Comportamiento tensión deformación en cilindros estandar de concreto confinados con malla de metal expandido

dc.contributor.advisorGraciano Gallego, Carlos Albertospa
dc.contributor.authorGiraldo Bolivar, Orlandospa
dc.contributor.corporatenameUniversidad Nacional de Colombia - Sede Medellínspa
dc.date.accessioned2020-09-10T21:56:32Zspa
dc.date.available2020-09-10T21:56:32Zspa
dc.date.issued2020-08-18spa
dc.description.abstractThe effect of transverse or perimeter confining of concrete by a reinforcement that simulates the three-dimensional behavior of the material has been subject of research since 20th century. The results have indicated, depending on the type of confinement, that both the compressive strength in the material and the deformation are substantially modified with an increase in the load capacity of the material and its deformations in an inelastic regime. This translates into a high benefit when the seismic behavior of the structures is included in the structural design. In order to investigate this behavior and evaluate its applicability with a specific type of confinement, expanded metal mesh (MME.), It is proposed in this investigation to carry out experimental measurement and interpretation of test results on 13 cylindrical specimens 150 x 300 mm (6x12 in.) concrete with a compressive strength of f_c^'=42 MPa and a settlement of 75 mm which are confined with expanded metal mesh by varying the mesh orientation angle in 60 ° and 90 °. The results obtained indicate the resistance and the deformation are modified when the expanded metal mesh is used in the indicated orientations.spa
dc.description.abstractEl efecto de confinar transversal o perimetralmente el concreto mediante un refuerzo que simule el comportamiento tridimensional del material, ha sido tema de investigación desde las primeras décadas del siglo veinte. Los resultados han indicado, dependiendo del tipo de confinamiento, que tanto la resistencia a compresión del material como la deformación se modifican sustancialmente con un aumento tanto en la capacidad de carga del material como en sus deformaciones en régimen inelástico. Lo anterior se traduce en un alto beneficio cuando se incluye en el diseño estructural el comportamiento sísmico de las estructuras ya que bajo este tipo de cargas ellas pueden ingresar al régimen inelástico aumentando las deformaciones y manteniendo una resistencia confiable. Con el fin de investigar este comportamiento y evaluar su aplicabilidad con un tipo específico de confinamiento, la malla de metal expandido (MME.), se propone en esta investigación realizar la medición experimental y la interpretación de los resultados de los ensayos de 13 probetas cilíndricas de concreto de 150 x 300 mm (6x12 pulgadas) de una resistencia a compresión de f_c^'=42 MPa y un asentamiento de 75 mm las cuales se confinan con mallas de metal expandido variando el ángulo de orientación de la malla a 60° y a 90°. Los resultados obtenidos indican que tanto la resistencia como la deformación se modifican cuando se utiliza la malla de metal expandido en las orientaciones indicadas.spa
dc.description.degreelevelMaestríaspa
dc.description.projectComportamiento tensión deformación en cilindros estándar de concreto confinados con malla de metal expandidospa
dc.format.extent70spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78445
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Ingeniería Civilspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Estructurasspa
dc.relation.references1. Lopez, O. A. & Espinosa, L. F. Derrumbe del liceo RMC durante el terremoto de Cariaco de 1997. Bol. Tec. I.M.M.E 45, 40 (1997).spa
dc.relation.references2. MySafe:LA » The Northridge Earthquake. Available at: https://www.mysafela.org/northridge-earthquake/. (Accessed: 15th April 2020)spa
dc.relation.references3. COMISIÓN ASESORA PERMANENTE PARA EL REGIMEN DE CONSTRUCCIONES SISMO RESISTENTES. NSR-10, Título C, Concreto estructural. (2010).spa
dc.relation.references4. Glossary for GEM Taxonomy. Available at: https://taxonomy.openquake.org/index.php/term?start=85. (Accessed: 15th April 2020)spa
dc.relation.references5. Consídere, A. Experimental Researches on Reinforced Concrete, Translated and Arranged by Leon S. Moisseiff. (McGraw Publishing Co, 1903).spa
dc.relation.references6. Richart, F. E., Brandtzaeg, A. & Brown, R. L. A Study of the Failure of Concrete under Combined Compressive Stresses. Eng. Exp. Stn. Bull. 185, 104 (1928).spa
dc.relation.references7. Richart, F. E., Brandtzaeg, A. & Brown, R. L. The Failure of Plain and Spirally Reinforced Concrete in Compression. Eng. Exp. Stn. Bull. 190, 74 (1929).spa
dc.relation.references8. Richart, F. E. & Brown, R. L. An Investigation of Reinforced Concrete Columns. Eng. Exp. Stn. Bull. 267, 91 (1934).spa
dc.relation.references9. King, J. W. H. The Effect of Lateral Reinforcement in Reinforced Concrete Columns. Struct. Eng. 24, 355–388 (1946).spa
dc.relation.references10. King, J. . W. H. Further Notes on Reinforced Concrete Columns. Struct. Eng. 24, 609–616 (1946).spa
dc.relation.references11. King, J. W. H. Some Investigations of the Effects of Core Size and Steel and Concrete Quality in Short Reinforced Concrete Columns. Struct. Eng. 25, 239–spa
dc.relation.references12. Chan, W. W. L. The Ultimate Strength and Deformation of Plastic Hinges in Reinforced Concrete Frameworks. Mag. Concr. Res. 21, 21–132 (1955).spa
dc.relation.references13. Blume, J. A., Newmark, N. M. & Corning, L. H. Design of Multistory Reinforced Concrete Buildings for Earthquake Motions. Portland Cement Association (1961).spa
dc.relation.references14. Sheikh, S. A. & Uzumeri, S. M. Strength and ductility of tied concrete columns. J. Struct. Div. 106, (1980).spa
dc.relation.references15. Sheikh, S. A. & Uzumeri, S. M. Analytical model for concrete confinement in tied columns. J. Struct. Div. 108, 2703–2722 (1982).spa
dc.relation.references16. Sheikh, S. A. & Yeh, C.-C. Tied concrete columns under axial load and flexure. J. Struct. Eng. 116, 2780–2800 (1990).spa
dc.relation.references17. Yong, Y.-K., Nour, M. G. & Nawy, E. G. Behavior of laterally confined high-strength concrete under axial loads. J. Struct. Eng. 114, 332–351 (1988).spa
dc.relation.references18. Mander, J. B., Priestley, M. J. N. & Park, R. Theoretical stress-strain model for confined concrete. J. Struct. Eng. 114, 1804–1826 (1988).spa
dc.relation.references19. Mander, J. B., Priestley, M. J. N. & Park, R. Observed stress-strain behavior of confined concrete. J. Struct. Eng. 114, 1827–1849 (1988).spa
dc.relation.references20. Kent, D. C. & Park, R. Flexural members with confined concrete. J. Struct. Div. (1971).spa
dc.relation.references21. Park, R., Priestley, M. J. & Gill, W. D. Ductility of square-confined concrete columns. J. Struct. Div. 108, 929–950 (1982).spa
dc.relation.references22. Sakino K. & Y.P. Sun. Stress-strain curve of concrete confined by rectilinear hoop. J. Struct. Constr. Eng. 461, 95–104 (1994).spa
dc.relation.references23. Fafitis, A. & Shah, S. P. Predictions of ultimate behavior of confined columns subjected to large deformations. J. Am. Concr. Inst. 82, 423–433 (1985).spa
dc.relation.references24. Pessiki, S. & Pieroni, A. Axial Load Behavior of Large Scale Spirally Reinforced High Strength Concrete Columns. Struct. J. 94, 304–314 (1997).spa
dc.relation.references25. Saatcioglu, M. & Razvi, S. R. Strength and ductility of confined concrete. J. Struct. Eng. 118, 1590–1607 (1992).spa
dc.relation.references26. Razvi, S. R. & Saatcioglu, M. Confinement model for high-strength concrete. J. Struct. Eng. 125, 281–289 (1999).spa
dc.relation.references27. Cusson, D. & Paultre, P. High-strength concrete columns confined by rectangular ties. J. Struct. Eng. 120, 783–804 (1994).spa
dc.relation.references28. Cusson, D. & Paultre, P. Stress-strain model for confined high-strength concrete. J. Struct. Eng. 121, 468–477 (1995).spa
dc.relation.references29. Mourad, S. M. & Shannag, M. J. Repair and strengthening of reinforced concrete square columns using ferrocement jackets. Cem. Concr. Compos. 34, 288–spa
dc.relation.references30. Rathish Kumar, P., Oshima, T. & Mikami, S. Ferrocement confinement of plain and reinforced concrete. Prog. Struct. Eng. Mater. 6, 241–251 (2004).spa
dc.relation.references31. Saatcioglu, M. & Grira, M. Confinement of reinforced concrete columns with welded reinforced grids. Struct. J. 96, 29–39 (1999).spa
dc.relation.references32. Kusuma, B. & et al. Axial load behavior of concrete columns with welded wire fabric as transverse reinforcement. Procedia Eng. 14, 2039–2047 (2011).spa
dc.relation.references33. Batson, G. B. & et al. Guide for the design, construction, and repair of ferrocement. ACI Struct. J. 85, 325–351 (1988).spa
dc.relation.references34. Ho, I. F. & et al. Monotonic behavior of reinforced concrete columns confined with high-performance ferrocement. J. Struct. Eng. 139, 574–583 (2013).spa
dc.relation.references35. Yaqub, M. & et al. Strength and stiffness of post-heated columns repaired with ferrocement and fibre reinforced polymer jackets. Compos. Part B. Eng. 44,spa
dc.relation.references36. Kaish, A. B. M. A. & et al. Improved ferrocement jacketing for restrengthening of square RC short column. Constr. Build. Mater. 36, 228–237 (2012).spa
dc.relation.references37. Xion, G. J. & et al. Load carrying capacity and ductility of circular concrete columns confined by ferrocement including steel bars. Constr. Build. Mater. 25, 2263–2268 (2011).spa
dc.relation.references38. Takiguchi, K. & et al. An investigation into the behavior and strength of reinforced concrete columns strengthened with ferrocement jackets. Cem. Concr.spa
dc.relation.references39. El-Kholy, A. M. & Dahish, H. A. Improved confinement of reinforced concrete columns. Ain Shams Eng. J. 7, 717–728 (2016).spa
dc.relation.references40. Kaish, A. B. M. A., M, J., Raman, S. N. & Zain, M. F. M. Axial behavior of ferrocement confined cylindrical concrete specimens with different sizes. Constr. Build. Mater. 78, 50–59 (2015).spa
dc.relation.references41. Balaguru, P. Use of ferrocement for confinement of concrete. J Ferrocem 19, 135–140 (1989).spa
dc.relation.references42. Singh, K. K., Kaushik, S. K. & Prakash, A. Ferrocement composite columns. in Proceedings of the third International Conference on Ferrocement 216–225 (1988).spa
dc.relation.references43. Rao, C. K. & Rao, A. K. Stress-Strain Curve in Axial Compression and Poisson’s Ratio of Ferrocement. J. Ferrocem. 16, 117–128 (1986).spa
dc.relation.references44. Abdou, H. Structural behavior of permanent thin ferrocement formwork of columns-filled with various types of concrete. (University Menoufia Egipt,spa
dc.relation.references45. Shaheen, Y. & Hassaned, M. Structural behavior of reinforced concrete columns reinforced with various materials. in In Proceedings of 18th international conference on composite materia ICCM18 18, 4–5 (2011).spa
dc.relation.references46. El-Sayad, H. I. & Shaheen, A. A. Fire resistance of internally or externally confined reinforced concrete columns. Civ Eng Res Mag 27, 459–471 (2005).spa
dc.relation.references48. Balcero, J. F. & Graciano, C. A. Structural response of expanded metal reinforced concrete cylinders under compression. (Universidad Nacional de Colombia - Medellín, 2019).spa
dc.relation.references49. Giraldo Bolivar, O. Dosificación de Mezclas de hormigón métodos ACI.211.1, Weymouth, Fuller, Bolomey y Faury. 58 (2006).spa
dc.relation.references47. Bo, S., Da-De, L., Yan, X. & Xia-Bing, L. Experimental research on concrete-filled RCP tubes under axial compresion load. Eng. Struct. 155, 358–370 (2018).spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::624 - Ingeniería civilspa
dc.subject.proposalConcreto confinadospa
dc.subject.proposalConfined concreteeng
dc.subject.proposalexpanded metal mesheng
dc.subject.proposalmalla de metal expandido (MME)spa
dc.subject.proposalconfinamiento perimetralspa
dc.subject.proposalMMEeng
dc.subject.proposaltransverse confinementeng
dc.subject.proposaldeformación axialspa
dc.subject.proposaldeformación transversalspa
dc.subject.proposalaxial deformationeng
dc.titleComportamiento tensión deformación en cilindros estandar de concreto confinados con malla de metal expandidospa
dc.title.alternativeStress and strain behavior of standard confined cilinders concrete with expanded metal meshspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
3352874.2020.pdf
Tamaño:
5.28 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis Maestría en Ingeniería - Estructuras

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: