Biomechanical computational model of the elbow development

dc.contributor.advisorGarzón Alvarado, Diego Alexander
dc.contributor.advisorMárquez Flórez, Kalenia María
dc.contributor.authorMillán Claro, Luis Felipe
dc.contributor.researchgroupGNUM - Grupo de Modelado y Métodos Numericos en Ingenieríaspa
dc.date.accessioned2021-07-26T15:23:27Z
dc.date.available2021-07-26T15:23:27Z
dc.date.issued2021
dc.descriptionilustraciones, tablasspa
dc.description.abstractIn this study, two computational models were developed, the first one predicts the appearance, location, and development of the mesenchymal condensation within the upper limb as it grows. Biochemical events were modeled with reaction-diffusion equations of generic molecules. The results obtained showed that patterns generated by molecules that behave as Fgf8, Fgf10 and Wnt3a, can predict the shape of the mesenchymal condensation. Simple diffusive patterns were adequate to explain the areas where sox9 is expressed and how they are affected by the shape and size of the signaling zones and the ectoderm. Furthermore, our results suggest that Grem1 and Wnt3a have the same effect on Sox9 expression, and that Tgf-β expression could be due to inhibition of RA. The second model analyze how mechanical and biochemical stimuli affect joint morphogenesis. For this, it was assumed that cartilage growth was controlled by cyclic hydrostatic stress and inhibited by octahedral shear stress. In addition, the effect of molecules that promote chondrocyte proliferation such as PTHrP-Ihh and Wnt was included. The results obtained through the model suggest that the initial morphogenesis of the elbow joint is influenced by hydrostatic stresses together with biochemical stimulation. To solve the systems of partial differential equations in both models, the finite element method was applied. It should be noted that this document also presents a conceptual background of the biological processes before and during the development of the elbow, as well as a brief mention of what the principal characteristics of the elbow is and some pathologies associated, moreover, it is also included a brief explanation of the finite element method and the solution of the elasticity and reaction-diffusion equations through this method. (Text taken from source)eng
dc.description.abstractEn este estudio se desarrollaron dos modelos computacionales, el primero predice la apariencia, ubicación y desarrollo de la condensación mesenquimal mientras crece parte de extremidad superior. Los eventos bioquímicos se modelaron con ecuaciones de reacción-difusión con moléculas genéricas. Los resultados obtenidos mostraron que los patrones de Fgf8, Fgf10 y Wnt3a pueden predecir la forma de la condensación mesenquimal mientras crece la extremidad. Los patrones difusivos simples fueron adecuados para explicar las áreas donde se expresa sox9 y cómo se ven afectadas por la forma y el tamaño de las zonas de señalización y el ectodermo. Además, nuestros resultados sugieren que Grem1 y Wnt3a tienen el mismo efecto sobre la expresión de Sox9, y que la expresión de Tgf-β podría deberse a la inhibición de la AR. El segundo modelo analiza cómo estímulos mecánicos y bioquímicos afectan la morfogénesis articular. Para ello se asumió que el crecimiento del cartílago estaba controlado por el estrés hidrostático cíclico e inhibido por el esfuerzo cortante octaédrico. Además, se incluyó el efecto de moléculas que promueven la proliferación de condrocitos tales como PTHrP-Ihh y Wnt. Los resultados obtenidos a través del modelo sugieren que la morfogénesis de la articulación del codo está influenciada en gran medida por las tensiones hidrostáticas junto con la estimulación bioquímica. Para resolver los sistemas de ecuaciones diferenciales parciales en ambos modelos se aplicó el método de los elementos finitos. Cabe destacar que dentro de este documento también se presenta un marco conceptual de los procesos biológicos durante y antes del desarrollo del codo, una breve mención de qué es el codo y algunas enfermedades, así como una breve explicación del método de los elementos finitos y la solución de las ecuaciones de elasticidad y reacción-difusión a través de este método. (Texto tomado de la fuente)spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería Biomédicaspa
dc.description.researchareaBiomecánica computacionalspa
dc.format.extent108 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79845
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Medicina - Maestría en Ingeniería Biomédicaspa
dc.relation.referencesP. Susan Standring DSc, Gray’s anatomy 41st edition: The anatomical basis of clinical practice. Elsevier, 2015.spa
dc.relation.referencesH. Yasuda and B. de Crombrugghe, “Joint Formation Requires Muscle Formation and Contraction,” Dev. Cell, vol. 16, no. 5, pp. 625–626, 2009.spa
dc.relation.referencesR. L. Drake, A. W. Vogl, and A. W. . Mitchell, “Gray’s Anatomy for Students, Third Edition,” Gray’s Anat. Students, 2015.spa
dc.relation.referencesA. Badugu, C. Kraemer, P. Germann, D. Menshykau, and D. Iber, “Digit patterning during limb development as a result of the BMP-receptor interaction,” Sci. Rep., vol. 2, pp. 1–13, 2012.spa
dc.relation.referencesH. Guo, S. A. Maher, and P. A. Torzilli, “A biphasic multiscale study of the mechanical microenvironment of chondrocytes within articular cartilage under unconfined compression,” J. Biomech., vol. 47, no. 11, pp. 2721–2729, 2014.spa
dc.relation.referencesS. R. Moore, G. M. Saidel, U. Knothe, and M. L. Knothe Tate, “Mechanistic, Mathematical Model to Predict the Dynamics of Tissue Genesis in Bone Defects via Mechanical Feedback and Mediation of Biochemical Factors,” PLoS Comput. Biol., vol. 10, no. 6, 2014.spa
dc.relation.referencesD. R. Carter, G. S. Beaupré, N. J. Giori, and J. A. Helms, “Mechanobiology of Skeletal Regeneration.,” Clin. Orthop. Relat. Res., vol. 355, 1998.spa
dc.relation.referencesJ. M. Guevara, M. A. Moncayo, J. J. Vaca-González, M. L. Gutiérrez, L. A. Barrera, and D. A. Garzón-Alvarado, “Growth plate stress distribution implications during bone development: A simple framework computational approach,” Comput. Methods Programs Biomed., vol. 118, no. 1, pp. 59–68, 2015.spa
dc.relation.referencesD. A. Garzón-Alvarado, J. M. García-Aznar, and M. Doblaré, “A reaction-diffusion model for long bones growth,” Biomech. Model. Mechanobiol., vol. 8, no. 5, pp. 381–395, 2009.spa
dc.relation.referencesT. Miura and P. K. Maini, “Periodic pattern formation in reaction–diffusion systems: An introduction for numerical simulation Introduction: Periodic pattern formation in biological systems and the Turing reaction–diffusion model,” Anat. Sci. Int., vol. 79, pp. 112–123, 2004.spa
dc.relation.referencesA. Madzvamuse, “Time-stepping schemes for moving grid finite elements applied to reaction-diffusion systems on fixed and growing domains,” J. Comput. Phys., vol. 214, no. 1, pp. 239–263, 2006.spa
dc.relation.referencesA. Madzvamuse and P. K. Maini, “Velocity-induced numerical solutions of reaction-diffusion systems on continuously growing domains,” J. Comput. Phys., vol. 225, no. 1, pp. 100–119, 2007.spa
dc.relation.referencesD. A. Garzón-Alvarado, J. M. García-Aznar, and M. Doblaré, “Appearance and location of secondary ossification centres may be explained by a reaction-diffusion mechanism,” Comput. Biol. Med., vol. 39, no. 6, pp. 554–561, 2009.spa
dc.relation.referencesS. A. Newman et al., “Multiscale Models for Vertebrate Limb Development,” Curr. Top. Dev. Biol., vol. 81, no. 07, pp. 311–340, 2008.spa
dc.relation.referencesD. L. Rimoin, R. E. Pyeritz, and B. Korf, Emery and Rimoin’s principles and practice of medical genetics, 6th ed. Academic Press, 2013.spa
dc.relation.referencesG. C. Schoenwolf, S. B. Bleyl, P. R. Brauer, and P. H. Francis-West, Larsen’s Human Embriology, 5th ed. Philadelphia: Elsevier, 2015.spa
dc.relation.referencesB. Morrey, The Elbow and Its Disorders. Filadelfia: Saunders Elsevier, 2008.spa
dc.relation.referencesE. Oñate, Structural analysis with the finite element method linear statics. Barcelona: Springer, 2009.spa
dc.relation.referencesD. V. Hutton, Fundamentals of Finite Element Analysis. New York: Mc Graw Hill, 2004.spa
dc.relation.referencesJ. K. Takeuchi, K. Koshiba-Takeuchi, T. Suzuki, M. Kamimura, K. Ogura, and T. Ogura, “Tbx5 and Tbx4 trigger limb initiation through activation of the Wnt/Fgf signaling cascade,” Development, vol. 130, no. 12, pp. 2729–2739, 2003.spa
dc.relation.referencesC. J. Sheeba and M. P. O. Logan, The Roles of T-Box Genes in Vertebrate Limb Development, 1st ed., vol. 122. Elsevier Inc., 2017.spa
dc.relation.referencesS. Nishimoto, S. M. Wilde, S. Wood, and M. P. O. Logan, “RA Acts in a Coherent Feed-Forward Mechanism with Tbx5 to Control Limb Bud Induction and Initiation,” Cell Rep., vol. 12, no. 5, pp. 879–891, 2015.spa
dc.relation.referencesG. Duester, “Retinoic Acid Synthesis and Signaling during Early Organogenesis,” Cell, vol. 134, no. 6, pp. 921–931, 2008.spa
dc.relation.referencesR. Nusse et al., “A new nomenclature for int-1 and related genes: The Wnt gene family,” Cell. 1991.spa
dc.relation.referencesT. W. Sadler, LANGMAN’S Medical Embryology, Fourteenth. Wolters Kluwer Health, 2019.spa
dc.relation.referencesV. L. Church and P. Francis-West, “Wnt signalling during limb development,” Int. J. Dev. Biol., vol. 46, no. 7, pp. 927–936, 2002.spa
dc.relation.referencesC. Minguillon, S. Nishimoto, S. Wood, E. Vendrell, J. J. Gibson-Brown, and M. P. O. Logan, “Hox genes regulate the onset of Tbx5 expression in the forelimb,” Dev., vol. 139, no. 17, pp. 3180–3188, 2012.spa
dc.relation.referencesV. Duboc and M. P. O. Logan, “Pitx1 is necessary for normal initiation of hindlimb outgrowth through regulation of Tbx4 expression and shapes hindlimb morphologies via targeted growth control,” Development, vol. 138, no. 24, pp. 5301–5309, 2011.spa
dc.relation.referencesV. Duboc and M. P. O. Logan, “Regulation of limb bud initiation and limb-type morphology,” Dev. Dyn., vol. 240, no. 5, pp. 1017–1027, 2011.spa
dc.relation.referencesL. Jin, J. Wu, S. Bellusci, and J. S. Zhang, “Fibroblast growth factor 10 and vertebrate limb development,” Front. Genet., vol. 10, no. JAN, pp. 1–9, 2019.spa
dc.relation.referencesT. P. Hill, M. M. Taketo, W. Birchmeier, and C. Hartmann, “Multiple roles of mesenchymal β-catenin during murine limb patterning,” Development, vol. 133, no. 7, pp. 1219–1229, 2006.spa
dc.relation.referencesJ. R. Barrow et al., “Ectodermal Wnt3β-catenin signaling is required for the establishment and maintenance of the apical ectodermal ridge,” Genes Dev., vol. 17, no. 3, pp. 394–409, 2003.spa
dc.relation.referencesM. A. Cleary, G. J. V. M. Van Osch, P. A. Brama, C. A. Hellingman, and R. Narcisi, “FGF, TGFβ and Wnt crosstalk: Embryonic to in vitro cartilage development from mesenchymal stem cells,” J. Tissue Eng. Regen. Med., 2015.spa
dc.relation.referencesM. Lewandoski, X. Sun, and G. R. Martin, “Fgf8 signalling from the AER is essential for normal limb development,” Nat. Genet., vol. 26, no. 4, pp. 460–463, 2000.spa
dc.relation.referencesS. Probst et al., “SHH propagates distal limb bud development by enhancing CYP26B1-mediated retinoic acid clearance via AER-FGF signalling,” Development, vol. 138, no. 10, pp. 1913–1923, 2011.spa
dc.relation.referencesR. Zeller, J. López-Ríos, and A. Zuniga, “Vertebrate limb bud development: Moving towards integrative analysis of organogenesis,” Nat. Rev. Genet., vol. 10, no. 12, pp. 845–858, 2009.spa
dc.relation.referencesH. Ohuchi et al., “The mesenchymal factor, FGF10, initiates and maintains the outgrowth of the chick limb bud through interaction with FGF8, an apical ectodermal factor,” Development, vol. 124, no. 11, pp. 2235–2244, 1997.spa
dc.relation.referencesS. Purushothaman, A. Elewa, and A. W. Seifert, “Fgf-signaling is compartmentalized within the mesenchyme and controls proliferation during salamander limb development,” Elife, vol. 8, pp. 1–28, 2019.spa
dc.relation.referencesD. ten Berge, S. A. Brugmann, J. A. Helms, and R. Nusse, “Wnt and FGF signals interact to coordinate growth with cell fate specification during limb development,” Development, vol. 135, no. 19, pp. 3247–3257, 2008.spa
dc.relation.referencesT. Narita, S. I. Nishimatsu, N. Wada, and T. Nohno, “A Wnt3a variant participates in chick apical ectodermal ridge formation: Distinct biological activities of Wnt3a splice variants in chick limb development,” Dev. Growth Differ., vol. 49, no. 6, pp. 493–501, 2007.spa
dc.relation.referencesF. Witte, J. Dokas, F. Neuendorf, S. Mundlos, and S. Stricker, “Comprehensive expression analysis of all Wnt genes and their major secreted antagonists during mouse limb development and cartilage differentiation,” Gene Expr. Patterns, vol. 9, no. 4, pp. 215–23, Apr. 2009.spa
dc.relation.referencesF. Chen, T. J. Desai, J. Qian, K. Niederreither, J. Lü, and W. V. Cardoso, “Inhibition of Tgfβ signaling by endogenous retinoic acid is essential for primary lung bud induction,” Development, vol. 134, no. 16, pp. 2969–2979, 2007.spa
dc.relation.referencesX. Guo and X. F. Wang, “Signaling cross-talk between TGF-β/BMP and other pathways,” Cell Res., vol. 19, no. 1, pp. 71–88, 2009.spa
dc.relation.referencesM. Wu, G. Chen, and Y. P. Li, “TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease,” Bone Res., vol. 4, no. March, 2016.spa
dc.relation.referencesM. B. Goldring, K. Tsuchimochi, and K. Ijiri, “The control of chondrogenesis,” J. Cell. Biochem., vol. 97, no. 1, pp. 33–44, 2006.spa
dc.relation.referencesY. H. Wang, S. R. Keenan, J. Lynn, J. C. McEwan, and C. W. Beck, “Gremlin1 induces anterior-posterior limb bifurcations in developing Xenopus limbs but does not enhance limb regeneration,” Mech. Dev., vol. 138, pp. 256–267, 2015.spa
dc.relation.referencesT. Glimm, D. Headon, and M. A. Kiskowski, “Computational and mathematical models of chondrogenesis in vertebrate limbs,” Birth Defects Res. Part C - Embryo Today Rev., vol. 96, no. 2, pp. 176–192, 2012.spa
dc.relation.referencesJ.-M. Morel et al., Reaction- Systems Diffusion Conditional Symmetry, Exact Solutions and their Applications in Biology. 2017.spa
dc.relation.referencesA. M. Turing, “The chemical basis of morphogenesis,” Bull. Math. Biol., vol. 52, no. 1–2, pp. 153–197, 1952.spa
dc.relation.referencesH. G. E. Hentschel, T. Glimm, J. A. Glazier, and S. A. Newman, “Dynamical mechanisms for skeletal pattern formation in the vertebrate limb,” Proc. R. Soc. B Biol. Sci., vol. 271, no. 1549, pp. 1713–1722, 2004.spa
dc.relation.referencesM. Alber et al., “The morphostatic limit for a model of skeletal pattern formation in the vertebrate limb,” Bull. Math. Biol., vol. 70, no. 2, pp. 460–483, 2008.spa
dc.relation.referencesJ. Zhu, Y. T. Zhang, M. S. Alber, and S. A. Newman, “Bare bones pattern formation: A core regulatory network in varying geometries reproduces major features of vertebrate limb development and evolution,” PLoS One, vol. 5, no. 5, 2010.spa
dc.relation.referencesJ. A. Izaguirre et al., “CompuCell, a multi-model framework for simulation of morphogenesis,” Bioinformatics, vol. 20, no. 7, pp. 1129–1137, 2004.spa
dc.relation.referencesR. Chaturvedi et al., “Multi-model simulations of chicken limb morphogenesis,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 2659, pp. 39–49, 2003.spa
dc.relation.referencesT. M. Cickovski et al., “A framework for three-dimensional simulation of morphogenesis,” IEEE/ACM Trans. Comput. Biol. Bioinforma., vol. 2, no. 4, pp. 273–287, 2005.spa
dc.relation.referencesR. Chaturvedi, C. Huang, J. A. Izaguirre, S. A. Newman, J. A. Glazier, and M. Alber, “A hybrid discrete-continuum model for 3-D skeletogenesis of the vertebrate limb,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 3305, pp. 543–552, 2004.spa
dc.relation.referencesY. T. Zhang, M. S. Alber, and S. A. Newman, “Mathematical modeling of vertebrate limb development,” Math. Biosci., vol. 243, no. 1, pp. 1–17, 2013.spa
dc.relation.referencesJ. Raspopovic, L. Marcon, L. Russo, and J. Sharpe, “Digit patterning is controlled by a Bmp-Sox9-Wnt Turing network modulated by morphogen gradients,” Science (80-. )., vol. 345, no. 6196, pp. 566–570, 2014.spa
dc.relation.referencesT. Glimm, R. Bhat, and S. A. Newman, “Multiscale modeling of vertebrate limb development,” Wiley Interdiscip. Rev. Syst. Biol. Med., vol. 12, no. 4, pp. 1–22, 2020.spa
dc.relation.referencesP. H. Francis-West et al., “Mechanisms of GDF-5 action during skeletal development.,” Development, vol. 126, no. 6, pp. 1305–1315, 1999.spa
dc.relation.referencesC. Mahony and N. Vargesson, “Molecular analysis of regulative events in the developing chick limb,” J. Anat., vol. 223, no. 1, pp. 1–13, 2013.spa
dc.relation.referencesG. Lizarraga, A. Lichtler, W. B. Upholt, and R. A. Kosher, “Studies on the role of Cux1 in regulation of the onset of joint formation in the developing limb.,” Dev. Biol., vol. 243, no. 1, pp. 44–54, Mar. 2002.spa
dc.relation.referencesC. Liu, E. Nakamura, V. Knezevic, S. Hunter, K. Thompson, and S. Mackem, “A role for the mesenchymal T-box gene Brachyury in AER formation during limb development,” Development, vol. 130, no. 7, pp. 1327–1337, 2003.spa
dc.relation.referencesJ. D. Murray, Mathematical biology. II: Spatial models and biomedical applications, 3rd ed. New York: Springer-Verlag, 2003.spa
dc.relation.referencesD. Summerbell, “Reduction of the rate of outgrowth, cell density, and cell division following removal of the apical ectodermal ridge of the chick limb bud,” J. Embryol. Exp. Morphol., vol. Vol. 40, pp. 1–21, 1977.spa
dc.relation.referencesL. Wolpert, “The progress zone model for specifying positional information,” Int. J. Dev. Biol., vol. 46, no. 7, pp. 869–870, 2002.spa
dc.relation.referencesA. Aulehla and O. Pourquié, “Oscillating signaling pathways during embryonic development,” Curr. Opin. Cell Biol., vol. 20, no. 6, pp. 632–637, 2008.spa
dc.relation.referencesA. Goldbeter and O. Pourquié, “Modeling the segmentation clock as a network of coupled oscillations in the Notch, Wnt and FGF signaling pathways,” J. Theor. Biol., vol. 252, no. 3, pp. 574–585, 2008.spa
dc.relation.referencesA. Goldbeter, D. Gonze, and O. Pourquié, “Sharp developmental thresholds defined through bistability by antagonistic gradients of retinoic acid and FGF signaling,” Dev. Dyn., vol. 236, no. 6, pp. 1495–1508, 2007.spa
dc.relation.referencesB. Boehm et al., “The role of spatially controlled cell proliferation in limb bud morphogenesis,” PLoS Biol., vol. 8, no. 7, 2010.spa
dc.relation.referencesJ. Zhu, Y. T. Zhang, S. A. Newman, and M. S. Alber, “A finite element model based on discontinuous galerkin methods on moving grids for vertebrate limb pattern formation,” Math. Model. Nat. Phenom., vol. 4, no. 4, pp. 131–148, 2009.spa
dc.relation.referencesK. M. Márquez-Flórez, J. R. Monaghan, S. J. Shefelbine, A. Ramirez-Martínez, and D. A. Garzón-Alvarado, “A computational model for the joint onset and development,” J. Theor. Biol., vol. 454, pp. 345–356, 2018.spa
dc.relation.referencesP. H. Francis-West, J. Parish, K. Lee, and C. W. Archer, “BMP/GDF-signalling interactions during synovial joint development,” Cell Tissue Res., vol. 296, no. 1, pp. 111–119, 1999.spa
dc.relation.referencesM. Pacifici, E. Koyama, and M. Iwamoto, “Mechanisms of synovial joint and articular cartilage formation: Recent advances, but many lingering mysteries,” Birth Defects Res., vol. 75, no. 3, pp. 237–248, 2005.spa
dc.relation.referencesN. C. Nowlan, C. Bourdon, G. Dumas, S. Tajbakhsh, P. J. Prendergast, and P. Murphy, “Developing bones are differentially affected by compromised skeletal muscle formation,” Bone, vol. 46, no. 5, pp. 1275–1285, 2010.spa
dc.relation.referencesM. Giorgi, A. Carriero, S. J. Shefelbine, and N. C. Nowlan, “Mechanobiological simulations of prenatal joint morphogenesis,” J. Biomech., vol. 47, no. 5, pp. 989–995, Mar. 2014.spa
dc.relation.referencesN. C. Nowlan and J. Sharpe, “Joint shape morphogenesis precedes cavitation of the developing hip joint,” J. Anat., vol. 224, no. 4, pp. 482–489, 2014.spa
dc.relation.referencesR. Bellairs and M. Osmond, The Atlas of Chick Development, Third Edit. Oxford: Elsevier Ltd, 2014.spa
dc.relation.referencesV. Bialik, G. M. Bialik, S. Blazer, P. Sujov, F. Wiener, and M. Berant, “Developmental dysplasia of the hip: A new approach to incidence,” Pediatrics, vol. 103, no. 1, pp. 93–99, 1999.spa
dc.relation.referencesA. Fassier, P. Wicart, J. Dubousset, and R. Seringe, “Arthrogryposis multiplex congenita. Long-term follow-up from birth until skeletal maturity,” J. Child. Orthop., vol. 3, no. 5, pp. 383–390, 2009.spa
dc.relation.referencesM. Pacifici, M. Liu, and E. Koyama, “Joint formation: new findings shed more light on this critical process in skeletogenesis,” Curr. Opin. Orthop., vol. 13, no. 5, pp. 339–344, Oct. 2002.spa
dc.relation.referencesD. J. Gray and E. Gardner, “Prenatal development of the human knee and superior tibiofibular joints.,” Am. J. Anat., vol. 86, no. 2, pp. 235–287, 1950.spa
dc.relation.referencesE. Gardner and R. O’Rahilly, “The early development of the knee joint in staged embryos,” J. Anat., vol. 11, no. 2, pp. 289–299, 1968.spa
dc.relation.referencesD. R. Carter, “Mechanical loading history and skeletal biology,” J. Biomech., vol. 20, no. 11–12, pp. 1095–1109, 1987.spa
dc.relation.referencesD. R. Carter and M. Wong, “The role of mechanical loading histories in the development of diarthrodial joints,” J. Orthop. Res., vol. 6, no. 6, pp. 804–816, 1988.spa
dc.relation.referencesD. R. Carter, P. R. Blenman, and G. S. Beaupré, “Correlations between mechanical stress history and tissue differentiation in initial fracture healing,” J. Orthop. Res., vol. 6, no. 5, pp. 736–748, 1988.spa
dc.relation.referencesE. L. Radin, D. B. Burr, B. Caterson, D. Fyhrie, T. D. Brown, and R. D. Boyd, “Mechanical determinants of osteoarthrosis,” Semin. Arthritis Rheum., vol. 21, no. 3, Supplement 2, pp. 12–21, 1991.spa
dc.relation.referencesK. M. Márquez-Flórez, O. Silva, C. A. Narváez-Tovar, and D. A. Garzón-Alvarado, “A Comparison of the Contact Force Distributions on the Acetabular Surface Due to Orthopedic Treatments for Developmental Hip Dysplasia,” J. Biomech. Eng., vol. 138, no. 7, 2016.spa
dc.relation.referencesP. N. P. Singh et al., “Precise spatial restriction of BMP signaling in developing joints is perturbed upon loss of embryo movement,” Dev., vol. 145, no. 5, pp. 1–10, 2018.spa
dc.relation.referencesA. C. Osborne, K. J. Lamb, J. C. Lewthwaite, G. P. Dowthwaite, and A. A. Pitsillides, “Short-term rigid and flaccid paralyses diminish growth of embryonic chick limbs and abrogate joint cavity formation but differentially preserve pre-cavitated joints,” J. Musculoskelet. Neuronal Interact., vol. 2, no. 5, pp. 448–456, 2002.spa
dc.relation.referencesK. a. Roddy, P. J. Prendergast, and P. Murphy, “Mechanical influences on morphogenesis of the knee joint revealed through morphological, molecular and computational analysis of immobilised embryos,” PLoS One, vol. 6, no. 2, 2011.spa
dc.relation.referencesB. Mikic, M. Wong, M. Chiquet, and E. B. Hunziker, “Mechanical modulation of tenascin-C and collagen-XII expression during avian synovial joint formation.,” J. Orthop. Res., vol. 18, no. 3, pp. 406–415, May 2000.spa
dc.relation.referencesJ. Kahn et al., “Muscle contraction is necessary to maintain joint progenitor cell fate,” Dev. Cell, vol. 16, no. 5, pp. 734–43, May 2009.spa
dc.relation.referencesN. C. Nowlan, J. Sharpe, K. a. Roddy, P. J. Prendergast, and P. Murphy, “Mechanobiology of embryonic skeletal development: Insights from animal models,” Birth Defects Res., vol. 90, no. 3, pp. 203–13, Sep. 2010.spa
dc.relation.referencesP. H. Francis-West, J. Parish, K. Lee, and C. W. Archer, “BMP/GDF-signalling interactions during synovial joint development,” Cell Tissue Res., vol. 296, no. 1, pp. 111–119, 1999.spa
dc.relation.referencesA. H. Reddi, “Interplay between bone morphogenetic proteins and cognate binding proteins in bone and cartilage development: Noggin, chordin and DAN,” Arthritis Res., vol. 3, no. 1, pp. 1–5, 2001.spa
dc.relation.referencesJ. H. Heegaard, G. S. Beaupre, and D. R. Carter, “Mechanically modulated cartilage growth may regulate joint surface morphogenesis,” J. Orthop. Res., vol. 17, no. 4, pp. 509–517, 1999.spa
dc.relation.referencesA. F. Carrera-Pinzón, K. Márquez-Flórez, R. H. Kraft, S. Ramtani, and D. A. Garzón-Alvarado, “Computational model of a synovial joint morphogenesis,” Biomech. Model. Mechanobiol., no. 0123456789, 2019.spa
dc.relation.referencesD. R. Carter, T. E. Orr, D. P. Fyhrie, and D. J. Schurman, “Influences of mechanical stress on prenatal and postnatal skeletal development,” Clin. Orthop. Relat. Res., vol. No. 219, pp. 237–250, 1987.spa
dc.relation.referencesN. Burton-Wurster, M. Vernier-Singer, T. Farquhar, and G. Lust, “Effect of compressive loading and unloading on the synthesis of total protein, proteoglycan, and fibronectin by canine cartilage explants,” J. Orthop. Res., vol. 11, no. 5, pp. 717–29, Sep. 1993.spa
dc.relation.referencesF. Guilak, B. Meyer, A. Ratcliffe, and V. Mow, “The effects of matrix compression on proteoglycan metabolism in articular cartilage explants,” Osteoarthr. Cartil., vol. 2, no. 2, pp. 91–101, Jun. 1994.spa
dc.relation.referencesT. H. V Korver, R. J. Van De Stadt, E. Kiljan, G. P. J. Van Kampen, and J. K. Van Der Korst, “Effects of loading on the synthesis of proteoglycans in different layers of anatomically intact articular cartilage in vitro,” J. Rheumatol., vol. 19, no. 6, pp. 905–912, 1992.spa
dc.relation.referencesJ. J. Parkkinen, M. J. Lammi, H. J. Helminen, and M. Tammi, “Local stimulation of proteoglycan synthesis in articular cartilage explants by dynamic compression in vitro,” J. Orthop. Res., vol. 10, no. 5, pp. 610–20, Sep. 1992.spa
dc.relation.referencesY. J. Kim, R. L. Sah, A. J. Grodzinsky, A. H. Plaas, and J. D. Sandy, “Mechanical regulation of cartilage biosynthetic behavior: physical stimuli.,” Arch. Biochem. Biophys., vol. 311, no. 1, pp. 1–12, May 1994.spa
dc.relation.referencesY. Q. Yang, Y. Y. Tan, R. Wong, A. Wenden, L. K. Zhang, and A. B. M. Rabie, “The role of vascular endothelial growth factor in ossification,” Int. J. Oral Sci., vol. 4, no. 2, pp. 64–68, 2012.spa
dc.relation.referencesS. E. Usmani, M. A. Pest, G. Kim, S. N. Ohora, L. Qin, and F. Beier, “Transforming growth factor alpha controls the transition from hypertrophic cartilage to bone during endochondral bone growth,” Bone, vol. 51, no. 1, pp. 131–141, 2012.spa
dc.relation.referencesB. St-Jacques, M. Hammerschmidt, and A. P. McMahon, “Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation,” Genes Dev., vol. 13, no. 16, pp. 2072–2086, 1999.spa
dc.relation.referencesJ. M. Kindblom, O. Nilsson, T. Hurme, C. Ohlsson, and L. Sävendahl, “Expression and localization of Indian hedgehog (Ihh) and parathyroid hormone related protein (PTHrP) in the human growth plate during pubertal development,” J. Endocrinol., vol. 174, no. 2, pp. 1–6, 2002.spa
dc.relation.referencesE. Zelzer and B. R. Olsen, “The genetic basis for skeletal diseases,” Nature, vol. 423, no. 6937, pp. 343–348, 2003.spa
dc.relation.referencesE. Koyama et al., “Synovial joint formation during mouse limb skeletogenesis: Roles of Indian hedgehog signaling,” Ann. N. Y. Acad. Sci., vol. 1116, pp. 100–112, 2007.spa
dc.relation.referencesD. Mitrovic, “Development of the diarthrodial joints in the rat embryo,” Am. J. Anat., vol. 151, no. 4, pp. 475–485, 1978.spa
dc.relation.referencesA. M. Nalin, T. K. Greenlee, and L. J. Sandell, “Collagen gene expression during development of avian synovial joints: Transient expression of types II and XI collagen genes in the joint capsule,” Dev. Dyn., vol. 203, no. 3, pp. 352–362, 1995.spa
dc.relation.referencesS. Kimura and K. Shiota, “Sequential changes of programmed cell death in developing fetal mouse limbs and its possible roles in limb morphogenesis,” J. Morphol., vol. 229, no. 3, pp. 337–346, 1996.spa
dc.relation.referencesX. Guo, K. K. Mak, M. M. Taketo, and Y. Yang, “The Wnt/β-catenin pathway interacts differentially with PTHrP signaling to control chondrocyte hypertrophy and final maturation,” PLoS One, vol. 4, no. 6, 2009.spa
dc.relation.referencesD. R. Carter, G. S. Beaupré, M. Wong, R. L. Smith, T. P. Andriacchi, and D. J. Schurman, “The mechanobiology of articular cartilage development and degeneration,” Clin. Orthop. Relat. Res., no. 427 SUPPL., pp. 69–77, 2004.spa
dc.relation.referencesB. D. Özpolat et al., “Regeneration of the elbow joint in the developing chick embryo recapitulates development,” Dev. Biol., vol. 372, no. 2, pp. 229–238, 2012.spa
dc.relation.referencesS. Gross, Y. Krause, M. Wuelling, and A. Vortkamp, “Hoxa11 and hoxd11 regulate chondrocyte differentiation upstream of Runx2 and Shox2 in mice,” PLoS One, vol. 7, no. 8, pp. 1–10, 2012.spa
dc.relation.referencesS. Timoshenko and J. N. Goodier, Theory of Elasticity, 2nd ed. New York: Mc Graw Hill, 1951.spa
dc.rightsDerechos reservados al autor, 2021spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.decsArticulación del Codo
dc.subject.decsElbow Joint
dc.subject.decsMorfogénesis
dc.subject.decsMorphogenesis
dc.subject.lembModelado biológico
dc.subject.lembBiological models
dc.subject.proposalElboweng
dc.subject.proposalFinite element methodeng
dc.subject.proposalLimb developmenteng
dc.subject.proposalJoint morphogenesiseng
dc.subject.proposalReaction-diffusioneng
dc.subject.proposalCodospa
dc.subject.proposalDesarrollo de extremidadesspa
dc.subject.proposalMétodo de los elementos finitosspa
dc.subject.proposalMorfogénesis articularspa
dc.subject.proposalReacción-difusiónspa
dc.titleBiomechanical computational model of the elbow developmenteng
dc.title.translatedModelo computacional biomecánico de la formación del codospa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audienceGeneralspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1016051074.2021.pdf
Tamaño:
4.81 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Biomédica

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: