Efecto de la síntesis de nanopartículas de MnO2 e inmovilización de lacasas sobre fibras de pseudotallo de plátano para la degradación del colorante carmín de índigo

dc.contributor.advisorBuitrago Sierra, Robison
dc.contributor.advisorCadena Ch., Edith M.
dc.contributor.advisorVelez, Juan Manuel
dc.contributor.authorMora Gordillo, Sara Lucia
dc.contributor.researchgroupBiofibras y Derivados Vegetalesspa
dc.date.accessioned2022-08-16T23:44:04Z
dc.date.available2022-08-16T23:44:04Z
dc.date.issued2022
dc.descriptionilustraciones, diagramas, tablasspa
dc.description.abstractLos colorantes sintéticos se han convertido en una problemática ambiental con graves consecuencias en las fuentes hídricas, en la fauna de los ríos y en la salud pública, esto a raíz de la deficiente disposición de las soluciones coloreadas. Con el fin de brindar alternativas a los procesos de tratamiento, se usaron fibras vegetales extraídas del pseudotallo de plátano como soporte para la inmovilización por adsorción de lacasas y para la síntesis de nanopartículas de MnO2 con el fin de determinar la efectividad en la remoción de colorante índigo carmín. En la primera fase, se realizó un pretratamiento enzimático sobre la fibra y mediante el uso KMnO4 como precursor se obtuvo la síntesis de nanopartículas sobre las fibras de plátano que en contacto con el colorante logran una remoción del 98% en 5 minutos, después se evaluó la reutilización de la fibra funcionalizada. La siguiente fase fue la inmovilización de la enzima lacasa sobre fibras pretratadas mecánica y enzimáticamente, los resultados determinaron degradación del 98% índigo carmín con una dosis mínima de lacasa inmovilizada cuando el colorante estuvo en contacto con la fibra por 4h. Finalmente se realizó una revisión bibliográfica para orientar la determinación del mecanismo de acción teórico de la remoción mediada por lacasas y nanopartículas de MnO2. (Texto tomado de la fuente)spa
dc.description.abstractSynthetic dyes have become an environmental problem with serious consequences for water sources, river wildlife and public health, that due to poor availability of colored solutions. In order to offer another possibility to the treatment processes, vegetable fibers extracted from the plantain pseudostem were used as carrier for the immobilization by adsorption of laccases and for the synthesis of MnO2 nanoparticles in order to recognize the usefulness removal indigo carmine dye. In the first phase, an enzymatic pretreatment was carried out on the fiber, KMnO4 was used as precursor and the synthesis of nanoparticles was carried out onto plantain fibers, they achieve 98% dye removal in 5 minutes, after functionalized fiber was evaluated for reuse. The next phase was laccase enzyme immobilization. Fibers were pretreated mechanically and enzymatically, results determined 98% indigo carmine degradation with minimum doses of immobilized laccase when the dye was in contact with the fiber for 4h. Finally, a review was performed to guide the theoretical removal mechanism mediated by laccases and MnO2 nanoparticles.eng
dc.description.curricularareaÁrea Curricular de Materiales y Nanotecnologíaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Materiales y Procesosspa
dc.description.researchareaTecnología y Productos de Fibras Vegetalesspa
dc.format.extent98 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81923
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Materiales y Mineralesspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Materiales y Procesosspa
dc.relation.referencesBhushan, S., Rana, M. S., Mamta, Nandan, N., & Prajapati, S. K. (2019). Energy harnessing from banana plant wastes: A review. Bioresource Technology Reports, 7(April), 100212. https://doi.org/10.1016/j.biteb.2019.100212spa
dc.relation.referencesBlanco, T., Ávila, C. A., & Ramírez, H. R. (2016). Nanostructured MnO2 catalyst in E. crassipes (water hyacinth) for indigo carmine degradation. Revista Colombiana de Química, 45(2), 30. https://doi.org/10.15446/rev.colomb.quim.v45n2.60395spa
dc.relation.referencesCadavid, Y., Cadena, E. M., Velez, J. M., & Santa, J. F. (2016). Degradation of Dyes Using Plantain Fibers Modified with Nanoparticles. In Natural Fibres: Advances in Science and Technology Towards Industrial Applications (pp. 99–110). https://doi.org/10.1007/7854spa
dc.relation.referencesChacon, M., Blanco, C., Hinestroza, J., & Combariza, M. (2013). Biocomposite of nanoctructured MnO2 and Fique fibers for efficient dye degradation. Green Chemistry, 129(9), 1463–9262. https://doi.org/10.1039/C3GC40911Bspa
dc.relation.referencesCordeiro, N., Gouveia, C., Moraes, A. G. O., & Amico, S. C. (2011). Natural fibers characterization by inverse gas chromatography. Carbohydrate Polymers, 84(1), 110–117. https://doi.org/10.1016/j.carbpol.2010.11.008spa
dc.relation.referencesFAOSTAT – Food and Agriculture Organization of the United Nations. (2018). Plaintain production 2018. http://faostat.fao.org/spa
dc.relation.referencesGañán, P., Zuluaga, R., Restrepo, A., Labidi, J., & Mondragon, I. (2008). Plantain fibre bundles isolated from Colombian agro-industrial residues. Bioresource Technology, 99(3), 486–491. https://doi.org/10.1016/j.biortech.2007.01.012spa
dc.relation.referencesGangwar, A. K., Prakash, N. T., & Prakash, R. (2014). Applicability of Microbial Xylanases in Paper Pulp Bleaching: A Review. BioResources, 9(2), 3733–3754. https://doi.org/10.15376/biores.9.2.3733-3754spa
dc.relation.referencesGeorge, M., Mussone, P. G., & Bressler, D. C. (2014). Surface and thermal characterization of natural fibres treated with enzymes. Industrial Crops and Products, 53, 365–373. https://doi.org/10.1016/j.indcrop.2013.12.037spa
dc.relation.referencesGonzález, J. T. C., Dillon, A. J. P., Pérez-Pérez, A. R., Fontana, R., & Bergmann, C. P. (2015). Enzymatic surface modification of sisal fibers (Agave Sisalana) by Penicillium echinulatum cellulases. Fibers and Polymers, 16(10), 2112–2120. https://doi.org/10.1007/s12221-015-4705-3spa
dc.relation.referencesIzquierdo, H. (2009). Empleo del follaje de plantas de Musa spp como alternativa para la alimentación animal. Temas de Ciencia y Tecnología, 49–60. https://doi.org/https://doi.org/10.24188/recia.v6.n1.2014.260spa
dc.relation.referencesJiao, C., Tao, J., Xu, S., Zhang, D., Chen, Y., & Lin, H. (2017). In situ synthesis of hierarchical structured cotton fibers/MnO2 composites: a versatile and recyclable device for wastewater treatment. RSC Advances, 7, 31475–31484. https://doi.org/10.1039/C7RA04287Fspa
dc.relation.referencesKalia, S., Thakur, K., Celli, A., Kiechel, M. A., & Schauer, C. L. (2013). Surface modification of plant fibers using environment friendly methods for their application in polymer composites, textile industry and antimicrobial activities: A review. Journal of Environmental Chemical Engineering, 1(3), 97–112. https://doi.org/10.1016/j.jece.2013.04.009spa
dc.relation.referencesMazzeo, M., Agaton, L., Mejia, L., Guerrero, L., & Botero, J. (2010). Aprovechamiento industrial de residuos de cosecha y poscosecha de plátano en el departamento de Caldas. Revista Educación En Ingeniería, No. 9, 128–139.spa
dc.relation.referencesPanyasart, K., Chaiyut, N., Amornsakchai, T., & Santawitee, O. (2014). Effect of surface treatment on the properties of pineapple leaf fibers reinforced polyamide 6 composites. Energy Procedia, 56(C), 406–413. https://doi.org/10.1016/j.egypro.2014.07.173spa
dc.relation.referencesPrysiazhnyi, V., Kramar, A., Dojcinovic, B., Zekic, A., Obradovic, B. M., Kuraica, M. M., & Kostic, M. (2013). Silver incorporation on viscose and cotton fibers after air, nitrogen and oxygen DBD plasma pretreatment. Cellulose, 20(1), 315–325. https://doi.org/10.1007/s10570-012-9817-yspa
dc.relation.referencesRiahi, K., Mammou, A. Ben, & Thayer, B. Ben. (2009). Date-palm fibers media filters as a potential technology for tertiary domestic wastewater treatment. Journal of Hazardous Materials, 161(2), 608–613. https://doi.org/10.1016/j.jhazmat.2008.04.013spa
dc.relation.referencesSfiligoj, M., Hribernik, S., Stana, K., & Kreže, T. (2012). Plant Fibres for Textile and Technical Applications. In Advances in Agrophysical Research (pp. 370–398). https://doi.org/10.5772/67458spa
dc.relation.referencesSubramonian, W., Wu, T. Y., & Chai, S. P. (2015). An application of response surface methodology for optimizing coagulation process of raw industrial effluent using Cassia obtusifolia seed gum together with alum. Industrial Crops and Products, 70, 107–115. https://doi.org/10.1016/j.indcrop.2015.02.026spa
dc.relation.referencesSyed M., H., Umar, A., Azra, Y., Faisal, S., & Naseem, A. (2020). Recent trends of MnO2-derived adsorbents for water treatment: a review. New Journal of Chemistry, 44, 6096–6120. https://doi.org/10.1039/C9NJ06392G.Volumespa
dc.relation.referencesZhai, R., Hu, J., Chen, X., Xu, Z., Wen, Z., & Jin, M. (2020). Facile synthesis of manganese oxide modified lignin nanocomposites from lignocellulosic biorefinery wastes for dye removal. Bioresource Technology, 315(May), 123846. https://doi.org/10.1016/j.biortech.2020.123846spa
dc.relation.referencesZhang, Y. H. P., & Lynd, L. R. (2004). Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems. Biotechnology and Bioengineering, 88(7), 797–824. https://doi.org/10.1002/bit.20282spa
dc.relation.referencesZheng, Y., Yu, S., Shuai, S., Zhou, Q., & Cheng, Q. (2013). Color removal and COD reduction of biologically treated textile effluent through submerged filtration using hollow fiber nanofiltration membrane. Desalination, 314, 89–95. https://doi.org/10.1016/j.desal.2013.01.004spa
dc.relation.referencesAbdelileh, M., Ticha, M. Ben, Moussa, I., & Meksi, N. (2019). Pretreatment optimization process of cotton to overcome the limits of its dyeability with indigo carmine. Chemical Industry and Chemical -Engineering Quarterly, 25(3), 277–288. https://doi.org/10.2298/CICEQ181115006Aspa
dc.relation.referencesBaltierra-Trejo, E., Márquez-Benavides, L., & Sánchez-Yáñez, J. M. (2015). Inconsistencies and ambiguities in calculating enzyme activity: The case of laccase. Journal of Microbiological Methods, 119, 126–131. https://doi.org/10.1016/j.mimet.2015.10.007spa
dc.relation.referencesBrandi, P., D’Annibale, A., Galli, C., Gentili, P., & Pontes, A. S. N. (2006). In search for practical advantages from the immobilisation of an enzyme: the case of laccase. Journal of Molecular Catalysis B: Enzymatic, 41(1–2), 61–69. https://doi.org/10.1016/j.molcatb.2006.04.012spa
dc.relation.referencesCano, M., Solis, M., Diaz, J., Solis, A., Loera, O., & Teutli, M. M. (2011). Biotransformation of indigo carmine to isatin sulfonic acid by lyophilized mycelia from Trametes versicolor. Journal of Biotechnology, 10(57), 12224–12231. https://doi.org/10.5897/AJB11.944spa
dc.relation.referencesCastaño Urueña, J. D. (2014). Optimización del proceso de producción, purificación y caracterización de una lacasa a partir de un hongo nativo con potencial aplicación en procesos biotecnológicos [Universidad Nacional de Colombia]. http://www.bdigital.unal.edu.co/45348/spa
dc.relation.referencesCho, E. A., Seo, J., Lee, D. W., & Pan, J. G. (2011). Decolorization of indigo carmine by laccase displayed on Bacillus subtilis spores. Enzyme and Microbial Technology, 49(1), 100–104. https://doi.org/10.1016/j.enzmictec.2011.03.005spa
dc.relation.referencesÇifçi, D. I., Atav, R., Güneş, Y., & Güneş, E. (2019). Determination of the color removal efficiency of laccase enzyme depending on dye class and chromophore. Water Science and Technology, 80(1), 134–143. https://doi.org/10.2166/wst.2019.255spa
dc.relation.referencesCristóvão, R. O., Tavares, A. P. M., Brígida, A. I., Loureiro, J. M., Boaventura, R. A. R., Macedo, E. A., & Coelho, M. A. Z. (2011). Immobilization of commercial laccase onto green coconut fiber by adsorption and its application for reactive textile dyes degradation. Journal of Molecular Catalysis B: Enzymatic, 72(1–2), 6–12. https://doi.org/10.1016/j.molcatb.2011.04.014spa
dc.relation.referencesDa Silva, A. M., Tavares, A. P. M., Rocha, C. M. R., Cristóvão, R. O., Teixeira, J. A., & MacEdo, E. A. (2012). Immobilization of commercial laccase on spent grain. Process Biochemistry, 47(7), 1095–1101. https://doi.org/10.1016/j.procbio.2012.03.021spa
dc.relation.referencesFernández-Fernández, M. (2013). Inmovilización de Lacasa: Métodos y Potenciales Aplicaciones Industriales [Universidad de Vigo]. Tesis de doctoradospa
dc.relation.referencesGiardina, P., & Faraco, V. (2010). Laccases: a never-ending story. Cellular and Molecular Life Sciences, 67, 369–385. https://doi.org/10.1007/s00018-009-0169-1spa
dc.relation.referencesJesionowski, T., Zdarta, J., & Krajewska, B. (2014). Enzyme immobilization by adsorption: a review. Adsorption, 20, 801–821. https://doi.org/https://doi.org/10.1007/s10450-014-9623-yspa
dc.relation.referencesLegerská, B., Chmelová, D., & Ondrejovič, M. (2016). Degradation of synthetic dyes by laccases - A mini-review. Nova Biotechnologica et Chimica, 15(1), 90–106. https://doi.org/10.1515/nbec-2016-0010spa
dc.relation.referencesLi, H., Zhang, R., Tang, L., Zhang, J., & Mao, Z. (2015). Manganese peroxidase production from cassava residue by Phanerochaete chrysosporium in solid state fermentation and its decolorization of indigo carmine. Chinese Journal of Chemical Engineering, 23(1), 227–233. https://doi.org/10.1016/j.cjche.2014.11.001spa
dc.relation.referencesLiu, J., Xie, Y., Peng, C., Yu, G., & Zhou, J. (2017). Molecular Understanding of Laccase Adsorption on Charged Self- Assembled Monolayers. The Journal of Physucal Chemistry, 121, 10610–10617.spa
dc.relation.referencesMichniewicz, A., Ledakowicz, S., Ullrich, R., & Hofrichter, M. (2008). Kinetics of the enzymatic decolorization of textile dyes by laccase from Cerrena unicolor. Dyes and Pigments, 77, 295–302. https://doi.org/10.1016/j.dyepig.2007.05.015spa
dc.relation.referencesMichniewicz, A., Ullrich, R., Ledakowicz, S., & Hofrichter, M. (2006). The white-rot fungus Cerrena unicolor strain 137 produces two laccase isoforms with different physico-chemical and catalytic properties. Applied Microbiology and Biotechnology, 69(6), 682–688. https://doi.org/10.1007/s00253-005-0015-9spa
dc.relation.referencesMohamad, N. R., Marzuki, N. H. C., Buang, N. A., Huyop, F., & Wahab, R. A. (2015). An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnology and Biotechnological Equipment, 29(2), 205–220. https://doi.org/10.1080/13102818.2015.1008192spa
dc.relation.referencesPolak, J., & Jarosz-Wilkolazka, A. (2012). Fungal laccases as green catalysts for dye synthesis. Process Biochemistry, 47(9), 1295–1307. https://doi.org/10.1016/j.procbio.2012.05.006spa
dc.relation.referencesRen, S., Li, C., Jiao, X., Jia, S., Jiang, Y., Bilal, M., & Cui, J. (2019). Recent progress in multienzymes co-immobilization and multienzyme system applications. Chemical Engineering Journal, 373(February), 1254–1278. https://doi.org/10.1016/j.cej.2019.05.141spa
dc.relation.referencesRodríguez-Delgado, M. M., Alemán-Nava, G. S., Rodríguez-Delgado, J. M., Dieck-Assad, G., Martínez-Chapa, S. O., Barceló, D., & Parra, R. (2015). Laccase-based biosensors for detection of phenolic compounds. TrAC - Trends in Analytical Chemistry, 74, 21–45. https://doi.org/10.1016/j.trac.2015.05.008spa
dc.relation.referencesSharma, P., Goel, R., & Capalash, N. (2007). Bacterial laccases. World Journal of Microbiology and Biotechnology, 23(6), 823–832. https://doi.org/10.1007/s11274-006-9305-3spa
dc.relation.referencesSheldon, R. A. (2007). Enzyme immobilization: The quest for optimum performance. Advanced Synthesis and Catalysis, 349(8–9), 1289–1307. https://doi.org/10.1002/adsc.200700082spa
dc.relation.referencesSilva, D. F., Carvalho, A. F. A., Shinya, T. Y., Mazali, G. S., & Herculano, R. D. (2017). Recycle of Immobilized Endocellulases in Different Conditions for Cellulose Hydrolysis. Enzyme Research, 2017, 18. https://doi.org/10.1155/2017/4362704spa
dc.relation.referencesSyazwani, N., Rahman, A., Firdaus, M., & Baharin, Y. (2018). Utilisation of natural cellulose fibres in wastewater treatment. Cellulose, 121–131. https://doi.org/10.1007/s10570-018-1935-8spa
dc.relation.referencesWang, S.-S., Ning, Y.-J., Wang, S.-N., Zhang, J., Zhang, G.-Q., & Chen, Q.-J. (2016). Purification, characterization, and cloning of an extracellular laccase with potent dye decolorizing ability from white rot fungus Cerrena unicolor GSM-01. International Journal of Biological Macromolecules, 95, 920–927. https://doi.org/10.1016/j.ijbiomac.2016.10.079spa
dc.relation.referencesYang, J., Ng, T. B., Lin, J., & Ye, X. (2015). A novel laccase from basidiomycete Cerrena sp.: Cloning, heterologous expression, and characterization. International Journal of Biological Macromolecules, 77, 344–349. https://doi.org/10.1016/j.ijbiomac.2015.03.028spa
dc.relation.referencesZhou, W., Zhang, W., & Cai, Y. (2021). Laccase immobilization for water purification: A comprehensive review. Chemical Engineering Journal, 403(July 2020), 126–272. https://doi.org/10.1016/j.cej.2020.126272spa
dc.relation.referencesAmmar, S., Abdelhedi, R., Flox, C., Arias, C., & Brillas, E. (2006). Electrochemical degradation of the dye indigo carmine at boron-doped diamond anode for wastewaters remediation. Environmental Chemistry Letters, 4(4), 229–233. https://doi.org/10.1007/s10311-006-0053-2spa
dc.relation.referencesAnjos, F. S. C., Vieira, E. F. S., & Cestari, A. R. (2002). Interaction of Indigo Carmine Dye with Chitosan Evaluated by Adsorption and Thermochemical Data. 246, 243–246. https://doi.org/10.1006/jcis.2002.8537spa
dc.relation.referencesBabak, S., Queru, S., & Feraud, M. (2016). Procede de preparation du carmin d’ indigo (Patent No. 3059664).spa
dc.relation.referencesBenkhaya, S., Harfi, S. El, & Harfi, A. El. (2017). Classifications, properties and applications of textile dyes : A review. Apllied Journal of Enviromental Engineering Science, 3, 311–320.spa
dc.relation.referencesBenkhaya, S., M’ rabet, S., & El Harfi, A. (2020). A review on classifications, recent synthesis and applications of textile dyes. Inorganic Chemistry Communications, 115, 107–891. https://doi.org/10.1016/j.inoche.2020.107891spa
dc.relation.referencesBernal, A. (2013). Evaluación de una columna de burbujeo de flujo ascendente para la ozonación catalizada con arcillas pilareadas con Fe. Universidad Autónoma del Estado de México.spa
dc.relation.referencesCampos, R., Kandelbauer, A., Robra, K. H., Cavaco-Paulo, A., & Gübitz, G. M. (2001). Indigo degradation with purified laccases from Trametes hirsuta and Sclerotium rolfsii. Journal of Biotechnology, 89(2–3), 131–139. https://doi.org/10.1016/S0168-1656(01)00303-0spa
dc.relation.referencesCano, M., Solis, M., Diaz, J., Solis, A., Loera, O., & Teutli, M. M. (2011). Biotransformation of indigo carmine to isatin sulfonic acid by lyophilized mycelia from Trametes versicolor. Journal of Biotechnology, 10(57), 12224–12231. https://doi.org/10.5897/AJB11.944spa
dc.relation.referencesChequer, M., Rodrigues De Oliveira, G., Anastácio, E., Carvalho, J., Boldrin, M., & Palma De Oliveira, D. (2013). Textile Dyes : Dyeing Process and Environmental Impact. In Eco-Friendly Textile Dyeing and Finishing (pp. 152–175).spa
dc.relation.referencesChoi, K. (2021). Dyes and Pigments Discoloration of indigo dyes by eco-friendly biocatalysts. Dyes and Pigments, 184(August 2020), 108749. https://doi.org/10.1016/j.dyepig.2020.108749spa
dc.relation.referencesChowdhury, M. F., Khandaker, S., Sarker, F., Islam, A., Rahman, M. T., & Awual, M. R. (2020). Current treatment technologies and mechanisms for removal of indigo carmine dyes from wastewater: A review. Journal of Molecular Liquids, 318, 114061. https://doi.org/10.1016/j.molliq.2020.114061spa
dc.relation.referencesCraick, J., Khan, D., & Afifi, R. (2009). The Safety of Intravenous Indigo Carmine to Assess Ureteric Patency During Transvaginal Uterosacral Suspension of the. Journal of Pelvic Medicine and Surgey, 15(1). https://doi.org/10.1097/SPV.0b013e3181986acespa
dc.relation.referencesDalmázio, I., De Urzedo, A. P. F. ., Alvez, T. M. ., Cathatino, R. R., Eberlin, M. N., Nascentes, C. C., & Augusti, R. (2007). Electrospray ionization mass spectrometry monitoring of indigo carmine degradation by advanced oxidative processes. Journal of Mass Spectrometry, 43(7), 854–864. https://doi.org/10.1002/jmsspa
dc.relation.referencesDe Oliveira, S., Carvalho, L., & Azevedo, R. (2010). Brazil nut shells as a new biosorbent to remove methylene blue and indigo carmine from aqueous solutions. Journal of Hazardous Materials Journal, 174, 84–92. https://doi.org/10.1016/j.jhazmat.2009.09.020spa
dc.relation.referencesDuarte, S., Jiménez, A., Pineda, J., & Mora, E. (2018). Degradación de índigo carmín por hongos de pudrición blanca Indigo carmine degradation by white rot fungi. CEBA, 1(June), 4–12.spa
dc.relation.referencesGarcía, N. (2016). Síntesis de hidrotalcitas con ftalocianina y aplicación en la decoloración de índigo carmín. Universidad Autónoma de Puebla.spa
dc.relation.referencesGogate, P. R., & Pandit, A. B. (2004). A review of imperative technologies for wastewater treatment II : hybrid methods. 8(03), 553–597. https://doi.org/10.1016/S1093-0191(03)00031-5spa
dc.relation.referencesGoud, B. S., Cha, Lim, H., Koyyada, G., & Kim, H. (2020). Augmented Biodegradation of Textile Azo Dye Effluents by Plant Endophytes : A Sustainable , Eco ‑ Friendly Alternative. Current Microbiology, 20, 1–16. https://doi.org/10.1007/s00284-020-02202-0spa
dc.relation.referencesGregory, P. (1990). Classification of Dyes by Chemical Structure. The Chemistry and Application of Dyes, 17–47. https://doi.org/10.1007/978-1-4684-7715-3_2spa
dc.relation.referencesJang, J. W., & Park, J. W. (2014). Iron oxide nanotube layer fabricated with electrostatic anodization for heterogeneous Fenton like reaction. Journal of Hazardous Materials, 273, 1–6. https://doi.org/10.1016/j.jhazmat.2014.03.002spa
dc.relation.referencesJones, S. M., & Solomon, E. I. (2015). Electron transfer and reaction mechanism of laccases. Cellular and Molecular Life Sciences, 72(5), 869–883. https://doi.org/10.1007/s00018-014-1826-6spa
dc.relation.referencesKhataee, A. R., Vatanpour, V., & Ghadim, A. R. A. (2009). Decolorization of C . I . Acid Blue 9 solution by UV / Nano-TiO 2 , Fenton , Fenton-like , electro-Fenton and electrocoagulation processes : A comparative study. 161, 1225–1233. https://doi.org/10.1016/j.jhazmat.2008.04.075spa
dc.relation.referencesLi, H. X., Xu, B., Tang, L., Zhang, J. H., & Mao, Z. G. (2015). Reductive decolorization of indigo carmine dye with Bacillus sp. MZS10. International Biodeterioration and Biodegradation, 103, 30–37. https://doi.org/10.1016/j.ibiod.2015.04.007spa
dc.relation.referencesLi, H., Zhang, R., Tang, L., Zhang, J., & Mao, Z. (2014). Evaluation of Bacillus sp . MZS10 for decolorizing Azure B dye and its decolorization mechanism. Journal of Environmental Sciences, 26(5), 1125–1134. https://doi.org/10.1016/S1001-0742(13)60540-9spa
dc.relation.referencesMarketWatch. (2020, November). Global Indigo Carmine Market 2020 Regional Production Volume , Business Operation Data Analysis , Revenue and Growth Rate by 2026. MarketWatch News Department, 4–7.spa
dc.relation.referencesMarras, S. (2014). Aplpication of advanced methodologies to the identification of natural dyes and lakes in pictorial artworks. Unniveristà Ca’Fscaru Venezia.spa
dc.relation.referencesMishra, A., Kumar, S., & Kumar, A. (2011). International Biodeterioration & Biodegradation Laccase production and simultaneous decolorization of synthetic dyes in unique inexpensive medium by new isolates of white rot fungus. International Biodeterioration & Biodegradation, 65(3), 487–493. https://doi.org/10.1016/j.ibiod.2011.01.011spa
dc.relation.referencesPrado, A. G. S., Torres, J. D., Faria, E. A., & Dias, S. C. L. (2004). Comparative adsorption studies of indigo carmine dye on chitin and chitosan. 277, 43–47. https://doi.org/10.1016/j.jcis.2004.04.056spa
dc.relation.referencesQuintero, L. U. Z., & Cardona, S. (2010). Índigo Carmín technologies for the decolorization of dyes : indigo and indigo carmine. Dyna, 77, 371–386.spa
dc.relation.referencesRamya, M., Anusha, B., & Kalavathy, S. (2008). Decolorization and biodegradation of Indigo carmine by a textile soil isolate Paenibacillus larvae. Biodegradation, 19(2), 283–291. https://doi.org/10.1007/s10532-007-9134-6spa
dc.relation.referencesRoshan, P., Blackburn, R. S., & Bechtold, T. (2001). Indigo and Indigo Colorants. Ullmann’s Encyclopedia of Industrial Chemistry, 1–16. http://repositorio.udlap.mx/xmlui/handle/123456789/8349spa
dc.relation.referencesRuiz, S. (2011). Evaluación de la remoción del colorante INDIGO utilizado en empresas dedicadas a la producción de telas tipo DENIM empleando a Pleutoris ostreatus como modelo biológico. Univesrsidad de la Sabana.spa
dc.relation.referencesSayʇili, H., Güzel, F., & Önal, Y. (2015). Conversion of grape industrial processing waste to activated carbon sorbent and its performance in cationic and anionic dyes adsorption. Journal of Cleaner Production, 93, 84–93. https://doi.org/10.1016/j.jclepro.2015.01.009spa
dc.relation.referencesSolís, H., Loera-Serna, S., Gómez-Chávez, V., Ruiz-Ramos, R., Cortés-Romero, C. M., & Ortiz, E. (2016). Degradation of Indigo Carmine Using Advanced Oxidation Processes: Synergy Effects and Toxicological Study. Journal of Environmental Protection, 07(12), 1693–1706. https://doi.org/10.4236/jep.2016.712137spa
dc.relation.referencesStasiak, N., A-koch, W. K., & Owniak, K. G. (2014). Review Modern Industrial And Pharmacological Applications Of Indigo Dye And Its Derivatives: A Review. Acta Poloniae Pharmaceutica - Drug Research, 71(2), 215–221.spa
dc.relation.referencesTorres, T. (2015). Degradación de índigo carmín mediante procesos avanzados de oxidación empleando ozono catalizado con diferentes metales. Universidad Autónoma del Estado de México.spa
dc.relation.referencesVasco, A. (2014). Evaluación de la adsorción de índigo carmin en pellets abrasivos para la industria textil. In Universidad Pontificia Bolivariana (Issue 1). Universidad Pontificia Bolivariana.spa
dc.relation.referencesVidya Lekshmi, K. P., Yesodharan, S., & Yesodharan, E. P. (2018). MnO2 efficiently removes indigo carmine dyes from polluted water. Heliyon, 4(11). https://doi.org/10.1016/j.heliyon.2018.e00897spa
dc.relation.referencesVikrant, K., Giri, B. S., Raza, N., Roy, K., Kim, K. H., Rai, B. N., & Singh, R. S. (2018). Recent advancements in bioremediation of dye: Current status and challenges. Bioresource Technology, 253, 355–367. https://doi.org/10.1016/j.biortech.2018.01.029spa
dc.relation.referencesZaharia, C., & Suteu, D. (2012). Textile Organic Dyes – Characteristics, Polluting Effects and Separation/Elimination Procedures from Industrial Effluents – A Critical Overview. In T. Puzyn (Ed.), Organic Pollutants Ten Years After the Stockholm Convention - Environmental and Analytical Update (1st ed., pp. 56–85). https://doi.org/10.5772/32373spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc670 - Manufactura::677 - Textilesspa
dc.subject.ddc540 - Química y ciencias afinesspa
dc.subject.lembPlant fibers
dc.subject.lembFibras vegetales
dc.subject.proposalFibras naturalesspa
dc.subject.proposalinmovilizaciónspa
dc.subject.proposallacasaspa
dc.subject.proposalnanopartículas MnO2spa
dc.subject.proposalíndigo carmínspa
dc.subject.proposaldegradaciónspa
dc.subject.proposalmecanismospa
dc.subject.proposalNatural fiberseng
dc.subject.proposalimmobilization laccaseeng
dc.subject.proposalMnO2 nanoparticleseng
dc.subject.proposalindigo carmine dyeeng
dc.subject.proposaldegradationeng
dc.subject.proposalmechanismeng
dc.titleEfecto de la síntesis de nanopartículas de MnO2 e inmovilización de lacasas sobre fibras de pseudotallo de plátano para la degradación del colorante carmín de índigospa
dc.title.translatedSynthesis effect of MnO2 nanoparticles and laccase immobilization onto plantain fibers from pseudostem for degradation of indigo carmine dyeeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1085304038.2022.pdf
Tamaño:
2.6 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestria en Ingenieria Materiales y procesos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: