B. Salgado-Negret (Ed.), La ecología funcional como aproximación al estudio, manejo y conservación de la biodiversidad: protocolos y aplicaciones (pp. 12–35). Instituto de Investigaciones de Recursos Biológicos Alexander von Humboldt, Colombiaspa
dc.relation.referencesSastry, A., Barua, D., 2017. Leaf thermotolerance in tropical trees from a seasonally dry climate varies along the slow-fast resource acquisition spectrum. Scientific Reports 7.. doi:10.1038/s41598-017-11343-5spa
dc.relation.referencesSaxe, H., Cannell, M. G. R., Johnsen, Ø., Ryan, M. G., & Vourlitis, G. (2002). Tree and forest functioning in response to global warming. New Phytologist, 149(3), 369–399. doi:10.1046/j.1469-8137.2001.00057.xspa
dc.relation.referencesSlot, M., Cala, D., Aranda, J., Virgo, A., Michaletz, S.T., Winter, K., 2021. Leaf heat tolerance of 147 tropical forest species varies with elevation and leaf functional traits, but not with phylogeny. Plant, Cell & Environment 44, 2414–2427.. doi:10.1111/pce.14060spa
dc.relation.referencesSmith WK, Vogelmann TC, Delucia EH, Bell DT, Shepherd KA. 1997. Leaf form and photosynthesis: do leaf structure and orientation interact to regulate internal light and carbon dioxide? Source BioScience 47: 785–793spa
dc.relation.referencesSterl, A., Severijns, C., Dijkstra, H., Hazeleger, W., Jan Van Oldenborgh, G., Van Den Broeke, M., Burgers, G., Van Den Hurk, B., Jan Van Leeuwen, P., Van Velthoven, P., 2008. When can we expect extremely high surface temperatures?. Geophysical Research Letters 35.. https://doi.org/10.1029/2008gl034071spa
dc.relation.referencesStewart, J., Polutchko, S., Adams, W., Cohu, C., Wenzl, C., & Demmig-Adams, B. (2017). Light, temperature and tocopherol status influence foliar vascular anatomy and leaf function in Arabidopsis thaliana.. Physiologia plantarum, 160 1, 98-110 . https://doi.org/10.1111/ppl.12543spa
dc.relation.referencesTerashima, I., Hanba, Y. T., Tholen, D., & Niinemets, U. (2011). Leaf functional anatomy in relation to photosynthesis. Plant Physiology, 155, 108–116spa
dc.relation.referencesTserej, O., & Feeley, K. J. (2021). Variation in leaf temperatures of tropical and subtropical trees are related to leaf thermoregulatory traits and not geographic distributions. Biotropica, 53(3), 868–878. doi:10.1111/btp.12919spa
dc.relation.referencesUrban, J., Ingwers, M., McGuire, M., & Teskey, R. (2017). Stomatal conductance increases with rising temperature. Plant Signaling & Behavior, 12. https://doi.org/10.1080/15592324.2017.1356534spa
dc.relation.referencesVan der Hammen, T. (1998). Plan ambiental de la cuenca alta del río Bogotá. Análisis y orientaciones para el ordenamiento territorial. Corporación Autónoma Regional de Cundinarca (CAR)spa
dc.relation.referencesVuille, M., & Bradley, R. S. (2000). Mean annual temperature trends and their vertical structure in the tropical Andes. Geophysical Research Letters, 27(23), 3885–3888. doi:10.1029/2000gl011871spa
dc.relation.referencesWahid, A., Gelani, S., Ashraf, M., & Foolad, M. (2007). Heat tolerance in plants: An overview. Environmental and Experimental Botany, 61(3), 199–223. doi:10.1016/j.envexpbot.2007.05.011spa
dc.relation.referencesWang, X., Shen, C., Meng, P., Tan, G., & Lv, L. (2021). Analysis and review of trichomes in plants. BMC Plant Biology, 21(1). doi:10.1186/s12870-021-02840-xspa
dc.relation.referencesWeis, E., & Berry, J. (1988). Plants and high temperature stress. Symposia of the Society for Experimental Biology, 42, 329-46spa
dc.relation.referencesWright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J.H.C., Diemer, M., Flexas, J., Garnier, E., Groom, P.K., Gulias, J., Hikosaka, K., Lamont, B.B., Lee, T., Lee, W., Lusk, C., Midgley, J.J., Navas, M.-L., Niinemets, Ü., Oleksyn, J., Osada, N., Poorter, H., Poot, P., Prior, L., Pyankov, V.I., Roumet, C., Thomas, S.C., Tjoelker, M.G., Veneklaas, E.J., Villar, R., 2004. The worldwide leaf economics spectrum. Nature 428, 821–827.. doi:10.1038/nature02403spa
dc.relation.referencesYang, P., & Rupley, J. (1979). Protein--water interactions. Heat capacity of the lysozyme--water system.. Biochemistry, 18 12, 2654-61 . https://doi.org/10.1021/BI00579A035spa
dc.relation.referencesZhu, L., Bloomfield, K. J., Hocart, C. H., Egerton, J. J. G., O'sullivan, O. S., Penillard, A., et al. (2018). Plasticity of photosynthetic heat tolerance in plants adapted to thermally contrasting biomes. Plant Cell Environ. 41, 1251–1262. doi: 10.1111/pce.13133spa
dc.relation.referencesZuch, D., Doyle, S., Majda, M., Smith, R., Robert, S., & Torii, K. (2021). Cell biology of the leaf epidermis: Fate specification, morphogenesis and coordination.. The Plant cell. https://doi.org/10.1093/plcell/koab250spa
dc.relation.referencesValliere, J. M., Nelson, K. C., & Castañeda Martinez, M. (2023). Los rasgos funcionales y la estrategia de sequía predicen la tolerancia térmica de las hojas. Fisiología de la conservación, 11(1), coad085. https://doi.org/10.1093/conphys/coad085spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc330 - Economía::333 - Economía de la tierra y de la energíaspa
dc.subject.ddc570 - Biología::577 - Ecologíaspa
dc.subject.lembOLAS DE CALOR (METEOROLOGIA)spa
dc.subject.lembHeat waves (Meteorology)eng
dc.subject.lembCALENTAMIENTO GLOBALspa
dc.subject.lembGlobal warmingeng
dc.subject.lembREPRODUCCIÓN DE LAS PLANTASspa
dc.subject.lembPlants - reproductioneng
dc.subject.lembDIAGNOSTICO FOLIARspa
dc.subject.lembFoliar diagnosiseng
dc.subject.lembCONSERVACIÓN DE BOSQUESspa
dc.subject.lembForest conservationeng
dc.subject.proposalTolerancia térmicaspa
dc.subject.proposalFluorescencia de la clorofila aspa
dc.subject.proposalConstante de tiempo termalspa
dc.subject.proposalRestauración Climáticamente Inteligentespa
dc.subject.proposalThermal toleranceeng
dc.subject.proposalChlorophyll fluorescenceeng
dc.subject.proposalThermal time constanteng
dc.subject.proposalClimate-Smart Restorationeng
dc.titleRelaciones entre la tolerancia térmica y los rasgos foliares: comparando grupos ecológicos en bosques altoandinosspa
dc.title.translatedRelationships between thermal tolerance and leaf traits: comparing ecological groups in high Andean forestseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032493683.2024.pdf
Tamaño:
2.8 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Biología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: