Estudio de la formación de nanoestructuras de carbono a partir de alquitrán de gasificación de biomasa

dc.contributor.advisorChejne Janna, Farid
dc.contributor.advisorBastidas Barranco, Marlon José
dc.contributor.authorMartínez Smit, Carlos David
dc.contributor.cvlacMartínez Smit, Carlos Davidspa
dc.contributor.googlescholarMartinez-Smit, Carlosspa
dc.contributor.orcidMartinez-Smit, Carlosspa
dc.contributor.researchgateMartinez-Smit, Carlosspa
dc.contributor.researchgroupTermodinámica Aplicada y Energías Alternativasspa
dc.date.accessioned2023-04-19T17:11:09Z
dc.date.available2023-04-19T17:11:09Z
dc.date.issued2023
dc.descriptionilustraciones, diagramasspa
dc.description.abstractDurante la gasificación de la biomasa, se producen alquitranes junto con los gases. Estos compuestos pueden causar problemas operativos cuando se condensan, disminuyendo la eficiencia global del proceso. Se han estudiado muchos métodos para reducir o eliminar estos compuestos, siendo los más comunes las modificaciones del gasificador, los métodos de limpieza en húmedo y en seco, y el craqueo térmico o catalítico. El craqueo de estas moléculas produce más gases, pero pocos estudios se interesan por los depósitos de carbono formados, que en algunos casos pueden dar lugar a nanoestructuras de carbono. El presente trabajo propone una metodología que permite el aprovechamiento de estos compuestos para la formación de productos de valor agregado en sistemas de gasificación o pirólisis de biomasa. Se partió de un fraccionamiento para determinar el tamaño y tipo de moléculas presentes en las fracciones de los alquitranes. Asimismo, se plantea el uso de un catalizador soportado en el carbonizado que es subproducto de estos procesos termoquímicos de biomasa, para que al contacto con los volátiles o alquitranes se formen depósitos de carbono en él. Estas nuevas estructuras de carbono pueden aportar nuevas posibilidades para las tecnologías de gasificación y pirolisis de biomasa, lo que se puede traducir en un equilibrio técnico-económico y medioambiental de los procesos. (Textos tomado de la fuente)spa
dc.description.abstractDuring biomass gasification, tars are produced along with the gases. These compounds can cause operational problems when they condense, decreasing the overall efficiency of the process. Many methods have been studied to reduce or eliminate these compounds, the most common being gasifier modifications, wet and dry-cleaning methods, and thermal or catalytic cracking. Cracking of these molecules produces more gases, but few studies are interested in the carbon deposits formed, which in some cases can give rise to carbon nanostructures. The present work proposes a methodology that allows the utilization of these compounds for the formation of value-added products in biomass gasification or pyrolysis systems. The starting point was a fractionation to determine the size and type of molecules present in the tar fractions. Also, the use of a catalyst supported on the carbonized by-product of these biomass thermochemical processes is proposed, so that upon contact with the volatiles or tars, carbon deposits are formed on it. These new carbon structures can provide new possibilities for biomass gasification and pyrolysis technologies, which can be translated into a techno-economic and environmental balance of the processes.eng
dc.description.curricularareaÁrea curricular de Ingeniería Química e Ingeniería de Petróleosspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.researchareaProcesos termoquímicos de biomasaspa
dc.format.extentxiv, 108 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83740
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Sistemas Energéticosspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesMartinez-Smit, C.; Bastidas-Barranco, M.; Chejne, F.; García-Pérez, M. Perspectives of the Formation of Carbon Nanostructures from Biomass Gasification Tar Compounds─A Mini-Review. Energy and Fuels 2022, 36 (20), 12475–12490. https://doi.org/10.1021/acs.energyfuels.2c02171spa
dc.relation.referencesPecha, B.; Arauzo, P.; Garcia-Perez, M. Impact of Combined Acid Washing and Acid Impregnation on the Pyrolysis of Douglas Fir Wood. J. Anal. Appl. Pyrolysis 2015, 114, 127–137. https://doi.org/10.1016/j.jaap.2015.05.014spa
dc.relation.referencesZhao, L.; Cao, X.; Zheng, W.; Kan, Y. Phosphorus-Assisted Biomass Thermal Conversion: Reducing Carbon Loss and Improving Biochar Stability. PLoS One 2014, 9 (12), 1–15. https://doi.org/10.1371/journal.pone.0115373.spa
dc.relation.referencesValderrama Rios, M. L.; González, A. M.; Lora, E. E. S.; Almazán del Olmo, O. A. Reduction of Tar Generated during Biomass Gasification: A Review. Biomass and Bioenergy 2018, 108 (November 2017), 345–370. https://doi.org/10.1016/j.biombioe.2017.12.002.spa
dc.relation.referencesAsadullah, M. Barriers of Commercial Power Generation Using Biomass Gasification Gas: A Review. Renew. Sustain. Energy Rev. 2014, 29, 201–215. https://doi.org/10.1016/j.rser.2013.08.074spa
dc.relation.referencesUd Din, Z.; Zainal, Z. A. Tar Reduction Mechanism via Compression of Producer Gas. J. Clean. Prod. 2018, 184, 1–11. https://doi.org/10.1016/j.jclepro.2018.02.198.spa
dc.relation.referencesDevi, L.; Ptasinski, K. J.; Janssen, F. J. J. G. A Review of the Primary Measures for Tar Elimination in Biomass Gasification Processes. Biomass and Bioenergy 2003, 24 (2), 125–140. https://doi.org/10.1016/S0961-9534(02)00102-2.spa
dc.relation.referencesRakesh, N.; Dasappa, S. A Critical Assessment of Tar Generated during Biomass Gasification - Formation, Evaluation, Issues and Mitigation Strategies. Renew. Sustain. Energy Rev. 2018, 91 (April), 1045–1064. https://doi.org/10.1016/j.rser.2018.04.017spa
dc.relation.referencesAnis, S.; Zainal, Z. A. Tar Reduction in Biomass Producer Gas via Mechanical, Catalytic and Thermal Methods: A Review. Renew. Sustain. Energy Rev. 2011, 15 (5), 2355–2377. https://doi.org/10.1016/j.rser.2011.02.018.spa
dc.relation.referencesHernández, J. J.; Ballesteros, R.; Aranda, G. Characterisation of Tars from Biomass Gasification: Effect of the Operating Conditions. Energy 2013, 50 (1), 333–342. https://doi.org/10.1016/j.energy.2012.12.005spa
dc.relation.referencesNsaful, F.; Collard, F. X.; Görgens, J. F. Lignocellulose Thermal Pretreatment and Its Effect on Fuel Properties and Composition of the Condensable Products (Tar Precursors) from Char Devolatilization for Coal Substitution in Gasification Application. Fuel Process. Technol. 2018, 179 (March), 334–343. https://doi.org/10.1016/j.fuproc.2018.07.015.spa
dc.relation.referencesSaleem, F.; Zhang, K.; Harvey, A. Plasma-Assisted Decomposition of a Biomass Gasification Tar Analogue into Lower Hydrocarbons in a Synthetic Product Gas Using a Dielectric Barrier Discharge Reactor. Fuel 2019, 235 (September 2018), 1412–1419. https://doi.org/10.1016/j.fuel.2018.08.010.spa
dc.relation.referencesChen, G.; Li, J.; Cheng, Z.; Yan, B.; Ma, W.; Yao, J. Investigation on Model Compound of Biomass Gasification Tar Cracking in Microwave Furnace: Comparative Research. Appl. Energy 2018, 217 (February), 249–257. https://doi.org/10.1016/j.apenergy.2018.02.028spa
dc.relation.referencesWarsita, A.; Al-attab, K. A.; Zainal, Z. A. Effect of Water Addition in a Microwave Assisted Thermal Cracking of Biomass Tar Models. Appl. Therm. Eng. 2017, 113, 722–730. https://doi.org/10.1016/j.applthermaleng.2016.11.076.spa
dc.relation.referencesGuan, G.; Kaewpanha, M.; Hao, X.; Abudula, A. Catalytic Steam Reforming of Biomass Tar: Prospects and Challenges. Renew. Sustain. Energy Rev. 2016, 58, 450–461. https://doi.org/10.1016/j.rser.2015.12.316.spa
dc.relation.referencesNorinaga, K.; Sakurai, Y.; Sato, R.; Hayashi, J. Numerical Simulation of Thermal Conversion of Aromatic Hydrocarbons in the Presence of Hydrogen and Steam Using a Detailed Chemical Kinetic Model. Chem. Eng. J. 2011, 178, 282–290. https://doi.org/10.1016/j.cej.2011.10.003.spa
dc.relation.referencesPallozzi, V.; Di Carlo, A.; Bocci, E.; Carlini, M. Combined Gas Conditioning and Cleaning for Reduction of Tars in Biomass Gasification. Biomass and Bioenergy 2018, 109 (July 2017), 85–90. https://doi.org/10.1016/j.biombioe.2017.12.023.spa
dc.relation.referencesDabai, F.; Paterson, N.; Millan, M.; Fennell, P.; Kandiyoti, R. Tar Formation and Destruction in a Fixed Bed Reactor Simulating Downdraft Gasification: Effect of Reaction Conditions on Tar Cracking Products. Energy and Fuels 2014, 28 (3), 1970–1982. https://doi.org/10.1021/ef402293m.spa
dc.relation.referencesOasmaa, A.; Peacocke, C. Properties and Fuel Use of Biomass-Derived Fast Pyrolysis Liquids. A Guide; 2010; Vol. 731.spa
dc.relation.referencesGarcia-Perez, M.; Chaala, A.; Pakdel, H.; Kretschmer, D.; Roy, C. Characterization of Bio-Oils in Chemical Families. Biomass and Bioenergy 2007, 31 (4), 222–242. https://doi.org/10.1016/j.biombioe.2006.02.006.spa
dc.relation.referencesMohan, D.; Pittman, C. U.; Steele, P. H. Pyrolysis of Wood/Biomass for Bio-Oil: A Critical Review. Energy and Fuels 2006, 20 (3), 848–889. https://doi.org/10.1021/ef0502397.spa
dc.relation.referencesHarman-Ware, A. E.; Ferrell, J. R. Methods and Challenges in the Determination of Molecular Weight Metrics of Bio-Oils. Energy and Fuels 2018, 32 (9), 8905–8920. https://doi.org/10.1021/acs.energyfuels.8b02113.spa
dc.relation.referencesBaumhakl, C.; Karellas, S. Tar Analysis from Biomass Gasification by Means of Online Fluorescence Spectroscopy. Opt. Lasers Eng. 2011, 49 (7), 885–891. https://doi.org/10.1016/j.optlaseng.2011.02.015spa
dc.relation.referencesWang, Y.; Mourant, D.; Hu, X.; Zhang, S.; Lievens, C.; Li, C. Z. Formation of Coke during the Pyrolysis of Bio-Oil. Fuel 2013, 108, 439–444. https://doi.org/10.1016/j.fuel.2012.11.052.spa
dc.relation.referencesZhou, S.; Xue, Y.; Cai, J.; Cui, C.; Ni, Z.; Zhou, Z. An Understanding for Improved Biomass Pyrolysis: Toward a Systematic Comparison of Different Acid Pretreatments. Chem. Eng. J. 2021, 411 (January), 128513. https://doi.org/10.1016/j.cej.2021.128513spa
dc.relation.referencesHosseinzaei, B.; Hadianfard, M. J.; Ruiz-Rosas, R.; Rosas, J. M.; Rodríguez-Mirasol, J.; Cordero, T. Effect of Heating Rate and H3PO4 as Catalyst on the Pyrolysis of Agricultural Residues. J. Anal. Appl. Pyrolysis 2022, 168 (July). https://doi.org/10.1016/j.jaap.2022.105724spa
dc.relation.referencesZuo, S.; Xiao, Z.; Yang, J. Evolution of Gaseous Products from Biomass Pyrolysis in the Presence of Phosphoric Acid. J. Anal. Appl. Pyrolysis 2012, 95, 236–240. https://doi.org/10.1016/j.jaap.2012.02.011.spa
dc.relation.referencesAlmodovar-Gómez, J. A. Biomass Acid Carbonization: A Strategy to Maximize Carbon Retention in Biochars, Washington State University, 2021. https://doi.org/https://doi.org/10.7273/000003333.spa
dc.relation.referencesRodriguez-Narvaez, O. M.; Peralta-Hernandez, J. M.; Goonetilleke, A.; Bandala, E. R. Biochar-Supported Nanomaterials for Environmental Applications. J. Ind. Eng. Chem. 2019, 78, 21–33. https://doi.org/10.1016/j.jiec.2019.06.008spa
dc.relation.referencesKazemi Shariat Panahi, H.; Dehhaghi, M.; Ok, Y. S.; Nizami, A. S.; Khoshnevisan, B.; Mussatto, S. I.; Aghbashlo, M.; Tabatabaei, M.; Lam, S. S. A Comprehensive Review of Engineered Biochar: Production, Characteristics, and Environmental Applications. J. Clean. Prod. 2020, 270, 122462. https://doi.org/10.1016/j.jclepro.2020.122462.spa
dc.relation.referencesZhang, Z.; Zhu, Z.; Shen, B.; Liu, L. Insights into Biochar and Hydrochar Production and Applications: A Review. Energy 2019, 171, 581–598. https://doi.org/10.1016/j.energy.2019.01.035.spa
dc.relation.referencesLow, Y. W.; Yee, K. F. A Review on Lignocellulosic Biomass Waste into Biochar-Derived Catalyst: Current Conversion Techniques, Sustainable Applications and Challenges. Biomass and Bioenergy 2021, 154 (September), 106245. https://doi.org/10.1016/j.biombioe.2021.106245.spa
dc.relation.referencesXiong, X.; Yu, I. K. M.; Cao, L.; Tsang, D. C. W.; Zhang, S.; Ok, Y. S. A Review of Biochar-Based Catalysts for Chemical Synthesis, Biofuel Production, and Pollution Control. Bioresour. Technol. 2017, 246, 254–270. https://doi.org/10.1016/j.biortech.2017.06.163.spa
dc.relation.referencesLee, J.; Kim, K. H.; Kwon, E. E. Biochar as a Catalyst. Renew. Sustain. Energy Rev. 2017, 77 (April), 70–79. https://doi.org/10.1016/j.rser.2017.04.00spa
dc.relation.referencesZou, R.; Qian, M.; Wang, C.; Mateo, W.; Wang, Y.; Dai, L.; Lin, X.; Zhao, Y.; Huo, E.; Wang, L.; Zhang, X.; Kong, X.; Ruan, R.; Lei, H. Biochar: From by-Products of Agro-Industrial Lignocellulosic Waste to Tailored Carbon-Based Catalysts for Biomass Thermochemical Conversions. Chem. Eng. J. 2022, 441 (October 2021), 135972. https://doi.org/10.1016/j.cej.2022.135972.spa
dc.relation.referencesLi, Q.; Wang, Q.; Kayamori, A.; Zhang, J. Experimental Study and Modeling of Heavy Tar Steam Reforming. Fuel Process. Technol. 2018, 178 (January), 180–188. https://doi.org/10.1016/j.fuproc.2018.05.020spa
dc.relation.referencesSaleem, F.; Zhang, K.; Harvey, A. Role of CO2 in the Conversion of Toluene as a Tar Surrogate in a Nonthermal Plasma Dielectric Barrier Discharge Reactor. Energy and Fuels 2018, 32 (4), 5164–5170. https://doi.org/10.1021/acs.energyfuels.7b04070spa
dc.relation.referencesHu, S.; He, L.; Wang, Y.; Su, S.; Jiang, L.; Chen, Q.; Liu, Q.; Chi, H.; Xiang, J.; Sun, L. Effects of Oxygen Species from Fe Addition on Promoting Steam Reforming of Toluene over Fe–Ni/Al2O3catalysts. Int. J. Hydrogen Energy 2016, 41 (40), 17967–17975. https://doi.org/10.1016/j.ijhydene.2016.07.271.spa
dc.relation.referencesKaisalo, N.; Simell, P.; Lehtonen, J. Benzene Steam Reforming Kinetics in Biomass Gasification Gas Cleaning. Fuel 2016, 182, 696–703. https://doi.org/10.1016/j.fuel.2016.06.042spa
dc.relation.referencesMeng, J.; Zhao, Z.; Wang, X.; Zheng, A.; Zhang, D.; Huang, Z.; Zhao, K.; Wei, G.; Li, H. Comparative Study on Phenol and Naphthalene Steam Reforming over Ni-Fe Alloy Catalysts Supported on Olivine Synthesized by Different Methods. Energy Convers. Manag. 2018, 168 (March), 60–73. https://doi.org/10.1016/j.enconman.2018.04.112.spa
dc.relation.referencesXu, M.; Hu, H.; Yang, F.; Yang, Y.; Jiang, L.; Tang, H.; Li, X.; Xu, K.; Yao, H. Novel Findings in Conversion Mechanism of Toluene as Model Compound of Biomass Waste Tar in Molten Salt. J. Anal. Appl. Pyrolysis 2018, 134 (June), 274–280. https://doi.org/10.1016/j.jaap.2018.06.017spa
dc.relation.referencesChen, T.; Liu, H.; Shi, P.; Chen, D.; Song, L.; He, H.; Frost, R. L. CO2 Reforming of Toluene as Model Compound of Biomass Tar on Ni/Palygorskite. Fuel 2013, 107, 699–705. https://doi.org/10.1016/j.fuel.2012.12.036spa
dc.relation.referencesOh, G.; Park, S. Y.; Seo, M. W.; Ra, H. W.; Mun, T. Y.; Lee, J. G.; Yoon, S. J. Combined Steam-Dry Reforming of Toluene in Syngas over CaNiRu/Al 2 O 3 Catalysts. Int. J. Green Energy 2019, 16 (4), 333–349. https://doi.org/10.1080/15435075.2019.1566729spa
dc.relation.referencesWang, T. J.; Chang, J.; Wu, C. Z.; Fu, Y.; Chen, Y. The Steam Reforming of Naphthalene over a Nickel-Dolomite Cracking Catalyst. Biomass and Bioenergy 2005, 28 (5), 508–514. https://doi.org/10.1016/j.biombioe.2004.11.006.spa
dc.relation.referencesLi, L.; Song, Z.; Zhao, X.; Ma, C.; Kong, X.; Wang, F. Microwave-Induced Cracking and CO2 Reforming of Toluene on Biomass Derived Char. Chem. Eng. J. 2016, 284, 1308–1316. https://doi.org/10.1016/j.cej.2015.09.040.spa
dc.relation.referencesDu, Z. Y.; Zhang, Z. H.; Xu, C.; Wang, X. B.; Li, W. Y. Low Temperature Steam Reforming of Toluene and Biomass Tar over Biochar-Supported Ni Nanoparticles. ACS Sustain. Chem. Eng. 2019, 7 (3), 3111–3119. https://doi.org/10.1021/acssuschemeng.8b04872.spa
dc.relation.referencesZhang, Y. L.; Luo, Y. H.; Wu, W. G.; Zhao, S. H.; Long, Y. F. Heterogeneous Cracking Reaction of Tar over Biomass Char, Using Naphthalene as Model Biomass Tar. Energy and Fuels 2014, 28 (5), 3129–3137. https://doi.org/10.1021/ef4024349.spa
dc.relation.referencesSyed-Hassan, S. S. A.; Fuadi, F. A. Catalytic Steam Reforming of Biomass Tar Model Compound Using Nickel and Cobalt Catalysts Supported on Palm Kernel Shell Char. J. Chem. Eng. Japan 2016, 49 (1), 29–34. https://doi.org/10.1252/jcej.15we053spa
dc.relation.referencesChen, X.; Ma, X.; Peng, X.; Chen, L.; Lu, X.; Tian, Y. Effect of Synthesis Temperature on Catalytic Activity and Coke Resistance of Ni/Bio-Char during CO2 Reforming of Tar. Int. J. Hydrogen Energy 2021, 46 (54), 27543–27554. https://doi.org/10.1016/j.ijhydene.2021.06.011.spa
dc.relation.referencesChen, X.; Ma, X.; Peng, X. Effect of Lattice Oxygen in Ni-Fe/Bio-Char on Filamentous Coke Resistance during CO2 Reforming of Tar. Fuel 2022, 307 (August 2021), 121878. https://doi.org/10.1016/j.fuel.2021.121878.spa
dc.relation.referencesDeng, J.; You, Y.; Sahajwalla, V.; Joshi, R. K. Transforming Waste into Carbon-Based Nanomaterials. Carbon N. Y. 2016, 96, 105–115. https://doi.org/10.1016/j.carbon.2015.09.033spa
dc.relation.referencesREN21. Renewables 2018 Global Status Report; 2018.spa
dc.relation.referencesTina, G.; Gagliano, S.; Raiti, S. Hybrid Solar/Wind Power System Probabilistic Modelling for Long-Term Performance Assessment. Sol. Energy 2006, 80 (5), 578–588. https://doi.org/10.1016/j.solener.2005.03.013.spa
dc.relation.referencesBalamurugan, P.; Ashok, S.; Jose, T. L. Optimal Operation of Biomass/Wind/Pv Hybrid Energy System for Rural Areas. Int. J. Green Energy 2009, 6 (1), 104–116. https://doi.org/10.1080/15435070802701892.spa
dc.relation.referencesKyriakarakos, G.; Dounis, A. I.; Rozakis, S.; Arvanitis, K. G.; Papadakis, G. Polygeneration Microgrids: A Viable Solution in Remote Areas for Supplying Power, Potable Water and Hydrogen as Transportation Fuel. Appl. Energy 2011, 88 (12), 4517–4526. https://doi.org/10.1016/j.apenergy.2011.05.038.spa
dc.relation.referencesYao, Z.; You, S.; Ge, T.; Wang, C. H. Biomass Gasification for Syngas and Biochar Co-Production: Energy Application and Economic Evaluation. Appl. Energy 2018, 209 (October 2017), 43–55. https://doi.org/10.1016/j.apenergy.2017.10.077.spa
dc.relation.referencesSikarwar, V. S.; Zhao, M.; Clough, P.; Yao, J.; Zhong, X.; Memon, M. Z.; Shah, N.; Anthony, E. J.; Fennell, P. S. An Overview of Advances in Biomass Gasification. Energy Environ. Sci. 2016, 9 (10), 2939–2977. https://doi.org/10.1039/c6ee00935b.spa
dc.relation.referencesWidjaya, E. R.; Chen, G.; Bowtell, L.; Hills, C. Gasification of Non-Woody Biomass: A Literature Review. Renew. Sustain. Energy Rev. 2018, 89 (March), 184–193. https://doi.org/10.1016/j.rser.2018.03.023.spa
dc.relation.referencesZhang, Z.; Pang, S. Experimental Investigation of Tar Formation and Producer Gas Composition in Biomass Steam Gasification in a 100 kW Dual Fluidised Bed Gasifier. Renew. Energy 2019, 132, 416–424. https://doi.org/10.1016/j.renene.2018.07.144spa
dc.relation.referencesBates, R.; Dölle, K. Syngas Use in Internal Combustion Engines - A Review. Adv. Res. 2017, 10 (1), 1–8. https://doi.org/10.9734/AIR/2017/32896spa
dc.relation.referencesWiemann, S.; Hegner, R.; Atakan, B.; Schulz, C.; Kaiser, S. A. Combined Production of Power and Syngas in an Internal Combustion Engine – Experiments and Simulations in SI and HCCI Mode. Fuel 2018, 215 (November 2017), 40–45. https://doi.org/10.1016/j.fuel.2017.11.002.spa
dc.relation.referencesDe Filippis, P.; Scarsella, M.; De Caprariis, B.; Uccellari, R. Biomass Gasification Plant and Syngas Clean-up System. Energy Procedia 2015, 75, 240–245. https://doi.org/10.1016/j.egypro.2015.07.318.spa
dc.relation.referencesYang, D. P.; Li, Z.; Liu, M.; Zhang, X.; Chen, Y.; Xue, H.; Ye, E.; Luque, R. Biomass-Derived Carbonaceous Materials: Recent Progress in Synthetic Approaches, Advantages, and Applications. ACS Sustain. Chem. Eng. 2019, 7 (5), 4564–4585. https://doi.org/10.1021/acssuschemeng.8b06030.spa
dc.relation.referencesShen, D.; Zhu, L.; Wu, C.; Gu, S. State-of-the-Art on the Preparation, Modification, and Application of Biomass-Derived Carbon Quantum Dots. Ind. Eng. Chem. Res. 2020, 59 (51), 22017–22039. https://doi.org/10.1021/acs.iecr.0c04760spa
dc.relation.referencesMa, Z. H.; Wei, X. Y.; Liu, G. H.; Liu, F. J.; Zong, Z. M. Value-Added Utilization of High-Temperature Coal Tar: A Review. Fuel 2021, 292 (May 2020), 119954. https://doi.org/10.1016/j.fuel.2020.119954spa
dc.relation.referencesWilliams, P. T. Hydrogen and Carbon Nanotubes from Pyrolysis-Catalysis of Waste Plastics: A Review. Waste and Biomass Valorization 2021, 12 (1), 1–28. https://doi.org/10.1007/s12649-020-01054-w.spa
dc.relation.referencesZhou, Y.; He, J.; Chen, R.; Li, X. Recent Advances in Biomass-Derived Graphene and Carbon Nanotubes. Mater. Today Sustain. 2022, 18, 100138. https://doi.org/10.1016/j.mtsust.2022.100138.spa
dc.relation.referencesYao, D.; Zhang, Y.; Williams, P. T.; Yang, H.; Chen, H. Co-Production of Hydrogen and Carbon Nanotubes from Real-World Waste Plastics: Influence of Catalyst Composition and Operational Parameters. Appl. Catal. B Environ. 2018, 221 (June 2017), 584–597. https://doi.org/10.1016/j.apcatb.2017.09.035.spa
dc.relation.referencesGubernat, M.; Fraczek-Szczypta, A.; Tomala, J.; Blazewicz, S. Catalytic Effect of Montmorillonite Nanoparticles on Thermal Decomposition of Coal Tar Pitch to Carbon. J. Anal. Appl. Pyrolysis 2018, 130 (September 2017), 249–255. https://doi.org/10.1016/j.jaap.2018.01.023.spa
dc.relation.referencesSong, J.; Zhang, H.; Wang, J.; Huang, L.; Zhang, S. High-Yield Production of Large Aspect Ratio Carbon Nanotubes via Catalytic Pyrolysis of Cheap Coal Tar Pitch. Carbon N. Y. 2018, 130, 701–713. https://doi.org/10.1016/j.carbon.2018.01.060spa
dc.relation.referencesHe, L.; Hu, S.; Jiang, L.; Syed-Hassan, S. S. A.; Wang, Y.; Xu, K.; Su, S.; Xiang, J.; Xiao, L.; Chi, H.; Chen, X. Opposite Effects of Self-Growth Amorphous Carbon and Carbon Nanotubes on the Reforming of Toluene with Ni/Α-Al2O3for Hydrogen Production. Int. J. Hydrogen Energy 2017, 42 (21), 14439–14448. https://doi.org/10.1016/j.ijhydene.2017.04.230spa
dc.relation.referencesHe, L.; Hu, S.; Jiang, L.; Liao, G.; Chen, X.; Han, H.; Xiao, L.; Ren, Q.; Wang, Y.; Su, S.; Xiang, J. Carbon Nanotubes Formation and Its Influence on Steam Reforming of Toluene over Ni/Al2O3catalysts: Roles of Catalyst Supports. Fuel Process. Technol. 2018, 176 (March), 7–14. https://doi.org/10.1016/j.fuproc.2018.03.007spa
dc.relation.referencesHe, L.; Hu, S.; Jiang, L.; Liao, G.; Zhang, L.; Han, H.; Chen, X.; Wang, Y.; Xu, K.; Su, S.; Xiang, J. Co-Production of Hydrogen and Carbon Nanotubes from the Decomposition/Reforming of Biomass-Derived Organics over Ni/α-Al2O3 Catalyst: Performance of Different Compounds. Fuel 2017, 210 (May), 307–314. https://doi.org/10.1016/j.fuel.2017.08.080spa
dc.relation.referencesHeidenreich, S.; Müller, M.; Foscolo, P. U. Advanced Biomass Gasification: New Concepts for Efficiency Increase and Product Flexibility; 2016. https://doi.org/10.1016/C2015-0-01777-4spa
dc.relation.referencesBasu, P. Introduction. In Biomass Gasification Design Handbook; Elsevier, 2010; pp 1–25. https://doi.org/10.1016/B978-0-12-374988-8.00001-5.spa
dc.relation.referencesMolino, A.; Larocca, V.; Chianese, S.; Musmarra, D. Biofuels Production by Biomass Gasification: A Review. Energies 2018, 11 (4). https://doi.org/10.3390/en11040811spa
dc.relation.referencesSusastriawan, A. A. P.; Saptoadi, H.; Purnomo. Small-Scale Downdraft Gasifiers for Biomass Gasification: A Review. Renew. Sustain. Energy Rev. 2017, 76 (February), 989–1003. https://doi.org/10.1016/j.rser.2017.03.112spa
dc.relation.referencesSansaniwal, S. K.; Rosen, M. A.; Tyagi, S. K. Global Challenges in the Sustainable Development of Biomass Gasification: An Overview. Renew. Sustain. Energy Rev. 2017, 80 (May), 23–43. https://doi.org/10.1016/j.rser.2017.05.215spa
dc.relation.referencesBukar, A. A.; Ben Oumarou, M.; Tela, B. M.; Eljummah, A. M.; Oumarou, M. Ben. Assessment of Biomass Gasification: A Review of Basic Design Considerations "Assessment of Biomass Gasification: A Review of Basic Design Considerations. Am. J. Energy Res. 2019, 7 (1), 1–14. https://doi.org/10.12691/ajer-7-1-1spa
dc.relation.referencesSansaniwal, S. K.; Pal, K.; Rosen, M. A.; Tyagi, S. K. Recent Advances in the Development of Biomass Gasification Technology: A Comprehensive Review. Renew. Sustain. Energy Rev. 2017, 72 (May), 363–384. https://doi.org/10.1016/j.rser.2017.01.038spa
dc.relation.referencesChan, F. L.; Tanksale, A. Review of Recent Developments in Ni-Based Catalysts for Biomass Gasification. Renew. Sustain. Energy Rev. 2014, 38, 428–438. https://doi.org/10.1016/j.rser.2014.06.011.spa
dc.relation.referencesManiatis, K.; Beenackers, A. A. C. M. Tar Protocols. IEA Bioenergy Gasification Task: Introduction. Biomass and Bioenergy 2000, 18 (1), 1–4. https://doi.org/10.1016/S0961-9534(99)00072-0spa
dc.relation.referencesYu, H.; Zhang, Z.; Li, Z.; Chen, D. Characteristics of Tar Formation during Cellulose, Hemicellulose and Lignin Gasification. Fuel 2014, 118, 250–256. https://doi.org/10.1016/j.fuel.2013.10.080.spa
dc.relation.referencesFont Palma, C. Modelling of Tar Formation and Evolution for Biomass Gasification: A Review. Appl. Energy 2013, 111, 129–141. https://doi.org/10.1016/j.apenergy.2013.04.082.spa
dc.relation.referencesReizer, E.; Viskolcz, B.; Fiser, B. Formation and Growth Mechanisms of Polycyclic Aromatic Hydrocarbons: A Mini-Review. Chemosphere. Elsevier Ltd March 1, 2022. https://doi.org/10.1016/j.chemosphere.2021.132793spa
dc.relation.referencesLedesma, E. B.; Marsh, N. D.; Sandrowitz, A. K.; Wornat, M. J. Global Kinetic Rate Parameters for the Formation of Polycyclic Aromatic Hydrocarbons from the Pyrolyis of Catechol, a Model Compound Representative of Solid Fuel Moieties. Energy and Fuels 2002, 16 (6), 1331–1336. https://doi.org/10.1021/ef010261+.spa
dc.relation.referencesWornat, M. J.; Ledesma, E. B.; Marsh, N. D. Polycyclic Aromatic Hydrocarbons from the Pyrolysis of Catechol (Ortho-Dihydroxybenzene), a Model Fuel Representative of Entities in Tobacco, Coal, and Lignin. Fuel 2001, 80 (12), 1711–1726. https://doi.org/10.1016/S0016-2361(01)00057-6.spa
dc.relation.referencesMcClaine, J. W.; Wornat, M. J. Reaction Mechanisms Governing the Formation of Polycyclic Aromatic Hydrocarbons in the Supercritical Pyrolysis of Toluene: C28H 14 Isomers. J. Phys. Chem. C 2007, 111 (1), 86–95. https://doi.org/10.1021/jp063507q.spa
dc.relation.referencesGeorganta, E.; Rahman, R. K.; Raj, A.; Sinha, S. Growth of Polycyclic Aromatic Hydrocarbons (PAHs) by Methyl Radicals: Pyrene Formation from Phenanthrene. Combust. Flame 2017, 185, 129–141. https://doi.org/10.1016/j.combustflame.2017.07.011.spa
dc.relation.referencesFrenklach, M.; Wang, H. Detailed Mechanism and Modeling of Soot Particle Formation. Springer Ser. Chem. Phys. 1994, No. 59, 165–192. https://doi.org/10.1007/978-3-642-85167-4_10.spa
dc.relation.referencesThomas, S.; Ledesma, E. B.; Wornat, M. J. The Effects of Oxygen on the Yields of the Thermal Decomposition Products of Catechol under Pyrolysis and Fuel-Rich Oxidation Conditions. Fuel 2007, 86 (16), 2581–2595. https://doi.org/10.1016/j.fuel.2007.02.003.spa
dc.relation.referencesThomas, S.; Wornat, M. J. The Effects of Oxygen on the Yields of Polycyclic Aromatic Hydrocarbons Formed during the Pyrolysis and Fuel-Rich Oxidation of Catechol. Fuel 2008, 87 (6), 768–781. https://doi.org/10.1016/j.fuel.2007.07.016.spa
dc.relation.referencesZhou, B.; Dichiara, A.; Zhang, Y.; Zhang, Q.; Zhou, J. Tar Formation and Evolution during Biomass Gasification: An Experimental and Theoretical Study. Fuel 2018, 234 (May), 944–953. https://doi.org/10.1016/j.fuel.2018.07.105.spa
dc.relation.referencesGasification - Wikipedia. https://en.wikipedia.org/wiki/Gasification (accessed 2022-06-24).spa
dc.relation.referencesLi, C.; Suzuki, K. Tar Property, Analysis, Reforming Mechanism and Model for Biomass Gasification-An Overview. Renew. Sustain. Energy Rev. 2009, 13 (3), 594–604. https://doi.org/10.1016/j.rser.2008.01.009.spa
dc.relation.referencesThe Energy Research Centre of Netherlands (ECN). Website for tar dew point calculations of The Energy Research Centre of Netherlands (ECN). https://www.thersites.nl/default.aspx (accessed 2022-06-24).spa
dc.relation.referencesLi, C.; Yamamoto, Y.; Suzuki, M.; Hirabayashi, D.; Suzuki, K. Study on the Combustion Kinetic Characteristics of Biomass Tar under Catalysts. J. Therm. Anal. Calorim. 2009, 95 (3), 991–997. https://doi.org/10.1007/s10973-008-9126-8.spa
dc.relation.referencesLi, L.; Huang, S.; Wu, S.; Wu, Y.; Gao, J.; Gu, J.; Qin, X. Fuel Properties and Chemical Compositions of the Tar Produced from a 5 MW Industrial Biomass Gasification Power Generation Plant. J. Energy Inst. 2015, 88 (2), 126–135. https://doi.org/10.1016/j.joei.2014.07.002.spa
dc.relation.referencesSong, K.; Zhang, H.; Wu, Q.; Zhang, Z.; Zhou, C.; Zhang, Q.; Lei, T. Structure and Thermal Properties of Tar from Gasification of Agricultural Crop Residue. J. Therm. Anal. Calorim. 2015, 119 (1), 27–35. https://doi.org/10.1007/s10973-014-4081-z.spa
dc.relation.referencesApicella, B.; Tregrossi, A.; Stanzione, F.; Ciajolo, A.; Russo, C. Analysis of Petroleum and Coal Tar Pitches as Large PAH. Chem. Eng. Trans. 2017, 57, 775–780. https://doi.org/10.3303/CET1757130.spa
dc.relation.referencesXiong, Z.; Syed-Hassan, S. S. A.; Hu, X.; Guo, J.; Qiu, J.; Zhao, X.; Su, S.; Hu, S.; Wang, Y.; Xiang, J. Pyrolysis of the Aromatic-Poor and Aromatic-Rich Fractions of Bio-Oil: Characterization of Coke Structure and Elucidation of Coke Formation Mechanism. Appl. Energy 2019, 239 (January), 981–990. https://doi.org/10.1016/j.apenergy.2019.01.253.spa
dc.relation.referencesZhang, Y.; Kajitani, S.; Ashizawa, M.; Oki, Y. Tar Destruction and Coke Formation during Rapid Pyrolysis and Gasification of Biomass in a Drop-Tube Furnace. Fuel 2010, 89 (2), 302–309. https://doi.org/10.1016/j.fuel.2009.08.045.spa
dc.relation.referencesWang, S.; Zhang, F.; Cai, Q.; Li, X.; Zhu, L.; Wang, Q.; Luo, Z. Catalytic Steam Reforming of Bio-Oil Model Compounds for Hydrogen Production over Coal Ash Supported Ni Catalyst. Int. J. Hydrogen Energy 2014, 39 (5), 2018–2025. https://doi.org/10.1016/j.ijhydene.2013.11.129spa
dc.relation.referencesBaker, R. T. K.; Barber, M. A.; Harris, P. S.; Feates, F. S.; Waite, R. J. Nucleation and Growth of Carbon Deposits from the Nickel Catalyzed Decomposition of Acetylene. J. Catal. 1972, 26 (1), 51–62. https://doi.org/10.1016/0021-9517(72)90032-2.spa
dc.relation.referencesTessonnier, J. P.; Su, D. S. Recent Progress on the Growth Mechanism of Carbon Nanotubes: A Review. ChemSusChem 2011, 4 (7), 824–847. https://doi.org/10.1002/cssc.201100175spa
dc.relation.referencesBurgos, J. C.; Reyna, H.; Yakobson, B. I.; Balbuena, P. B. Interplay of Catalyst Size and Metal-Carbon Interactions on the Growth of Single-Walled Carbon Nanotubes. J. Phys. Chem. C 2010, 114 (15), 6952–6958. https://doi.org/10.1021/jp911905pspa
dc.relation.referencesHe, L.; Liao, G.; Hu, S.; Jiang, L.; Han, H.; Li, H.; Ren, Q.; Mostafa, M. E.; Hu, X.; Wang, Y.; Su, S.; Xiang, J. Effect of Temperature on Multiple Competitive Processes for Co-Production of Carbon Nanotubes and Hydrogen during Catalytic Reforming of Toluene. Fuel 2020, 264 (December 2019), 116749. https://doi.org/10.1016/j.fuel.2019.116749.spa
dc.relation.referencesKontchouo, F. M. B.; Zhang, X.; Shao, Y.; Gao, G.; Zhang, S.; Wang, Z.; Hu, X. Steam Reforming of Guaiacol and N-Hexanol for Production of Hydrogen: Effects of Aromatic and Aliphatic Structures on Properties of the Coke. Mol. Catal. 2022, 528 (June). https://doi.org/10.1016/j.mcat.2022.112498.spa
dc.relation.referencesLi, Q.; Yan, H.; Zhang, J.; Liu, Z. Effect of Hydrocarbons Precursors on the Formation of Carbon Nanotubes in Chemical Vapor Deposition. Carbon N. Y. 2004, 42 (4), 829–835. https://doi.org/10.1016/j.carbon.2004.01.070.spa
dc.relation.referencesŚwierczyński, D.; Libs, S.; Courson, C.; Kiennemann, A. Steam Reforming of Tar from a Biomass Gasification Process over Ni/Olivine Catalyst Using Toluene as a Model Compound. Appl. Catal. B Environ. 2007, 74 (3–4), 211–222. https://doi.org/10.1016/j.apcatb.2007.01.017.spa
dc.relation.referencesOzaki, J. I.; Takei, M.; Takakusagi, K.; Takahashi, N. Carbon Deposition on a Ni/Al 2O 3 Catalyst in Low-Temperature Gasification Using C 6-Hydrocarbons as Surrogate Biomass Tar. Fuel Process. Technol. 2012, 102, 30–34. https://doi.org/10.1016/j.fuproc.2012.04.021.spa
dc.relation.referencesWu, C.; Huang, J.; Williams, P. T. Carbon Nanotubes and Hydrogen Production from the Reforming of Toluene. Int. J. Hydrogen Energy 2013, 38 (21), 8790–8797. https://doi.org/10.1016/j.ijhydene.2013.05.028.spa
dc.relation.referencesArtetxe, M.; Nahil, M. A.; Olazar, M.; Williams, P. T. Steam Reforming of Phenol as Biomass Tar Model Compound over Ni/Al2O3 Catalyst. Fuel 2016, 184, 629–636. https://doi.org/10.1016/j.fuel.2016.07.036spa
dc.relation.referencesArtetxe, M.; Alvarez, J.; Nahil, M. A.; Olazar, M.; Williams, P. T. Steam Reforming of Different Biomass Tar Model Compounds over Ni/Al2O3 Catalysts. Energy Convers. Manag. 2017, 136, 119–126. https://doi.org/10.1016/j.enconman.2016.12.092spa
dc.relation.referencesLu, P.; Huang, Q.; Chi, Y.; Yan, J. Coking and Regeneration of Nickel Catalyst for the Cracking of Toluene As a Tar Model Compound. Energy and Fuels 2017, 31 (8), 8283–8290. https://doi.org/10.1021/acs.energyfuels.7b01218spa
dc.relation.referencesChiang, H. L.; Zeng, L. X. Toluene Decomposition on Mesoporous Templates to Form Carbon Materials and Residue Characteristics. J. Alloys Compd. 2018, 748, 861–870. https://doi.org/10.1016/j.jallcom.2018.03.158.spa
dc.relation.referencesChen, M.; Li, X.; Wang, Y.; Wang, C.; Liang, T.; Zhang, H.; Yang, Z.; Zhou, Z.; Wang, J. Hydrogen Generation by Steam Reforming of Tar Model Compounds Using Lanthanum Modified Ni/Sepiolite Catalysts. Energy Convers. Manag. 2019, 184 (November 2018), 315–326. https://doi.org/10.1016/j.enconman.2019.01.066spa
dc.relation.referencesZhang, Z.; Hu, X.; Zhang, L.; Yang, Y.; Li, Q.; Fan, H.; Liu, Q.; Wei, T.; Li, C. Z. Steam Reforming of Guaiacol over Ni/Al2O3 and Ni/SBA-15: Impacts of Support on Catalytic Behaviors of Nickel and Properties of Coke. Fuel Process. Technol. 2019, 191 (April), 138–151. https://doi.org/10.1016/j.fuproc.2019.04.001.spa
dc.relation.referencesZhang, Z.; Zhang, X.; Zhang, L.; Wang, Y.; Li, X.; Zhang, S.; Liu, Q.; Wei, T.; Gao, G.; Hu, X. Steam Reforming of Guaiacol over Ni/SiO2 Catalyst Modified with Basic Oxides: Impacts of Alkalinity on Properties of Coke. Energy Convers. Manag. 2020, 205 (August 2019). https://doi.org/10.1016/j.enconman.2019.112301.spa
dc.relation.referencesHe, L.; Hu, S.; Yin, X.; Xu, J.; Han, H.; Li, H.; Ren, Q.; Su, S.; Wang, Y.; Xiang, J. Promoting Effects of Fe-Ni Alloy on Co-Production of H2 and Carbon Nanotubes during Steam Reforming of Biomass Tar over Ni-Fe/α-Al2O3. Fuel 2020, 276, 118116. https://doi.org/10.1016/j.fuel.2020.118116spa
dc.relation.referencesBkangmo Kontchouo, F. M.; Gao, Z.; Xianglin, X.; Wang, Y.; Sun, Y.; Zhang, S.; Hu, X. Steam Reforming of N-Hexane and Toluene: Understanding Impacts of Structural Difference of Aliphatic and Aromatic Hydrocarbons on Their Coking Behaviours. J. Environ. Chem. Eng. 2021, 9 (6). https://doi.org/10.1016/j.jece.2021.106383.spa
dc.relation.referencesJurado, L.; Papaefthimiou, V.; Thomas, S.; Roger, A. C. Low Temperature Toluene and Phenol Abatement as Tar Model Molecules over Ni-Based Catalysts: Influence of the Support and the Synthesis Method. Appl. Catal. B Environ. 2021, 297 (March). https://doi.org/10.1016/j.apcatb.2021.120479.spa
dc.relation.referencesWang, Y.; Lu, Z.; Chen, M.; Liang, D.; Wang, J. Hydrogen Production from Catalytic Steam Reforming of Toluene over Trace of Fe and Mn Doping Ni/Attapulgite. J. Anal. Appl. Pyrolysis 2022, 165 (June), 105584. https://doi.org/10.1016/j.jaap.2022.105584.spa
dc.relation.referencesXu, M.; Liu, Z.; Zhang, X.; Di, J.; Zhao, L.; Li, M.; Lu, Q. Catalytic Steam Reforming of Benzene as a Bio-Tar Model Compound over Ni–Fe/TiO 2 Catalysts. ACS Sustain. Chem. Eng. 2022, 10 (27), 8930–8939. https://doi.org/10.1021/acssuschemeng.2c02345.spa
dc.relation.referencesLi, X.; Liu, P.; Lei, T.; Wu, Y.; Chen, W.; Wang, Z.; Shi, J.; Wu, S.; Li, Y.; Huang, S. Pyrolysis of Biomass Tar Model Compound with Various Ni-Based Catalysts: Influence of Promoters Characteristics on Hydrogen-Rich Gas Formation. Energy 2022, 244, 123137. https://doi.org/10.1016/j.energy.2022.123137.spa
dc.relation.referencesColl, R.; Salvadó, J.; Farriol, X.; Montané, D. Steam Reforming Model Compounds of Biomass Gasification Tars: Conversion at Different Operating Conditions and Tendency towards Coke Formation. Fuel Process. Technol. 2001, 74 (1), 19–31. https://doi.org/10.1016/S0378-3820(01)00214-4.spa
dc.relation.referencesHoyos-Palacio, L. M.; García, A. G.; Pérez-Robles, J. F.; González, J.; Martínez-Tejada, H. V. Catalytic Effect of Fe, Ni, Co and Mo on the CNTs Production. IOP Conf. Ser. Mater. Sci. Eng. 2014, 59 (1). https://doi.org/10.1088/1757-899X/59/1/012005.spa
dc.relation.referencesAllaedini, G.; Masrinda Tasirin, S.; Aminayi, P.; Yaakob, Z.; Zainal MeorTalib, M. Carbon Nanotubes via Different Catalysts and the Important Factors That Affect Their Production: A Review on Catalyst Preferences. Int. J. Nano Dimens 2016, 7 (3), 186–185. https://doi.org/10.7508/ijnd.2016.03.002.spa
dc.relation.referencesChen, J.; Sun, J.; Wang, Y. Catalysts for Steam Reforming of Bio-Oil: A Review. Ind. Eng. Chem. Res. 2017, 56 (16), 4627–4637. https://doi.org/10.1021/acs.iecr.7b00600.spa
dc.relation.referencesOmoriyekomwan, J. E.; Tahmasebi, A.; Zhang, J.; Yu, J. Formation of Hollow Carbon Nanofibers on Bio-Char during Microwave Pyrolysis of Palm Kernel Shell. Energy Convers. Manag. 2017, 148, 583–592. https://doi.org/10.1016/j.enconman.2017.06.022.spa
dc.relation.referencesZhang, J.; Tahmasebi, A.; Omoriyekomwan, J. E.; Yu, J. Direct Synthesis of Hollow Carbon Nanofibers on Bio-Char during Microwave Pyrolysis of Pine Nut Shell. J. Anal. Appl. Pyrolysis 2018, 130 (October 2017), 249–255. https://doi.org/10.1016/j.jaap.2018.01.016.spa
dc.relation.referencesZhang, J.; Tahmasebi, A.; Omoriyekomwan, J. E.; Yu, J. Production of Carbon Nanotubes on Bio-Char at Low Temperature via Microwave-Assisted CVD Using Ni Catalyst. Diam. Relat. Mater. 2019, 91 (September 2018), 98–106. https://doi.org/10.1016/j.diamond.2018.11.012spa
dc.relation.referencesOmoriyekomwan, J. E.; Tahmasebi, A.; Dou, J.; Wang, R.; Yu, J. A Review on the Recent Advances in the Production of Carbon Nanotubes and Carbon Nanofibers via Microwave-Assisted Pyrolysis of Biomass. Fuel Process. Technol. 2021, 214 (August 2020), 106686. https://doi.org/10.1016/j.fuproc.2020.106686spa
dc.relation.referencesStaš, M.; Kubička, D.; Chudoba, J.; Pospíšil, M. Overview of Analytical Methods Used for Chemical Characterization of Pyrolysis Bio-Oil. Energy and Fuels 2014, 28 (1), 385–402. https://doi.org/10.1021/ef402047y.spa
dc.relation.referencesXiong, Z.; Syed-Hassan, S. S. A.; Hu, X.; Guo, J.; Chen, Y.; Liu, Q.; Wang, Y.; Su, S.; Hu, S.; Xiang, J. Effects of the Component Interaction on the Formation of Aromatic Structures during the Pyrolysis of Bio-Oil at Various Temperatures and Heating Rates. Fuel 2018, 233 (June), 461–468. https://doi.org/10.1016/j.fuel.2018.06.064spa
dc.relation.referencesHe, X.; Wang, T.; Lu, W.; Chen, Z.; Sun, K.; Liu, F.; Tang, M.; Goroncy, A. K.; Fan, M. Carbon Nanofiber Generation from the Precursor Containing Unprecedently High Percentage of Inexpensive Coal-Derived Carbon Material. J. Clean. Prod. 2019, 236, 117621. https://doi.org/10.1016/j.jclepro.2019.117621.spa
dc.relation.referencesJiang, L.; Hu, S.; Wang, Y.; Su, S.; Sun, L.; Xu, B.; He, L.; Xiang, J. Catalytic Effects of Inherent Alkali and Alkaline Earth Metallic Species on Steam Gasification of Biomass. Int. J. Hydrogen Energy 2015, 40 (45), 15460–15469. https://doi.org/10.1016/j.ijhydene.2015.08.111spa
dc.relation.referencesMin, Z.; Asadullah, M.; Yimsiri, P.; Zhang, S.; Wu, H.; Li, C. Z. Catalytic Reforming of Tar during Gasification. Part I. Steam Reforming of Biomass Tar Using Ilmenite as a Catalyst. Fuel 2011, 90 (5), 1847–1854. https://doi.org/10.1016/j.fuel.2010.12.039.spa
dc.relation.referencesMin, Z.; Yimsiri, P.; Asadullah, M.; Zhang, S.; Li, C. Z. Catalytic Reforming of Tar during Gasification. Part II. Char as a Catalyst or as a Catalyst Support for Tar Reforming. Fuel 2011, 90 (7), 2545–2552. https://doi.org/10.1016/j.fuel.2011.03.027spa
dc.relation.referencesMontoya, J.; Pecha, B.; Roman, D.; Janna, F. C.; Garcia-Perez, M. Effect of Temperature and Heating Rate on Product Distribution from the Pyrolysis of Sugarcane Bagasse in a Hot Plate Reactor. J. Anal. Appl. Pyrolysis 2017, 123, 347–363. https://doi.org/10.1016/j.jaap.2016.11.008spa
dc.relation.referencesSun, M.; Li, Y.; Sha, S.; Gao, J.; Wang, R.; Zhang, Y.; Hao, Q.; Chen, H.; Yao, Q.; Ma, X. The Composition and Structure of N-Hexane Insoluble-Hot Benzene Soluble Fraction and Hot Benzene Insoluble Fraction from Low Temperature Coal Tar. Fuel 2020, 262 (October 2019), 116511. https://doi.org/10.1016/j.fuel.2019.116511.spa
dc.relation.referencesXiong, Z.; Wang, Y.; Syed-Hassan, S. S. A.; Hu, X.; Han, H.; Su, S.; Xu, K.; Jiang, L.; Guo, J.; Berthold, E. E. S.; Hu, S.; Xiang, J. Effects of Heating Rate on the Evolution of Bio-Oil during Its Pyrolysis. Energy Convers. Manag. 2018, 163 (December 2017), 420–427. https://doi.org/10.1016/j.enconman.2018.02.078.spa
dc.relation.referencesSipilä, K.; Kuoppala, E.; Fagernäs, L.; Oasmaa, A. Characterization of Biomass-Based Flash Pyrolysis Oils. Biomass and Bioenergy 1998, 14 (2), 103–113. https://doi.org/10.1016/S0961-9534(97)10024-1.spa
dc.relation.referencesZhou, S.; Osman, N. B.; Li, H.; McDonald, A. G.; Mourant, D.; Li, C. Z.; Garcia-Perez, M. Effect of Sulfuric Acid Addition on the Yield and Composition of Lignin Derived Oligomers Obtained by the Auger and Fast Pyrolysis of Douglas-Fir Wood. Fuel 2013, 103, 512–523. https://doi.org/10.1016/j.fuel.2012.07.052spa
dc.relation.referencesDieguez-Alonso, A.; Anca-Couce, A.; Zobel, N.; Behrendt, F. Understanding the Primary and Secondary Slow Pyrolysis Mechanisms of Holocellulose, Lignin and Wood with Laser-Induced Fluorescence. Fuel 2015, 153, 102–109. https://doi.org/10.1016/j.fuel.2015.02.097.spa
dc.relation.referencesBarsotti, F.; Ghigo, G.; Vione, D. Computational Assessment of the Fluorescence Emission of Phenol Oligomers: A Possible Insight into the Fluorescence Properties of Humic-like Substances (HULIS). J. Photochem. Photobiol. A Chem. 2016, 315, 87–93. https://doi.org/10.1016/j.jphotochem.2015.09.012.spa
dc.relation.referencesStankovikj, F.; McDonald, A. G.; Helms, G. L.; Olarte, M. V.; Garcia-Perez, M. Characterization of the Water-Soluble Fraction of Woody Biomass Pyrolysis Oils. Energy and Fuels 2017, 31 (2), 1650–1664. https://doi.org/10.1021/acs.energyfuels.6b02950.spa
dc.relation.referencesEsquivel-García, R.; Seker, A.; Abu-Lail, N. I.; García-Pérez, M.; Ochoa-Zarzosa, A.; García-Pérez, M.-E. Ethanolic Extract, Solvent Fractions, and Bio-Oils from Urtica Subincisa: Chemical Composition, Toxicity, and Anti-IL-17 Activity on HaCaT Keratinocytes. J. Herb. Med. 2022, 36 (June 2020), 100599. https://doi.org/10.1016/j.hermed.2022.100599.spa
dc.relation.referencesAlostaz, M.; Biggar, K.; Donahue, R.; Hall, G. Petroleum Contamination Characterization and Quantification Using Fluorescence Emission-Excitation Matrices (EEMs) and Parallel Factor Analysis (PARAFAC). J. Environ. Eng. Sci. 2008, 7 (3), 183–197. https://doi.org/10.1139/S07-049.spa
dc.relation.referencesBorgmeyer, J.; Behrendt, F. On-Line Tar Monitoring Using Light-Induced Fluorescence: A Setup for Continuous Operation in a Biomass Gasification Plant Environment. Opt. Laser Technol. 2020, 123 (August 2019), 105906. https://doi.org/10.1016/j.optlastec.2019.105906.spa
dc.relation.referencesCao, F.; Xia, S.; Yang, X.; Wang, C.; Wang, Q.; Cui, C.; Zheng, A. Lowering the Pyrolysis Temperature of Lignocellulosic Biomass by H2SO4 Loading for Enhancing the Production of Platform Chemicals. Chem. Eng. J. 2020, 385 (October 2019), 123809. https://doi.org/10.1016/j.cej.2019.123809.spa
dc.relation.referencesAmalina, F.; Razak, A. S. A.; Krishnan, S.; Sulaiman, H.; Zularisam, A. W.; Nasrullah, M. Biochar Production Techniques Utilizing Biomass Waste-Derived Materials and Environmental Applications – A Review. J. Hazard. Mater. Adv. 2022, 7 (June), 100134. https://doi.org/10.1016/j.hazadv.2022.100134.spa
dc.relation.referencesWang, Z.; Pecha, B.; Westerhof, R. J. M.; Kersten, S. R. A.; Li, C. Z.; McDonald, A. G.; Garcia-Perez, M. Effect of Cellulose Crystallinity on Solid/Liquid Phase Reactions Responsible for the Formation of Carbonaceous Residues during Pyrolysis. Ind. Eng. Chem. Res. 2014, 53 (8), 2940–2955. https://doi.org/10.1021/ie4014259.spa
dc.relation.referencesAyiania, M.; Carbajal-Gamarra, F. M.; Garcia-Perez, T.; Frear, C.; Suliman, W.; Garcia-Perez, M. Production and Characterization of H2S and PO43− Carbonaceous Adsorbents from Anaerobic Digested Fibers. Biomass and Bioenergy 2019, 120, 339–349. https://doi.org/10.1016/j.biombioe.2018.11.028.spa
dc.relation.referencesPereira Ferraz, G.; Frear, C.; Pelaez-Samaniego, M. R.; Englund, K.; Garcia-Perez, M. Hot Water Extraction of Anaerobic Digested Dairy Fiber for Wood Plastic Composite Manufacturing. BioResources 2016, 11 (4), 8139-8154. https://doi.org/10.15376/biores.11.4.8139-8154.spa
dc.relation.referencesMainali, K.; Garcia-Perez, M. Effect of H3PO4 and NaOH Additives on the Co-Carbonization of Cellulose and N-Containing Compounds to Produce N-Doped Chars. J. Anal. Appl. Pyrolysis 2023, 169 (October 2022), 105837. https://doi.org/10.1016/j.jaap.2022.105837.spa
dc.relation.referencesChu, G.; Zhao, J.; Huang, Y.; Zhou, D.; Liu, Y.; Wu, M.; Peng, H.; Zhao, Q.; Pan, B.; Steinberg, C. E. W. Phosphoric Acid Pretreatment Enhances the Specific Surface Areas of Biochars by Generation of Micropores. Environ. Pollut. 2018, 240, 1–9. https://doi.org/10.1016/j.envpol.2018.04.003spa
dc.relation.referencesKekäläinen, T.; Venäläinen, T.; Jänis, J. Characterization of Birch Wood Pyrolysis Oils by Ultrahigh-Resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry: Insights into Thermochemical Conversion. Energy and Fuels. 2014, pp 4596–4602. https://doi.org/10.1021/ef500849zspa
dc.relation.referencesZhang, J.; Sekyere, D. T.; Niwamanya, N.; Huang, Y.; Barigye, A.; Tian, Y. Study on the Staged and Direct Fast Pyrolysis Behavior of Waste Pine Sawdust Using High Heating Rate TG-FTIR and Py-GC/MS. ACS Omega 2022, 7 (5), 4245–4256. https://doi.org/10.1021/acsomega.1c05907.spa
dc.relation.referencesLi, C.; Li, Y.; Jiang, Y.; Zhang, L.; Zhang, S.; Ding, K.; Li, B.; Wang, S.; Hu, X. Staged Pyrolysis of Biomass to Probe the Evolution of Fractions of Bio-Oil. Energy 2023, 263 (PD), 125873. https://doi.org/10.1016/j.energy.2022.125873spa
dc.relation.referencesNowakowski, D. J.; Woodbridge, C. R.; Jones, J. M. Phosphorus Catalysis in the Pyrolysis Behaviour of Biomass. J. Anal. Appl. Pyrolysis 2008, 83 (2), 197–204. https://doi.org/10.1016/j.jaap.2008.08.003.spa
dc.relation.referencesRen, J.; Cao, J. P.; Zhao, X. Y. Fabrication Strategies of Ni-Based Catalysts in Reforming of Biomass Tar/Tar Model Compounds. Appl. Energy Combust. Sci. 2022, 9, 100053. https://doi.org/10.1016/j.jaecs.2021.100053.spa
dc.relation.referencesAltin, O.; Eser, S. Analysis of Solid Deposits from Thermal Stressing of a JP-8 Fuel on Different Tube Surfaces in a Flow Reactor. Ind. Eng. Chem. Res. 2001, 40 (2), 596–603. https://doi.org/10.1021/ie0004491spa
dc.relation.referencesLiu, H.; Ye, C.; Ye, Z.; Zhu, Z.; Wang, Q.; Tang, Y.; Luo, G.; Guo, W.; Dong, C.; Li, G.; Xu, Y.; Wang, Q. Catalytic Cracking and Catalyst Deactivation/Regeneration Characteristics of Fe-Loaded Biochar Catalysts for Tar Model Compound. Fuel 2023, 334 (P2), 126810. https://doi.org/10.1016/j.fuel.2022.126810.spa
dc.relation.referencesZhang, M.; Fan, G.; Liu, N.; Yang, M.; Li, X.; Wu, Y. Tar Removal in Pine Pyrolysis Catalyzed by Bio-Char Supported Nickel Catalyst. J. Anal. Appl. Pyrolysis 2023, 169 (December 2022), 105843. https://doi.org/10.1016/j.jaap.2022.105843.spa
dc.relation.referencesChen, X.; Ma, X.; Peng, X. Role of Reforming Agent in Filamentous Coke Deposition on Ni/Bio-Char Catalyst during Non-Oxygenates Tar Reforming. Appl. Catal. A Gen. 2022, 630 (381), 118446. https://doi.org/10.1016/j.apcata.2021.118446.spa
dc.relation.referencesChaturvedi, P.; Verma, P.; Singh, A.; Chaudhary, P. K.; Harsh; Basu, P. K. Carbon Nanotube-Purification and Sorting Protocols. Def. Sci. J. 2008, 58 (5), 591–599. https://doi.org/10.14429/dsj.58.1694.spa
dc.relation.referencesHou, P.-X.; Liu, C.; Cheng, H.-M. Purification of Carbon Nanotubes. Carbon N. Y. 2008, 46 (15), 2003–2025. https://doi.org/10.1016/j.carbon.2008.09.009.spa
dc.relation.referencesDas, R. Nanohybrid Catalyst Based on Carbon Nanotube; 2017. https://doi.org/10.1007/978-3-319-58151-4.spa
dc.relation.referencesAghaei, A.; Shaterian, M.; Hosseini-Monfared, H.; Farokhi, A. Single-Walled Carbon Nanotubes: Synthesis and Quantitative Purification Evaluation by Acid/Base Treatment for High Carbon Impurity Elimination. Chem. Pap. 2022, 77 (1), 249–258. https://doi.org/10.1007/s11696-022-02478-5.spa
dc.relation.referencesHuber, T. A.; Kopac, M. C.; Chow, C. The Quantitative Removal of Metal Catalyst from Multi-Walled Carbon Nanotubes with Minimal Tube Damage. Can. J. Chem. 2008, 86 (12), 1138–1143. https://doi.org/10.1139/V08-160spa
dc.relation.referencesLing, X.; Wei, Y.; Zou, L.; Xu, S. The Effect of Different Order of Purification Treatments on the Purity of Multiwalled Carbon Nanotubes. Appl. Surf. Sci. 2013, 276, 159–166. https://doi.org/10.1016/j.apsusc.2013.03.056spa
dc.relation.referencesStobinski, L.; Lesiak, B.; Kövér, L.; Tóth, J.; Biniak, S.; Trykowski, G.; Judek, J. Multiwall Carbon Nanotubes Purification and Oxidation by Nitric Acid Studied by the FTIR and Electron Spectroscopy Methods. J. Alloys Compd. 2010, 501 (1), 77–84. https://doi.org/10.1016/j.jallcom.2010.04.032.spa
dc.relation.referencesDomagała, K.; Borlaf, M.; Traber, J.; Kata, D.; Graule, T. Purification and Functionalisation of Multi-Walled Carbon Nanotubes. Mater. Lett. 2019, 253, 272–275. https://doi.org/10.1016/j.matlet.2019.06.085spa
dc.relation.referencesSafo, I. A.; Liu, F.; Xie, K.; Xia, W. Oxidation and Stability of Multi-Walled Carbon Nanotubes in Hydrogen Peroxide Solution. Mater. Chem. Phys. 2018, 214, 472–481. https://doi.org/10.1016/j.matchemphys.2018.05.001.spa
dc.relation.referencesMorsy, M.; Helal, M.; El-Okr, M.; Ibrahim, M. Preparation, Purification and Characterization of High Purity Multi-Wall Carbon Nanotube. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 2014, 132, 594–598. https://doi.org/10.1016/j.saa.2014.04.122spa
dc.relation.referencesBarkauskas, J.; Stankevičiene, I.; Selskis, A. A Novel Purification Method of Carbon Nanotubes by High-Temperature Treatment with Tetrachloromethane. Sep. Purif. Technol. 2010, 71 (3), 331–336. https://doi.org/10.1016/j.seppur.2009.12.019spa
dc.relation.referencesBerrada, N.; Desforges, A.; Bellouard, C.; Flahaut, E.; Gleize, J.; Ghanbaja, J.; Vigolo, B. Protecting Carbon Nanotubes from Oxidation for Selective Carbon Impurity Elimination. J. Phys. Chem. C 2019, 123 (23), 14725–14733. https://doi.org/10.1021/acs.jpcc.8b12554.spa
dc.relation.referencesGoak, J. C.; Lim, C. J.; Hyun, Y.; Cho, E.; Seo, Y.; Lee, N. Efficient Gas-Phase Purification Using Chloroform for Metal-Free Multi-Walled Carbon Nanotubes. Carbon N. Y. 2019, 148, 258–266. https://doi.org/10.1016/j.carbon.2019.03.077spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc660 - Ingeniería químicaspa
dc.subject.ddc540 - Química y ciencias afines::547 - Química orgánicaspa
dc.subject.lembCarbón - Gasificación
dc.subject.lembCoal gasification
dc.subject.proposalBiomasaspa
dc.subject.proposalAlquitranesspa
dc.subject.proposalGasificaciónspa
dc.subject.proposalPirólisisspa
dc.subject.proposalNanoestructurasspa
dc.subject.proposalCarbonizadospa
dc.subject.proposalBiomasseng
dc.subject.proposalTareng
dc.subject.proposalGasificationeng
dc.subject.proposalPyrolysiseng
dc.subject.proposalCarbon nanostructureseng
dc.subject.proposalBiochareng
dc.titleEstudio de la formación de nanoestructuras de carbono a partir de alquitrán de gasificación de biomasaspa
dc.title.translatedStudy of the formation of carbon nanostructures from biomass gasification tareng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitlePoligeneración: La Biomasa, precursor para nuevos productos de valor agregado y oportunidad para garantizar un sistema eléctrico confiable y sustentablespa
oaire.fundernameMincienciasspa
oaire.fundernameUniversidad Nacional de Colombiaspa
oaire.fundernameUniversidad de La Guajiraspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
8358492.2023.pdf
Tamaño:
3.34 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Sistemas Energéticos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: