Análisis de la variación en la amenaza de inundación por efecto del cambio climático

dc.contributor.advisorVélez Upegui, Jorge Julián
dc.contributor.advisorMoncada Aguirre, Angélica María
dc.contributor.authorForero Hernández, Angie Tatiana
dc.contributor.orcidForero Hernández, Tatiana [0000-0002-8317-5177]spa
dc.date.accessioned2024-05-10T16:39:21Z
dc.date.available2024-05-10T16:39:21Z
dc.date.issued2024
dc.descriptiongraficas, mapas, tablasspa
dc.description.abstractLa presente investigación aborda la problemática de inundaciones en la quebrada Olivares de Manizales mediante un análisis prospectivo de la variación de la amenaza, considerando los efectos del cambio climático. Para lograr este objetivo, se evaluó el desempeño de Modelos de Circulación General contenidos en el CMIP5 en la emulación de patrones climáticos históricos de la cuenca. A través de la generación de series sintéticas de precipitación y temperatura, junto con la aplicación de la técnica de reducción de escala k-NN Bootstrapping, se proyectaron futuros plausibles en la cuenca. Estas proyecciones son esenciales para la evaluación de alternativas de planificación adaptativa en respuesta a narrativas de incremento de lluvias en la región. Además, la investigación incluyó la evaluación de modelos hidrológicos y la generación de series de caudales, lo que permitió determinar la variación del área propensa a inundaciones. Esta determinación se llevó a cabo mediante la modelación hidráulica previamente desarrollada en el software IBER en puntos críticos de la ciudad. A pesar de que la variación en la amenaza de inundación en el periodo 2024-2053 no arrojó conclusiones definitivas, se analizaron las manchas de inundación en ambos casos, lo que permitió comparar el área inundada por eventos de mayor y menor magnitud con respecto a los eventos simulados a partir de la serie histórica. Como resultado, se sugiere que las variaciones de mayor magnitud porcentual se presentarían particularmente para los caudales con menor periodo de retorno. En última instancia, estos hallazgos contribuyen a la planificación territorial y la gestión del riesgo en un contexto de cambio climático. Se espera que estos hallazgos impulsen el desarrollo de estrategias adaptativas y medidas de protección que promuevan la resiliencia de las comunidades urbanas frente a eventos extremos, garantizando su desarrollo sostenible en un entorno cambiante (Texto tomado de la fuente)spa
dc.description.abstractThe research addresses the issue of flooding in the quebrada Olivares of Manizales through a prospective analysis of threat variation, considering the effects of climate change. To achieve this goal, the performance of General Circulation Models within the CMIP5 was evaluated in emulating historical climate patterns of the basin. Through the generation of synthetic series of precipitation and temperature, coupled with the application of the k-NN Bootstrapping scale reduction technique, plausible futures in the basin were projected. These projections are essential for assessing adaptive planning alternatives in response to narratives of increased rainfall in the region. Additionally, the research involved the evaluation of hydrological models and the generation of flow series, allowing for the determination of variations in flood-prone areas. This determination was carried out through hydraulic modeling previously developed in the IBER software at critical points in the city. Although the variation in flood threat during the period 2024-2053 did not yield definitive conclusions, flood patterns were analyzed in both cases, allowing for comparison of the areas inundated by events of greater and lesser magnitude with respect to events simulated from the historical series. As a result, it is suggested that variations of greater percentage magnitude would occur particularly for flows with shorter return periods. Ultimately, these findings contribute to territorial planning and risk management in a context of climate change. It is expected that these findings will drive the development of adaptive strategies and protective measures that promote the resilience of urban communities against extreme events, ensuring their sustainable development in a changing environment.eng
dc.description.curricularareaIngeniería Civil.Sede Manizalesspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Recursos Hidráulicosspa
dc.format.extent180 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86068
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.facultyFacultad de Ingeniería y Arquitecturaspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Recursos Hidráulicosspa
dc.relation.references2° Institute. (2020a). Methane Levels: Current & Historic Atmospheric CH4. https://www.methanelevels.org/#sourcesspa
dc.relation.references2° Institute. (2020b). Nitrous Oxide Levels: Current & Historic Atmospheric N2O . https://www.n2olevels.org/spa
dc.relation.referencesAbatzoglou, J. T., & Brown, T. J. (2012). A comparison of statistical downscaling methods suited for wildfire applications. International Journal of Climatology, 32(5), 772–780. https://doi.org/10.1002/joc.2312spa
dc.relation.referencesAgencia Espacial Europea, Centro Nacional de Estudios Espaciales, & CGI. (2015). Sea level rise data. https://doi.org/10.5270/esa-sea_level_cci-MSLA-1993_2015-v_2.0-201612spa
dc.relation.referencesAlcaldía de Manizales. (2019a). Implementación Sistema de Alerta temprana por Inundación de la Ciudad de Manizales, para las quebradas Manizales, El Guamo y Olivares. Https://Planeacion.Manizales.Gov.Co/Gestionriesgo/Index.Php/Component/Content/Article?Id=146.spa
dc.relation.referencesAlcaldía de Manizales. (2019b). Secretaría de Planeación.spa
dc.relation.referencesAmat Rodrigo, J. (2017, July). Test de Wilcoxon Mann Whitney como alternativa al t-test. https://www.cienciadedatos.net/documentos/17_mann%E2%80%93whitney_u_test#Comparaci%C3%B3n_entre_t-test_y_test_de_Mann%E2%80%93Whitney%E2%80%93Wilcoxonspa
dc.relation.referencesAmerican Chemical Society. (2020a). Greenhouse gases - ACS. https://www.acs.org/content/acs/en/climatescience/greenhousegases/properties.htmlspa
dc.relation.referencesAmerican Chemical Society. (2020b). Sources and Sinks - ACS. https://www.acs.org/content/acs/en/climatescience/greenhousegases/sourcesandsinks.htmlspa
dc.relation.referencesBarrera Escoda, A. (2004). Técnicas de completado de series mensuales y apliación al estudio de la influencia de la NAO en la distribución de la precipitación en España. Universidad de Barcelona.spa
dc.relation.referencesBarros, V., Menéndez, Á., & Nagy, G. (2005). El cambio climático en el río de La Plata. En Fundación Ciudad. Instituto Nacional del Agua de Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas.spa
dc.relation.referencesBC Noticias. (2021). Aguacero causó inundaciones y caída de árboles en Manizales. Https://Www.Bcnoticias.Com.Co/Aguacero-Causo-Inundaciones-y-Caida-de-Arboles-En-Manizales/.spa
dc.relation.referencesBC Noticias. (2022). Manizales despidió septiembre con lluvias torrenciales e inundaciones. Https://Www.Bcnoticias.Com.Co/Manizales-Despidio-Septiembre-Con-Lluvias-Torrenciales-e-Inundaciones/.spa
dc.relation.referencesBenavides, H. O., & León, G. E. (2007). Información técnica sobre Gases de Efecto Invernadero y el Cambio Climático. En Ideam. https://doi.org/IDEAM–METEO/008-2007spa
dc.relation.referencesBergström, S. (1976). Development and application of a conceptual runoff model for Scandinavian catchments.spa
dc.relation.referencesBladé, E., Cea, L., Corestein, G., Escolano, E., Puertas, J., Vázquez-Cendón, E., Dolz, J., & Coll, A. (2014). Iber: herramienta de simulación numérica del flujo en ríos. Revista Internacional de Métodos Numéricos Para Cálculo y Diseño En Ingeniería, 30(1), 1–10. https://doi.org/10.1016/j.rimni.2012.07.004spa
dc.relation.referencesBoughton, W. (2004). The Australian water balance model. Environmental Modelling & Software, 19(10), 943–956. https://doi.org/10.1016/j.envsoft.2003.10.007spa
dc.relation.referencesCaballero, M., Lozano, S., & Ortega, B. (2007). Efecto invernadero, calentamiento global y cambio climático: Una perspectiva desde las ciencias de la tierra. Revista Digital Universitaria, 8(10), 2–12. http://www.revista.unam.mx/vol.8/num10/art78/oct_art78.pdfspa
dc.relation.referencesCabezas, F. (2015). Análisis estructural de modelos hidrológicos y de sistemas de recursos hídricos en zonas semiáridas. Universidad de Murcia.spa
dc.relation.referencesCAIT Climate Data Explorer. (2019). Country Greenhouse Gas Emissions. Washington, DC: World Resources Institute. http://cait.wri.orgspa
dc.relation.referencesCalvin, K., Bond-Lamberty, B., Clarke, L., Edmonds, J., Eom, J., Hartin, C., Kim, S., Kyle, P., Link, R., Moss, R., McJeon, H., Patel, P., Smith, S., Waldhoff, S., & Wise, M. (2017). The SSP4: A world of deepening inequality. Global Environmental Change, 42, 284–296. https://doi.org/10.1016/j.gloenvcha.2016.06.010spa
dc.relation.referencesCaracol Noticias. (2022). Estragos en Manizales por las fuertes lluvias registradas en las últimas horas.spa
dc.relation.referencesCarbon Brief. (2020, April 15). Mapped: How climate change affects extreme weather around the world. https://www.carbonbrief.org/mapped-how-climate-change-affects-extreme-weather-around-the-worldspa
dc.relation.referencesCastro, L. M., & Carvajal, Y. (2010). Análisis de tendencia y homogeneidad de series climatológicas. Ingeniería de Recursos Naturales y Del Ambiente, 9, 15–25. http://www.redalyc.org/articulo.oa?id=231116434002spa
dc.relation.referencesCentro de Investigaciones Oceanográficas e Hidrográficas. (2016, May 9). Zona de Confluencia Intertropical. https://www.cioh.org.co/meteorologia/Climatologia/ClimatologiaCaribe3.phpspa
dc.relation.referencesCentro de Investigaciones Oceanográficas e Hidrográficas del Caribe. (2015, July 27). Efectos del cambio climático en Colombia. ¿Por qué debemos buscar respuestas en la Antártida? https://www.cioh.org.co/index.php/es/2015-07-27-19-20-22/1735-efectos-del-cambio-climatico-en-colombia-ipor-que-debemos-buscar-respuestas-en-la-antartida.htmlspa
dc.relation.referencesChiew, F. H. S., Peel, M. C., & Western, A. W. (2002). Application and testing of the simple rainfall-runoff model SIMHYD. In Mathematical models of small watershed hydrology and applications (pp. 335–367).spa
dc.relation.referencesCIIFEN. (2016). Efecto Invernadero. http://www.ciifen.org/index.php?option=com_content&view=category&layout=blog&id=99&Itemid=342&lang=esspa
dc.relation.referencesClarke, L. E., Jacoby, H., Pitcher, H., Reilly, J., & Richels, R. (2007). Scenarios of Greenhouse Gas Emissions and Atmospheric. In Sub-report 2.1a of Synthesis and Assessment Product 2.1. Climate Change Science Program and the Subcommittee on Global Change Research (p. 154).spa
dc.relation.referencesClimate & Clean Air Coalition. (2020). Methane | Climate & Clean Air Coalition. https://www.ccacoalition.org/en/slcps/methanespa
dc.relation.referencesCole-Dai, J. (2010). Volcanoes and climate. Wiley Interdisciplinary Reviews: Climate Change, 1(6), 824–839. https://doi.org/10.1002/wcc.76spa
dc.relation.referencesComisión Europea. (2019). EDGAR - The Emissions Database for Global Atmospheric Research. https://edgar.jrc.ec.europa.eu/spa
dc.relation.referencesConsorcio Ordenamiento Cuenca Risaralda. (2017). Morfometría. In Plan de Ordenación y Manejo de la Cuenca del Río Risaralda.spa
dc.relation.referencesCorpocaldas. (2010a). Plan de Manejo. Reserva Forestal Protectora de las Cuencas Hidrográficas de Río Blanco y quebrada Olivares.spa
dc.relation.referencesCorpocaldas. (2010b). PlAN DE MANEJO. RESERVA FORESTAL PROTECTORA DE LAS CUENCAS HIDROGRÁFICAS DE RÍO LANCO Y QUEBRADA OLIVARES. 145.spa
dc.relation.referencesCorpocaldas. (2013). Síntesis del diagnóstico. In Plan de Ordenación y Manejo de la Cuenca Hidrográfica del Río Chinchiná (p. 160). http://www.corpocaldas.gov.co/publicaciones/1508/2017/03-09/01-SintesisPOMCARioChinchina.pdfspa
dc.relation.referencesDeath, R. G., Fuller, I. C., & Macklin, M. G. (2015). Resetting the river template: the potential for climate-related extreme floods to transform river geomorphology and ecology. Freshwater Biology, 60(12), 2477–2496. https://doi.org/10.1111/fwb.12639spa
dc.relation.referencesDebortoli, N. S., Camarinha, P. I. M., Marengo, J. A., & Rodrigues, R. R. (2017). An index of Brazil’s vulnerability to expected increases in natural flash flooding and landslide disasters in the context of climate change. Natural Hazards, 86(2), 557–582. https://doi.org/10.1007/s11069-016-2705-2spa
dc.relation.referencesDepartment of the Environment - Australian Government. (2013). Representative Concentration Pathways (RCP): Fact Sheet. http://www.climatechange.gov.au/sites/climatechange/files/documents/09_2013/WA - RCP Fact Sheet.pdfspa
dc.relation.referencesEarth System CoG. (2016). Downscalling Methods. https://earthsystemcog.org/projects/downscalingmetadata/methodsspa
dc.relation.referencesEasterbrook, D. J. (2016). Greenhouse gases. In Evidence-Based Climate Science (pp. 163–173). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-804588-6.00009-4spa
dc.relation.referencesEbi, K. L., Hallegatte, S., Kram, T., Arnell, N. W., Carter, T. R., Edmonds, J., Kriegler, E., Mathur, R., O’Neill, B. C., Riahi, K., Winkler, H., van Vuuren, D. P., & Zwickel, T. (2014). A new scenario framework for climate change research: Background, process, and future directions. Climatic Change, 122(3), 363–372. https://doi.org/10.1007/s10584-013-0912-3spa
dc.relation.referencesEhhalt, D., & Prather, M. (2001). Atmospheric Chemistry and Greenhouse Gases. Climate Change 2001: The Scientific Basis. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Agriculture.+In+Climate+Change+2007:+Mitigation.+Contribution+of+Working+Group+III+to+the+Fourth+Assessment+Report+of+the+Intergovernmental+Panel+on+Climate+Change+[B.#0spa
dc.relation.referencesEscoto Castillo, A., Sánchez Peña, L., & Gachuz Delgado, S. (2017). Trayectorias Socioeconómicas Compartidas (SSP): nuevas maneras de comprender el cambio climático y social. Estudios Demograficos y Urbanos, 32(3), 669–693. https://doi.org/10.24201/edu.v32i3.1684spa
dc.relation.referencesEuropean Network for Earth System Modelling. (2019, July 10). CMIP5 Models and Grid Resolution . https://portal.enes.org/data/enes-model-data/cmip5/resolutionspa
dc.relation.referencesFederación Nacional de Cafeteros de Colombia, & Centro Nacional de Investigaciones de Café. (2020). Anuario Meteorológico Cafetero 2019.spa
dc.relation.referencesFlato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S. C., Collins, W., Cox, P., Driouech, F., Emori, S., Eyring, V., Forest, C., Gleckler, P., Guilyardi, E., Jakob, C., Kattsov, V., Reason, C., & Rummukainen, M. (2013). Evaluation of climate models. In V. B. and P. M. M. Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia (Ed.), Climate Change 2013: The Physical Science Basis Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Changehe Physical Science Basis Working Group I Contribution to the Fifth Assessment Report of the Interg (pp. 741–866). Cambridge University Press.spa
dc.relation.referencesFowler, H. J., Lenderink, G., Prein, A. F., Westra, S., Allan, R. P., Ban, N., Barbero, R., Berg, P., Blenkinsop, S., Do, H. X., Guerreiro, S., Haerter, J. O., Kendon, E. J., Lewis, E., Schaer, C., Sharma, A., Villarini, G., Wasko, C., & Zhang, X. (2021). Anthropogenic intensification of short-duration rainfall extremes. Nature Reviews Earth & Environment, 2(2), 107–122. https://doi.org/10.1038/s43017-020-00128-6spa
dc.relation.referencesFricko, O., Havlik, P., Rogelj, J., Klimont, Z., Gusti, M., Johnson, N., Kolp, P., Strubegger, M., Valin, H., Amann, M., Ermolieva, T., Forsell, N., Herrero, M., Heyes, C., Kindermann, G., Krey, V., McCollum, D. L., Obersteiner, M., Pachauri, S., … Riahi, K. (2017). The marker quantification of the Shared Socioeconomic Pathway 2: A middle-of-the-road scenario for the 21st century. Global Environmental Change, 42, 251–267. https://doi.org/10.1016/j.gloenvcha.2016.06.004spa
dc.relation.referencesFujimori, S., Hasegawa, T., Masui, T., Takahashi, K., Herran, D. S., Dai, H., Hijioka, Y., & Kainuma, M. (2017). SSP3: AIM implementation of Shared Socioeconomic Pathways. Global Environmental Change, 42, 268–283. https://doi.org/10.1016/j.gloenvcha.2016.06.009spa
dc.relation.referencesFujino, J., Nair, R., Kainuma, M., Masui, T., & Matsuoka, Y. (2016). Multi-gas Mitigation Analysis on Stabilization Scenarios Using Aim Global Model. The Energy Journal, 27(Special Issue: Multi-Greenhouse Gas Mitigation and Climate Policy), 343–353. https://doi.org/10.5547/ISSN0195-6574-EJ-VolSI2006-NoSI3-17spa
dc.relation.referencesGangopadhyay, S., Clark, M., & Rajagopalan, B. (2005). Statistical downscaling using K-nearest neighbors. Water Resources Research, 41(2), 1–23. https://doi.org/10.1029/2004WR003444spa
dc.relation.referencesGlobal Climate Observation System. (2018). Global Climate Indicators . https://gcos.wmo.int/en/global-climate-indicatorsspa
dc.relation.referencesGómez Tobón, L. A. (2009). Márgenes de inundación de la quebrada Olivares-Minitas para periodos de retorno de 5, 10, 25, 50, 100 y 200 años.spa
dc.relation.referencesGoosse, H., Barriat, P. Y., Loutre, M. F., & Zunz, V. (2010). Energy Balance, Hydrological and Carbon Cycles. In Introduction to climate dynamics and climate modeling (pp. 25–57). Centre de recherche sur la Terre et le climat Georges Lemaître-UCLouvain. http://www.climate.be/textbookspa
dc.relation.referencesGutmann, E., Pruitt, T., Clark, M. P., Brekke, L., Arnold, J. R., Raff, D. A., & Rasmussen, R. M. (2014). An intercomparison of statistical downscaling methods used for water resource assessments in the United States. Water Resources Research, 50(9), 7167–7186. https://doi.org/10.1002/2014WR015559.Receivedspa
dc.relation.referencesHansen, J., Sato, M., Kharecha, P., & Von Schuckmann, K. (2011). Earth’s energy imbalance and implications. Atmospheric Chemistry and Physics, 11(24), 13421–13449. https://doi.org/10.5194/acp-11-13421-2011spa
dc.relation.referencesHausfather, Z. (2018, April 19). Explainer: How ‘Shared Socioeconomic Pathways’ explore future climate change | Carbon Brief. Carbon Brief. https://www.carbonbrief.org/explainer-how-shared-socioeconomic-pathways-explore-future-climate-changespa
dc.relation.referencesHays, J. D., Imbrie, J., & Shackleton, N. J. (1976). Variations in the earth’s orbit: Pacemaker of the ice ages. Science, 194(4270), 1121–1132. https://doi.org/10.1126/science.194.4270.1121spa
dc.relation.referencesHijioka, Y., Matsuoka, Y., Nishimoto, H., Masui, T., & Kainuma, M. (2008). Global GHG emission scenarios under GHG concentration stabilization targets. Journal of Global Environment Engineering, 13, 97–108.spa
dc.relation.referencesHwang, S., & Graham, W. D. (2013). Development and comparative evaluation of a stochastic analog method to downscale daily GCM precipitation. Hydrology and Earth System Sciences, 17(11), 4481–4502. https://doi.org/10.5194/hess-17-4481-2013spa
dc.relation.referencesIDEA, I. D. E. A. –. (2019). OPERACIÓN Y MANTENIMIENTO PREVENTIVO Y CORRECTIVO A LAS REDES HIDROMETEOROLÓGICAS, DE CALIDAD DEL AIRE Y SÍSMICA EN EL DEPARTAMENTO DE CALDAS.spa
dc.relation.referencesIDEA Manizales. (2023). Geoportal-SIMAC. https://cdiac.manizales.unal.edu.co/geoportal-simac/spa
dc.relation.referencesIDEAM. (2011). Evidencias de cambio climático en colombia con base en información estadística. Nota Técnica Del IDEAM, 47. http://www.ideam.gov.co/documents/21021/21138/Evidencias+de+Cambio+Climático+en+Colombia+con+base+en+información+estadística.pdf/1170efb4-65f7-4a12-8903-b3614351423fspa
dc.relation.referencesIDEAM. (2013). Cambio Climático: Contexto nacional, avances y retos. Primer Foro Departamental de Cambio Climático.spa
dc.relation.referencesIDEAM. (2014a). Mapa de cobertura de la tierra. Metodología CORINE Land Cover adaptada para Colombia durante el periodo 2010-2012.spa
dc.relation.referencesIDEAM. (2014b). Radiación solar. http://www.ideam.gov.co/web/tiempo-y-clima/radiacion-solarspa
dc.relation.referencesIDEAM. (2015a). Atlas de radiación solar, ultravioleta y ozono de Colombia. http://www.solarviews.com/span/sun.htm#statsspa
dc.relation.referencesIDEAM. (2015b, May 15). Coberturas Nacionales. http://www.ideam.gov.co/web/ecosistemas/coberturas-nacionalesspa
dc.relation.referencesIDEAM. (2023). Estudio Nacional del Agua (2022).spa
dc.relation.referencesIDEAM, PNUD, MADS, DNP, & Cancillería. (2015). Escenarios de Cambio Climático para Precipitación y Temperatura para Colombia 2011-2100. Herramientas Científicas para la Toma de Decisiones – Estudio Técnico Completo: Tercera Comunicación Nacional de Cambio Climático.spa
dc.relation.referencesIDEAM, PNUD, MADS, DNP, & Cancillería. (2016). Inventario nacional y departamental de Gases Efecto Invernadero – Colombia. Tercera Comunicación Nacional de Cambio Climático.spa
dc.relation.referencesIDEAM, PNUD, MADS, DNP, & Cancillería. (2017). Resumen Ejecutivo. Tercera Comunicación Nacional de Colombia a la Convención Marco de las Naciones Unidas sobre Cambio Climático (CMNUCC). Tercera Comunicación de Cambio Climático (F. IDEAM, PNUD, MADS, DNP, Cancillería, Ed.). https://www4.unfccc.int/sites/SubmissionsStaging/NationalReports/Documents/4617350_Colombia-NC3-1-RESUMEN EJECUTIVO TCNCC COLOMBIA A LA CMNUCC 2017.pdfspa
dc.relation.referencesIDEAM, PNUD, MADS, & GEF. (2010). Resumen Ejecutivo. Segunda Comunicación ante la Convención Marco de las Naciones Unidas sobre Cambio Climático.spa
dc.relation.referencesIIASA. (2018). SSP Database. International Institute for Applied Systems Analysis. https://tntcat.iiasa.ac.at/SspDb/dsd?Action=htmlpage&page=20spa
dc.relation.referencesInstituto de Estudios Ambientales. (2020). Aforos líquidos en ríos y quebradas de Manizales y el departamento de Caldas 2017-2019. In Operación y mantenimiento preventivo y correctivo a las redes hidrometeorológicas, de calidad de aire y sísmica en el departamento de Caldas.spa
dc.relation.referencesInstituto Geológico y Minero de España. (2015). Calibración y explotación del modelo agregado en HBV de las cuencas hidrológicas de los ríos Bérchules y Mecina en el ámbito de Sierra Nevada (Granada). http://info.igme.es/SidPDF/166000/950/166950_0000001.pdfspa
dc.relation.referencesIPCC. (2007). Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In IPCC. https://www.ipcc.ch/site/assets/uploads/2018/02/ar4_syr_full_report.pdfspa
dc.relation.referencesIPCC. (2012). Changes in Climate Extremes and their Impacts on the Natural Physical Environment. In C. B. Field, V. Barros, T. F. Stocker, & Q. Dahe (Eds.), Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (Vol. 9781107025, pp. 109–230). Cambridge University Press. https://doi.org/10.1017/CBO9781139177245.006spa
dc.relation.referencesIPCC. (2013a). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. https://www.ipcc.ch/report/ar5/wg1/spa
dc.relation.referencesIPCC. (2013b). Summary for Policymakers. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.spa
dc.relation.referencesIPCC. (2013c). What is a GCM? https://www.ipcc-data.org/guidelines/pages/gcm_guide.htmlspa
dc.relation.referencesIPCC. (2014). Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.spa
dc.relation.referencesIPCC. (2019). The Ocean and Cryosphere in a Changing Climate. A Special Report of the Intergovernmental Panel on Climate Change (H.-O. Pörtner, D. C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, & N. M. Weyer, Eds.). https://www.ipcc.ch/srocc/chapter/summary-for-policymakers/spa
dc.relation.referencesIPCC. (2021a). Cambio Climático 2021: Bases físicas. In Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems.spa
dc.relation.referencesIPCC. (2021b). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.spa
dc.relation.referencesIPCC. (2022). Summary for Policymakers. In Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. www.ipcc.chspa
dc.relation.referencesIPCC. (2023). IPCC WGI Interactive Atlas. https://interactive-atlas.ipcc.ch/regional-synthesis#eyJ0eXBlIjoiQ0lEIiwic2VsZWN0ZWRJbmRleCI6WyJyaXZlcl9mbG9vZCIsImhlYXZ5X3ByZWNpcGl0YXRpb24iXSwic2VsZWN0ZWRWYXJpYWJsZSI6ImNvbmZpZGVuY2UiLCJzZWxlY3RlZENvdW50cnkiOiJOV1MiLCJtb2RlIjoiSEVYIiwiY29tbW9ucyI6eyJsYXQiOjk3NzIsImxuZyI6NDAwNjkyLCJ6b29tIjo0LCJwcm9qIjoiRVBTRzo1NDAzMCIsIm1vZGUiOiJjb21wbGV0ZV9hdGxhcyJ9fQ==spa
dc.relation.referencesJaramillo Robledo, Á. (2006). Evapotranspiración de referencia en la región andina de Colombia. Cenicafé.spa
dc.relation.referencesKim, H. Y., & Park, S. W. (1988). imulating daily inflow and release rates for irrigation reservoirs, 1; modelling inflow rates by a linear reservoir model. Journal of the Korean Society of Agricultural Engineers.spa
dc.relation.referencesKoutsoyiannis, D. (2010). A random walk on water. Hydrology and Earth System Sciences, 14(3), 585–601. http://www.hydrol-earth-syst-sci.net/14/585/2010/spa
dc.relation.referencesKriegler, E., Bauer, N., Popp, A., Humpenöder, F., Leimbach, M., Strefler, J., Baumstark, L., Bodirsky, B. L., Hilaire, J., Klein, D., Mouratiadou, I., Weindl, I., Bertram, C., Dietrich, J. P., Luderer, G., Pehl, M., Pietzcker, R., Piontek, F., Lotze-Campen, H., … Edenhofer, O. (2017). Fossil-fueled development (SSP5): An energy and resource intensive scenario for the 21st century. Global Environmental Change, 42, 297–315. https://doi.org/10.1016/j.gloenvcha.2016.05.015spa
dc.relation.referencesKriegler, E., O’Neill, B. C., Hallegatte, S., Kram, T., Lempert, R. J., Moss, R. H., & Wilbanks, T. (2012). The need for and use of socio-economic scenarios for climate change analysis: A new approach based on shared socio-economic pathways. Global Environmental Change, 22(4), 807–822. https://doi.org/10.1016/j.gloenvcha.2012.05.005spa
dc.relation.referencesKriegler, E., O’Neill, B. C., Hallegatte, S., Kram, T., Lempert, R., Moss, R. H., & Wilbanks, T. J. (2010). Socio‐economic Scenario Development for Climate Change Analysis. CIRED Working Paper DT/WP No 2010‐23, October.spa
dc.relation.referencesLedley, T. S., Sundquist, E. T., Schwartz, S. E., Hall, D. K., Fellows, J. D., & Killeen, T. L. (1999). Climate change and greenhouse gases. Eos, Transactions American Geophysical Union, 80(39), 453–458. https://doi.org/10.1029/99EO00325spa
dc.relation.referencesLindsey, R. (2020, February 20). Climate Change: Atmospheric Carbon Dioxide . NOAA Climate.Gov. https://www.climate.gov/news-features/understanding-climate/climate-change-atmospheric-carbon-dioxidespa
dc.relation.referencesMann, M. E., Zhang, Z., Rutherford, S., Bradley R. S, Hughes, M. K., Shindell, D., & Felzer, B. (2009). Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science, 326(5957), 1253–1256. https://doi.org/10.1126/science.1177303spa
dc.relation.referencesMaurer, E. P., Hidalgo, H. G., Das, T., Dettinger, M. D., & Cayan, D. R. (2010). The utility of daily large-scale climate data in the assessment of climate change impacts on daily streamflow in California. Hydrology and Earth System Sciences, 14(6), 1125–1138. https://doi.org/10.5194/hess-14-1125-2010spa
dc.relation.referencesMeinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma, M. L. T., Lamarque, J., Matsumoto, K., Montzka, S. A., Raper, S. C. B., Riahi, K., Thomson, A., Velders, G. J. M., & van Vuuren, D. P. P. (2011). The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change, 109(1), 213–241. https://doi.org/10.1007/s10584-011-0156-zspa
dc.relation.referencesMichigan State University. (2015, November 23). Greenhouse Gas Basics . https://www.canr.msu.edu/resources/greenhouse_gas_basics_spanish_e3148spa
dc.relation.referencesMinisterio para la transición ecológica y el reto demográfico - Gobierno de España. (2020). Gases fluorados. https://www.miteco.gob.es/es/cambio-climatico/temas/mitigacion-politicas-y-medidas/fluorados.aspxspa
dc.relation.referencesMolnar, P. (2011). Calibration. Watershed Modelling.spa
dc.relation.referencesMoncada, A., Angarita, H., & Pérez, C. (2020). Escenarios de cambio climático: Método k-NN. SEI Discussion Brief.spa
dc.relation.referencesMontoya, C., & Ospina, G. (2004). Análisis del grado de susceptibilidad a la ocurrencia de procesos erosivos en la parte alta de la cuenca de la quebrada Olivares y análisis de amenaza por inundación en el tramo comprendido entre el sector de Aguas de Manizales y el puente que une los barrios Minitas-La Sultana. Universidad de Caldas.spa
dc.relation.referencesMoss, R., Babiker, M., Brinkman, S., Calvo, E., Carter, T., Edmonds, J., Elgizouli, I., Emori, S., Erda, L., Hibbard, K., Jones, R., Kainuma, M., Kelleher, J., Lamarque, J. F., Manning, M., Matthews, B., Meehl, J., Meyer, L., Mitchell, J., … Zurek, M. (2008). Towards New Scenarios for Analysis of Emissions, Climate Change, Impacts and Response Strategies. http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=940991spa
dc.relation.referencesMoss, Richard., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., Van Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M., Kram, T., Meehl, G. A., Mitchell, J. F. B., Nakicenovic, N., Riahi, K., Smith, S. J., Stouffer, R. J., Thomson, A. M., Weyant, J. P., & Wilbanks, T. J. (2010). The next generation of scenarios for climate change research and assessment. Nature, 463(7282), 747–756. https://doi.org/10.1038/nature08823spa
dc.relation.referencesNaciones Unidas. (1992). Convención Marco de las Naciones Unidas sobre el Cambio Climático (Vol. 20489).spa
dc.relation.referencesNASA. (2019a). Causes, Facts – Climate Change: Vital Signs of the Planet. https://climate.nasa.gov/causes/spa
dc.relation.referencesNASA. (2019b). What Is the Sun’s Role in Climate Change? – Climate Change: Vital Signs of the Planet. https://climate.nasa.gov/blog/2910/what-is-the-suns-role-in-climate-change/spa
dc.relation.referencesNASA. (2022). What is the greenhouse effect? – Climate Change: Vital Signs of the Planet. Global Climate Change. https://climate.nasa.gov/faq/19/what-is-the-greenhouse-effect/spa
dc.relation.referencesNASA. (2023). ASF Data Search Vertex. EARTHDATA. https://search.asf.alaska.edu/#/spa
dc.relation.referencesNational Climate Change Adaptation Research Facility. (2017). What are the RCPs? In Coast Adapt. https://coastadapt.com.au/how-to-pages/how-to-use-climate-change-scenarios-to-evaluate-risk-plan-and-make-decisionsspa
dc.relation.referencesNational Geographic. (2011). Greenhouse Effect - National Geographic Society. https://www.nationalgeographic.org/encyclopedia/greenhouse-effect/spa
dc.relation.referencesNational Oceanic and Atmospheric Administration. (2020a). ESRL Global Monitoring Division - Global Greenhouse Gas Reference Network. https://www.esrl.noaa.gov/gmd/ccgg/trends/global.htmlspa
dc.relation.referencesNational Oceanic and Atmospheric Administration. (2020b). NOAA/ESRL Global Monitoring Laboratory - The NOAA annual greenhouse gas index (AGGI). https://www.esrl.noaa.gov/gmd/aggi/aggi.htmlspa
dc.relation.referencesOcampo López, O. L. (2017). Modelación hidrológica y agronómica de los efectos del cambio y la variabilidad climática en la producción cafetera de Caldas. Universidad Nacional de Colombia.spa
dc.relation.referencesOcampo López, O. L., & Vélez Upegui, J. J. (2014). Análisis comparativo de modelos hidrológicos de simulación continua en cuencas de alta montaña: Caso del río Chinchiná. Revista Ingenierías Universidad de Medellín, 13(24), 43–58.spa
dc.relation.referencesOceana. (2020). Gases de efecto invernadero | Oceana EU. https://eu.oceana.org/es/node/46897spa
dc.relation.referencesO’Neill, B. C., Kriegler, E., Ebi, K. L., Kemp-Benedict, E., Riahi, K., Rothman, D. S., van Ruijven, B. J., van Vuuren, D. P., Birkmann, J., Kok, K., Levy, M., & Solecki, W. (2015). The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. Global Environmental Change, 42, 169–180. https://doi.org/10.1016/j.gloenvcha.2015.01.004spa
dc.relation.referencesO’Neill, B. C., Kriegler, E., Riahi, K., Ebi, K. L., Hallegatte, S., Carter, T. R., Mathur, R., & van Vuuren, D. P. (2014). A new scenario framework for climate change research: The concept of shared socioeconomic pathways. Climatic Change, 122(3), 387–400. https://doi.org/10.1007/s10584-013-0905-2spa
dc.relation.referencesOrganización Meteorológica Mundial. (2019a). The Global Climate in 2015 - 2019. World Meteorological Organization, 1179, 32.spa
dc.relation.referencesOrganización Meteorológica Mundial. (2019b). WMO Statement on the State of the Global Climate in 2018.spa
dc.relation.referencesPabón, J. D. (2012). Cambio Climático en Colombia: Tendencias en la segunda mitad del siglo XX y escenarios posibles para el siglo XXI. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 36(139), 261–278.spa
dc.relation.referencesParra Gómez, L. F. (2023). Gestión natural de inundaciones. Universidad Nacional de Colombia.spa
dc.relation.referencesPeixoto, J. P., & Oort, A. H. (1992). Physics of climate. In Reviews of Modern Physics.spa
dc.relation.referencesPérez-Sánchez, J., Senent-Aparicio, J., Segura-Méndez, F., Pulido-Velazquez, D., & Srinivasan, R. (2019). Evaluating Hydrological Models for Deriving Water Resources in Peninsular Spain. Sustainability, 11(10), 2872. https://doi.org/10.3390/su11102872spa
dc.relation.referencesPrentice, I. C., Farquhar, G. D., Fasham, M. J. R., Goulden, M. L., Heimann, M., Jaramillo, V. J., Kheshgi, H. S., Le Quéré, C., Scholes, R. J., & Wallace, D. W. R. (2001). The carbon cycle and atmospheric carbon dioxide. In Cambridge University Press.spa
dc.relation.referencesProgram for Climate Model Diagnosis & Intercomparison. (2008, September 15). CMIP5 Overview. https://pcmdi.llnl.gov/mips/cmip5/spa
dc.relation.referencesRahman, M., Ningsheng, C., Mahmud, G. I., Islam, M. M., Pourghasemi, H. R., Ahmad, H., Habumugisha, J. M., Washakh, R. M. A., Alam, M., Liu, E., Han, Z., Ni, H., Shufeng, T., & Dewan, A. (2021). Flooding and its relationship with land cover change, population growth, and road density. Geoscience Frontiers, 12(6), 101224. https://doi.org/10.1016/j.gsf.2021.101224spa
dc.relation.referencesRamírez Cardona, J. L. (2015). Propuesta metodológica para la valoración ambiental de corrientes hídricas desde la perspectiva de la restauración fluvial. Caso de estudio quebrada Olivares-Minitas Manizales (Caldas). Universidad Nacional de Colombia.spa
dc.relation.referencesRampino, M. R., & Self, S. (1992). Volcanic winter and accelerated glaciation following the Toba super-eruption. Nature, 359(6390), 50–52. https://doi.org/https://doi.org/10.1038/359050a0spa
dc.relation.referencesRampino, M. R., Self, S., & Stothers, R. B. (1988). Volcanic winters. Annual Review of Earth and Planetary Sciences, 16(1), 73–99.spa
dc.relation.referencesRao, S., & Riahi, K. (2006). The Role of Non-CO₃ Greenhouse Gases in Climate Change Mitigation: Long-term Scenarios for the 21st Century. The Energy Journal, 27(Special Issue: Multi-Greenhouse Gas Mitigation and Climate), 177–200. https://doi.org/10.2307/23297081spa
dc.relation.referencesRiahi, K., Grübler, A., & Nakicenovic, N. (2007). Scenarios of long-term socio-economic and environmental development under climate stabilization. Technological Forecasting and Social Change, 74(7), 887–935. https://doi.org/10.1016/j.techfore.2006.05.026spa
dc.relation.referencesRiahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O’Neill, B. C., Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., Lutz, W., Popp, A., Cuaresma, J. C., KC, S., Leimbach, M., Jiang, L., Kram, T., Rao, S., Emmerling, J., … Tavoni, M. (2017). The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environmental Change, 42, 153–168. https://doi.org/10.1016/j.gloenvcha.2016.05.009spa
dc.relation.referencesRiebeek, H. (2011, June 16). The Carbon Cycle. Earth Observatory - NASA. https://earthobservatory.nasa.gov/features/CarbonCycle/page1.phpspa
dc.relation.referencesRobertson, A. W., Kirshner, S., & Smyth, P. (2004). Downscaling of daily rainfall occurrence over Northeast Brazil using a hidden Markov model. Journal of Climate, 17(22), 4407–4424. https://doi.org/10.1175/JCLI-3216.1spa
dc.relation.referencesRobock, A. (2000). Volcanic eruptions and climate. Reviews of Geophysics, 38(2), 191–219. https://doi.org/http://dx.doi.org/10.1029/1998RG000054spa
dc.relation.referencesSemana. (2017, January 20). Efectos del cambio climático en Colombia. Revista Semana. https://www.semana.com/nacion/articulo/efectos-del-cambio-climatico-en-colombia/512637spa
dc.relation.referencesSmith, S. J., & Wigley, T. M. L. (2006). Multi-Gas Forcing Stabilization with Minicam Published by : International Association for Energy Economics Linked references are available on JSTOR for this article : Multi-Gas Forcing Stabilization with Minicam. The Energy Journal Special Issue, 3, 373–392.spa
dc.relation.referencesSofia, G., Roder, G., Dalla Fontana, G., & Tarolli, P. (2017). Flood dynamics in urbanised landscapes: 100 years of climate and humans’ interaction. Scientific Reports, 7(1), 40527. https://doi.org/10.1038/srep40527spa
dc.relation.referencesSong, J. H., Her, Y., Park, J., & Kang, M. S. (2019). Exploring parsimonious daily rainfall-runoff model structure using the hyperbolic tangent function and Tank model. Journal of Hydrology, 574, 574–587. https://doi.org/10.1016/j.jhydrol.2019.04.054spa
dc.relation.referencesSong, J. H., Kang, M. S., Song, I., & Jun, S. M. (2016). Water balance in irrigation reservoirs considering flood control and irrigation efficiency variation. Journal of Irrigation and Drainage Engineering, 142(2).spa
dc.relation.referencesSpiegel, D. S., Raymond, S. N., Dressing, C. D., Scharf, C. A., & Mitchell, J. L. (2010). Generalized milankovitch cycles and long-term climatic habitability. Astrophysical Journal, 721(2), 1308–1318. https://doi.org/10.1088/0004-637X/721/2/1308spa
dc.relation.referencesStocker, T. F., Qin, D., Plattner, G.-K., Alexander, L. V., Allen, S. K., Bindoff, N. L., Bréon, F.-M., Church, J. A., Cubasch, U., Emori, S., Forster, P., Friedlingstein, P., Gillett, N., Gregory, J. M., Hartmann, D. L., Jansen, E., Kirtman, B., Knutti, R., Kumar, K. K., … Xie, S.-P. (2013). Technical Summary. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 33–109). Cambridge University Press.spa
dc.relation.referencesStoner, A. M. K., Hayhoe, K., Yang, X., & Wuebbles, D. J. (2013). An asynchronous regional regression model for statistical downscaling of daily climate variables. International Journal of Climatology, 33(11), 2473–2494. https://doi.org/10.1002/joc.3603spa
dc.relation.referencesTaylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93(4), 485–498. https://doi.org/10.1175/BAMS-D-11-00094.1spa
dc.relation.referencesTett, S. F. B., Jones, G. S., Stott, P. a., Hill, D. C., Mitchell, J. F. B., Allen, M. R., Ingram, W. J., Johns, T. C., Johnson, C. E., Jones, A., Roberts, D. L., Sexton, D. M. H., & Woodage, M. J. (2002). Estimation of natural and anthropogenic contributions to 20th Century Temperature Change. Journal of Geophysical Research: Atmospheres, 107(D16), ACL 10-1-ACL 10-24. https://doi.org/https://doi.org/10.1029/2000JD000028spa
dc.relation.referencesUnited States Environmental Protection Agency. (2020a). Global Greenhouse Gas Emissions Data - US EPA. https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data#Reference 1spa
dc.relation.referencesUnited States Environmental Protection Agency. (2020b). Overview of Greenhouse Gases - US EPA. https://www.epa.gov/ghgemissions/overview-greenhouse-gasesspa
dc.relation.referencesUniversidad Politécnica de Valencia. (2006). AFINS 2.0. Departamento de Ingeniería Hidráulica y Medio Ambiente.spa
dc.relation.referencesUniversity Corporation for Atmospheric Research, & National Earth Science Teachers Association. (2006a). Carbon dioxide - UCAR. UCAR. https://scied.ucar.edu/carbon-dioxidespa
dc.relation.referencesUniversity Corporation for Atmospheric Research, & National Earth Science Teachers Association. (2006b). Methane - UCAR. UCAR. https://scied.ucar.edu/methanespa
dc.relation.referencesvan Vuuren, D. P., & Carter, T. R. (2014). Climate and socio-economic scenarios for climate change research and assessment: Reconciling the new with the ol. Climatic Change, 122(3), 415–429. https://doi.org/10.1007/s10584-013-0974-2spa
dc.relation.referencesvan Vuuren, D. P., Den Elzen, M. G. J., Lucas, P. L., Eickhout, B., Strengers, B. J., Van Ruijven, B., Wonink, S., & Van Houdt, R. (2007). Stabilizing greenhouse gas concentrations at low levels: An assessment of reduction strategies and costs. Climatic Change, 81(2), 119–159. https://doi.org/10.1007/s10584-006-9172-9spa
dc.relation.referencesvan Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J. F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S. J., & Rose, S. K. (2011). The representative concentration pathways: An overview. Climatic Change, 109, 5–31. https://doi.org/10.1007/s10584-011-0148-zspa
dc.relation.referencesvan Vuuren, D. P., Eickhout, B., Lucas, P. L., & den Elzen, M. G. J. (2006). Long-Term Multi-Gas Scenarios to Stabilise Radiative Forcing — Exploring Costs and Benefits Within an Integrated Assessment Framework Published by : International Association for Energy Economics Stable URL : http://www.jstor.org/stable/23297082 Your use. The Energy Journal, 27(Multi-Greenhouse Gas Mitigation and Climate Policy), 201–233. https://doi.org/10.2307/23297082spa
dc.relation.referencesvan Vuuren, D. P., Kriegler, E., O’Neill, B. C., Ebi, K. L., Riahi, K., Carter, T. R., Edmonds, J., Hallegatte, S., Kram, T., Mathur, R., & Winkler, H. (2014). A new scenario framework for Climate Change Research: Scenario matrix architecture. Climatic Change, 122(3), 373–386. https://doi.org/10.1007/s10584-013-0906-1spa
dc.relation.referencesvan Vuuren, D. P., Riahi, K., Moss, R., Edmonds, J., Thomson, A., Nakicenovic, N., Kram, T., Berkhout, F., Swart, R., Janetos, A., Rose, S. K., & Arnell, N. (2012). A proposal for a new scenario framework to support research and assessment in different climate research communities. Global Environmental Change, 22(1), 21–35. https://doi.org/10.1016/j.gloenvcha.2011.08.002spa
dc.relation.referencesvan Vuuren, D. P., Stehfest, E., Gernaat, D. E. H. J., Doelman, J. C., van den Berg, M., Harmsen, M., de Boer, H. S., Bouwman, L. F., Daioglou, V., Edelenbosch, O. Y., Girod, B., Kram, T., Lassaletta, L., Lucas, P. L., van Meijl, H., Müller, C., van Ruijven, B. J., van der Sluis, S., & Tabeau, A. (2017). Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm. Global Environmental Change, 42, 237–250. https://doi.org/10.1016/j.gloenvcha.2016.05.008spa
dc.relation.referencesVélez Upegui, J. I. (2001). Desarrollo de un modelo hidrológico conceptual y distribuido orientado a la simulación de crecidas. Universidad de La Rioja.spa
dc.relation.referencesVélez Upegui, J. J., Zambrano Nájera, J., Jódar, J., & Martos Rosillo, S. (2022). Evaluación preliminar de los recursos hídricos para la Siembra de Agua en la cuenca del río Palomino (Colombia). En Siembra y Cosecha de Agua en Iberoamérica. Agencia Española de Cooperación Internacional para el Desarrollo.spa
dc.relation.referencesWatson, R. T., Meira Filho, L. G., Sanhueza, E., & Janetos, A. (1992). Greenhouse gases: Sources and Sinks. Climate Change, 92, 25–46. https://doi.org/10.1016/b978-0-12-809665-9.09961-4spa
dc.relation.referencesWatson, R. T., Rodhe, H., Oeschger, H., & Siegenthaler, U. (1990). Greenhouse gases and aerosols. Climate Change: The IPCC Scientific Assessment, 1, 17.spa
dc.relation.referencesWise, M., Calvin, K., Thomson, A., Clarke, L., Bond-Lamberty, B., Sands, R., Smith, S. J., Janetos, A., & Edmonds, J. (2009). Implications of limiting CO2 concentrations for land use and energy. Science, 324(5931), 1183–1186. https://doi.org/10.1126/science.1168475spa
dc.relation.referencesWood, A. W., Leung, L. R., Sridhar, V., & Lettenmaier, D. P. (2004). Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Climatic Change, 62(1–3), 189.spa
dc.relation.referencesWood, A. W., Maurer, E. P., Kumar, A., & Lettenmaier, D. P. (2002). Long‐range experimental hydrologic forecasting for the eastern. Journal of Geophysical Research: Atmospheres, 107(D20), ACL 6-1-ACL 6-15. https://doi.org/doi:10.1029/2001JD000659spa
dc.relation.referencesYates, D., Gangopadhyay, S., Rajagopalan, B., & Strzepek, K. (2003). A technique for generating regional climate scenarios using a nearest-neighbor algorithm. Water Resources Research, 39(7), 1–15. https://doi.org/10.1029/2002WR001769spa
dc.relation.referencesZhang, F., & Georgakakos, A. P. (2012). Joint variable spatial downscaling. Climatic Change, 111(3), 945–972. https://doi.org/10.1007/s10584-011-0167-9spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::624 - Ingeniería civilspa
dc.subject.proposalCambio climáticospa
dc.subject.proposalReducción de escala no paramétricaspa
dc.subject.proposalInundaciones urbanasspa
dc.subject.proposalModelación hidrológica e hidráulicaspa
dc.subject.proposalClimate changeeng
dc.subject.proposalNon-parametric scale reductioneng
dc.subject.proposalUrban floodingeng
dc.subject.proposalHydrological and hydraulic modelingeng
dc.subject.unescoClimatologíaspa
dc.subject.unescoClimatologyeng
dc.titleAnálisis de la variación en la amenaza de inundación por efecto del cambio climáticospa
dc.title.translatedAnalysis of the variation in flood hazard due to climate changeeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
dcterms.audience.professionaldevelopmentResponsables políticosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1053839215.2024.pdf
Tamaño:
11.75 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Recursos Hidráulicos

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: