Modelo estructural de riesgo de crédito con intensidad estocástica de covariables observables y un factor de fragilidad determinado a partir de un proceso de saltos

dc.contributor.advisorGómez Vélez, César Augustospa
dc.contributor.authorBernal Berrio, Luis Albertospa
dc.date.accessioned2020-02-13T20:04:57Zspa
dc.date.available2020-02-13T20:04:57Zspa
dc.date.issued2019spa
dc.description.abstractIn this work, the parameters for the default intensity of observable covariates in the presence of an unobservable fragility factor are estimated. The observable information corresponds to the evolution In this work, the parameters for the default intensity of observable covariates in the presence of an unobservable fragility factor are estimated. The observable information corresponds to the evolution of some macroeconomic variables over time, as well as the characteristic information of the individuals of a credit segment in a Colombian financial entity; a small modification to the Cox process proposed for intensity is made in Duffie et al. (2009), in order to include a jump component by means of which it is sought to describe the spontaneous clusters defaults, a program is finally implemented to estimate the parameters associated to the process for intensity by means of the EM algorithm and the Gibbs sampler.spa
dc.description.abstractEn este trabajo se estiman los parámetros para la intensidad de default de covariables observables en presencia de un factor de fragilidad no observable. La información observable corresponde a la evolución de algunas variables macroeconómicas en el tiempo, así como la información característica de individuos de un segmento de crédito en una entidad financiera colombiana; se realiza una pequeña modificación al proceso de Cox propuesto para la intensidad en Duffie et al. (2009), con el fin de incluir una componente de saltos a partir de la cual se busca describir los agrupamientos espontáneos de defaults, finalmente se implementa un programa para estimar los parámetros asociados al proceso para la intensidad por medio del algoritmo EM y el muestreador de Gibbsspa
dc.description.additionalMagister en Ciencias Estadísticaspa
dc.description.degreelevelMaestríaspa
dc.format.extent123spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/75596
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentEscuela de estadísticaspa
dc.relation.referencesAhn, J. J., Oh, K. J., Kim, T. Y., and Kim, D. H. (2011). Usefulness of support vector machine to develop an early warning system for financial crisis. Expert Systems with Applications, 38(4):2966 – 2973spa
dc.relation.referencesBielecki, T. R., Cousin, A., Crépey, S., and Herbertsson, A. (2014). Dynamic hedging of portfolio credit risk in a markov copula model. Journal of Optimization Theory and Applications, 161(1):90–102.spa
dc.relation.referencesBingham, N. (2007). Regular variation and probability: The early years. Journal of Computational and Applied Mathematics, 200(1):357 – 363.spa
dc.relation.referencesBlack, F. and Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81(3):637–54.spa
dc.relation.referencesCompany, M. G. T. (1996). Riskmetrics technical document. Technical Report 2, JP Morgan and Reuters, ttps://www.msci.com/documents/10199/5915b101-4206-4ba0-aee2- 3449d5c7e95ar. An optional note.spa
dc.relation.referencesDempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the em algorithm. JOURNAL OF THE ROYAL STATISTICAL SOCIETY, SERIES B, 39(1):1–38.spa
dc.relation.referencesDuffie, D. (2010). Dynamic Asset Pricing Theory. Princeton Series in Finance. Princeton University Press.spa
dc.relation.referencesDuffie, D., Eckner, A., Horel, G., and Saita, L. (2009). Frailty correlated default. Journal of Finance, 64(5):2089–2123spa
dc.relation.referencesEdwin O. Fischer, Robert Heinkel, J. Z. (1989). Dynamic capital structure choice: Theory and tests. The Journal of Finance, 44(1):19–40.spa
dc.relation.referencesGregoriou, G. (2006). Advances in Risk Management. Finance and Capital Markets Series. Palgrave Macmillan UK.spa
dc.relation.referencesHillegeist, S. A., Keating, E. K., Cram, D. P., and Lundstedt, K. G. (2004). Assessing the probability of bankruptcy. Review of Accounting Studies, 9(1):5–34.spa
dc.relation.referencesHull, J., Predescu, M., and White, A. (2004). The relationship between credit default swap spreads, bond yields, and credit rating announcements. Journal of Banking & Finance, 28(11):2789 – 2811. Recent Research on Credit Ratings.spa
dc.relation.referencesKirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598):671–680.spa
dc.relation.referencesLamberton, D. and Lapeyre, B. (2011). Introduction to Stochastic Calculus Applied to Finance, Second Edition. Chapman and Hall/CRC Financial Mathematics Series. CRC Press.spa
dc.relation.referencesMcNeil, A. J., Frey, R., and Embrechts, P. (2005). Quantitative risk management : concepts, techniques and tools. Princeton series in finance. Princeton University Press, Princeton (N.J.).spa
dc.relation.referencesMusiela, M. and Rutkowski, M. (2006). Martingale Methods in Financial Modelling. Stochastic Modelling and Applied Probability. Springer Berlin Heidelberg.spa
dc.relation.referencesShumway, T. (2001). Forecasting bankruptcy more accurately: A simple hazard model. The Journal of Business, 74(1):101–124.spa
dc.relation.referencesSpiliopoulos, K. (2015). Systemic Risk and Default Clustering for Large Financial Systems, pages 529–557. Springer International Publishing, Chamspa
dc.relation.referencesTankov, P. (2003). Financial Modelling with Jump Processes. Chapman and Hall/CRC Financial Mathematics Series. CRC Pressspa
dc.relation.referencesWei, G. C. G. and Tanner, M. A. (1990). A monte carlo implementation of the em algorithm and the poor man’s data augmentation algorithms. Journal of the American Statistical Association,85(411):699–704.spa
dc.relation.referencesZhou, C. (2001). The term structure of credit spreads with jump risk. Journal of Banking & Finance, 25(11):2015–2040spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddcMatemáticas::Probabilidades y matemáticas aplicadasspa
dc.subject.proposalIntensidad de defaultspa
dc.subject.proposalCox Processeng
dc.subject.proposalEM Algorithmeng
dc.subject.proposalMuestreador de Gibbsspa
dc.titleModelo estructural de riesgo de crédito con intensidad estocástica de covariables observables y un factor de fragilidad determinado a partir de un proceso de saltosspa
dc.typeDocumento de trabajospa
dc.type.coarhttp://purl.org/coar/resource_type/c_8042spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/workingPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/WPspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1152188078.2019.pdf
Tamaño:
954.47 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: