En 20 día(s), 13 hora(s) y 25 minuto(s): El Repositorio Institucional UNAL informa a la comunidad universitaria que, con motivo del periodo de vacaciones colectivas, el servicio de publicación estará suspendido: Periodo de cierre: Del 20 de diciembre al 18 de enero de 2026. Sobre los depósitos: Durante este tiempo, los usuarios podrán continuar realizando el depósito respectivo de sus trabajos en la plataforma. Reanudación: Una vez reiniciadas las actividades administrativas, los documentos serán revisados y publicados en orden de llegada.

Implementación de un cultivo neuronal primario como modelo para el estudio de mecanismos de modulación sobre la vía de señalización de los fosfoinositoles

dc.contributor.advisorGómez Correa, María del Pilarspa
dc.contributor.advisorNasi Lignarolo, Enricospa
dc.contributor.authorMantilla Esparza, Fabián Andrésspa
dc.contributor.researchgroupBiofísica de la Señalización Celularspa
dc.date.accessioned2022-03-02T20:09:50Z
dc.date.available2022-03-02T20:09:50Z
dc.date.issued2021
dc.descriptionilustraciones, fotografías, gráficasspa
dc.description.abstractEl litio se ha usado por décadas como estabilizador del estado de ánimo en trastornos bipolares, pero sus mecanismos de acción a nivel celular aun no se han esclarecido. Aproximaciones bioquímicas resaltan la importancia, entre otras, de la vía de los fosfoinositoles. Nuestro laboratorio reportó efectos potenciadores del litio sobre la movilización de calcio intracelular y corrientes de membrana evocadas por activación de la vía de la fosfolipasa C (PLC) en líneas celulares: el sitio de acción fue acotado a la interacción entre proteína Gq y PLC. La existencia de variadas isoformas de estas proteínas en el sistema nervioso hace pertinente estudiar la generalidad de estos hallazgos en neuronas primarias. En el presente trabajo se implementó un cultivo de neuronas de cerebelo, ya que las neuronas de Purkinje expresan masivamente receptores de IP3 y distintas isoformas de PLC. Por razones de costo y fácil acceso, se utilizaron embriones de pollo. La selección de células candidatas se realizó mediante criterios morfológicos complementados por registros de ‘whole-cell voltage clamp’ que mostraron corrientes capacitivas lentas y de gran magnitud. Su viabilidad fue corroborada por la presencia de corrientes tanto voltaje-dependientes como activadas por quisquilato, un agonista de receptores glutamatérgicos acoplados a Gq/PLC. El quisquilato indujo además incrementos de calcio citosólico, provenientes en parte de reservorios intracelulares y sensibles a inhibición de la PLC. Finalmente, la exposición aguda a litio indujo reducción o potenciación de la respuesta de calcio en distintas células, sugiriendo un efecto diferencial del litio sobre variantes moleculares de PLC y/o Gq. (Texto tomado de la fuente).spa
dc.description.abstractLithium has been used for decades as a mood stabilizer in bipolar disorder, but its mechanisms of action at cellular level have not been clarified yet. Biochemical approaches highlight the importance, among others, of the phosphoinositides pathway. Our laboratory reported potentiating effects of lithium over the intracellular calcium mobilization and membrane currents evoked by the activation of the Phospholipase C (PLC) pathway in cell lines: the site of action was narrowed down to the interaction between the Gq protein and the PLC. The existence of diverse isoforms of these proteins in the nervous system makes pertinent to study the generality of these findings in primary neurons. In the present work a cerebellar neuronal culture was implemented, given that Purkinje neurons massively express IP3 receptors and diverse isoforms of PLC. Chick embryos were used for reasons of cost and easy access. The selection of candidate neurons was made by morphological criteria complemented by whole-cell voltage clamp recordings that showed slow capacitive currents with big amplitude. Cell viability was corroborated by the presence voltage-dependent currents as well as currents activated by quisqualate, an agonist of glutamatergic receptors coupled to Gq/PLC. Quisqualate induced cytosolic calcium increments, originated in part from intracellular reservoirs, and sensitive to PLC inhibition. Finally, exposure to acute lithium induced reduction or potentiation of the calcium response in different cells, suggesting a differential effect of lithium over molecular variants of PLC and/or Gq.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Biologíaspa
dc.description.researchareaNeurofisiología celularspa
dc.format.extentxvi, 80 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81116
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Biologíaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Biologíaspa
dc.relation.referencesAche, B. W., & Young, J. M. (2005). Olfaction: Diverse Species, Conserved Principles. Neuron, 48(3), 417-430. https://doi.org/10.1016/j.neuron.2005.10.022spa
dc.relation.referencesAiba, A., Kano, M., Chen, C., Stanton, M. E., Fox, G. D., Herrup, K., Zwingman, T. A., & Tonegawa, S. (1994). Deficient cerebellar long-term depression and impaired motor learning in mGluR1 mutant mice. Cell, 79(2), 377-388.spa
dc.relation.referencesAkar, S., & Sur, E. (2010). The development of chicken cerebellar cortex and the determination of AgNOR activity of the Purkinje cell nuclei. Belgian Journal of Zoology, 140.spa
dc.relation.referencesAllison, J. H., & Stewart, M. A. (1971). Reduced brain inositol in lithium-treated rats. Nature: New Biology, 233(43), 267-268. https://doi.org/10.1038/newbio233267a0spa
dc.relation.referencesAloulou, A., Rahier, R., Arhab, Y., Noiriel, A., & Abousalham, A. (2018). Phospholipases: An Overview. Methods in Molecular Biology (Clifton, N.J.), 1835, 69-105. https://doi.org/10.1007/978-1-4939-8672-9_3spa
dc.relation.referencesAngueyra, J. M., Pulido, C., Malagón, G., Nasi, E., & Gomez, M. del P. (2012). Melanopsin-Expressing Amphioxus Photoreceptors Transduce Light via a Phospholipase C Signaling Cascade. PLoS ONE, 7(1), e29813. https://doi.org/10.1371/journal.pone.0029813spa
dc.relation.referencesArdeshiri, A., Kelley, M. H., Korner, I. P., Hurn, P. D., & Herson, P. S. (2006). Mechanism of progesterone neuroprotection of rat cerebellar Purkinje cells following oxygen–glucose deprivation. European Journal of Neuroscience, 24(9), 2567-2574. https://doi.org/10.1111/j.1460-9568.2006.05142.xspa
dc.relation.referencesArora, M. (2013). Cell Culture Media: A Review. MATER METHODS, 3(175), 24. https://doi.org///dx.doi.org/10.13070/mm.en.3.175spa
dc.relation.referencesAudinat, E., Knöpfel, T., & Gähwiler, B. H. (1990). Responses to excitatory amino acids of Purkinje cells’ and neurones of the deep nuclei in cerebellar slice cultures. The Journal of Physiology, 430, 297-313. https://doi.org/10.1113/jphysiol.1990.sp018292spa
dc.relation.referencesAvissar, S., Murphy, D. L., & Schreiber, G. (1991). Magnesium reversal of lithium inhibition of beta-adrenergic and muscarinic receptor coupling to G proteins. Biochemical Pharmacology, 41(2), 171-175. https://doi.org/10.1016/0006-2952(91)90473-ispa
dc.relation.referencesAvissar, S., & Schreiber, G. (1992). The involvement of guanine nucleotide binding proteins in the pathogenesis and treatment of affective disorders. Biological Psychiatry, 31(5), 435-459. https://doi.org/10.1016/0006-3223(92)90257-zspa
dc.relation.referencesAvissar, S., Schreiber, G., Danon, A., & Belmaker, R. H. (1988). Lithium inhibits adrenergic and cholinergic increases in GTP binding in rat cortex. Nature, 331(6155), 440-442. https://doi.org/10.1038/331440a0spa
dc.relation.referencesBáez-Becerra, C., Filipello, F., Sandoval-Hernández, A., Arboleda, H., & Arboleda, G. (2018). Liver X Receptor Agonist GW3965 Regulates Synaptic Function upon Amyloid Beta Exposure in Hippocampal Neurons. Neurotoxicity Research, 33(3), 569-579. https://doi.org/10.1007/s12640-017-9845-3spa
dc.relation.referencesBaptista, C. A., Hatten, M. E., Blazeski, R., & Mason, C. A. (1994). Cell-cell interactions influence survival and differentiation of purified Purkinje cells in vitro. Neuron, 12(2), 243-260. https://doi.org/10.1016/0896-6273(94)90268-2spa
dc.relation.referencesBastianelli, E., & Pochet, R. (1993). Transient expression of calretinin during development of chick cerebellum. Comparison with calbindin-D28k. Neuroscience Research, 17(1), 53-61. https://doi.org/10.1016/0168-0102(93)90029-pspa
dc.relation.referencesBatchelor, A. M., Madge, D. J., & Garthwaite, J. (1994). Synaptic activation of metabotropic glutamate receptors in the parallel fibre-Purkinje cell pathway in rat cerebellar slices. Neuroscience, 63(4), 911-915. https://doi.org/10.1016/0306-4522(94)90558-4spa
dc.relation.referencesBearden, C. E., Thompson, P. M., Dalwani, M., Hayashi, K. M., Lee, A. D., Nicoletti, M., Trakhtenbroit, M., Glahn, D. C., Brambilla, P., Sassi, R. B., Mallinger, A. G., Frank, E., Kupfer, D. J., & Soares, J. C. (2007). Greater cortical gray matter density in lithium-treated patients with bipolar disorder. Biological Psychiatry, 62(1), 7-16. https://doi.org/10.1016/j.biopsych.2006.10.027spa
dc.relation.referencesBerk, M., Dodd, S., Kauer-Sant’anna, M., Malhi, G. S., Bourin, M., Kapczinski, F., & Norman, T. (2007). Dopamine dysregulation syndrome: Implications for a dopamine hypothesis of bipolar disorder. Acta Psychiatrica Scandinavica. Supplementum, 434, 41-49. https://doi.org/10.1111/j.1600-0447.2007.01058.xspa
dc.relation.referencesBerridge, M. J., Downes, C. P., & Hanley, M. R. (1989). Neural and developmental actions of lithium: A unifying hypothesis. Cell, 59(3), 411-419. https://doi.org/10.1016/0092-8674(89)90026-3spa
dc.relation.referencesBerridge, M. J., & Irvine, R. F. (1984). Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature, 312(5992), 315-321. https://doi.org/10.1038/312315a0spa
dc.relation.referencesBertossi, M., Roncali, L., Mancini, L., Ribatti, D., & Nico, B. (1986). Process of differentiation of cerebellar Purkinje neurons in the chick embryo. Anatomy and Embryology, 175(1), 25-34. https://doi.org/10.1007/BF00315453spa
dc.relation.referencesBeurel, E., & Jope, R. S. (2006). The paradoxical pro- and anti-apoptotic actions of GSK3 in the intrinsic and extrinsic apoptosis signaling pathways. Progress in Neurobiology, 79(4), 173-189. https://doi.org/10.1016/j.pneurobio.2006.07.006spa
dc.relation.referencesBezprozvanny, L., Watras, J., & Ehrlich, B. E. (1991). Bell-shaped calcium-response curves of lns(l,4,5)P 3—And calcium-gated channels from endoplasmic reticulum of cerebellum. Nature, 351(6329), 751-754. https://doi.org/10.1038/351751a0spa
dc.relation.referencesBrorson, J. R., Bleakman, D., Gibbons, S. J., & Miller, R. J. (1991). The properties of intracellular calcium stores in cultured rat cerebellar neurons. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 11(12), 4024-4043.spa
dc.relation.referencesButler-Munro, C., Coddington, E. J., Shirley, C. H., & Heyward, P. M. (2010). Lithium modulates cortical excitability in vitro. Brain Research, 1352, 50-60. https://doi.org/10.1016/j.brainres.2010.07.021spa
dc.relation.referencesCaraux, A., Kim, N., Bell, S. E., Zompi, S., Ranson, T., Lesjean-Pottier, S., Garcia-Ojeda, M. E., Turner, M., & Colucci, F. (2006). Phospholipase C-γ2 is essential for NK cell cytotoxicity and innate immunity to malignant and virally infected cells. Blood, 107(3), 994-1002. https://doi.org/10.1182/blood-2005-06-2428spa
dc.relation.referencesCarli, M., Anand-Srivastava, M. B., Molina-Holgado, E., Dewar, K. M., & Reader, T. A. (1994). Effects of chronic lithium treatments on central dopaminergic receptor systems: G proteins as possible targets. Neurochemistry International, 24(1), 13-22. https://doi.org/10.1016/0197-0186(94)90124-4spa
dc.relation.referencesCasebolt, T. L., & Jope, R. S. (1987). Chronic lithium treatment reduces norepinephrine-stimulated inositol phospholipid hydrolysis in rat cortex. European Journal of Pharmacology, 140(2), 245-246. https://doi.org/10.1016/0014-2999(87)90813-2spa
dc.relation.referencesClapham, D. E. (2007). Calcium Signaling. Cell, 131(6), 1047-1058. https://doi.org/10.1016/j.cell.2007.11.028spa
dc.relation.referencesCohen-Cory, S., Dreyfus, C. F., & Black, I. B. (1991). NGF and excitatory neurotransmitters regulate survival and morphogenesis of cultured cerebellar Purkinje cells. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 11(2), 462-471.spa
dc.relation.referencesConquet, F., Bashir, Z. I., Davies, C. H., Daniel, H., Ferraguti, F., Bordi, F., Franz-Bacon, K., Reggiani, A., Matarese, V., & Condé, F. (1994). Motor deficit and impairment of synaptic plasticity in mice lacking mGluR1. Nature, 372(6503), 237-243. https://doi.org/10.1038/372237a0spa
dc.relation.referencesConsalez, G. G., Goldowitz, D., Casoni, F., & Hawkes, R. (2020). Origins, Development, and Compartmentation of the Granule Cells of the Cerebellum. Frontiers in Neural Circuits, 14, 611841. https://doi.org/10.3389/fncir.2020.611841spa
dc.relation.referencesDavies, J. A. (2007). Metabotropic Glutamate Receptor Agents. En S. J. Enna & D. B. Bylund (Eds.), XPharm: The Comprehensive Pharmacology Reference (pp. 1-2). Elsevier. https://doi.org/10.1016/B978-008055232-3.60987-0spa
dc.relation.referencesDixon, J. F., & Hokin, L. E. (1998). Lithium acutely inhibits and chronically up-regulates and stabilizes glutamate uptake by presynaptic nerve endings in mouse cerebral cortex. Proceedings of the National Academy of Sciences of the United States of America, 95(14), 8363-8368. https://doi.org/10.1073/pnas.95.14.8363spa
dc.relation.referencesDurán Ferro, S. (2016). Inmunodetección de las proteínas de la cascada de fosfoinositoles en células HEK293 y evaluación de los efectos del litio sobre corrientes de membrana activadas por esta vía [Tesis de Maestría, Universidad Nacional de Colombia - Sede Bogotá]. https://repositorio.unal.edu.co/handle/unal/59178spa
dc.relation.referencesDzubay, J. A., & Otis, T. S. (2002). Climbing fiber activation of metabotropic glutamate receptors on cerebellar purkinje neurons. Neuron, 36(6), 1159-1167. https://doi.org/10.1016/s0896-6273(02)01052-8spa
dc.relation.referencesEmpson, R. M., & Knöpfel, T. (2012). Functional integration of calcium regulatory mechanisms at Purkinje neuron synapses. Cerebellum (London, England), 11(3), 640-650. https://doi.org/10.1007/s12311-010-0185-6spa
dc.relation.referencesFaber, E. S. L., Sedlak, P., Vidovic, M., & Sah, P. (2006). Synaptic activation of transient receptor potential channels by metabotropic glutamate receptors in the lateral amygdala. Neuroscience, 137(3), 781-794. https://doi.org/10.1016/j.neuroscience.2005.09.027spa
dc.relation.referencesFain, G. L., Hardie, R., & Laughlin, S. B. (2010). Phototransduction and the Evolution of Photoreceptors. Current Biology, 20(3), R114-R124. https://doi.org/10.1016/j.cub.2009.12.006spa
dc.relation.referencesFleming, J. T., He, W., Hao, C., Ketova, T., Pan, F. C., Wright, C. C. V., Litingtung, Y., & Chiang, C. (2013). The Purkinje Neuron Acts as a Central Regulator of Spatially and Functionally Distinct Cerebellar Precursors. Developmental Cell, 27(3), 278-292. https://doi.org/10.1016/j.devcel.2013.10.008spa
dc.relation.referencesFoelix, R. F., & Oppenheim, R. (1974). The development of synapses in the cerebellar cortex of the chick embryo. Journal of Neurocytology, 3(3), 277-294. https://doi.org/10.1007/BF01097914spa
dc.relation.referencesForsythe, I. D., Lambert, D. G., Nahorski, S. R., & Lindsdell, P. (1992). Elevation of cytosolic calcium by cholinoceptor agonists in SH-SY5Y human neuroblastoma cells: Estimation of the contribution of voltage-dependent currents. British Journal of Pharmacology, 107(1), 207-214. https://doi.org/10.1111/j.1476-5381.1992.tb14488.xspa
dc.relation.referencesFountoulakis, K. N., Vieta, E., Sanchez-Moreno, J., Kaprinis, S. G., Goikolea, J. M., & Kaprinis, G. S. (2005). Treatment guidelines for bipolar disorder: A critical review. Journal of Affective Disorders, 86(1), 1-10. https://doi.org/10.1016/j.jad.2005.01.004spa
dc.relation.referencesFujishima, K., Horie, R., Mochizuki, A., & Kengaku, M. (2012). Principles of branch dynamics governing shape characteristics of cerebellar Purkinje cell dendrites. Development, 139(18), 3442-3455. https://doi.org/10.1242/dev.081315spa
dc.relation.referencesFujishima, K., Kawabata Galbraith, K., & Kengaku, M. (2018). Dendritic Self-Avoidance and Morphological Development of Cerebellar Purkinje Cells. Cerebellum (London, England), 17(6), 701-708. https://doi.org/10.1007/s12311-018-0984-8spa
dc.relation.referencesFukami, K., Inanobe, S., Kanemaru, K., & Nakamura, Y. (2010). Phospholipase C is a key enzyme regulating intracellular calcium and modulating the phosphoinositide balance. Progress in Lipid Research, 49(4), 429-437. https://doi.org/10.1016/j.plipres.2010.06.001spa
dc.relation.referencesFukumoto, T., Morinobu, S., Okamoto, Y., Kagaya, A., & Yamawaki, S. (2001). Chronic lithium treatment increases the expression of brain-derived neurotrophic factor in the rat brain. Psychopharmacology, 158(1), 100-106. https://doi.org/10.1007/s002130100871spa
dc.relation.referencesFuruya, S., Makino, A., & Hirabayashi, Y. (1998). An improved method for culturing cerebellar Purkinje cells with differentiated dendrites under a mixed monolayer setting. Brain Research. Brain Research Protocols, 3(2), 192-198. https://doi.org/10.1016/s1385-299x(98)00040-3spa
dc.relation.referencesGeddes, J. R., & Miklowitz, D. J. (2013). Treatment of bipolar disorder. The Lancet, 381(9878), 1672-1682. https://doi.org/10.1016/S0140-6736(13)60857-0spa
dc.relation.referencesGiussani, D. A., Salinas, C. E., Villena, M., & Blanco, C. E. (2007). The role of oxygen in prenatal growth: Studies in the chick embryo. The Journal of Physiology, 585(Pt 3), 911-917. https://doi.org/10.1113/jphysiol.2007.141572spa
dc.relation.referencesGodfrey, P. P., McClue, S. J., White, A. M., Wood, A. J., & Grahame-Smith, D. G. (1989). Subacute and chronic in vivo lithium treatment inhibits agonist- and sodium fluoride-stimulated inositol phosphate production in rat cortex. Journal of Neurochemistry, 52(2), 498-506. https://doi.org/10.1111/j.1471-4159.1989.tb09148.xspa
dc.relation.referencesGomez, L. C., Kawaguchi, S.-Y., Collin, T., Jalil, A., Gomez, M. D. P., Nasi, E., Marty, A., & Llano, I. (2020). Influence of spatially segregated IP3-producing pathways on spike generation and transmitter release in Purkinje cell axons. Proceedings of the National Academy of Sciences of the United States of America, 117(20), 11097-11108. https://doi.org/10.1073/pnas.2000148117spa
dc.relation.referencesGrande, I., Berk, M., Birmaher, B., & Vieta, E. (2016). Bipolar disorder. The Lancet, 387(10027), 1561-1572. https://doi.org/10.1016/S0140-6736(15)00241-Xspa
dc.relation.referencesGrimes, C. A., & Jope, R. S. (2001). The multifaceted roles of glycogen synthase kinase 3beta in cellular signaling. Progress in Neurobiology, 65(4), 391-426. https://doi.org/10.1016/s0301-0082(01)00011-9spa
dc.relation.referencesGrunze, H., Vieta, E., Goodwin, G. M., Bowden, C., Licht, R. W., Azorin, J.-M., Yatham, L., Mosolov, S., Möller, H.-J., Kasper, S., & Members of the WFSBP Task Force on Bipolar Affective Disorders Working on this topic. (2018). The World Federation of Societies of Biological Psychiatry (WFSBP) Guidelines for the Biological Treatment of Bipolar Disorders: Acute and long-term treatment of mixed states in bipolar disorder. The World Journal of Biological Psychiatry: The Official Journal of the World Federation of Societies of Biological Psychiatry, 19(1), 2-58. https://doi.org/10.1080/15622975.2017.1384850spa
dc.relation.referencesHallcher, L. M., & Sherman, W. R. (1980). The effects of lithium ion and other agents on the activity of myo-inositol-1-phosphatase from bovine brain. The Journal of Biological Chemistry, 255(22), 10896-10901.spa
dc.relation.referencesHamburger, V., & Hamilton, H. L. (1951). A series of normal stages in the development of the chick embryo. Journal of Morphology, 88(1), 49-92. https://doi.org/10.1002/jmor.1050880104spa
dc.relation.referencesHarrison, P. J., Geddes, J. R., & Tunbridge, E. M. (2018). The Emerging Neurobiology of Bipolar Disorder. Trends in Neurosciences, 41(1), 18-30. https://doi.org/10.1016/j.tins.2017.10.006spa
dc.relation.referencesHartmann, J., & Konnerth, A. (2009). Mechanisms of metabotropic glutamate receptor-mediated synaptic signalling in cerebellar Purkinje cells. Acta Physiologica, 195(1), 79-90. https://doi.org/10.1111/j.1748-1716.2008.01923.xspa
dc.relation.referencesHeintz, T. G., Eva, R., & Fawcett, J. W. (2016). Regional Regulation of Purkinje Cell Dendritic Spines by Integrins and Eph/Ephrins. PLOS ONE, 11(8), e0158558. https://doi.org/10.1371/journal.pone.0158558spa
dc.relation.referencesHibar, D. P., Westlye, L. T., Doan, N. T., Jahanshad, N., Cheung, J. W., Ching, C. R. K., Versace, A., Bilderbeck, A. C., Uhlmann, A., Mwangi, B., Krämer, B., Overs, B., Hartberg, C. B., Abé, C., Dima, D., Grotegerd, D., Sprooten, E., Bøen, E., Jimenez, E., … Andreassen, O. A. (2018). Cortical abnormalities in bipolar disorder: An MRI analysis of 6503 individuals from the ENIGMA Bipolar Disorder Working Group. Molecular Psychiatry, 23(4), 932-942. https://doi.org/10.1038/mp.2017.73spa
dc.relation.referencesHibar, D. P., Westlye, L. T., van Erp, T. G. M., Rasmussen, J., Leonardo, C. D., Faskowitz, J., Haukvik, U. K., Hartberg, C. B., Doan, N. T., Agartz, I., Dale, A. M., Gruber, O., Krämer, B., Trost, S., Liberg, B., Abé, C., Ekman, C. J., Ingvar, M., Landén, M., … Andreassen, O. A. (2016). Subcortical volumetric abnormalities in bipolar disorder. Molecular Psychiatry, 21(12), 1710-1716. https://doi.org/10.1038/mp.2015.227spa
dc.relation.referencesHilgemann, D. W. (2007). On the physiological roles of PIP2 at cardiac Na+–Ca2+ exchangers and KATP channels: A long journey from membrane biophysics into cell biology. The Journal of Physiology, 582(Pt 3), 903-909. https://doi.org/10.1113/jphysiol.2007.132746spa
dc.relation.referencesHinoi, E., Ogita, K., Takeuchi, Y., Ohashi, H., Maruyama, T., & Yoneda, Y. (2001). Characterization with [3H]quisqualate of group I metabotropic glutamate receptor subtype in rat central and peripheral excitable tissues. Neurochemistry International, 38(3), 277-285. https://doi.org/10.1016/s0197-0186(00)00075-9spa
dc.relation.referencesHirano, T. (2018). Regulation and Interaction of Multiple Types of Synaptic Plasticity in a Purkinje Neuron and Their Contribution to Motor Learning. Cerebellum (London, England), 17(6), 756-765. https://doi.org/10.1007/s12311-018-0963-0spa
dc.relation.referencesHirano, T., & Hagiwara, S. (1989). Kinetics and distribution of voltage-gated Ca, Na and K channels on the somata of rat cerebellar Purkinje cells. Pflugers Archiv: European Journal of Physiology, 413(5), 463-469. https://doi.org/10.1007/BF00594174spa
dc.relation.referencesHockberger, P. E., Tseng, H. Y., & Connor, J. A. (1989a). Development of rat cerebellar Purkinje cells: Electrophysiological properties following acute isolation and in long-term culture. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 9(7), 2258-2271.spa
dc.relation.referencesHockberger, P. E., Tseng, H. Y., & Connor, J. A. (1989b). Development of rat cerebellar Purkinje cells: Electrophysiological properties following acute isolation and in long-term culture. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 9(7), 2258-2271.spa
dc.relation.referencesHuang, C.-L. (2007). Complex roles of PIP2 in the regulation of ion channels and transporters. American Journal of Physiology. Renal Physiology, 293(6), F1761-1765. https://doi.org/10.1152/ajprenal.00400.2007spa
dc.relation.referencesHurowitz, E. H., Melnyk, J. M., Chen, Y.-J., Kouros-Mehr, H., Simon, M. I., & Shizuya, H. (2000). Genomic Characterization of the Human Heterotrimeric G Protein α, β, and γ Subunit Genes. DNA Research, 7(2), 111-120. https://doi.org/10.1093/dnares/7.2.111spa
dc.relation.referencesHussain, S., Gardner, C. R., Bagust, J., & Walker, R. J. (1991). Receptor sub-types involved in responses of Purkinje cell to exogenous excitatory amino acids and local electrical stimulation in cerebellar slices in the rat. Neuropharmacology, 30(10), 1029-1037. https://doi.org/10.1016/0028-3908(91)90130-4spa
dc.relation.referencesIchise, T., Kano, M., Hashimoto, K., Yanagihara, D., Nakao, K., Shigemoto, R., Katsuki, M., & Aiba, A. (2000). MGluR1 in Cerebellar Purkinje Cells Essential for Long-Term Depression, Synapse Elimination, and Motor Coordination. Science, 288(5472), 1832-1835. https://doi.org/10.1126/science.288.5472.1832spa
dc.relation.referencesIto, M. (1987). Signal processing in cerebellar Purkinje cells. Physiologia Bohemoslovaca, 36(3), 203-216.spa
dc.relation.referencesIto, M. (2001). Cerebellar Long-Term Depression: Characterization, Signal Transduction, and Functional Roles. Physiological Reviews, 81(3), 1143-1195. https://doi.org/10.1152/physrev.2001.81.3.1143spa
dc.relation.referencesIto, M. (2002). Historical review of the significance of the cerebellum and the role of Purkinje cells in motor learning. Annals of the New York Academy of Sciences, 978, 273-288. https://doi.org/10.1111/j.1749-6632.2002.tb07574.xspa
dc.relation.referencesIto, M., & Karachot, L. (1990). Messengers mediating long-term desensitization in cerebellar Purkinje cells. Neuroreport, 1(2), 129-132. https://doi.org/10.1097/00001756-199010000-00012spa
dc.relation.referencesItsuki, K., Imai, Y., Hase, H., Okamura, Y., Inoue, R., & Mori, M. X. (2014). PLC-mediated PI(4,5)P2 hydrolysis regulates activation and inactivation of TRPC6/7 channels. The Journal of General Physiology, 143(2), 183-201. https://doi.org/10.1085/jgp.201311033spa
dc.relation.referencesJeffrey, P. L., Meaney, J., Tolhurst, O., & Weinberger, R. P. (1996). Epigenetic factors controlling the development of avian Purkinje neurons. Journal of Neuroscience Methods, 67(2), 163-175.spa
dc.relation.referencesJope, R. S. (1999). Anti-bipolar therapy: Mechanism of action of lithium. Molecular Psychiatry, 4(2), 117-128. https://doi.org/10.1038/sj.mp.4000494spa
dc.relation.referencesJope, R. S. (2003). Lithium and GSK-3: One inhibitor, two inhibitory actions, multiple outcomes. Trends in Pharmacological Sciences, 24(9), 441-443. https://doi.org/10.1016/S0165-6147(03)00206-2spa
dc.relation.referencesJope, R. S., & Williams, M. B. (1994). Lithium and brain signal transduction systems. Biochemical Pharmacology, 47(3), 429-441. https://doi.org/10.1016/0006-2952(94)90172-4spa
dc.relation.referencesKadamur, G., & Ross, E. M. (2013). Mammalian Phospholipase C. Annual Review of Physiology, 75(1), 127-154. https://doi.org/10.1146/annurev-physiol-030212-183750spa
dc.relation.referencesKandel, E. R., Schwartz, J. H., Jessell, T. M., Siegelbaum, S. A., & Hudspeth, A. J. (Eds.). (2012). Principles of Neural Science.spa
dc.relation.referencesKano, M., & Kato, M. (1987a). Quisqualate receptors are specifically involved in cerebellar synaptic plasticity. Nature, 325(6101), 276-279. https://doi.org/10.1038/325276a0spa
dc.relation.referencesKano, M., & Kato, M. (1987b). Quisqualate receptors are specifically involved in cerebellar synaptic plasticity. Nature, 325(6101), 276-279. https://doi.org/10.1038/325276a0spa
dc.relation.referencesKapfhammer, J. P. (2004). Cellular and molecular control of dendritic growth and development of cerebellar Purkinje cells. Progress in Histochemistry and Cytochemistry, 39(3), 131-182. https://doi.org/10.1016/j.proghi.2004.07.002spa
dc.relation.referencesKendall, D. A., & Nahorski, S. R. (1987). Acute and chronic lithium treatments influence agonist and depolarization-stimulated inositol phospholipid hydrolysis in rat cerebral cortex. The Journal of Pharmacology and Experimental Therapeutics, 241(3), 1023-1027.spa
dc.relation.referencesKim, D., Jun, K. S., Lee, S. B., Kang, N.-G., Min, D. S., Kim, Y.-H., Ryu, S. H., Suh, P.-G., & Shin, H.-S. (1997). Phospholipase C isozymes selectively couple to specific neurotransmitter receptors. Nature, 389(6648), 290-293. https://doi.org/10.1038/38508spa
dc.relation.referencesKitamura, K., & Kano, M. (2013). Dendritic calcium signaling in cerebellar Purkinje cell. Neural Networks: The Official Journal of the International Neural Network Society, 47, 11-17. https://doi.org/10.1016/j.neunet.2012.08.001spa
dc.relation.referencesKnöpfel, T., Anchisi, D., Alojado, M. E., Tempia, F., & Strata, P. (2000). Elevation of intradendritic sodium concentration mediated by synaptic activation of metabotropic glutamate receptors in cerebellar Purkinje cells. The European Journal of Neuroscience, 12(6), 2199-2204. https://doi.org/10.1046/j.1460-9568.2000.00122.xspa
dc.relation.referencesKnöpfel, T., & Grandes, P. (2002). Metabotropic glutamate receptors in the cerebellum with a focus on their function in Purkinje cells. Cerebellum (London, England), 1(1), 19-26. https://doi.org/10.1007/BF02941886spa
dc.relation.referencesLambert, D. G., & Nahorski, S. R. (1990). Muscarinic-receptor-mediated changes in intracellular Ca2+ and inositol 1,4,5-trisphosphate mass in a human neuroblastoma cell line, SH-SY5Y. The Biochemical Journal, 265(2), 555-562. https://doi.org/10.1042/bj2650555spa
dc.relation.referencesLandinez Macias, M. P. (2016). Evaluación fisiológica de los efectos del litio sobre la movilización de calcio intracelular en la línea celular HEK 293 [Tesis de Maestría, Universidad Nacional de Colombia - Sede Bogotá]. https://repositorio.unal.edu.co/handle/unal/56608spa
dc.relation.referencesLee, C. H., Park, D., Wu, D., Rhee, S. G., & Simon, M. I. (1992). Members of the Gq alpha subunit gene family activate phospholipase C beta isozymes. Journal of Biological Chemistry, 267(23), 16044-16047.spa
dc.relation.referencesLindemann, B. (2001). Receptors and transduction in taste. Nature, 413(6852), 219-225. https://doi.org/10.1038/35093032spa
dc.relation.referencesLinden, D. J., Dickinson, M. H., Smeyne, M., & Connor, J. A. (1991). A long-term depression of AMPA currents in cultured cerebellar Purkinje neurons. Neuron, 7(1), 81-89. https://doi.org/10.1016/0896-6273(91)90076-cspa
dc.relation.referencesLinden, D. J., Smeyne, M., & Connor, J. A. (1994). Trans-ACPD, a metabotropic receptor agonist, produces calcium mobilization and an inward current in cultured cerebellar Purkinje neurons. Journal of Neurophysiology, 71(5), 1992-1998. https://doi.org/10.1152/jn.1994.71.5.1992spa
dc.relation.referencesLivingstone, C., & Rampes, H. (2006). Lithium: A review of its metabolic adverse effects. Journal of Psychopharmacology, 20(3), 347-355. https://doi.org/10.1177/0269881105057515spa
dc.relation.referencesLlano, I., Dreessen, J., Kano, M., & Konnerth, A. (1991). Intradendritic release of calcium induced by glutamate in cerebellar Purkinje cells. Neuron, 7(4), 577-583. https://doi.org/10.1016/0896-6273(91)90370-fspa
dc.relation.referencesLlinás, R., & Sugimori, M. (1980). Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. The Journal of Physiology, 305, 171-195.spa
dc.relation.referencesLydiard, R. B., & Gelenberg, A. J. (1982). Hazards and adverse effects of lithium. Annual Review of Medicine, 33, 327-344. https://doi.org/10.1146/annurev.me.33.020182.001551spa
dc.relation.referencesMalhi, G. S., Adams, D., & Berk, M. (2009). Is lithium in a class of its own? A brief profile of its clinical use. The Australian and New Zealand Journal of Psychiatry, 43(12), 1096-1104. https://doi.org/10.3109/00048670903279937spa
dc.relation.referencesMalhi, G. S., & Tanious, M. (2011). Optimal frequency of lithium administration in the treatment of bipolar disorder: Clinical and dosing considerations. CNS Drugs, 25(4), 289-298. https://doi.org/10.2165/11586970-000000000-00000spa
dc.relation.referencesMalhi, G. S., Tanious, M., Das, P., Coulston, C. M., & Berk, M. (2013). Potential Mechanisms of Action of Lithium in Bipolar Disorder. CNS Drugs, 27(2), 135-153. https://doi.org/10.1007/s40263-013-0039-0spa
dc.relation.referencesMarcaggi, P. (2015). Cerebellar endocannabinoids: Retrograde signaling from purkinje cells. Cerebellum (London, England), 14(3), 341-353. https://doi.org/10.1007/s12311-014-0629-5spa
dc.relation.referencesMasana, M. I., Bitran, J. A., Hsiao, J. K., & Potter, W. Z. (1992). In vivo evidence that lithium inactivates Gi modulation of adenylate cyclase in brain. Journal of Neurochemistry, 59(1), 200-205. https://doi.org/10.1111/j.1471-4159.1992.tb08891.xspa
dc.relation.referencesMathews, R., Li, P. P., Young, L. T., Kish, S. J., & Warsh, J. J. (1997). Increased Gαq/11 immunoreactivity in postmortem occipital cortex from patients with bipolar affective disorder. Biological Psychiatry, 41(6), 649-656. https://doi.org/10.1016/S0006-3223(96)00113-8spa
dc.relation.referencesMayer, M. L., Crunelli, V., & Kemp, J. A. (1984). Lithium ions increase action potential duration of mammalian neurons. Brain Research, 293(1), 173-177. https://doi.org/10.1016/0006-8993(84)91466-5spa
dc.relation.referencesMcKay, B. E., & Turner, R. W. (2005). Physiological and morphological development of the rat cerebellar Purkinje cell. The Journal of Physiology, 567(Pt 3), 829-850. https://doi.org/10.1113/jphysiol.2005.089383spa
dc.relation.referencesMcKnight, R. F., Adida, M., Budge, K., Stockton, S., Goodwin, G. M., & Geddes, J. R. (2012). Lithium toxicity profile: A systematic review and meta-analysis. The Lancet, 379(9817), 721-728. https://doi.org/10.1016/S0140-6736(11)61516-Xspa
dc.relation.referencesMeaney, J. A., Balcar, V. J., Rothstein, J. D., & Jeffrey, P. L. (1998). Glutamate transport in cultures from developing avian cerebellum: Presence of GLT-1 immunoreactivity in Purkinje neurons. Journal of Neuroscience Research, 54(5), 595-603. https://doi.org/10.1002/(SICI)1097-4547(19981201)54:5<595::AID-JNR4>3.0.CO;2-Qspa
dc.relation.referencesMei, L., Yamamura, H. I., & Roeske, W. R. (1988). Muscarinic receptor-mediated hydrolysis of phosphatidylinositols in human neuroblastoma (SH-SY5Y) cells is sensitive to pertussis toxin. Brain Research, 447(2), 360-363. https://doi.org/10.1016/0006-8993(88)91140-7spa
dc.relation.referencesMichael, N., Erfurth, A., Ohrmann, P., Gössling, M., Arolt, V., Heindel, W., & Pfleiderer, B. (2003). Acute mania is accompanied by elevated glutamate/glutamine levels within the left dorsolateral prefrontal cortex. Psychopharmacology, 168(3), 344-346. https://doi.org/10.1007/s00213-003-1440-zspa
dc.relation.referencesMilligan, G., & Kostenis, E. (2006). Heterotrimeric G-proteins: A short history. British Journal of Pharmacology, 147(S1), S46-S55. https://doi.org/10.1038/sj.bjp.0706405spa
dc.relation.referencesMizuno, N., & Itoh, H. (2009). Functions and regulatory mechanisms of Gq-signaling pathways. Neuro-Signals, 17(1), 42-54. https://doi.org/10.1159/000186689spa
dc.relation.referencesMonsivais, P., Clark, B. A., Roth, A., & Häusser, M. (2005). Determinants of Action Potential Propagation in Cerebellar Purkinje Cell Axons. The Journal of Neuroscience, 25(2), 464-472. https://doi.org/10.1523/JNEUROSCI.3871-04.2005spa
dc.relation.referencesMüller-Oerlinghausen, B., Berghöfer, A., & Bauer, M. (2002). Bipolar disorder. Lancet (London, England), 359(9302), 241-247. https://doi.org/10.1016/S0140-6736(02)07450-0spa
dc.relation.referencesNetzeband, J. G., Parsons, K. L., Sweeney, D. D., & Gruol, D. L. (1997). Metabotropic glutamate receptor agonists alter neuronal excitability and Ca2+ levels via the phospholipase C transduction pathway in cultured Purkinje neurons. Journal of Neurophysiology, 78(1), 63-75. https://doi.org/10.1152/jn.1997.78.1.63spa
dc.relation.referencesNolen, W. A., Licht, R. W., Young, A. H., Malhi, G. S., Tohen, M., Vieta, E., Kupka, R. W., Zarate, C., Nielsen, R. E., Baldessarini, R. J., & Severus, E. (2019). What is the optimal serum level for lithium in the maintenance treatment of bipolar disorder? A systematic review and recommendations from the ISBD/IGSLI Task Force on treatment with lithium. Bipolar Disorders, 21(5), 394-409. https://doi.org/10.1111/bdi.12805spa
dc.relation.referencesNonaka, S., Hough, C. J., & Chuang, D. M. (1998). Chronic lithium treatment robustly protects neurons in the central nervous system against excitotoxicity by inhibiting N-methyl-D-aspartate receptor-mediated calcium influx. Proceedings of the National Academy of Sciences of the United States of America, 95(5), 2642-2647. https://doi.org/10.1073/pnas.95.5.2642spa
dc.relation.referencesNunes, P., & Demaurex, N. (2010). The role of calcium signaling in phagocytosis. Journal of Leukocyte Biology, 88(1), 57-68. https://doi.org/10.1189/jlb.0110028spa
dc.relation.referencesOldham, W. M., & Hamm, H. E. (2008). Heterotrimeric G protein activation by G-protein-coupled receptors. Nature Reviews. Molecular Cell Biology, 9(1), 60-71. https://doi.org/10.1038/nrm2299spa
dc.relation.referencesPartridge, L. D., & Thomas, R. C. (1974). Effect of intracellular lithium on snail neurones. Nature, 249(457), 578-580. https://doi.org/10.1038/249578a0spa
dc.relation.referencesPeinado, G., Osorno, T., Gomez, M. del P., & Nasi, E. (2015). Calcium activates the light-dependent conductance in melanopsin-expressing photoreceptors of amphioxus. Proceedings of the National Academy of Sciences, 112(25), 7845-7850. https://doi.org/10.1073/pnas.1420265112spa
dc.relation.referencesPerkel, D. J., Hestrin, S., Sah, P., & Nicoll, R. A. (1990). Excitatory synaptic currents in Purkinje cells. Proceedings. Biological Sciences, 241(1301), 116-121. https://doi.org/10.1098/rspb.1990.0074spa
dc.relation.referencesPhillips, M. L., & Kupfer, D. J. (2013). Bipolar disorder diagnosis: Challenges and future directions. The Lancet, 381(9878), 1663-1671. https://doi.org/10.1016/S0140-6736(13)60989-7spa
dc.relation.referencesPiochon, C., Irinopoulou, T., Brusciano, D., Bailly, Y., Mariani, J., & Levenes, C. (2007). NMDA receptor contribution to the climbing fiber response in the adult mouse Purkinje cell. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 27(40), 10797-10809. https://doi.org/10.1523/JNEUROSCI.2422-07.2007spa
dc.relation.referencesPloeger, E. J. (1974). The effects of lithium on excitable cell membranes. On the mechanism of inhibition of the sodium pump of non-myelinated nerve fibres of the rat. European Journal of Pharmacology, 25(3), 316-321. https://doi.org/10.1016/0014-2999(74)90261-1spa
dc.relation.referencesPompili, M., Gonda, X., Serafini, G., Innamorati, M., Sher, L., Amore, M., Rihmer, Z., & Girardi, P. (2013). Epidemiology of suicide in bipolar disorders: A systematic review of the literature. Bipolar Disorders, 15(5), 457-490. https://doi.org/10.1111/bdi.12087spa
dc.relation.referencesRansdell, J. L., & Nerbonne, J. M. (2018). Voltage-gated sodium currents in cerebellar Purkinje neurons: Functional and molecular diversity. Cellular and Molecular Life Sciences: CMLS, 75(19), 3495-3505. https://doi.org/10.1007/s00018-018-2868-yspa
dc.relation.referencesRenshaw, P. F., & Wicklund, S. (1988). In vivo measurement of lithium in humans by nuclear magnetic resonance spectroscopy. Biological Psychiatry, 23(5), 465-475. https://doi.org/10.1016/0006-3223(88)90018-2spa
dc.relation.referencesReuveny, E., & Narahashi, T. (1993). Two types of high voltage-activated calcium channels in SH-SY5Y human neuroblastoma cells. Brain Research, 603(1), 64-73. https://doi.org/10.1016/0006-8993(93)91300-hspa
dc.relation.referencesRhee, S. G. (2001). Regulation of phosphoinositide-specific phospholipase C. Annual Review of Biochemistry, 70, 281-312. https://doi.org/10.1146/annurev.biochem.70.1.281spa
dc.relation.referencesRossi, F., Buffo, A., & Strata, P. (2001). Regulation of intrinsic regenerative properties and axonal plasticity in cerebellar Purkinje cells. Restorative Neurology and Neuroscience, 19(1-2), 85-94.spa
dc.relation.referencesRoth, B. L. (2019). Molecular pharmacology of metabotropic receptors targeted by neuropsychiatric drugs. Nature Structural & Molecular Biology, 26(7), 535-544. https://doi.org/10.1038/s41594-019-0252-8spa
dc.relation.referencesRyves, W. J., & Harwood, A. J. (2001). Lithium inhibits glycogen synthase kinase-3 by competition for magnesium. Biochemical and Biophysical Research Communications, 280(3), 720-725. https://doi.org/10.1006/bbrc.2000.4169spa
dc.relation.referencesSánchez Triviño, C. A. (2019). Estudio fisiológico de los efectos del litio sobre la cascada de señalización mediada por la fosfolipasa C en modelos neuronales [Masters, Universidad Nacional de Colombia - Sede Bogotá]. http://bdigital.unal.edu.co/73555/spa
dc.relation.referencesSassi, R. B., Nicoletti, M., Brambilla, P., Mallinger, A. G., Frank, E., Kupfer, D. J., Keshavan, M. S., & Soares, J. C. (2002). Increased gray matter volume in lithium-treated bipolar disorder patients. Neuroscience Letters, 329(2), 243-245. https://doi.org/10.1016/s0304-3940(02)00615-8spa
dc.relation.referencesSatoh, T., Ross, C. A., Villa, A., Supattapone, S., Pozzan, T., Snyder, S. H., & Meldolesi, J. (1990). The inositol 1,4,5,-trisphosphate receptor in cerebellar Purkinje cells: Quantitative immunogold labeling reveals concentration in an ER subcompartment. The Journal of Cell Biology, 111(2), 615-624. https://doi.org/10.1083/jcb.111.2.615spa
dc.relation.referencesSavitz, J. B., Price, J. L., & Drevets, W. C. (2014). Neuropathological and neuromorphometric abnormalities in bipolar disorder: View from the medial prefrontal cortical network. Neuroscience and Biobehavioral Reviews, 42, 132-147. https://doi.org/10.1016/j.neubiorev.2014.02.008spa
dc.relation.referencesSchilling, K., Dickinson, M. H., Connor, J. A., & Morgan, J. I. (1991). Electrical activity in cerebellar cultures determines Purkinje cell dendritic growth patterns. Neuron, 7(6), 891-902. https://doi.org/10.1016/0896-6273(91)90335-wspa
dc.relation.referencesSchmidt, H., Stiefel, K. M., Racay, P., Schwaller, B., & Eilers, J. (2003). Mutational analysis of dendritic Ca2+ kinetics in rodent Purkinje cells: Role of parvalbumin and calbindin D28k. The Journal of Physiology, 551(Pt 1), 13-32. https://doi.org/10.1113/jphysiol.2002.035824spa
dc.relation.referencesShorter, E. (2009). The history of lithium therapy. Bipolar disorders, 11, 4-9. https://doi.org/10.1111/j.1399-5618.2009.00706.xspa
dc.relation.referencesSmith, F. E., Thelwall, P. E., Necus, J., Flowers, C. J., Blamire, A. M., & Cousins, D. A. (2018). 3D 7Li magnetic resonance imaging of brain lithium distribution in bipolar disorder. Molecular Psychiatry, 23(11), 2184-2191. https://doi.org/10.1038/s41380-018-0016-6spa
dc.relation.referencesSoboloff, J., Spassova, M., Hewavitharana, T., He, L. P., Luncsford, P., Xu, W., Venkatachalam, K., van Rossum, D., Patterson, R. L., & Gill, D. L. (2007). TRPC channels: Integrators of multiple cellular signals. Handbook of Experimental Pharmacology, 179, 575-591. https://doi.org/10.1007/978-3-540-34891-7_34spa
dc.relation.referencesSossin, W. S., & Farah, C. A. (2009). Synaptic Plasticity: Diacylglycerol Signalling role. En L. R. Squire (Ed.), Encyclopedia of Neuroscience (pp. 747-755). Academic Press. https://doi.org/10.1016/B978-008045046-9.00820-2spa
dc.relation.referencesSproule, B. A., Hardy, B. G., & Shulman, K. I. (2000). Differential pharmacokinetics of lithium in elderly patients. Drugs & Aging, 16(3), 165-177. https://doi.org/10.2165/00002512-200016030-00002spa
dc.relation.referencesStaub, C., Vranesic, I., & Knöpfel, T. (1992). Responses to Metabotropic Glutamate Receptor Activation in Cerebellar Purkinje Cells: Induction of an Inward Current. The European Journal of Neuroscience, 4(9), 832-839. https://doi.org/10.1111/j.1460-9568.1992.tb00193.xspa
dc.relation.referencesStout, J., Hozer, F., Coste, A., Mauconduit, F., Djebrani-Oussedik, N., Sarrazin, S., Poupon, J., Meyrel, M., Romanzetti, S., Etain, B., Rabrait-Lerman, C., Houenou, J., Bellivier, F., Duchesnay, E., & Boumezbeur, F. (2020). Accumulation of Lithium in the Hippocampus of Patients With Bipolar Disorder: A Lithium-7 Magnetic Resonance Imaging Study at 7 Tesla. Biological Psychiatry, 88(5), 426-433. https://doi.org/10.1016/j.biopsych.2020.02.1181spa
dc.relation.referencesSuh, B.-C., & Hille, B. (2008). PIP2 is a necessary cofactor for ion channel function: How and why? Annual review of biophysics, 37, 175-195. https://doi.org/10.1146/annurev.biophys.37.032807.125859spa
dc.relation.referencesSuzuki, N., Hajicek, N., & Kozasa, T. (2009). Regulation and physiological functions of G12/13-mediated signaling pathways. Neuro-Signals, 17(1), 55-70. https://doi.org/10.1159/000186690spa
dc.relation.referencesSyrovatkina, V., Alegre, K. O., Dey, R., & Huang, X.-Y. (2016). Regulation, Signaling, and Physiological Functions of G-Proteins. Journal of Molecular Biology, 428(19), 3850-3868. https://doi.org/10.1016/j.jmb.2016.08.002spa
dc.relation.referencesTabata, T., Sawada, S., Araki, K., Bono, Y., Furuya, S., & Kano, M. (2000). A reliable method for culture of dissociated mouse cerebellar cells enriched for Purkinje neurons. Journal of Neuroscience Methods, 104(1), 45-53. https://doi.org/10.1016/s0165-0270(00)00323-xspa
dc.relation.referencesTanaka, J., Nakagawa, S., Kushiya, E., Yamasaki, M., Fukaya, M., Iwanaga, T., Simon, M. I., Sakimura, K., Kano, M., & Watanabe, M. (2000). Gq protein α subunits Gαq and Gα11 are localized at postsynaptic extra-junctional membrane of cerebellar Purkinje cells and hippocampal pyramidal cells. European Journal of Neuroscience, 12(3), 781-792. https://doi.org/10.1046/j.1460-9568.2000.00959.xspa
dc.relation.referencesTanaka, M. (2009). Dendrite formation of cerebellar Purkinje cells. Neurochemical Research, 34(12), 2078-2088. https://doi.org/10.1007/s11064-009-0073-yspa
dc.relation.referencesTempia, F., Alojado, M. E., Strata, P., & Knöpfel, T. (2001). Characterization of the mGluR(1)-mediated electrical and calcium signaling in Purkinje cells of mouse cerebellar slices. Journal of Neurophysiology, 86(3), 1389-1397. https://doi.org/10.1152/jn.2001.86.3.1389spa
dc.relation.referencesThe Human Protein Atlas. (s. f.). Recuperado 8 de marzo de 2021, de https://www.proteinatlas.org/spa
dc.relation.referencesThermo Fisher Scientific. (2020). Neurobiology protocol handbook. 136.spa
dc.relation.referencesTimmer, R. T., & Sands, J. M. (1999). Lithium intoxication. Journal of the American Society of Nephrology: JASN, 10(3), 666-674. https://doi.org/10.1681/ASN.V103666spa
dc.relation.referencesTjaden, J., Pieczora, L., Wach, F., Theiss, C., & Theis, V. (2018). Cultivation of Purified Primary Purkinje Cells from Rat Cerebella. Cellular and Molecular Neurobiology, 38(7), 1399-1412. https://doi.org/10.1007/s10571-018-0606-5spa
dc.relation.referencesTondo, L., Alda, M., Bauer, M., Bergink, V., Grof, P., Hajek, T., Lewitka, U., Licht, R. W., Manchia, M., Müller-Oerlinghausen, B., Nielsen, R. E., Selo, M., Simhandl, C., & Baldessarini, R. J. (2019). Clinical use of lithium salts: Guide for users and prescribers. International Journal of Bipolar Disorders, 7. https://doi.org/10.1186/s40345-019-0151-2spa
dc.relation.referencesToselli, M., Masetto, S., Rossi, P., & Taglietti, V. (1991). Characterization of a Voltage-dependent Calcium Current in the Human Neuroblastoma Cell Line SH-SY5Y During Differentiation. The European Journal of Neuroscience, 3(6), 514-522. https://doi.org/10.1111/j.1460-9568.1991.tb00838.xspa
dc.relation.referencesToselli, M., Tosetti, P., & Taglietti, V. (1996). Functional changes in sodium conductances in the human neuroblastoma cell line SH-SY5Y during in vitro differentiation. Journal of Neurophysiology, 76(6), 3920-3927. https://doi.org/10.1152/jn.1996.76.6.3920spa
dc.relation.referencesTosetti, P., Taglietti, V., & Toselli, M. (1998). Functional changes in potassium conductances of the human neuroblastoma cell line SH-SY5Y during in vitro differentiation. Journal of Neurophysiology, 79(2), 648-658. https://doi.org/10.1152/jn.1998.79.2.648spa
dc.relation.referencesUhlén, M., Fagerberg, L., Hallström, B. M., Lindskog, C., Oksvold, P., Mardinoglu, A., Sivertsson, Å., Kampf, C., Sjöstedt, E., Asplund, A., Olsson, I., Edlund, K., Lundberg, E., Navani, S., Szigyarto, C. A.-K., Odeberg, J., Djureinovic, D., Takanen, J. O., Hober, S., … Pontén, F. (2015). Proteomics. Tissue-based map of the human proteome. Science (New York, N.Y.), 347(6220), 1260419. https://doi.org/10.1126/science.1260419spa
dc.relation.referencesUhlen, M., Oksvold, P., Fagerberg, L., Lundberg, E., Jonasson, K., Forsberg, M., Zwahlen, M., Kampf, C., Wester, K., Hober, S., Wernerus, H., Björling, L., & Ponten, F. (2010). Towards a knowledge-based Human Protein Atlas. Nature Biotechnology, 28(12), 1248-1250. https://doi.org/10.1038/nbt1210-1248spa
dc.relation.referencesVazquez, G., Wedel, B. J., Aziz, O., Trebak, M., & Putney, J. W. (2004). The mammalian TRPC cation channels. Biochimica Et Biophysica Acta, 1742(1-3), 21-36. https://doi.org/10.1016/j.bbamcr.2004.08.015spa
dc.relation.referencesVenkatachalam, K., Zheng, F., & Gill, D. L. (2003). Regulation of canonical transient receptor potential (TRPC) channel function by diacylglycerol and protein kinase C. The Journal of Biological Chemistry, 278(31), 29031-29040. https://doi.org/10.1074/jbc.M302751200spa
dc.relation.referencesVetter, I., Mozar, C. A., Durek, T., Wingerd, J. S., Alewood, P. F., Christie, M. J., & Lewis, R. J. (2012). Characterisation of Na(v) types endogenously expressed in human SH-SY5Y neuroblastoma cells. Biochemical Pharmacology, 83(11), 1562-1571. https://doi.org/10.1016/j.bcp.2012.02.022spa
dc.relation.referencesVieta, E., Berk, M., Schulze, T. G., Carvalho, A. F., Suppes, T., Calabrese, J. R., Gao, K., Miskowiak, K. W., & Grande, I. (2018). Bipolar disorders. Nature Reviews. Disease Primers, 4, 18008. https://doi.org/10.1038/nrdp.2018.8spa
dc.relation.referencesVines, C. M. (2012). Phospholipase C. En Md. S. Islam (Ed.), Calcium Signaling (pp. 235-254). Springer Netherlands. https://doi.org/10.1007/978-94-007-2888-2_10spa
dc.relation.referencesWalton, P. D., Airey, J. A., Sutko, J. L., Beck, C. F., Mignery, G. A., Südhof, T. C., Deerinck, T. J., & Ellisman, M. H. (1991). Ryanodine and inositol trisphosphate receptors coexist in avian cerebellar Purkinje neurons. The Journal of Cell Biology, 113(5), 1145-1157. https://doi.org/10.1083/jcb.113.5.1145spa
dc.relation.referencesWang, H. Y., & Friedman, E. (1999). Effects of lithium on receptor-mediated activation of G proteins in rat brain cortical membranes. Neuropharmacology, 38(3), 403-414. https://doi.org/10.1016/s0028-3908(98)00197-xspa
dc.relation.referencesWhitaker, M. (2006). Calcium at Fertilization and in Early Development. Physiological Reviews, 86(1), 25-88. https://doi.org/10.1152/physrev.00023.2005spa
dc.relation.referencesWomack, M. D., Walker, J. W., & Khodakhah, K. (2000). Impaired calcium release in cerebellar Purkinje neurons maintained in culture. The Journal of General Physiology, 115(3), 339-346. https://doi.org/10.1085/jgp.115.3.339spa
dc.relation.referencesWorley, P. F., Baraban, J. M., & Snyder, S. H. (1989). Inositol 1,4,5-trisphosphate receptor binding: Autoradiographic localization in rat brain. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 9(1), 339-346.spa
dc.relation.referencesYamakawa, Y., & Hirano, T. (1999). Contribution of mGluR1 to the basal activity of a mouse cerebellar Purkinje neuron. Neuroscience Letters, 277(2), 103-106. https://doi.org/10.1016/s0304-3940(99)00852-6spa
dc.relation.referencesYuzaki, M., & Mikoshiba, K. (1992). Pharmacological and immunocytochemical characterization of metabotropic glutamate receptors in cultured Purkinje cells. Journal of Neuroscience, 12(11), 4253-4263. https://doi.org/10.1523/JNEUROSCI.12-11-04253.1992spa
dc.relation.referencesZhang, C., Zhu, Q., & Hua, T. (2010). Aging of cerebellar Purkinje cells. Cell and Tissue Research, 341(3), 341-347. https://doi.org/10.1007/s00441-010-1016-2spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc570 - Biología::571 - Fisiología y temas relacionadosspa
dc.subject.decsEnzymeseng
dc.subject.decsEnzimasspa
dc.subject.decsPurkinje Cellseng
dc.subject.decsCélulas de Purkinjespa
dc.subject.lembNeuronseng
dc.subject.lembNeuronasspa
dc.subject.proposalLitiospa
dc.subject.proposalLithiumeng
dc.subject.proposalCélula de Purkinjespa
dc.subject.proposalPurkinje celleng
dc.subject.proposalTrastorno bipolarspa
dc.subject.proposalBipolar disordereng
dc.subject.proposalEmbrión de pollospa
dc.subject.proposalChick embryoeng
dc.subject.proposalProteína Gqspa
dc.subject.proposalGq proteineng
dc.subject.proposalCultivo celular primariospa
dc.subject.proposalPrimary cell cultureeng
dc.subject.proposalPhospholipase Ceng
dc.subject.proposalFosfolipasa Cspa
dc.titleImplementación de un cultivo neuronal primario como modelo para el estudio de mecanismos de modulación sobre la vía de señalización de los fosfoinositolesspa
dc.title.translatedImplementation of a primary neuronal culture as a model for the study of modulatory mechanisms on the phosphoinositide signaling pathwayeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1013659099.2021.pdf
Tamaño:
2.76 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Biología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: