Estudio de la formación de nanoestructuras de carbono a partir de alquitrán de gasificación de biomasa
dc.contributor.advisor | Chejne Janna, Farid | |
dc.contributor.advisor | Bastidas Barranco, Marlon José | |
dc.contributor.author | Martínez Smit, Carlos David | |
dc.contributor.cvlac | Martínez Smit, Carlos David | spa |
dc.contributor.googlescholar | Martinez-Smit, Carlos | spa |
dc.contributor.orcid | Martinez-Smit, Carlos | spa |
dc.contributor.researchgate | Martinez-Smit, Carlos | spa |
dc.contributor.researchgroup | Termodinámica Aplicada y Energías Alternativas | spa |
dc.date.accessioned | 2023-04-19T17:11:09Z | |
dc.date.available | 2023-04-19T17:11:09Z | |
dc.date.issued | 2023 | |
dc.description | ilustraciones, diagramas | spa |
dc.description.abstract | Durante la gasificación de la biomasa, se producen alquitranes junto con los gases. Estos compuestos pueden causar problemas operativos cuando se condensan, disminuyendo la eficiencia global del proceso. Se han estudiado muchos métodos para reducir o eliminar estos compuestos, siendo los más comunes las modificaciones del gasificador, los métodos de limpieza en húmedo y en seco, y el craqueo térmico o catalítico. El craqueo de estas moléculas produce más gases, pero pocos estudios se interesan por los depósitos de carbono formados, que en algunos casos pueden dar lugar a nanoestructuras de carbono. El presente trabajo propone una metodología que permite el aprovechamiento de estos compuestos para la formación de productos de valor agregado en sistemas de gasificación o pirólisis de biomasa. Se partió de un fraccionamiento para determinar el tamaño y tipo de moléculas presentes en las fracciones de los alquitranes. Asimismo, se plantea el uso de un catalizador soportado en el carbonizado que es subproducto de estos procesos termoquímicos de biomasa, para que al contacto con los volátiles o alquitranes se formen depósitos de carbono en él. Estas nuevas estructuras de carbono pueden aportar nuevas posibilidades para las tecnologías de gasificación y pirolisis de biomasa, lo que se puede traducir en un equilibrio técnico-económico y medioambiental de los procesos. (Textos tomado de la fuente) | spa |
dc.description.abstract | During biomass gasification, tars are produced along with the gases. These compounds can cause operational problems when they condense, decreasing the overall efficiency of the process. Many methods have been studied to reduce or eliminate these compounds, the most common being gasifier modifications, wet and dry-cleaning methods, and thermal or catalytic cracking. Cracking of these molecules produces more gases, but few studies are interested in the carbon deposits formed, which in some cases can give rise to carbon nanostructures. The present work proposes a methodology that allows the utilization of these compounds for the formation of value-added products in biomass gasification or pyrolysis systems. The starting point was a fractionation to determine the size and type of molecules present in the tar fractions. Also, the use of a catalyst supported on the carbonized by-product of these biomass thermochemical processes is proposed, so that upon contact with the volatiles or tars, carbon deposits are formed on it. These new carbon structures can provide new possibilities for biomass gasification and pyrolysis technologies, which can be translated into a techno-economic and environmental balance of the processes. | eng |
dc.description.curriculararea | Área curricular de Ingeniería Química e Ingeniería de Petróleos | spa |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctor en Ingeniería | spa |
dc.description.researcharea | Procesos termoquímicos de biomasa | spa |
dc.format.extent | xiv, 108 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/83740 | |
dc.language.iso | eng | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.faculty | Facultad de Minas | spa |
dc.publisher.place | Medellín, Colombia | spa |
dc.publisher.program | Medellín - Minas - Doctorado en Ingeniería - Sistemas Energéticos | spa |
dc.relation.indexed | RedCol | spa |
dc.relation.indexed | LaReferencia | spa |
dc.relation.references | Martinez-Smit, C.; Bastidas-Barranco, M.; Chejne, F.; García-Pérez, M. Perspectives of the Formation of Carbon Nanostructures from Biomass Gasification Tar Compounds─A Mini-Review. Energy and Fuels 2022, 36 (20), 12475–12490. https://doi.org/10.1021/acs.energyfuels.2c02171 | spa |
dc.relation.references | Pecha, B.; Arauzo, P.; Garcia-Perez, M. Impact of Combined Acid Washing and Acid Impregnation on the Pyrolysis of Douglas Fir Wood. J. Anal. Appl. Pyrolysis 2015, 114, 127–137. https://doi.org/10.1016/j.jaap.2015.05.014 | spa |
dc.relation.references | Zhao, L.; Cao, X.; Zheng, W.; Kan, Y. Phosphorus-Assisted Biomass Thermal Conversion: Reducing Carbon Loss and Improving Biochar Stability. PLoS One 2014, 9 (12), 1–15. https://doi.org/10.1371/journal.pone.0115373. | spa |
dc.relation.references | Valderrama Rios, M. L.; González, A. M.; Lora, E. E. S.; Almazán del Olmo, O. A. Reduction of Tar Generated during Biomass Gasification: A Review. Biomass and Bioenergy 2018, 108 (November 2017), 345–370. https://doi.org/10.1016/j.biombioe.2017.12.002. | spa |
dc.relation.references | Asadullah, M. Barriers of Commercial Power Generation Using Biomass Gasification Gas: A Review. Renew. Sustain. Energy Rev. 2014, 29, 201–215. https://doi.org/10.1016/j.rser.2013.08.074 | spa |
dc.relation.references | Ud Din, Z.; Zainal, Z. A. Tar Reduction Mechanism via Compression of Producer Gas. J. Clean. Prod. 2018, 184, 1–11. https://doi.org/10.1016/j.jclepro.2018.02.198. | spa |
dc.relation.references | Devi, L.; Ptasinski, K. J.; Janssen, F. J. J. G. A Review of the Primary Measures for Tar Elimination in Biomass Gasification Processes. Biomass and Bioenergy 2003, 24 (2), 125–140. https://doi.org/10.1016/S0961-9534(02)00102-2. | spa |
dc.relation.references | Rakesh, N.; Dasappa, S. A Critical Assessment of Tar Generated during Biomass Gasification - Formation, Evaluation, Issues and Mitigation Strategies. Renew. Sustain. Energy Rev. 2018, 91 (April), 1045–1064. https://doi.org/10.1016/j.rser.2018.04.017 | spa |
dc.relation.references | Anis, S.; Zainal, Z. A. Tar Reduction in Biomass Producer Gas via Mechanical, Catalytic and Thermal Methods: A Review. Renew. Sustain. Energy Rev. 2011, 15 (5), 2355–2377. https://doi.org/10.1016/j.rser.2011.02.018. | spa |
dc.relation.references | Hernández, J. J.; Ballesteros, R.; Aranda, G. Characterisation of Tars from Biomass Gasification: Effect of the Operating Conditions. Energy 2013, 50 (1), 333–342. https://doi.org/10.1016/j.energy.2012.12.005 | spa |
dc.relation.references | Nsaful, F.; Collard, F. X.; Görgens, J. F. Lignocellulose Thermal Pretreatment and Its Effect on Fuel Properties and Composition of the Condensable Products (Tar Precursors) from Char Devolatilization for Coal Substitution in Gasification Application. Fuel Process. Technol. 2018, 179 (March), 334–343. https://doi.org/10.1016/j.fuproc.2018.07.015. | spa |
dc.relation.references | Saleem, F.; Zhang, K.; Harvey, A. Plasma-Assisted Decomposition of a Biomass Gasification Tar Analogue into Lower Hydrocarbons in a Synthetic Product Gas Using a Dielectric Barrier Discharge Reactor. Fuel 2019, 235 (September 2018), 1412–1419. https://doi.org/10.1016/j.fuel.2018.08.010. | spa |
dc.relation.references | Chen, G.; Li, J.; Cheng, Z.; Yan, B.; Ma, W.; Yao, J. Investigation on Model Compound of Biomass Gasification Tar Cracking in Microwave Furnace: Comparative Research. Appl. Energy 2018, 217 (February), 249–257. https://doi.org/10.1016/j.apenergy.2018.02.028 | spa |
dc.relation.references | Warsita, A.; Al-attab, K. A.; Zainal, Z. A. Effect of Water Addition in a Microwave Assisted Thermal Cracking of Biomass Tar Models. Appl. Therm. Eng. 2017, 113, 722–730. https://doi.org/10.1016/j.applthermaleng.2016.11.076. | spa |
dc.relation.references | Guan, G.; Kaewpanha, M.; Hao, X.; Abudula, A. Catalytic Steam Reforming of Biomass Tar: Prospects and Challenges. Renew. Sustain. Energy Rev. 2016, 58, 450–461. https://doi.org/10.1016/j.rser.2015.12.316. | spa |
dc.relation.references | Norinaga, K.; Sakurai, Y.; Sato, R.; Hayashi, J. Numerical Simulation of Thermal Conversion of Aromatic Hydrocarbons in the Presence of Hydrogen and Steam Using a Detailed Chemical Kinetic Model. Chem. Eng. J. 2011, 178, 282–290. https://doi.org/10.1016/j.cej.2011.10.003. | spa |
dc.relation.references | Pallozzi, V.; Di Carlo, A.; Bocci, E.; Carlini, M. Combined Gas Conditioning and Cleaning for Reduction of Tars in Biomass Gasification. Biomass and Bioenergy 2018, 109 (July 2017), 85–90. https://doi.org/10.1016/j.biombioe.2017.12.023. | spa |
dc.relation.references | Dabai, F.; Paterson, N.; Millan, M.; Fennell, P.; Kandiyoti, R. Tar Formation and Destruction in a Fixed Bed Reactor Simulating Downdraft Gasification: Effect of Reaction Conditions on Tar Cracking Products. Energy and Fuels 2014, 28 (3), 1970–1982. https://doi.org/10.1021/ef402293m. | spa |
dc.relation.references | Oasmaa, A.; Peacocke, C. Properties and Fuel Use of Biomass-Derived Fast Pyrolysis Liquids. A Guide; 2010; Vol. 731. | spa |
dc.relation.references | Garcia-Perez, M.; Chaala, A.; Pakdel, H.; Kretschmer, D.; Roy, C. Characterization of Bio-Oils in Chemical Families. Biomass and Bioenergy 2007, 31 (4), 222–242. https://doi.org/10.1016/j.biombioe.2006.02.006. | spa |
dc.relation.references | Mohan, D.; Pittman, C. U.; Steele, P. H. Pyrolysis of Wood/Biomass for Bio-Oil: A Critical Review. Energy and Fuels 2006, 20 (3), 848–889. https://doi.org/10.1021/ef0502397. | spa |
dc.relation.references | Harman-Ware, A. E.; Ferrell, J. R. Methods and Challenges in the Determination of Molecular Weight Metrics of Bio-Oils. Energy and Fuels 2018, 32 (9), 8905–8920. https://doi.org/10.1021/acs.energyfuels.8b02113. | spa |
dc.relation.references | Baumhakl, C.; Karellas, S. Tar Analysis from Biomass Gasification by Means of Online Fluorescence Spectroscopy. Opt. Lasers Eng. 2011, 49 (7), 885–891. https://doi.org/10.1016/j.optlaseng.2011.02.015 | spa |
dc.relation.references | Wang, Y.; Mourant, D.; Hu, X.; Zhang, S.; Lievens, C.; Li, C. Z. Formation of Coke during the Pyrolysis of Bio-Oil. Fuel 2013, 108, 439–444. https://doi.org/10.1016/j.fuel.2012.11.052. | spa |
dc.relation.references | Zhou, S.; Xue, Y.; Cai, J.; Cui, C.; Ni, Z.; Zhou, Z. An Understanding for Improved Biomass Pyrolysis: Toward a Systematic Comparison of Different Acid Pretreatments. Chem. Eng. J. 2021, 411 (January), 128513. https://doi.org/10.1016/j.cej.2021.128513 | spa |
dc.relation.references | Hosseinzaei, B.; Hadianfard, M. J.; Ruiz-Rosas, R.; Rosas, J. M.; Rodríguez-Mirasol, J.; Cordero, T. Effect of Heating Rate and H3PO4 as Catalyst on the Pyrolysis of Agricultural Residues. J. Anal. Appl. Pyrolysis 2022, 168 (July). https://doi.org/10.1016/j.jaap.2022.105724 | spa |
dc.relation.references | Zuo, S.; Xiao, Z.; Yang, J. Evolution of Gaseous Products from Biomass Pyrolysis in the Presence of Phosphoric Acid. J. Anal. Appl. Pyrolysis 2012, 95, 236–240. https://doi.org/10.1016/j.jaap.2012.02.011. | spa |
dc.relation.references | Almodovar-Gómez, J. A. Biomass Acid Carbonization: A Strategy to Maximize Carbon Retention in Biochars, Washington State University, 2021. https://doi.org/https://doi.org/10.7273/000003333. | spa |
dc.relation.references | Rodriguez-Narvaez, O. M.; Peralta-Hernandez, J. M.; Goonetilleke, A.; Bandala, E. R. Biochar-Supported Nanomaterials for Environmental Applications. J. Ind. Eng. Chem. 2019, 78, 21–33. https://doi.org/10.1016/j.jiec.2019.06.008 | spa |
dc.relation.references | Kazemi Shariat Panahi, H.; Dehhaghi, M.; Ok, Y. S.; Nizami, A. S.; Khoshnevisan, B.; Mussatto, S. I.; Aghbashlo, M.; Tabatabaei, M.; Lam, S. S. A Comprehensive Review of Engineered Biochar: Production, Characteristics, and Environmental Applications. J. Clean. Prod. 2020, 270, 122462. https://doi.org/10.1016/j.jclepro.2020.122462. | spa |
dc.relation.references | Zhang, Z.; Zhu, Z.; Shen, B.; Liu, L. Insights into Biochar and Hydrochar Production and Applications: A Review. Energy 2019, 171, 581–598. https://doi.org/10.1016/j.energy.2019.01.035. | spa |
dc.relation.references | Low, Y. W.; Yee, K. F. A Review on Lignocellulosic Biomass Waste into Biochar-Derived Catalyst: Current Conversion Techniques, Sustainable Applications and Challenges. Biomass and Bioenergy 2021, 154 (September), 106245. https://doi.org/10.1016/j.biombioe.2021.106245. | spa |
dc.relation.references | Xiong, X.; Yu, I. K. M.; Cao, L.; Tsang, D. C. W.; Zhang, S.; Ok, Y. S. A Review of Biochar-Based Catalysts for Chemical Synthesis, Biofuel Production, and Pollution Control. Bioresour. Technol. 2017, 246, 254–270. https://doi.org/10.1016/j.biortech.2017.06.163. | spa |
dc.relation.references | Lee, J.; Kim, K. H.; Kwon, E. E. Biochar as a Catalyst. Renew. Sustain. Energy Rev. 2017, 77 (April), 70–79. https://doi.org/10.1016/j.rser.2017.04.00 | spa |
dc.relation.references | Zou, R.; Qian, M.; Wang, C.; Mateo, W.; Wang, Y.; Dai, L.; Lin, X.; Zhao, Y.; Huo, E.; Wang, L.; Zhang, X.; Kong, X.; Ruan, R.; Lei, H. Biochar: From by-Products of Agro-Industrial Lignocellulosic Waste to Tailored Carbon-Based Catalysts for Biomass Thermochemical Conversions. Chem. Eng. J. 2022, 441 (October 2021), 135972. https://doi.org/10.1016/j.cej.2022.135972. | spa |
dc.relation.references | Li, Q.; Wang, Q.; Kayamori, A.; Zhang, J. Experimental Study and Modeling of Heavy Tar Steam Reforming. Fuel Process. Technol. 2018, 178 (January), 180–188. https://doi.org/10.1016/j.fuproc.2018.05.020 | spa |
dc.relation.references | Saleem, F.; Zhang, K.; Harvey, A. Role of CO2 in the Conversion of Toluene as a Tar Surrogate in a Nonthermal Plasma Dielectric Barrier Discharge Reactor. Energy and Fuels 2018, 32 (4), 5164–5170. https://doi.org/10.1021/acs.energyfuels.7b04070 | spa |
dc.relation.references | Hu, S.; He, L.; Wang, Y.; Su, S.; Jiang, L.; Chen, Q.; Liu, Q.; Chi, H.; Xiang, J.; Sun, L. Effects of Oxygen Species from Fe Addition on Promoting Steam Reforming of Toluene over Fe–Ni/Al2O3catalysts. Int. J. Hydrogen Energy 2016, 41 (40), 17967–17975. https://doi.org/10.1016/j.ijhydene.2016.07.271. | spa |
dc.relation.references | Kaisalo, N.; Simell, P.; Lehtonen, J. Benzene Steam Reforming Kinetics in Biomass Gasification Gas Cleaning. Fuel 2016, 182, 696–703. https://doi.org/10.1016/j.fuel.2016.06.042 | spa |
dc.relation.references | Meng, J.; Zhao, Z.; Wang, X.; Zheng, A.; Zhang, D.; Huang, Z.; Zhao, K.; Wei, G.; Li, H. Comparative Study on Phenol and Naphthalene Steam Reforming over Ni-Fe Alloy Catalysts Supported on Olivine Synthesized by Different Methods. Energy Convers. Manag. 2018, 168 (March), 60–73. https://doi.org/10.1016/j.enconman.2018.04.112. | spa |
dc.relation.references | Xu, M.; Hu, H.; Yang, F.; Yang, Y.; Jiang, L.; Tang, H.; Li, X.; Xu, K.; Yao, H. Novel Findings in Conversion Mechanism of Toluene as Model Compound of Biomass Waste Tar in Molten Salt. J. Anal. Appl. Pyrolysis 2018, 134 (June), 274–280. https://doi.org/10.1016/j.jaap.2018.06.017 | spa |
dc.relation.references | Chen, T.; Liu, H.; Shi, P.; Chen, D.; Song, L.; He, H.; Frost, R. L. CO2 Reforming of Toluene as Model Compound of Biomass Tar on Ni/Palygorskite. Fuel 2013, 107, 699–705. https://doi.org/10.1016/j.fuel.2012.12.036 | spa |
dc.relation.references | Oh, G.; Park, S. Y.; Seo, M. W.; Ra, H. W.; Mun, T. Y.; Lee, J. G.; Yoon, S. J. Combined Steam-Dry Reforming of Toluene in Syngas over CaNiRu/Al 2 O 3 Catalysts. Int. J. Green Energy 2019, 16 (4), 333–349. https://doi.org/10.1080/15435075.2019.1566729 | spa |
dc.relation.references | Wang, T. J.; Chang, J.; Wu, C. Z.; Fu, Y.; Chen, Y. The Steam Reforming of Naphthalene over a Nickel-Dolomite Cracking Catalyst. Biomass and Bioenergy 2005, 28 (5), 508–514. https://doi.org/10.1016/j.biombioe.2004.11.006. | spa |
dc.relation.references | Li, L.; Song, Z.; Zhao, X.; Ma, C.; Kong, X.; Wang, F. Microwave-Induced Cracking and CO2 Reforming of Toluene on Biomass Derived Char. Chem. Eng. J. 2016, 284, 1308–1316. https://doi.org/10.1016/j.cej.2015.09.040. | spa |
dc.relation.references | Du, Z. Y.; Zhang, Z. H.; Xu, C.; Wang, X. B.; Li, W. Y. Low Temperature Steam Reforming of Toluene and Biomass Tar over Biochar-Supported Ni Nanoparticles. ACS Sustain. Chem. Eng. 2019, 7 (3), 3111–3119. https://doi.org/10.1021/acssuschemeng.8b04872. | spa |
dc.relation.references | Zhang, Y. L.; Luo, Y. H.; Wu, W. G.; Zhao, S. H.; Long, Y. F. Heterogeneous Cracking Reaction of Tar over Biomass Char, Using Naphthalene as Model Biomass Tar. Energy and Fuels 2014, 28 (5), 3129–3137. https://doi.org/10.1021/ef4024349. | spa |
dc.relation.references | Syed-Hassan, S. S. A.; Fuadi, F. A. Catalytic Steam Reforming of Biomass Tar Model Compound Using Nickel and Cobalt Catalysts Supported on Palm Kernel Shell Char. J. Chem. Eng. Japan 2016, 49 (1), 29–34. https://doi.org/10.1252/jcej.15we053 | spa |
dc.relation.references | Chen, X.; Ma, X.; Peng, X.; Chen, L.; Lu, X.; Tian, Y. Effect of Synthesis Temperature on Catalytic Activity and Coke Resistance of Ni/Bio-Char during CO2 Reforming of Tar. Int. J. Hydrogen Energy 2021, 46 (54), 27543–27554. https://doi.org/10.1016/j.ijhydene.2021.06.011. | spa |
dc.relation.references | Chen, X.; Ma, X.; Peng, X. Effect of Lattice Oxygen in Ni-Fe/Bio-Char on Filamentous Coke Resistance during CO2 Reforming of Tar. Fuel 2022, 307 (August 2021), 121878. https://doi.org/10.1016/j.fuel.2021.121878. | spa |
dc.relation.references | Deng, J.; You, Y.; Sahajwalla, V.; Joshi, R. K. Transforming Waste into Carbon-Based Nanomaterials. Carbon N. Y. 2016, 96, 105–115. https://doi.org/10.1016/j.carbon.2015.09.033 | spa |
dc.relation.references | REN21. Renewables 2018 Global Status Report; 2018. | spa |
dc.relation.references | Tina, G.; Gagliano, S.; Raiti, S. Hybrid Solar/Wind Power System Probabilistic Modelling for Long-Term Performance Assessment. Sol. Energy 2006, 80 (5), 578–588. https://doi.org/10.1016/j.solener.2005.03.013. | spa |
dc.relation.references | Balamurugan, P.; Ashok, S.; Jose, T. L. Optimal Operation of Biomass/Wind/Pv Hybrid Energy System for Rural Areas. Int. J. Green Energy 2009, 6 (1), 104–116. https://doi.org/10.1080/15435070802701892. | spa |
dc.relation.references | Kyriakarakos, G.; Dounis, A. I.; Rozakis, S.; Arvanitis, K. G.; Papadakis, G. Polygeneration Microgrids: A Viable Solution in Remote Areas for Supplying Power, Potable Water and Hydrogen as Transportation Fuel. Appl. Energy 2011, 88 (12), 4517–4526. https://doi.org/10.1016/j.apenergy.2011.05.038. | spa |
dc.relation.references | Yao, Z.; You, S.; Ge, T.; Wang, C. H. Biomass Gasification for Syngas and Biochar Co-Production: Energy Application and Economic Evaluation. Appl. Energy 2018, 209 (October 2017), 43–55. https://doi.org/10.1016/j.apenergy.2017.10.077. | spa |
dc.relation.references | Sikarwar, V. S.; Zhao, M.; Clough, P.; Yao, J.; Zhong, X.; Memon, M. Z.; Shah, N.; Anthony, E. J.; Fennell, P. S. An Overview of Advances in Biomass Gasification. Energy Environ. Sci. 2016, 9 (10), 2939–2977. https://doi.org/10.1039/c6ee00935b. | spa |
dc.relation.references | Widjaya, E. R.; Chen, G.; Bowtell, L.; Hills, C. Gasification of Non-Woody Biomass: A Literature Review. Renew. Sustain. Energy Rev. 2018, 89 (March), 184–193. https://doi.org/10.1016/j.rser.2018.03.023. | spa |
dc.relation.references | Zhang, Z.; Pang, S. Experimental Investigation of Tar Formation and Producer Gas Composition in Biomass Steam Gasification in a 100 kW Dual Fluidised Bed Gasifier. Renew. Energy 2019, 132, 416–424. https://doi.org/10.1016/j.renene.2018.07.144 | spa |
dc.relation.references | Bates, R.; Dölle, K. Syngas Use in Internal Combustion Engines - A Review. Adv. Res. 2017, 10 (1), 1–8. https://doi.org/10.9734/AIR/2017/32896 | spa |
dc.relation.references | Wiemann, S.; Hegner, R.; Atakan, B.; Schulz, C.; Kaiser, S. A. Combined Production of Power and Syngas in an Internal Combustion Engine – Experiments and Simulations in SI and HCCI Mode. Fuel 2018, 215 (November 2017), 40–45. https://doi.org/10.1016/j.fuel.2017.11.002. | spa |
dc.relation.references | De Filippis, P.; Scarsella, M.; De Caprariis, B.; Uccellari, R. Biomass Gasification Plant and Syngas Clean-up System. Energy Procedia 2015, 75, 240–245. https://doi.org/10.1016/j.egypro.2015.07.318. | spa |
dc.relation.references | Yang, D. P.; Li, Z.; Liu, M.; Zhang, X.; Chen, Y.; Xue, H.; Ye, E.; Luque, R. Biomass-Derived Carbonaceous Materials: Recent Progress in Synthetic Approaches, Advantages, and Applications. ACS Sustain. Chem. Eng. 2019, 7 (5), 4564–4585. https://doi.org/10.1021/acssuschemeng.8b06030. | spa |
dc.relation.references | Shen, D.; Zhu, L.; Wu, C.; Gu, S. State-of-the-Art on the Preparation, Modification, and Application of Biomass-Derived Carbon Quantum Dots. Ind. Eng. Chem. Res. 2020, 59 (51), 22017–22039. https://doi.org/10.1021/acs.iecr.0c04760 | spa |
dc.relation.references | Ma, Z. H.; Wei, X. Y.; Liu, G. H.; Liu, F. J.; Zong, Z. M. Value-Added Utilization of High-Temperature Coal Tar: A Review. Fuel 2021, 292 (May 2020), 119954. https://doi.org/10.1016/j.fuel.2020.119954 | spa |
dc.relation.references | Williams, P. T. Hydrogen and Carbon Nanotubes from Pyrolysis-Catalysis of Waste Plastics: A Review. Waste and Biomass Valorization 2021, 12 (1), 1–28. https://doi.org/10.1007/s12649-020-01054-w. | spa |
dc.relation.references | Zhou, Y.; He, J.; Chen, R.; Li, X. Recent Advances in Biomass-Derived Graphene and Carbon Nanotubes. Mater. Today Sustain. 2022, 18, 100138. https://doi.org/10.1016/j.mtsust.2022.100138. | spa |
dc.relation.references | Yao, D.; Zhang, Y.; Williams, P. T.; Yang, H.; Chen, H. Co-Production of Hydrogen and Carbon Nanotubes from Real-World Waste Plastics: Influence of Catalyst Composition and Operational Parameters. Appl. Catal. B Environ. 2018, 221 (June 2017), 584–597. https://doi.org/10.1016/j.apcatb.2017.09.035. | spa |
dc.relation.references | Gubernat, M.; Fraczek-Szczypta, A.; Tomala, J.; Blazewicz, S. Catalytic Effect of Montmorillonite Nanoparticles on Thermal Decomposition of Coal Tar Pitch to Carbon. J. Anal. Appl. Pyrolysis 2018, 130 (September 2017), 249–255. https://doi.org/10.1016/j.jaap.2018.01.023. | spa |
dc.relation.references | Song, J.; Zhang, H.; Wang, J.; Huang, L.; Zhang, S. High-Yield Production of Large Aspect Ratio Carbon Nanotubes via Catalytic Pyrolysis of Cheap Coal Tar Pitch. Carbon N. Y. 2018, 130, 701–713. https://doi.org/10.1016/j.carbon.2018.01.060 | spa |
dc.relation.references | He, L.; Hu, S.; Jiang, L.; Syed-Hassan, S. S. A.; Wang, Y.; Xu, K.; Su, S.; Xiang, J.; Xiao, L.; Chi, H.; Chen, X. Opposite Effects of Self-Growth Amorphous Carbon and Carbon Nanotubes on the Reforming of Toluene with Ni/Α-Al2O3for Hydrogen Production. Int. J. Hydrogen Energy 2017, 42 (21), 14439–14448. https://doi.org/10.1016/j.ijhydene.2017.04.230 | spa |
dc.relation.references | He, L.; Hu, S.; Jiang, L.; Liao, G.; Chen, X.; Han, H.; Xiao, L.; Ren, Q.; Wang, Y.; Su, S.; Xiang, J. Carbon Nanotubes Formation and Its Influence on Steam Reforming of Toluene over Ni/Al2O3catalysts: Roles of Catalyst Supports. Fuel Process. Technol. 2018, 176 (March), 7–14. https://doi.org/10.1016/j.fuproc.2018.03.007 | spa |
dc.relation.references | He, L.; Hu, S.; Jiang, L.; Liao, G.; Zhang, L.; Han, H.; Chen, X.; Wang, Y.; Xu, K.; Su, S.; Xiang, J. Co-Production of Hydrogen and Carbon Nanotubes from the Decomposition/Reforming of Biomass-Derived Organics over Ni/α-Al2O3 Catalyst: Performance of Different Compounds. Fuel 2017, 210 (May), 307–314. https://doi.org/10.1016/j.fuel.2017.08.080 | spa |
dc.relation.references | Heidenreich, S.; Müller, M.; Foscolo, P. U. Advanced Biomass Gasification: New Concepts for Efficiency Increase and Product Flexibility; 2016. https://doi.org/10.1016/C2015-0-01777-4 | spa |
dc.relation.references | Basu, P. Introduction. In Biomass Gasification Design Handbook; Elsevier, 2010; pp 1–25. https://doi.org/10.1016/B978-0-12-374988-8.00001-5. | spa |
dc.relation.references | Molino, A.; Larocca, V.; Chianese, S.; Musmarra, D. Biofuels Production by Biomass Gasification: A Review. Energies 2018, 11 (4). https://doi.org/10.3390/en11040811 | spa |
dc.relation.references | Susastriawan, A. A. P.; Saptoadi, H.; Purnomo. Small-Scale Downdraft Gasifiers for Biomass Gasification: A Review. Renew. Sustain. Energy Rev. 2017, 76 (February), 989–1003. https://doi.org/10.1016/j.rser.2017.03.112 | spa |
dc.relation.references | Sansaniwal, S. K.; Rosen, M. A.; Tyagi, S. K. Global Challenges in the Sustainable Development of Biomass Gasification: An Overview. Renew. Sustain. Energy Rev. 2017, 80 (May), 23–43. https://doi.org/10.1016/j.rser.2017.05.215 | spa |
dc.relation.references | Bukar, A. A.; Ben Oumarou, M.; Tela, B. M.; Eljummah, A. M.; Oumarou, M. Ben. Assessment of Biomass Gasification: A Review of Basic Design Considerations "Assessment of Biomass Gasification: A Review of Basic Design Considerations. Am. J. Energy Res. 2019, 7 (1), 1–14. https://doi.org/10.12691/ajer-7-1-1 | spa |
dc.relation.references | Sansaniwal, S. K.; Pal, K.; Rosen, M. A.; Tyagi, S. K. Recent Advances in the Development of Biomass Gasification Technology: A Comprehensive Review. Renew. Sustain. Energy Rev. 2017, 72 (May), 363–384. https://doi.org/10.1016/j.rser.2017.01.038 | spa |
dc.relation.references | Chan, F. L.; Tanksale, A. Review of Recent Developments in Ni-Based Catalysts for Biomass Gasification. Renew. Sustain. Energy Rev. 2014, 38, 428–438. https://doi.org/10.1016/j.rser.2014.06.011. | spa |
dc.relation.references | Maniatis, K.; Beenackers, A. A. C. M. Tar Protocols. IEA Bioenergy Gasification Task: Introduction. Biomass and Bioenergy 2000, 18 (1), 1–4. https://doi.org/10.1016/S0961-9534(99)00072-0 | spa |
dc.relation.references | Yu, H.; Zhang, Z.; Li, Z.; Chen, D. Characteristics of Tar Formation during Cellulose, Hemicellulose and Lignin Gasification. Fuel 2014, 118, 250–256. https://doi.org/10.1016/j.fuel.2013.10.080. | spa |
dc.relation.references | Font Palma, C. Modelling of Tar Formation and Evolution for Biomass Gasification: A Review. Appl. Energy 2013, 111, 129–141. https://doi.org/10.1016/j.apenergy.2013.04.082. | spa |
dc.relation.references | Reizer, E.; Viskolcz, B.; Fiser, B. Formation and Growth Mechanisms of Polycyclic Aromatic Hydrocarbons: A Mini-Review. Chemosphere. Elsevier Ltd March 1, 2022. https://doi.org/10.1016/j.chemosphere.2021.132793 | spa |
dc.relation.references | Ledesma, E. B.; Marsh, N. D.; Sandrowitz, A. K.; Wornat, M. J. Global Kinetic Rate Parameters for the Formation of Polycyclic Aromatic Hydrocarbons from the Pyrolyis of Catechol, a Model Compound Representative of Solid Fuel Moieties. Energy and Fuels 2002, 16 (6), 1331–1336. https://doi.org/10.1021/ef010261+. | spa |
dc.relation.references | Wornat, M. J.; Ledesma, E. B.; Marsh, N. D. Polycyclic Aromatic Hydrocarbons from the Pyrolysis of Catechol (Ortho-Dihydroxybenzene), a Model Fuel Representative of Entities in Tobacco, Coal, and Lignin. Fuel 2001, 80 (12), 1711–1726. https://doi.org/10.1016/S0016-2361(01)00057-6. | spa |
dc.relation.references | McClaine, J. W.; Wornat, M. J. Reaction Mechanisms Governing the Formation of Polycyclic Aromatic Hydrocarbons in the Supercritical Pyrolysis of Toluene: C28H 14 Isomers. J. Phys. Chem. C 2007, 111 (1), 86–95. https://doi.org/10.1021/jp063507q. | spa |
dc.relation.references | Georganta, E.; Rahman, R. K.; Raj, A.; Sinha, S. Growth of Polycyclic Aromatic Hydrocarbons (PAHs) by Methyl Radicals: Pyrene Formation from Phenanthrene. Combust. Flame 2017, 185, 129–141. https://doi.org/10.1016/j.combustflame.2017.07.011. | spa |
dc.relation.references | Frenklach, M.; Wang, H. Detailed Mechanism and Modeling of Soot Particle Formation. Springer Ser. Chem. Phys. 1994, No. 59, 165–192. https://doi.org/10.1007/978-3-642-85167-4_10. | spa |
dc.relation.references | Thomas, S.; Ledesma, E. B.; Wornat, M. J. The Effects of Oxygen on the Yields of the Thermal Decomposition Products of Catechol under Pyrolysis and Fuel-Rich Oxidation Conditions. Fuel 2007, 86 (16), 2581–2595. https://doi.org/10.1016/j.fuel.2007.02.003. | spa |
dc.relation.references | Thomas, S.; Wornat, M. J. The Effects of Oxygen on the Yields of Polycyclic Aromatic Hydrocarbons Formed during the Pyrolysis and Fuel-Rich Oxidation of Catechol. Fuel 2008, 87 (6), 768–781. https://doi.org/10.1016/j.fuel.2007.07.016. | spa |
dc.relation.references | Zhou, B.; Dichiara, A.; Zhang, Y.; Zhang, Q.; Zhou, J. Tar Formation and Evolution during Biomass Gasification: An Experimental and Theoretical Study. Fuel 2018, 234 (May), 944–953. https://doi.org/10.1016/j.fuel.2018.07.105. | spa |
dc.relation.references | Gasification - Wikipedia. https://en.wikipedia.org/wiki/Gasification (accessed 2022-06-24). | spa |
dc.relation.references | Li, C.; Suzuki, K. Tar Property, Analysis, Reforming Mechanism and Model for Biomass Gasification-An Overview. Renew. Sustain. Energy Rev. 2009, 13 (3), 594–604. https://doi.org/10.1016/j.rser.2008.01.009. | spa |
dc.relation.references | The Energy Research Centre of Netherlands (ECN). Website for tar dew point calculations of The Energy Research Centre of Netherlands (ECN). https://www.thersites.nl/default.aspx (accessed 2022-06-24). | spa |
dc.relation.references | Li, C.; Yamamoto, Y.; Suzuki, M.; Hirabayashi, D.; Suzuki, K. Study on the Combustion Kinetic Characteristics of Biomass Tar under Catalysts. J. Therm. Anal. Calorim. 2009, 95 (3), 991–997. https://doi.org/10.1007/s10973-008-9126-8. | spa |
dc.relation.references | Li, L.; Huang, S.; Wu, S.; Wu, Y.; Gao, J.; Gu, J.; Qin, X. Fuel Properties and Chemical Compositions of the Tar Produced from a 5 MW Industrial Biomass Gasification Power Generation Plant. J. Energy Inst. 2015, 88 (2), 126–135. https://doi.org/10.1016/j.joei.2014.07.002. | spa |
dc.relation.references | Song, K.; Zhang, H.; Wu, Q.; Zhang, Z.; Zhou, C.; Zhang, Q.; Lei, T. Structure and Thermal Properties of Tar from Gasification of Agricultural Crop Residue. J. Therm. Anal. Calorim. 2015, 119 (1), 27–35. https://doi.org/10.1007/s10973-014-4081-z. | spa |
dc.relation.references | Apicella, B.; Tregrossi, A.; Stanzione, F.; Ciajolo, A.; Russo, C. Analysis of Petroleum and Coal Tar Pitches as Large PAH. Chem. Eng. Trans. 2017, 57, 775–780. https://doi.org/10.3303/CET1757130. | spa |
dc.relation.references | Xiong, Z.; Syed-Hassan, S. S. A.; Hu, X.; Guo, J.; Qiu, J.; Zhao, X.; Su, S.; Hu, S.; Wang, Y.; Xiang, J. Pyrolysis of the Aromatic-Poor and Aromatic-Rich Fractions of Bio-Oil: Characterization of Coke Structure and Elucidation of Coke Formation Mechanism. Appl. Energy 2019, 239 (January), 981–990. https://doi.org/10.1016/j.apenergy.2019.01.253. | spa |
dc.relation.references | Zhang, Y.; Kajitani, S.; Ashizawa, M.; Oki, Y. Tar Destruction and Coke Formation during Rapid Pyrolysis and Gasification of Biomass in a Drop-Tube Furnace. Fuel 2010, 89 (2), 302–309. https://doi.org/10.1016/j.fuel.2009.08.045. | spa |
dc.relation.references | Wang, S.; Zhang, F.; Cai, Q.; Li, X.; Zhu, L.; Wang, Q.; Luo, Z. Catalytic Steam Reforming of Bio-Oil Model Compounds for Hydrogen Production over Coal Ash Supported Ni Catalyst. Int. J. Hydrogen Energy 2014, 39 (5), 2018–2025. https://doi.org/10.1016/j.ijhydene.2013.11.129 | spa |
dc.relation.references | Baker, R. T. K.; Barber, M. A.; Harris, P. S.; Feates, F. S.; Waite, R. J. Nucleation and Growth of Carbon Deposits from the Nickel Catalyzed Decomposition of Acetylene. J. Catal. 1972, 26 (1), 51–62. https://doi.org/10.1016/0021-9517(72)90032-2. | spa |
dc.relation.references | Tessonnier, J. P.; Su, D. S. Recent Progress on the Growth Mechanism of Carbon Nanotubes: A Review. ChemSusChem 2011, 4 (7), 824–847. https://doi.org/10.1002/cssc.201100175 | spa |
dc.relation.references | Burgos, J. C.; Reyna, H.; Yakobson, B. I.; Balbuena, P. B. Interplay of Catalyst Size and Metal-Carbon Interactions on the Growth of Single-Walled Carbon Nanotubes. J. Phys. Chem. C 2010, 114 (15), 6952–6958. https://doi.org/10.1021/jp911905p | spa |
dc.relation.references | He, L.; Liao, G.; Hu, S.; Jiang, L.; Han, H.; Li, H.; Ren, Q.; Mostafa, M. E.; Hu, X.; Wang, Y.; Su, S.; Xiang, J. Effect of Temperature on Multiple Competitive Processes for Co-Production of Carbon Nanotubes and Hydrogen during Catalytic Reforming of Toluene. Fuel 2020, 264 (December 2019), 116749. https://doi.org/10.1016/j.fuel.2019.116749. | spa |
dc.relation.references | Kontchouo, F. M. B.; Zhang, X.; Shao, Y.; Gao, G.; Zhang, S.; Wang, Z.; Hu, X. Steam Reforming of Guaiacol and N-Hexanol for Production of Hydrogen: Effects of Aromatic and Aliphatic Structures on Properties of the Coke. Mol. Catal. 2022, 528 (June). https://doi.org/10.1016/j.mcat.2022.112498. | spa |
dc.relation.references | Li, Q.; Yan, H.; Zhang, J.; Liu, Z. Effect of Hydrocarbons Precursors on the Formation of Carbon Nanotubes in Chemical Vapor Deposition. Carbon N. Y. 2004, 42 (4), 829–835. https://doi.org/10.1016/j.carbon.2004.01.070. | spa |
dc.relation.references | Świerczyński, D.; Libs, S.; Courson, C.; Kiennemann, A. Steam Reforming of Tar from a Biomass Gasification Process over Ni/Olivine Catalyst Using Toluene as a Model Compound. Appl. Catal. B Environ. 2007, 74 (3–4), 211–222. https://doi.org/10.1016/j.apcatb.2007.01.017. | spa |
dc.relation.references | Ozaki, J. I.; Takei, M.; Takakusagi, K.; Takahashi, N. Carbon Deposition on a Ni/Al 2O 3 Catalyst in Low-Temperature Gasification Using C 6-Hydrocarbons as Surrogate Biomass Tar. Fuel Process. Technol. 2012, 102, 30–34. https://doi.org/10.1016/j.fuproc.2012.04.021. | spa |
dc.relation.references | Wu, C.; Huang, J.; Williams, P. T. Carbon Nanotubes and Hydrogen Production from the Reforming of Toluene. Int. J. Hydrogen Energy 2013, 38 (21), 8790–8797. https://doi.org/10.1016/j.ijhydene.2013.05.028. | spa |
dc.relation.references | Artetxe, M.; Nahil, M. A.; Olazar, M.; Williams, P. T. Steam Reforming of Phenol as Biomass Tar Model Compound over Ni/Al2O3 Catalyst. Fuel 2016, 184, 629–636. https://doi.org/10.1016/j.fuel.2016.07.036 | spa |
dc.relation.references | Artetxe, M.; Alvarez, J.; Nahil, M. A.; Olazar, M.; Williams, P. T. Steam Reforming of Different Biomass Tar Model Compounds over Ni/Al2O3 Catalysts. Energy Convers. Manag. 2017, 136, 119–126. https://doi.org/10.1016/j.enconman.2016.12.092 | spa |
dc.relation.references | Lu, P.; Huang, Q.; Chi, Y.; Yan, J. Coking and Regeneration of Nickel Catalyst for the Cracking of Toluene As a Tar Model Compound. Energy and Fuels 2017, 31 (8), 8283–8290. https://doi.org/10.1021/acs.energyfuels.7b01218 | spa |
dc.relation.references | Chiang, H. L.; Zeng, L. X. Toluene Decomposition on Mesoporous Templates to Form Carbon Materials and Residue Characteristics. J. Alloys Compd. 2018, 748, 861–870. https://doi.org/10.1016/j.jallcom.2018.03.158. | spa |
dc.relation.references | Chen, M.; Li, X.; Wang, Y.; Wang, C.; Liang, T.; Zhang, H.; Yang, Z.; Zhou, Z.; Wang, J. Hydrogen Generation by Steam Reforming of Tar Model Compounds Using Lanthanum Modified Ni/Sepiolite Catalysts. Energy Convers. Manag. 2019, 184 (November 2018), 315–326. https://doi.org/10.1016/j.enconman.2019.01.066 | spa |
dc.relation.references | Zhang, Z.; Hu, X.; Zhang, L.; Yang, Y.; Li, Q.; Fan, H.; Liu, Q.; Wei, T.; Li, C. Z. Steam Reforming of Guaiacol over Ni/Al2O3 and Ni/SBA-15: Impacts of Support on Catalytic Behaviors of Nickel and Properties of Coke. Fuel Process. Technol. 2019, 191 (April), 138–151. https://doi.org/10.1016/j.fuproc.2019.04.001. | spa |
dc.relation.references | Zhang, Z.; Zhang, X.; Zhang, L.; Wang, Y.; Li, X.; Zhang, S.; Liu, Q.; Wei, T.; Gao, G.; Hu, X. Steam Reforming of Guaiacol over Ni/SiO2 Catalyst Modified with Basic Oxides: Impacts of Alkalinity on Properties of Coke. Energy Convers. Manag. 2020, 205 (August 2019). https://doi.org/10.1016/j.enconman.2019.112301. | spa |
dc.relation.references | He, L.; Hu, S.; Yin, X.; Xu, J.; Han, H.; Li, H.; Ren, Q.; Su, S.; Wang, Y.; Xiang, J. Promoting Effects of Fe-Ni Alloy on Co-Production of H2 and Carbon Nanotubes during Steam Reforming of Biomass Tar over Ni-Fe/α-Al2O3. Fuel 2020, 276, 118116. https://doi.org/10.1016/j.fuel.2020.118116 | spa |
dc.relation.references | Bkangmo Kontchouo, F. M.; Gao, Z.; Xianglin, X.; Wang, Y.; Sun, Y.; Zhang, S.; Hu, X. Steam Reforming of N-Hexane and Toluene: Understanding Impacts of Structural Difference of Aliphatic and Aromatic Hydrocarbons on Their Coking Behaviours. J. Environ. Chem. Eng. 2021, 9 (6). https://doi.org/10.1016/j.jece.2021.106383. | spa |
dc.relation.references | Jurado, L.; Papaefthimiou, V.; Thomas, S.; Roger, A. C. Low Temperature Toluene and Phenol Abatement as Tar Model Molecules over Ni-Based Catalysts: Influence of the Support and the Synthesis Method. Appl. Catal. B Environ. 2021, 297 (March). https://doi.org/10.1016/j.apcatb.2021.120479. | spa |
dc.relation.references | Wang, Y.; Lu, Z.; Chen, M.; Liang, D.; Wang, J. Hydrogen Production from Catalytic Steam Reforming of Toluene over Trace of Fe and Mn Doping Ni/Attapulgite. J. Anal. Appl. Pyrolysis 2022, 165 (June), 105584. https://doi.org/10.1016/j.jaap.2022.105584. | spa |
dc.relation.references | Xu, M.; Liu, Z.; Zhang, X.; Di, J.; Zhao, L.; Li, M.; Lu, Q. Catalytic Steam Reforming of Benzene as a Bio-Tar Model Compound over Ni–Fe/TiO 2 Catalysts. ACS Sustain. Chem. Eng. 2022, 10 (27), 8930–8939. https://doi.org/10.1021/acssuschemeng.2c02345. | spa |
dc.relation.references | Li, X.; Liu, P.; Lei, T.; Wu, Y.; Chen, W.; Wang, Z.; Shi, J.; Wu, S.; Li, Y.; Huang, S. Pyrolysis of Biomass Tar Model Compound with Various Ni-Based Catalysts: Influence of Promoters Characteristics on Hydrogen-Rich Gas Formation. Energy 2022, 244, 123137. https://doi.org/10.1016/j.energy.2022.123137. | spa |
dc.relation.references | Coll, R.; Salvadó, J.; Farriol, X.; Montané, D. Steam Reforming Model Compounds of Biomass Gasification Tars: Conversion at Different Operating Conditions and Tendency towards Coke Formation. Fuel Process. Technol. 2001, 74 (1), 19–31. https://doi.org/10.1016/S0378-3820(01)00214-4. | spa |
dc.relation.references | Hoyos-Palacio, L. M.; García, A. G.; Pérez-Robles, J. F.; González, J.; Martínez-Tejada, H. V. Catalytic Effect of Fe, Ni, Co and Mo on the CNTs Production. IOP Conf. Ser. Mater. Sci. Eng. 2014, 59 (1). https://doi.org/10.1088/1757-899X/59/1/012005. | spa |
dc.relation.references | Allaedini, G.; Masrinda Tasirin, S.; Aminayi, P.; Yaakob, Z.; Zainal MeorTalib, M. Carbon Nanotubes via Different Catalysts and the Important Factors That Affect Their Production: A Review on Catalyst Preferences. Int. J. Nano Dimens 2016, 7 (3), 186–185. https://doi.org/10.7508/ijnd.2016.03.002. | spa |
dc.relation.references | Chen, J.; Sun, J.; Wang, Y. Catalysts for Steam Reforming of Bio-Oil: A Review. Ind. Eng. Chem. Res. 2017, 56 (16), 4627–4637. https://doi.org/10.1021/acs.iecr.7b00600. | spa |
dc.relation.references | Omoriyekomwan, J. E.; Tahmasebi, A.; Zhang, J.; Yu, J. Formation of Hollow Carbon Nanofibers on Bio-Char during Microwave Pyrolysis of Palm Kernel Shell. Energy Convers. Manag. 2017, 148, 583–592. https://doi.org/10.1016/j.enconman.2017.06.022. | spa |
dc.relation.references | Zhang, J.; Tahmasebi, A.; Omoriyekomwan, J. E.; Yu, J. Direct Synthesis of Hollow Carbon Nanofibers on Bio-Char during Microwave Pyrolysis of Pine Nut Shell. J. Anal. Appl. Pyrolysis 2018, 130 (October 2017), 249–255. https://doi.org/10.1016/j.jaap.2018.01.016. | spa |
dc.relation.references | Zhang, J.; Tahmasebi, A.; Omoriyekomwan, J. E.; Yu, J. Production of Carbon Nanotubes on Bio-Char at Low Temperature via Microwave-Assisted CVD Using Ni Catalyst. Diam. Relat. Mater. 2019, 91 (September 2018), 98–106. https://doi.org/10.1016/j.diamond.2018.11.012 | spa |
dc.relation.references | Omoriyekomwan, J. E.; Tahmasebi, A.; Dou, J.; Wang, R.; Yu, J. A Review on the Recent Advances in the Production of Carbon Nanotubes and Carbon Nanofibers via Microwave-Assisted Pyrolysis of Biomass. Fuel Process. Technol. 2021, 214 (August 2020), 106686. https://doi.org/10.1016/j.fuproc.2020.106686 | spa |
dc.relation.references | Staš, M.; Kubička, D.; Chudoba, J.; Pospíšil, M. Overview of Analytical Methods Used for Chemical Characterization of Pyrolysis Bio-Oil. Energy and Fuels 2014, 28 (1), 385–402. https://doi.org/10.1021/ef402047y. | spa |
dc.relation.references | Xiong, Z.; Syed-Hassan, S. S. A.; Hu, X.; Guo, J.; Chen, Y.; Liu, Q.; Wang, Y.; Su, S.; Hu, S.; Xiang, J. Effects of the Component Interaction on the Formation of Aromatic Structures during the Pyrolysis of Bio-Oil at Various Temperatures and Heating Rates. Fuel 2018, 233 (June), 461–468. https://doi.org/10.1016/j.fuel.2018.06.064 | spa |
dc.relation.references | He, X.; Wang, T.; Lu, W.; Chen, Z.; Sun, K.; Liu, F.; Tang, M.; Goroncy, A. K.; Fan, M. Carbon Nanofiber Generation from the Precursor Containing Unprecedently High Percentage of Inexpensive Coal-Derived Carbon Material. J. Clean. Prod. 2019, 236, 117621. https://doi.org/10.1016/j.jclepro.2019.117621. | spa |
dc.relation.references | Jiang, L.; Hu, S.; Wang, Y.; Su, S.; Sun, L.; Xu, B.; He, L.; Xiang, J. Catalytic Effects of Inherent Alkali and Alkaline Earth Metallic Species on Steam Gasification of Biomass. Int. J. Hydrogen Energy 2015, 40 (45), 15460–15469. https://doi.org/10.1016/j.ijhydene.2015.08.111 | spa |
dc.relation.references | Min, Z.; Asadullah, M.; Yimsiri, P.; Zhang, S.; Wu, H.; Li, C. Z. Catalytic Reforming of Tar during Gasification. Part I. Steam Reforming of Biomass Tar Using Ilmenite as a Catalyst. Fuel 2011, 90 (5), 1847–1854. https://doi.org/10.1016/j.fuel.2010.12.039. | spa |
dc.relation.references | Min, Z.; Yimsiri, P.; Asadullah, M.; Zhang, S.; Li, C. Z. Catalytic Reforming of Tar during Gasification. Part II. Char as a Catalyst or as a Catalyst Support for Tar Reforming. Fuel 2011, 90 (7), 2545–2552. https://doi.org/10.1016/j.fuel.2011.03.027 | spa |
dc.relation.references | Montoya, J.; Pecha, B.; Roman, D.; Janna, F. C.; Garcia-Perez, M. Effect of Temperature and Heating Rate on Product Distribution from the Pyrolysis of Sugarcane Bagasse in a Hot Plate Reactor. J. Anal. Appl. Pyrolysis 2017, 123, 347–363. https://doi.org/10.1016/j.jaap.2016.11.008 | spa |
dc.relation.references | Sun, M.; Li, Y.; Sha, S.; Gao, J.; Wang, R.; Zhang, Y.; Hao, Q.; Chen, H.; Yao, Q.; Ma, X. The Composition and Structure of N-Hexane Insoluble-Hot Benzene Soluble Fraction and Hot Benzene Insoluble Fraction from Low Temperature Coal Tar. Fuel 2020, 262 (October 2019), 116511. https://doi.org/10.1016/j.fuel.2019.116511. | spa |
dc.relation.references | Xiong, Z.; Wang, Y.; Syed-Hassan, S. S. A.; Hu, X.; Han, H.; Su, S.; Xu, K.; Jiang, L.; Guo, J.; Berthold, E. E. S.; Hu, S.; Xiang, J. Effects of Heating Rate on the Evolution of Bio-Oil during Its Pyrolysis. Energy Convers. Manag. 2018, 163 (December 2017), 420–427. https://doi.org/10.1016/j.enconman.2018.02.078. | spa |
dc.relation.references | Sipilä, K.; Kuoppala, E.; Fagernäs, L.; Oasmaa, A. Characterization of Biomass-Based Flash Pyrolysis Oils. Biomass and Bioenergy 1998, 14 (2), 103–113. https://doi.org/10.1016/S0961-9534(97)10024-1. | spa |
dc.relation.references | Zhou, S.; Osman, N. B.; Li, H.; McDonald, A. G.; Mourant, D.; Li, C. Z.; Garcia-Perez, M. Effect of Sulfuric Acid Addition on the Yield and Composition of Lignin Derived Oligomers Obtained by the Auger and Fast Pyrolysis of Douglas-Fir Wood. Fuel 2013, 103, 512–523. https://doi.org/10.1016/j.fuel.2012.07.052 | spa |
dc.relation.references | Dieguez-Alonso, A.; Anca-Couce, A.; Zobel, N.; Behrendt, F. Understanding the Primary and Secondary Slow Pyrolysis Mechanisms of Holocellulose, Lignin and Wood with Laser-Induced Fluorescence. Fuel 2015, 153, 102–109. https://doi.org/10.1016/j.fuel.2015.02.097. | spa |
dc.relation.references | Barsotti, F.; Ghigo, G.; Vione, D. Computational Assessment of the Fluorescence Emission of Phenol Oligomers: A Possible Insight into the Fluorescence Properties of Humic-like Substances (HULIS). J. Photochem. Photobiol. A Chem. 2016, 315, 87–93. https://doi.org/10.1016/j.jphotochem.2015.09.012. | spa |
dc.relation.references | Stankovikj, F.; McDonald, A. G.; Helms, G. L.; Olarte, M. V.; Garcia-Perez, M. Characterization of the Water-Soluble Fraction of Woody Biomass Pyrolysis Oils. Energy and Fuels 2017, 31 (2), 1650–1664. https://doi.org/10.1021/acs.energyfuels.6b02950. | spa |
dc.relation.references | Esquivel-García, R.; Seker, A.; Abu-Lail, N. I.; García-Pérez, M.; Ochoa-Zarzosa, A.; García-Pérez, M.-E. Ethanolic Extract, Solvent Fractions, and Bio-Oils from Urtica Subincisa: Chemical Composition, Toxicity, and Anti-IL-17 Activity on HaCaT Keratinocytes. J. Herb. Med. 2022, 36 (June 2020), 100599. https://doi.org/10.1016/j.hermed.2022.100599. | spa |
dc.relation.references | Alostaz, M.; Biggar, K.; Donahue, R.; Hall, G. Petroleum Contamination Characterization and Quantification Using Fluorescence Emission-Excitation Matrices (EEMs) and Parallel Factor Analysis (PARAFAC). J. Environ. Eng. Sci. 2008, 7 (3), 183–197. https://doi.org/10.1139/S07-049. | spa |
dc.relation.references | Borgmeyer, J.; Behrendt, F. On-Line Tar Monitoring Using Light-Induced Fluorescence: A Setup for Continuous Operation in a Biomass Gasification Plant Environment. Opt. Laser Technol. 2020, 123 (August 2019), 105906. https://doi.org/10.1016/j.optlastec.2019.105906. | spa |
dc.relation.references | Cao, F.; Xia, S.; Yang, X.; Wang, C.; Wang, Q.; Cui, C.; Zheng, A. Lowering the Pyrolysis Temperature of Lignocellulosic Biomass by H2SO4 Loading for Enhancing the Production of Platform Chemicals. Chem. Eng. J. 2020, 385 (October 2019), 123809. https://doi.org/10.1016/j.cej.2019.123809. | spa |
dc.relation.references | Amalina, F.; Razak, A. S. A.; Krishnan, S.; Sulaiman, H.; Zularisam, A. W.; Nasrullah, M. Biochar Production Techniques Utilizing Biomass Waste-Derived Materials and Environmental Applications – A Review. J. Hazard. Mater. Adv. 2022, 7 (June), 100134. https://doi.org/10.1016/j.hazadv.2022.100134. | spa |
dc.relation.references | Wang, Z.; Pecha, B.; Westerhof, R. J. M.; Kersten, S. R. A.; Li, C. Z.; McDonald, A. G.; Garcia-Perez, M. Effect of Cellulose Crystallinity on Solid/Liquid Phase Reactions Responsible for the Formation of Carbonaceous Residues during Pyrolysis. Ind. Eng. Chem. Res. 2014, 53 (8), 2940–2955. https://doi.org/10.1021/ie4014259. | spa |
dc.relation.references | Ayiania, M.; Carbajal-Gamarra, F. M.; Garcia-Perez, T.; Frear, C.; Suliman, W.; Garcia-Perez, M. Production and Characterization of H2S and PO43− Carbonaceous Adsorbents from Anaerobic Digested Fibers. Biomass and Bioenergy 2019, 120, 339–349. https://doi.org/10.1016/j.biombioe.2018.11.028. | spa |
dc.relation.references | Pereira Ferraz, G.; Frear, C.; Pelaez-Samaniego, M. R.; Englund, K.; Garcia-Perez, M. Hot Water Extraction of Anaerobic Digested Dairy Fiber for Wood Plastic Composite Manufacturing. BioResources 2016, 11 (4), 8139-8154. https://doi.org/10.15376/biores.11.4.8139-8154. | spa |
dc.relation.references | Mainali, K.; Garcia-Perez, M. Effect of H3PO4 and NaOH Additives on the Co-Carbonization of Cellulose and N-Containing Compounds to Produce N-Doped Chars. J. Anal. Appl. Pyrolysis 2023, 169 (October 2022), 105837. https://doi.org/10.1016/j.jaap.2022.105837. | spa |
dc.relation.references | Chu, G.; Zhao, J.; Huang, Y.; Zhou, D.; Liu, Y.; Wu, M.; Peng, H.; Zhao, Q.; Pan, B.; Steinberg, C. E. W. Phosphoric Acid Pretreatment Enhances the Specific Surface Areas of Biochars by Generation of Micropores. Environ. Pollut. 2018, 240, 1–9. https://doi.org/10.1016/j.envpol.2018.04.003 | spa |
dc.relation.references | Kekäläinen, T.; Venäläinen, T.; Jänis, J. Characterization of Birch Wood Pyrolysis Oils by Ultrahigh-Resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry: Insights into Thermochemical Conversion. Energy and Fuels. 2014, pp 4596–4602. https://doi.org/10.1021/ef500849z | spa |
dc.relation.references | Zhang, J.; Sekyere, D. T.; Niwamanya, N.; Huang, Y.; Barigye, A.; Tian, Y. Study on the Staged and Direct Fast Pyrolysis Behavior of Waste Pine Sawdust Using High Heating Rate TG-FTIR and Py-GC/MS. ACS Omega 2022, 7 (5), 4245–4256. https://doi.org/10.1021/acsomega.1c05907. | spa |
dc.relation.references | Li, C.; Li, Y.; Jiang, Y.; Zhang, L.; Zhang, S.; Ding, K.; Li, B.; Wang, S.; Hu, X. Staged Pyrolysis of Biomass to Probe the Evolution of Fractions of Bio-Oil. Energy 2023, 263 (PD), 125873. https://doi.org/10.1016/j.energy.2022.125873 | spa |
dc.relation.references | Nowakowski, D. J.; Woodbridge, C. R.; Jones, J. M. Phosphorus Catalysis in the Pyrolysis Behaviour of Biomass. J. Anal. Appl. Pyrolysis 2008, 83 (2), 197–204. https://doi.org/10.1016/j.jaap.2008.08.003. | spa |
dc.relation.references | Ren, J.; Cao, J. P.; Zhao, X. Y. Fabrication Strategies of Ni-Based Catalysts in Reforming of Biomass Tar/Tar Model Compounds. Appl. Energy Combust. Sci. 2022, 9, 100053. https://doi.org/10.1016/j.jaecs.2021.100053. | spa |
dc.relation.references | Altin, O.; Eser, S. Analysis of Solid Deposits from Thermal Stressing of a JP-8 Fuel on Different Tube Surfaces in a Flow Reactor. Ind. Eng. Chem. Res. 2001, 40 (2), 596–603. https://doi.org/10.1021/ie0004491 | spa |
dc.relation.references | Liu, H.; Ye, C.; Ye, Z.; Zhu, Z.; Wang, Q.; Tang, Y.; Luo, G.; Guo, W.; Dong, C.; Li, G.; Xu, Y.; Wang, Q. Catalytic Cracking and Catalyst Deactivation/Regeneration Characteristics of Fe-Loaded Biochar Catalysts for Tar Model Compound. Fuel 2023, 334 (P2), 126810. https://doi.org/10.1016/j.fuel.2022.126810. | spa |
dc.relation.references | Zhang, M.; Fan, G.; Liu, N.; Yang, M.; Li, X.; Wu, Y. Tar Removal in Pine Pyrolysis Catalyzed by Bio-Char Supported Nickel Catalyst. J. Anal. Appl. Pyrolysis 2023, 169 (December 2022), 105843. https://doi.org/10.1016/j.jaap.2022.105843. | spa |
dc.relation.references | Chen, X.; Ma, X.; Peng, X. Role of Reforming Agent in Filamentous Coke Deposition on Ni/Bio-Char Catalyst during Non-Oxygenates Tar Reforming. Appl. Catal. A Gen. 2022, 630 (381), 118446. https://doi.org/10.1016/j.apcata.2021.118446. | spa |
dc.relation.references | Chaturvedi, P.; Verma, P.; Singh, A.; Chaudhary, P. K.; Harsh; Basu, P. K. Carbon Nanotube-Purification and Sorting Protocols. Def. Sci. J. 2008, 58 (5), 591–599. https://doi.org/10.14429/dsj.58.1694. | spa |
dc.relation.references | Hou, P.-X.; Liu, C.; Cheng, H.-M. Purification of Carbon Nanotubes. Carbon N. Y. 2008, 46 (15), 2003–2025. https://doi.org/10.1016/j.carbon.2008.09.009. | spa |
dc.relation.references | Das, R. Nanohybrid Catalyst Based on Carbon Nanotube; 2017. https://doi.org/10.1007/978-3-319-58151-4. | spa |
dc.relation.references | Aghaei, A.; Shaterian, M.; Hosseini-Monfared, H.; Farokhi, A. Single-Walled Carbon Nanotubes: Synthesis and Quantitative Purification Evaluation by Acid/Base Treatment for High Carbon Impurity Elimination. Chem. Pap. 2022, 77 (1), 249–258. https://doi.org/10.1007/s11696-022-02478-5. | spa |
dc.relation.references | Huber, T. A.; Kopac, M. C.; Chow, C. The Quantitative Removal of Metal Catalyst from Multi-Walled Carbon Nanotubes with Minimal Tube Damage. Can. J. Chem. 2008, 86 (12), 1138–1143. https://doi.org/10.1139/V08-160 | spa |
dc.relation.references | Ling, X.; Wei, Y.; Zou, L.; Xu, S. The Effect of Different Order of Purification Treatments on the Purity of Multiwalled Carbon Nanotubes. Appl. Surf. Sci. 2013, 276, 159–166. https://doi.org/10.1016/j.apsusc.2013.03.056 | spa |
dc.relation.references | Stobinski, L.; Lesiak, B.; Kövér, L.; Tóth, J.; Biniak, S.; Trykowski, G.; Judek, J. Multiwall Carbon Nanotubes Purification and Oxidation by Nitric Acid Studied by the FTIR and Electron Spectroscopy Methods. J. Alloys Compd. 2010, 501 (1), 77–84. https://doi.org/10.1016/j.jallcom.2010.04.032. | spa |
dc.relation.references | Domagała, K.; Borlaf, M.; Traber, J.; Kata, D.; Graule, T. Purification and Functionalisation of Multi-Walled Carbon Nanotubes. Mater. Lett. 2019, 253, 272–275. https://doi.org/10.1016/j.matlet.2019.06.085 | spa |
dc.relation.references | Safo, I. A.; Liu, F.; Xie, K.; Xia, W. Oxidation and Stability of Multi-Walled Carbon Nanotubes in Hydrogen Peroxide Solution. Mater. Chem. Phys. 2018, 214, 472–481. https://doi.org/10.1016/j.matchemphys.2018.05.001. | spa |
dc.relation.references | Morsy, M.; Helal, M.; El-Okr, M.; Ibrahim, M. Preparation, Purification and Characterization of High Purity Multi-Wall Carbon Nanotube. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 2014, 132, 594–598. https://doi.org/10.1016/j.saa.2014.04.122 | spa |
dc.relation.references | Barkauskas, J.; Stankevičiene, I.; Selskis, A. A Novel Purification Method of Carbon Nanotubes by High-Temperature Treatment with Tetrachloromethane. Sep. Purif. Technol. 2010, 71 (3), 331–336. https://doi.org/10.1016/j.seppur.2009.12.019 | spa |
dc.relation.references | Berrada, N.; Desforges, A.; Bellouard, C.; Flahaut, E.; Gleize, J.; Ghanbaja, J.; Vigolo, B. Protecting Carbon Nanotubes from Oxidation for Selective Carbon Impurity Elimination. J. Phys. Chem. C 2019, 123 (23), 14725–14733. https://doi.org/10.1021/acs.jpcc.8b12554. | spa |
dc.relation.references | Goak, J. C.; Lim, C. J.; Hyun, Y.; Cho, E.; Seo, Y.; Lee, N. Efficient Gas-Phase Purification Using Chloroform for Metal-Free Multi-Walled Carbon Nanotubes. Carbon N. Y. 2019, 148, 258–266. https://doi.org/10.1016/j.carbon.2019.03.077 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 660 - Ingeniería química | spa |
dc.subject.ddc | 540 - Química y ciencias afines::547 - Química orgánica | spa |
dc.subject.lemb | Carbón - Gasificación | |
dc.subject.lemb | Coal gasification | |
dc.subject.proposal | Biomasa | spa |
dc.subject.proposal | Alquitranes | spa |
dc.subject.proposal | Gasificación | spa |
dc.subject.proposal | Pirólisis | spa |
dc.subject.proposal | Nanoestructuras | spa |
dc.subject.proposal | Carbonizado | spa |
dc.subject.proposal | Biomass | eng |
dc.subject.proposal | Tar | eng |
dc.subject.proposal | Gasification | eng |
dc.subject.proposal | Pyrolysis | eng |
dc.subject.proposal | Carbon nanostructures | eng |
dc.subject.proposal | Biochar | eng |
dc.title | Estudio de la formación de nanoestructuras de carbono a partir de alquitrán de gasificación de biomasa | spa |
dc.title.translated | Study of the formation of carbon nanostructures from biomass gasification tar | eng |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TD | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.awardtitle | Poligeneración: La Biomasa, precursor para nuevos productos de valor agregado y oportunidad para garantizar un sistema eléctrico confiable y sustentable | spa |
oaire.fundername | Minciencias | spa |
oaire.fundername | Universidad Nacional de Colombia | spa |
oaire.fundername | Universidad de La Guajira | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 8358492.2023.pdf
- Tamaño:
- 3.34 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Doctorado en Ingeniería - Sistemas Energéticos
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: