Beneficios técnicos y económicos de los sistemas de almacenamiento de energía basados en baterías para el suministro de servicios complementarios en el sistema eléctrico colombiano

dc.contributor.advisorCortés Guerrero, Camilo Andrés
dc.contributor.advisorRomero Quete, David Fernando
dc.contributor.authorPeñaranda Bayona, Andrés Felipe
dc.contributor.researchgroupGrupo de Investigación Emc-Unspa
dc.date.accessioned2022-08-10T15:32:29Z
dc.date.available2022-08-10T15:32:29Z
dc.date.issued2022
dc.description.abstractEn este documento se realiza un estado del arte de los sistemas de almacenamiento de energía (SAE), en donde se presentan los diferentes tipos, características y consideraciones a tener en cuenta de este tipo de elementos, junto al estudio de las diferentes aplicaciones y beneficios que pueden brindar los SAE. Se propone y evalúa la formulación para arbitraje de energía en el sistema eléctrico colombiano por medio de sistemas de almacenamiento de energía basados en baterías (SAEB), en donde se incluyen elementos como la degradación de las baterías y el costo generado por dicha degradación. Además, dados los beneficios que tienen los SAEB para suministrar múltiples servicios, se propone un modelo de co-optimización que permite evaluar la participación simultanea de los sistemas de almacenamiento de energía (SAEB) en aplicaciones de arbitraje, reserva de energía y regulación de frecuencia. Los modelos son evaluados haciendo uso de datos históricos del mercado de energía mayorista colombiano. Dos escenarios, relacionados con la penetración de renovables, son analizados. Además, para cada modelo se efectúa una evaluación financiera, en donde se analiza uno a uno los casos de estudio, tanto desde el punto de vista del sistema como desde el punto de vista del inversionista. Los resultados muestran que el uso exclusivo de SAEB para prestar arbitraje no es viable económicamente en Colombia, mientras que prestar de forma simultanea los servicios de regulación de frecuencia y arbitraje resultaría rentable, tanto para el sistema como para un agente inversionista. (Texto tomado de la fuente)spa
dc.description.abstractIn this document, a state of the art of energy storage system (ESS) is performed, where the different types, characteristics, and considerations of this type of elements are presented, together with a study of the different applications and benefits that ESS can provide. The formulation for energy arbitrage in the Colombian electrical system through battery-based energy storage systems (BESS) is proposed and evaluated, where elements such as battery degradation and the cost generated by such degradation are included. In addition, given the benefits that BESS have when supplying multiple services, a co-optimization model is proposed that allows evaluating the simultaneous participation of BESS in arbitrage, energy reserve, and frequency regulation applications. The models are evaluated using historical data from the Colombian wholesale energy market. Two scenarios related to the penetration of renewables are analyzed. In addition, a financial evaluation is carried out for each case study, both from the point of view of the system and from the investor's point of view. The results show that the exclusive use of BESS to provide energy arbitrage is not economically viable in Colombia, while simultaneously providing frequency regulation and energy arbitrage services would be profitable, both for the system and for an investor agent. (Text taken from the source)eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Eléctricaspa
dc.description.researchareaSistemas de potenciaspa
dc.description.researchareaSistemas de almacenamiento de energíaspa
dc.format.extentxviii, 114 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81835
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería Eléctrica y Electrónicaspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Eléctricaspa
dc.relation.referencesChapter 2 - Technologies of energy storage systems. In Wu, F.-B., Yang, B., Ye, J.-L. B. T. G.-s. E. S. S., and Applications, editors, Grid-scale Energy Storage Systems and Applications, pages 17–56. Academic Press.spa
dc.relation.referencesChapter 6 - Application of energy storage technology in gridconnected new energy power generation. pages 203–241. Academic Press.spa
dc.relation.referencesAcuity, E. (2019). 2018 U . S . Integrated Resource Plans ( IRP ) Report.spa
dc.relation.referencesAdewuyi, O. B., Shigenobu, R., Ooya, K., Senjyu, T., and Howlader, A. M. (2019). Static voltage stability improvement with battery energy storage considering optimal control of active and reactive power injection. Electric Power Systems Research, 172(October 2018):303–312.spa
dc.relation.referencesAgency, I. E. (2021). Renewables.spa
dc.relation.referencesAkram, U., Nadarajah, M., Shah, R., and Milano, F. (2020). A review on rapid responsive energy storage technologies for frequency regulation in modern power systems. Renewable and Sustainable Energy Reviews, 120(December 2019):109626.spa
dc.relation.referencesAl kez, D., Foley, A., McIlwaine, N., Morrow, D. J., Hayes, B., Zehir, M. A., Mehigan, L., Papari, B., Edrington, C. S., and Baran, M. (2020). A critical evaluation of grid stability and codes, energy storage and smart loads in power systems with wind generation. Energy, page 117671.spa
dc.relation.referencesAneke, M. and Wang, M. (2016). Energy storage technologies and real life applications – A state of the art review. Applied Energy, 179:350–377.spa
dc.relation.referencesArgyrou, M. C., Christodoulides, P., and Kalogirou, S. A. (2018). Energy storage for electricity generation and related processes: Technologies appraisal and grid scale applications. Renewable and Sustainable Energy Reviews, 94(June):804–821.spa
dc.relation.referencesBadesa, L., Teng, F., and Strbac, G. (2019). Simultaneous Scheduling of Multiple Frequency Services in Stochastic Unit Commitment. IEEE Transactions on Power Systems, 34(5):3858–3868.spa
dc.relation.referencesBeaudin, M., Zareipour, H., Schellenberglabe, A., and Rosehart, W. (2010). Energy storage for mitigating the variability of renewable electricity sources: An updated review. Energy for Sustainable Development, 14(4):302–314.spa
dc.relation.referencesBelonogova, N., Tikka, V., Honkapuro, S., Lassila, J., Haakana, J., Lana, A., Romanenko, A., Haapaniemi, J., Narayanan, A., Kaipia, T., and Others (2018). Multi-objective role of battery energy storages in an energy system. LUT Scientific and Expertise Publications/Tutkimusraportit–Research Reports, (0494):7–8.spa
dc.relation.referencesBera, A., Almasabi, S., Tian, Y., Byrne, R. H., Chalamala, B., Nguyen, T. A., and Mitra, J. (2020). Maximising the investment returns of a gridconnected battery considering degradation cost. IET Generation, Transmission and Distribution, 14(21):4711–4718.spa
dc.relation.referencesBloombergNEF (2019). Energy Storage Investments Boom As Battery Costs Halve the Next Decade.spa
dc.relation.referencesBloombergNEF and Goldie-Scot, L. (2019). Behind the Scenes Take on Lithium-ion Battery Prices.spa
dc.relation.referencesBrivio, C., Mandelli, S., and Merlo, M. (2016). Battery energy storage system for primary control reserve and energy arbitrage. Sustainable Energy, Grids and Networks, 6:152–165.spa
dc.relation.referencesCheng, B., Asamov, T., and Powell, W. B. (2018). Low-rank value function approximation for co-optimization of battery storage. IEEE Transactions on Smart Grid, 9(6):6590–6598.spa
dc.relation.referencesCREG (2019). Resoluciónn 098 Por la cual se definen los mecanismos para incorporar sistemas de almacenamiento con el propósito de mitigar inconvenientes presentados por la falta o insuficiencia de redes de transporte de energía en el Sistema Interconectado Nacional.spa
dc.relation.referencesCrotogino, F., Mohmeyer, K.-U., and Scharf, R. (2001). Huntorf CAES: More than 20 Years of Successful Operation. Solution Mining Research Institute (SMRI) Spring Meeting, (April):351–357.spa
dc.relation.referencesDamato, G., Minear, E., Kaun, B., MacLaren-Wray, V., and Hoffman, S. (2016). Energy Storage Cost Summary for Utility Planning : Executive Summary. Technical Report November.spa
dc.relation.referencesDehghani-Sanij, A. R., Tharumalingam, E., Dusseault, M. B., and Fraser, R. (2019). Study of energy storage systems and environmental challenges of batteries. Renewable and Sustainable Energy Reviews, 104(January):192–208.spa
dc.relation.referencesDíaz-González, F., Sumper, A., Gomis-Bellmunt, O., and Villafáfila-Robles, R. (2012). A review of energy storage technologies for wind power applications. Renewable and Sustainable Energy Reviews, 16(4):2154–2171.spa
dc.relation.referencesDOE (2021). DOE Global Energy Storage Database.spa
dc.relation.referencesEhsani, A., Ranjbar, A. M., and Fotuhi-Firuzabad, M. (2009). A proposed model for co-optimization of energy and reserve in competitive electricity markets. Applied Mathematical Modelling, 33(1):92–109.spa
dc.relation.referencesEllison, J. F., Rashkin, L. J., Serio, J., and Byrne, R. H. (2018). The benefits of grid-scale storage on Oahu. Journal of Energy Storage, 15:336–344.spa
dc.relation.referencesEnglberger, S., Jossen, A., and Hesse, H. (2020). Unlocking the Potential of Battery Storage with the Dynamic Stacking of Multiple Applications. Cell Reports Physical Science, 1(11):100238.spa
dc.relation.referencesEyer, J. (2011). Electric utility transmission and distribution upgrade deferral benefits from modular electricity storage. Modular Electricity Storage: Benefits and Costs, (June):1–77.spa
dc.relation.referencesEyer, J., Corey, G. P., and SANDIA (2010a). Energy storage for the electricity grid: Benefits and market potential assessment guide. Technical Report SAND20100815.spa
dc.relation.referencesFernández-Muñoz, D., Pérez-Díaz, J. I., Guisández, I., Chazarra, M., and Fernández-Espina, A. (2020). Fast frequency control ancillary services: An international review. Renewable and Sustainable Energy Reviews, 120(November 2018).spa
dc.relation.referencesFluence Energy and Siemens (2019). Energy Storage MythBusters.spa
dc.relation.referencesFu, R., Remo, T., Margolis, R., Fu, R., Remo, T., and Margolis, R. (2018). 2018 U . S . Utility-Scale Photovoltaics- Plus-Energy Storage System Costs Benchmark. National Renewable Energy Laboratory, (November):32.spa
dc.relation.referencesGRISEC- UPME (2018). Informe de vigilancia tecnológica en dispositivos de almacenamiento de energía producida por fuentes de energía renovables no convencionales. page 35.spa
dc.relation.referencesHassan, M. W., Rasheed, M. B., Javaid, N., Nazar, W., and Akmal, M. (2018). Co-optimization of energy and reserve capacity considering renewable energy unit with uncertainty. Energies, 11(10).spa
dc.relation.referencesHidalgo-Leon, R., Siguenza, D., Sanchez, C., Leon, J., JacomeRuiz, P., Wu, J., and Ortiz, D. (2018). A survey of battery energy storage system (BESS), applications and environmental impacts in power systems. 2017 IEEE 2nd Ecuador Technical Chapters Meeting, ETCM 2017, 2017-Janua:1–6.spa
dc.relation.referencesIRENA (2015). Battery Storage Report. (January).spa
dc.relation.referencesIRENA (2017). Electricity storage and renewables: Costs and markets to 2030. Number October.spa
dc.relation.referencesKadri, A. and Mohammadi, F. (2020). Energy storage optimization for global adjustment charge reduction in Ontario. Journal of Energy Storage, 30(January):101491.spa
dc.relation.referencesKim, D. K., Yoneoka, S., Banatwala, A. Z., and Kim, Y.-t. (2018). Handbook on Battery Energy Storage System. Number December.spa
dc.relation.referencesKuravi, S., Trahan, J., Goswami, D. Y., Rahman, M. M., and Stefanakos, E. K. (2013). Thermal energy storage technologies and systems for concentrating solar power plants.spa
dc.relation.referencesKyriakopoulos, G. L. and Arabatzis, G. (2016). Electrical energy storage systems in electricity generation: Energy policies, innovative technologies, and regulatory regimes. Renewable and Sustainable Energy Reviews, 56:1044–1067.spa
dc.relation.referencesLi, L., Liu, P., Li, Z., and Wang, X. (2018). A multi-objective optimization approach for selection of energy storage systems. Computers and Chemical Engineering, 115:213–225.spa
dc.relation.referencesLuo, F., Meng, K., Dong, Z. Y., Zheng, Y., Chen, Y., and Wong, K. P. (2015). Coordinated operational planning for wind farm with battery energy storage system. IEEE Transactions on Sustainable Energy, 6(1):253–262.spa
dc.relation.referencesLuo, J., Teng, F., and Bu, S. (2020). Stability-constrained Power System Scheduling: A Review. IEEE Access, 8.spa
dc.relation.referencesMa, K., Wang, D., Lian, J., Wu, D., and Katipamula, S. (2020). Marketbased co-optimization of energy and ancillary services with distributed energy resource flexibilities. In 2020 IEEE/PES Transmission and Distribution Conference and Exposition (T D), pages 1–5.spa
dc.relation.referencesMaeyaert, L., Vandevelde, L., and D¨oring, T. (2020). Battery Storage for Ancillary Services in Smart Distribution Grids. Journal of Energy Storage, 30(May):101524.spa
dc.relation.referencesMallon, K. R., Assadian, F., and Fu, B. (2017). Analysis of on-board photovoltaics for a battery electric bus and their impact on battery lifespan. Energies, 10(7).spa
dc.relation.referencesMarchgraber, J. and Gawlik, W. (2021). Dynamic Prioritization of Functions during Real-Time Multi-Use Operation of Battery Energy Storage Systems. Energies, 14(3):655.spa
dc.relation.referencesMcKinsey & Company (2021). Global energy perspective 2021. McKinsey & Company, (January):9.spa
dc.relation.referencesMekhilef, S., Saidur, R., and Safari, A. (2012). Comparative study of different fuel cell technologies. Renewable and Sustainable Energy Reviews, 16(1):981–989.spa
dc.relation.referencesMelaina, M. and Eichman, J. (2015). Hydrogen Energy Storage: Grid and Transportation Services (Technical Report). Related Information: NREL (National Renewable Energy Laboratory), (February):Medium: ED; Size: 66 pp.spa
dc.relation.referencesMohseni-Bonab, S. M., Kamwa, I., Moeini, A., and Rabiee, A. (2020). Voltage Security Constrained Stochastic Programming Model for Day-Ahead BESS Schedule in Co-Optimization of T&D Systems. IEEE Transactions on Sustainable Energy, 11(1):391–404.spa
dc.relation.referencesNadeem, F., Hussain, S. M. S., Tiwari, P. K., Goswami, A. K., and Ustun, T. S. (2019). Comparative Review of Energy Storage Systems, Their Roles, and Impacts on Future Power Systems. IEEE Access, 7:4555–4585.spa
dc.relation.referencesOrtega, A. and Milano, F. (2019). Voltage Stability of ConverterInterfaced Energy Storage Systems. IFAC-PapersOnLine, 52(4):222–227.spa
dc.relation.referencesPereira, M., Granville, S., Fampa, M., Dix, R., and Barroso, L. (2005). Strategic bidding under uncertainty: a binary expansion approach. IEEE Transactions on Power Systems, 20(1):180–188.spa
dc.relation.referencesPires, V. F., Pombo, A. V., and Louren¸co, J. M. (2019). Multi-objective optimization with post-pareto optimality analysis for the integration of storage systems with reactive-power compensation in distribution networks. Journal of Energy Storage, 24(January):100769.spa
dc.relation.referencesPSR and Di - Avante (2019). Análisis de los servicios complementarios para el sistema interconectado nacional.spa
dc.relation.referencesRampersadh, N. and Davidson, I. E. (2017). Grid energy storage devices. Proceedings - 2017 IEEE PES-IAS PowerAfrica Conference: Harnessing Energy, Information and Communications Technology (ICT) for A ffordable Electrification of Africa, PowerAfrica 2017, pages 121–125.spa
dc.relation.referencesRampokanyo, M., Kamera, P., Aronovich, I., Bos, J., Modi, N., and Quint, R. (2021). Impact of High Penetration of Inverter-based Generation on System Inertia of networks. Impact of High Penetration of Inverter-based Generation on System Inertia of networks, 1(December):14–15.spa
dc.relation.referencesRossi, A., Stabile, M., Puglisi, C., Falabretti, D., and Merlo, M. (2019). Evaluation of the energy storage systems impact on the Italian ancillary market. Sustainable Energy, Grids and Networks, 17:100178.spa
dc.relation.referencesSchneider, S. F., Nov´ak, P., and Kober, T. (2021). Rechargeable Batteries for Simultaneous Demand Peak Shaving and Price Arbitrage Business. IEEE Transactions on Sustainable Energy, 12(1):148–157.spa
dc.relation.referencesShi, Y., Xu, B., Wang, D., and Zhang, B. (2017). Using battery storage for peak shaving and frequency regulation: Joint optimization for superlinear gains. arXiv, 33(3):2882–2894.spa
dc.relation.referencesSorés, P., Divényi, D., Polgári, B., Raisz, D., and Sleisz, A. (2015). Day-ahead market structures for co-optimized energy and reserve allocation. International Conference on the European Energy Market, EEM, 2015-Augus.spa
dc.relation.referencesSun, L. and Fahim, F. (2019). Reliability enhancement of distribution networks using ESSs ancillary services: A probabilistic MILP methodology. Electric Power Systems Research, 175(June):105889.spa
dc.relation.referencesTan, Y. T. and Kirschen, D. S. (2006). Co-optimization of energy and reserve in electricity markets with demand-side participation in reserve services. 2006 IEEE PES Power Systems Conference and Exposition, PSCE 2006 - Proceedings, (December 2006):1182–1189.spa
dc.relation.referencesWang, Y., Zhou, Z., Botterud, A., Zhang, K., and Ding, Q. (2016). Stochastic coordinated operation of wind and battery energy storage system considering battery degradation. Journal of Modern Power Systems and Clean Energy, 4(4):581–592.spa
dc.relation.referencesWen, Y., Li, W., Huang, G., and Liu, X. (2016). Frequency Dynamics Constrained Unit Commitment with Battery Energy Storage. IEEE Transactions on Power Systems, 31(6):5115–5125.spa
dc.relation.referencesWu, F.-B., Yang, B., and Ye, J.-L. (2019). Chapter 5 - Integrated ESS application and economic analysis. In Grid-scale Energy Storage Systems and Applications, pages 153–201. Elsevier.spa
dc.relation.referencesXM (2021). XM Compañía de Expertos de Mercados.spa
dc.relation.referencesXu, Y., Zhao, T., Zhao, S., Zhang, J., and Wang, Y. (2018). Multi-objective chance-constrained optimal day-ahead scheduling considering BESS degradation. CSEE Journal of Power and Energy Systems, 4(3):316–325.spa
dc.relation.referencesYamada, S., Tanino, T., and Inuiguchi, M. (2000). An Inner Approximation Method for Optimization over the Weakly Efficient Set. Journal of Global Optimization, 16(3):197–217.spa
dc.relation.referencesYao, L., Yang, B., Cui, H., Zhuang, J., Ye, J., and Xue, J. (2016). Challenges and progresses of energy storage technology and its application in power systems. Journal of Modern Power Systems and Clean Energy, 4(4):519–528.spa
dc.relation.referencesZhang, L., Zhang, Q., Fan, H., Wu, H., and Xu, C. (2021). Big-m based milp method for scuc considering allowable wind power output interval and its adjustable conservativeness. Global Energy Interconnection, 4(2):193–203.spa
dc.relation.referencesZhuo, W. and Savkin, A. V. (2019). Profit maximizing control of a microgrid with renewable generation and BESS based on a battery cycle life model and energy price forecasting. Energies, 12(15).spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.proposalSAEBspa
dc.subject.proposalArbitraje de energíaspa
dc.subject.proposalReservas de energíaspa
dc.subject.proposalRegulación de frecuenciaspa
dc.subject.proposalCo-optimizaciónspa
dc.subject.proposalMILPeng
dc.subject.proposalMercado Eléctrico Colombianospa
dc.subject.proposalBESSeng
dc.subject.proposalEnergy arbitrageeng
dc.subject.proposalEnergy reserveeng
dc.subject.proposalFrequency regulationeng
dc.subject.proposalCo-optimizationeng
dc.subject.proposalColombian Energy Marketeng
dc.titleBeneficios técnicos y económicos de los sistemas de almacenamiento de energía basados en baterías para el suministro de servicios complementarios en el sistema eléctrico colombianospa
dc.title.translatedTechnical and economic benefits of battery-based energy storage systems for the supply of ancillary services in the Colombian electricity systemeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameFundación CEIBAspa
oaire.fundernameGrupo Energía Bogotáspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1010225903.2022.pdf
Tamaño:
5.89 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Eléctrica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: