Síntesis de solventes alternativos (líquidos iónicos y solventes eutécticos profundos) base cafeína protonada con potencial aplicación para la desulfuración de combustibles

dc.contributor.advisorOcampo Carmona, Luz Marina
dc.contributor.advisorEcheverry Vargas, Luver
dc.contributor.authorBenavides Maya, Laura Sofia
dc.contributor.cvlacBenavides, Laura Sofiaspa
dc.contributor.googlescholarBenavides, Laura Sofiaspa
dc.contributor.orcidBenavides Maya, Laura Sofía [0009000594237619]spa
dc.contributor.researchgateBenavides-Maya, Laura Sofiaspa
dc.contributor.researchgroupCiencia y Tecnología de Materialesspa
dc.contributor.scopusBenavides-Maya, Laura Sofiaspa
dc.date.accessioned2025-03-17T18:19:36Z
dc.date.available2025-03-17T18:19:36Z
dc.date.issued2024-10-18
dc.descriptionIlustracionesspa
dc.description.abstractEn los últimos años, ha aumentado el interés por encontrar alternativas a los solventes convencionales para mejorar la sostenibilidad en los procesos químicos, destacándose los líquidos iónicos (ILs) y los solventes eutécticos profundos (DES) por sus propiedades únicas y aplicaciones diversas. En esta tesis de maestría, se sintetizaron ILs y DES basados en cafeína protonada para la desulfuración de un combustibles modelo. Para esto, fue necesario la protonación de cafeína comercial, convirtiéndola en una sal de amonio cuaternaria, resultando en la formación de clorhidrato de cafeína (CafCl). Este producto se caracterizó mediante TGA, FTIR y RMN, confirmando la formación del enlace N-H en el anillo de imidazol de la cafeína. Una vez protonada la cafeína, se sintetizó el IL compuesto por CafCl:FeCl3.6H2O en dos relaciones molares (1:2 y 1:3), caracterizados mediante espectroscopía Raman para confirmar la formación del anión tetracloroferrato (FeCl4-). Además, se sintetizaron DES ternarios utilizando etilenglicol (EG) como donantes de enlaces de hidrógeno (HBD) y CafCl y ZnCl2 como aceptores de enlaces de hidrógeno (HBAs), obteniendo dos DES (ZnCl2:EG:CafCl) en relaciones 1:2.0.1 y 1:2:0.06, caracterizados por Raman. Finalmente, se evaluó la capacidad extractiva de los ILs y DES en la desulfuración de un combustible modelo (MF) compuesto por dibenzotiofeno (DBT) en dodecano. Mediante un diseño factorial completo, donde se evaluaron tres factores: temperatura, relación IL/DES y cantidad de CafCl. El IL logró un porcentaje máximo de desulfuración de 12.9%, mientras que el DES alcanzó un 17.44%. Estos resultados sugieren que el mecanismo de desulfuración es la formación de puentes de hidrógeno entre el IL/DES y el MF. (texto tomado de la fuente)spa
dc.description.abstractIn recent years, there has been increased interest in finding alternatives to conventional solvents to enhance sustainability in chemical processes, with ionic liquids (ILs) and deep eutectic solvents (DES) standing out due to their unique properties and diverse applications. In this master's thesis, ILs and DES based on protonated caffeine were synthesized for the desulfurization of model fuels. This required the protonation of commercial caffeine, converting it into a quaternary ammonium salt, resulting in the formation of caffeine hydrochloride (CafCl). This product was characterized by TGA, FTIR, and NMR, confirming the formation of the N-H bond in the imidazole ring of caffeine. Once the caffeine was protonated, IL composed of CafCl: FeCl3.6H2O was synthesized in two molar ratios (1:2 and 1:3), characterized by Raman spectroscopy to confirm the formation of the tetrachloroferrate anion (FeCl4 -). Additionally, ternary DES were synthesized using ethylene glycol (EG) as the HBD and CafCl and ZnCl2 as HBAs, obtaining two DES (ZnCl2:EG:CafCl) in 1:2.0.1 and 1:2:0.06 ratios, characterized by Raman. Finally, the extractive capacity of the ILs and DES was evaluated for the desulfurization of a model fuel (MF) composed of dibenzothiophene (DBT) in dodecane. Using a full factorial design , three factors were evaluated: temperature, IL/DES ratio, and amount of CafCl. The IL achieved a maximum desulfurization percentage of 12.9%, while the DES reached 17.44%. These results suggest that the desulfurization mechanism is the formation of hydrogen bonds between the IL/DES and the MF.eng
dc.description.curricularareaÁrea Curricular de Materiales y Nanotecnologíaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Materiales y Procesosspa
dc.description.methodsRevisión bibliográfica Aprendizaje de técnicas de caracterización y análisis Construcción y analisis de diseño experimentalspa
dc.description.notesContiene gráficas, tablas, análisis de datos estadísticos.spa
dc.description.researchareaSolventes alternativosspa
dc.description.sponsorshipcódigo Hermes 54126spa
dc.description.technicalinfoSe usó Origin para el análisis de datos obtenidos de las técnicas de caracterización FTIR, TGA y Raman. Para la NMR se usó el software MestReNovaspa
dc.format.extent85 páginasspa
dc.format.mimetypeimage/jpegspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87670
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Materiales y Procesosspa
dc.relation.referencesC. J. Clarke, W. C. Tu, O. Levers, A. Bröhl, and J. P. Hallett, “Green and Sustainable Solvents in Chemical Processes,” Chem Rev, vol. 118, no. 2, pp. 747– 800, Jan. 2018, doi: 10.1021/acs.chemrev.7b00571spa
dc.relation.referencesB. Nanda, M. Sailaja, P. Mohapatra, R. K. Pradhan, and B. B. Nanda, “Green solvents: A suitable alternative for sustainable chemistry,” in Materials Today: Proceedings, Elsevier Ltd, 2021, pp. 1234–1240. doi: 10.1016/j.matpr.2021.06.458.spa
dc.relation.referencesW. Bains, J. J. Petkowski, and S. Seager, “Alternative solvents for life: framework for evaluation, current status and future research,” 2022. Accessed: Apr. 16, 2024. [Online]. Available: https://arxiv.org/ftp/arxiv/papers/2401/2401.07296.pdfspa
dc.relation.referencesS. Armenta, F. A. Esteve-Turrillas, S. Garrigues, and M. de la Guardia, “Alternative green solvents in sample preparation,” Green Analytical Chemistry, vol. 1, Apr. 2022, doi: 10.1016/j.greeac.2022.100007.spa
dc.relation.referencesA. Bösmann, L. Datsevich, A. Jess, A. Lauter, C. Schmitz, and P. Wasserscheid, “Deep desulfurization of diesel fuel by extraction with ionic liquids,” Chemical Communications, vol. 23, pp. 2494–2495, Dec. 2001, doi: 10.1039/b108411a.spa
dc.relation.referencesA. A. P. Kumar and T. Banerjee, “Thiophene separation with ionic liquids for desulphurization: A quantum chemical approach,” Fluid Phase Equilib, vol. 278, no. 1–2, pp. 1–8, Apr. 2009, doi: 10.1016/j.fluid.2008.11.019spa
dc.relation.referencesY. Nie, C. Li, H. Meng, and Z. Wang, “N,N-dialkylimidazolium dialkylphosphate ionic liquids: Their extractive performance for thiophene series compounds from fuel oils versus the length of alkyl group,” Fuel Processing Technology, vol. 89, no. 10, pp. 978–983, Oct. 2008, doi: 10.1016/j.fuproc.2008.04.003.spa
dc.relation.referencesK. Ghandi, “A Review of Ionic Liquids, Their Limits and Applications,” Green and Sustainable Chemistry, vol. 04, no. 01, pp. 44–53, 2014, doi: 10.4236/gsc.2014.41008.spa
dc.relation.referencesD. F. Montaño Montoya, E. J. Juaristi Cosio, J. Sepúlveda Aguirre, and J. E. Murillo Bocanegra, “Los líquidos iónicos como prometedores catalizadores en síntesis orgánica: Una contribución a la química sostenible,” Rev Lasallista Investig, vol. 14, no. 2, pp. 171–179, 2017, doi: 10.22507/rli.v14n2a16spa
dc.relation.referencesJ. Carlos Díaz Alvarez, ; Ramiro, M. Rey, and R. B. Acosta, “Líquidos iónicos: propiedades fi sicoquímicas y aplicación potencial en el mejoramiento de crudos pesados Ionic liquids: physicochemical properties and potential application in upgrading of heavy crude oilsspa
dc.relation.referencesF. Lima, L. C. Branco, A. J. D. Silvestre, and I. M. Marrucho, “Deep desulfurization of fuels: Are deep eutectic solvents the alternative for ionic liquids?,” Fuel, vol. 293, Jun. 2021, doi: 10.1016/j.fuel.2021.120297spa
dc.relation.referencesControl of Air Polution from motor vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards . United States: http://www.epa.gov/oar/, 2014.spa
dc.relation.referencesEL MUNDO, “Gasolina Colombiana, entre las más limpias de Latinoamérica.” Accessed: Aug. 30, 2023. [Online]. Available: https://www.elmundo.com/portal/pagina.general.impresion.php?idx=273045spa
dc.relation.referencesEcopetrol, “Calidad de combustibles: Más de tres décadas de mejora continua.” Accessed: Aug. 30, 2023. [Online]. Available: https://www.ecopetrol.com.co/wps/portal/Home/sostecnibilidad/ambiental/airelimpio/calidad-combustiblesspa
dc.relation.references“ANÁLISIS DE IMPACTO NORMATIVO DEFINICIÓN DEL PROBLEMA NORMA NACIONAL DE CALIDAD DE COMBUSTIBLES DIESEL Y BIODIESEL,” 2019spa
dc.relation.referencesM. Francisco, A. Arce, and A. Soto, “Ionic liquids on desulfurization of fuel oils,” Fluid Phase Equilib, vol. 294, no. 1–2, pp. 39–48, 2010, doi: 10.1016/j.fluid.2009.12.020.spa
dc.relation.referencesA. Romero, A. Santos, J. Tojo, and A. Rodriguez, “Toxicity and biodegradability of imidazolium ionic liquids,” Journal of Hardazous Materials, pp. 268–273, 2007.spa
dc.relation.referencesThermo Fisher Scientific, “Fisher Scientific,” https://www.fishersci.es/shop/products/imidazole-acs-reagent-thermoscientific/10493454#?keyword=imidazol.spa
dc.relation.referencesThermo Fisher Scientific, “Fisher Scientific,” https://www.fishersci.es/shop/products/caffeine-99-thermoscientific/11438643#?keyword=caffeine.spa
dc.relation.referencesF. Bureš, “Quaternary Ammonium Compounds: Simple in Structure, Complex in Application,” Jun. 01, 2019, Springer International Publishing. doi: 10.1007/s41061- 019-0239-2.spa
dc.relation.referencesJ. D. Roberts and M. C. Caserio, “8.Reacciones de sustitución nucleofílica y eliminación,” in Principios básicos de química orgánica, Segunda., W.A Benjamin, Ed., California, 1977.spa
dc.relation.referencesJ. G. Li, Y. F. Hu, S. F. Sun, S. Ling, and J. Z. Zhang, “Ionic structures of nanobased FeCl3/[C4mim]Cl ionic liquids,” Journal of Physical Chemistry B, vol. 116, no. 22, pp. 6461–6464, Jun. 2012, doi: 10.1021/jp206819h.spa
dc.relation.referencesM. A. Abdel-Fatah, S. I. Hawash, and H. H. Shaarawy, “Cost-effective clean electrochemical preparation of ferric chloride and its applications,” Egypt J Chem, vol. 64, no. 7, pp. 3841–3851, Jul. 2021, doi: 10.21608/ejchem.2021.75921.3717.spa
dc.relation.referencesD. Díaz Díaz, P. O. Miranda, J. I. Padrón, and V. S. Martín, “Recent Uses of Iron (III) Chloride in Organic Synthesis,” 2006.spa
dc.relation.referencesL. Lomba, C. B. García, M. P. Ribate, B. Giner, and E. Zuriaga, “Applications of deep eutectic solvents related to health, synthesis, and extraction of natural based chemicals,” Nov. 01, 2021, MDPI. doi: 10.3390/app112110156.spa
dc.relation.referencesB. E. Gurkan, E. J. Maginn, and E. B. Pentzer, “Deep eutectic solvents: A new class of versatile liquids,” Dec. 17, 2020, American Chemical Society. doi: 10.1021/acs.jpcb.0c10099.spa
dc.relation.referencesC. Florindo, L. C. Branco, and I. M. Marrucho, “Quest for Green-Solvent Design: From Hydrophilic to Hydrophobic (Deep) Eutectic Solvents,” Apr. 23, 2019, WileyVCH Verlag. doi: 10.1002/cssc.201900147spa
dc.relation.referencesZ. Yang, “Natural Deep Eutectic Solvents and Their Applications in Biotechnology,” in Advances in Biochemical Engineering/Biotechnology, vol. 168, Springer Science and Business Media Deutschland GmbH, 2019, pp. 31–59. doi: 10.1007/10_2018_67.spa
dc.relation.referencesM. Francisco, A. Van Den Bruinhorst, and M. C. Kroon, “Low-transition-temperature mixtures (LTTMs): A new generation of designer solvents,” Mar. 11, 2013. doi: 10.1002/anie.201207548.spa
dc.relation.referencesM. Salami and A. Ezabadi, “A caffeine-based ionic liquid as a novel and ecofriendly catalyst for the synthesis of 1,8-dioxo-octahydroxanthenes under solventfree conditions,” Research on Chemical Intermediates, 2019, doi: 10.1007/s11164- 019-03814-3.spa
dc.relation.referencesM. Salami and A. Ezabadi, “Synthesis of the nano-magnetic ionic liquid based on caffeine and its catalytic application in the synthesis of xanthenes,” Research on Chemical Intermediates, vol. 46, no. 10, pp. 4611–4626, Oct. 2020, doi: 10.1007/s11164-020-04224-6.spa
dc.relation.referencesS. Dalvand, S. Yaghoubi, S. Morteza Mousavi-Khoshdel, and H. Ghafuri, “Investigating the application of caffeine-based ionic liquid modified by zinc bromide as an effective electrode in supercapacitor,” J Energy Storage, vol. 44, Dec. 2021, doi: 10.1016/j.est.2021.103323.spa
dc.relation.referencesG. Kaur, H. Kumar, and M. Singla, “Diverse applications of ionic liquids: A comprehensive review,” Apr. 01, 2022, Elsevier B.V. doi: 10.1016/j.molliq.2022.118556.spa
dc.relation.referencesR. L. Vekariya, “A review of ionic liquids: Applications towards catalytic organic transformations,” Feb. 01, 2017, Elsevier B.V. doi: 10.1016/j.molliq.2016.11.123.spa
dc.relation.referencesP. Sharma, S. Sharma, and H. Kumar, “Introduction to ionic liquids, applications and micellization behaviour in presence of different additives,” Jan. 01, 2024, Elsevier B.V. doi: 10.1016/j.molliq.2023.123447.spa
dc.relation.referencesS. M. S. Hussain et al., “A review of ionic liquids: Recent synthetic advances and oilfield applications,” J Taiwan Inst Chem Eng, vol. 153, Dec. 2023, doi: 10.1016/j.jtice.2023.105195spa
dc.relation.referencesE. L. Smith, A. P. Abbott, and K. S. Ryder, “Deep Eutectic Solvents (DESs) and Their Applications,” Nov. 12, 2014, American Chemical Society. doi: 10.1021/cr300162p.spa
dc.relation.referencesKarla Amezquita, Alicia Blanco, Nely Rios, and Martha Macias, “Extracción, caracterización y cuantificación de cafeína en bebidas energéticas más populares de México, y su consumo por estudiantes del CUCEI de la Universidad de Guadalajara,” Revista de aplicación científica y técnica, pp. 18–27, 2018.spa
dc.relation.referencesLabster, “Propiedades químicas de la cafeína,” Labster, Theory pages. Accessed: Mar. 18, 2024. [Online]. Available: https://theory.labster.com/es/caffeines-chemicalstructure/spa
dc.relation.referencesSilvia Calle Aznar, “Determinación analítica de la cafeína en diferentes productos comerciales,” 2011.spa
dc.relation.referencesG. Singh, M. Kaur, H. Kaur, and T. S. Kang, “Synthesis and complexation of a new caffeine based surface active ionic liquid with lysozyme in aqueous medium: Physicochemical, computational and antimicrobial studies,” J Mol Liq, vol. 325, Mar. 2021, doi: 10.1016/j.molliq.2020.115156.spa
dc.relation.referencesC.-D. Czogalla and F. Boberg, “Sulfur Compounds in Fossil Fuels I,” Sulfur reports, vol. 3, no. 4, pp. 121–161, Jul. 1983, doi: 10.1080/01961778308082450.spa
dc.relation.referencesY. Han, Y. Zhang, C. Xu, and C. S. Hsu, “Molecular characterization of sulfurcontaining compounds in petroleum,” Jun. 01, 2018, Elsevier Ltd. doi: 10.1016/j.fuel.2018.02.110.spa
dc.relation.referencesL. C. Kelly1 and P. Rawson, “Detection and Identification of Sulfur Compounds in an Australian Jet Fuel,” 2010.spa
dc.relation.referencesM. Safa, B. Mokhtarani, and H. R. Mortaheb, “Deep extractive desulfurization of dibenzothiophene with imidazolium or pyridinium-based ionic liquids,” Chemical Engineering Research and Design, vol. 111, pp. 323–331, Jul. 2016, doi: 10.1016/j.cherd.2016.04.021.spa
dc.relation.referencesE. Kianpour, S. Azizian, M. Yarie, M. A. Zolfigol, and M. Bayat, “A task-specific phosphonium ionic liquid as an efficient extractant for green desulfurization of liquid fuel: An experimental and computational study,” Chemical Engineering Journal, vol. 295, pp. 500–508, Jul. 2016, doi: 10.1016/j.cej.2016.03.072.spa
dc.relation.referencesC. Shu, T. Sun, Q. Guo, J. Jia, and Z. Lou, “Desulfurization of diesel fuel with nickel boride in situ generated in an ionic liquid,” Green Chemistry, vol. 16, no. 8, pp. 3881–3889, 2014, doi: 10.1039/c4gc00695j.spa
dc.relation.referencesZ. Cun, W. Feng, P. Xiao-yu, and L. Xiao-qin, “Study of extraction-oxidation desulfurization of model oil by acidic ionic liquid,” 2011.spa
dc.relation.referencesX. Lu et al., “Piperazinium-based ionic liquids with lactate anion for extractive desulfurization of fuels,” in Energy and Fuels, Mar. 2014, pp. 1774–1780. doi: 10.1021/ef402154j.spa
dc.relation.referencesS. A. Dharaskar, K. L. Wasewar, M. N. Varma, D. Z. Shende, and C. K. Yoo, “Extractive desulfurization of liquid fuels by energy efficient green thiazolium based ionic liquids,” in Industrial and Engineering Chemistry Research, American Chemical Society, Dec. 2014, pp. 19845–19854. doi: 10.1021/ie501108wspa
dc.relation.referencesZ. S. Gano, F. S. Mjalli, T. Al-Wahaibi, Y. Al-Wahaibi, and I. M. AlNashef, “Extractive desulfurization of liquid fuel with FeCl3-based deep eutectic solvents: Experimental design and optimization by central-composite design,” Chemical Engineering and Processing - Process Intensification, vol. 93, pp. 10–20, Jul. 2015, doi: 10.1016/j.cep.2015.04.001.spa
dc.relation.referencesN. H. Ko et al., “Extractive desulfurization using Fe-containing ionic liquids,” Energy and Fuels, vol. 22, no. 3, pp. 1687–1690, May 2008, doi: 10.1021/ef7007369.spa
dc.relation.referencesH. Li, W. Zhu, Y. Wang, J. Zhang, J. Lu, and Y. Yan, “Deep oxidative desulfurization of fuels in redox ionic liquids based on iron chloride,” Green Chemistry, vol. 11, no. 6, pp. 810–81, Jun. 2009, doi: 10.1039/b901127g.spa
dc.relation.referencesY. Wang et al., “The extractive desulfurization of fuels using ionic liquids based on FeCl3,” Pet Sci Technol, vol. 28, no. 12, pp. 1203–1210, Aug. 2010, doi: 10.1080/10916460903066148.spa
dc.relation.referencesX. Chen, D. Song, C. Asumana, and G. Yu, “Deep oxidative desulfurization of diesel fuels by Lewis acidic ionic liquids based on 1-n-butyl-3-methylimidazolium metal chloride,” J Mol Catal A Chem, vol. 359, pp. 8–13, Jul. 2012, doi: 10.1016/j.molcata.2012.03.014.spa
dc.relation.referencesL. L. Ban, P. Liu, C. H. Ma, and B. Dai, “Deep extractive desulfurization of diesel fuels by FeCl3/ionic liquids,” Chinese Chemical Letters, vol. 24, no. 8, pp. 755–758, Aug. 2013, doi: 10.1016/j.cclet.2013.04.031.spa
dc.relation.referencesH. Gao et al., “Deep Desulfurization of Gasoline Fuel using FeCl3-Containing Lewis-Acidic Ionic Liquids,” Separation Science and Technology (Philadelphia), vol. 49, no. 8, pp. 1208–1214, 2014, doi: 10.1080/01496395.2013.868487.spa
dc.relation.referencesX. Chen, D. Song, C. Asumana, and G. Yu, “Deep oxidative desulfurization of diesel fuels by Lewis acidic ionic liquids based on 1-n-butyl-3-methylimidazolium metal chloride,” J Mol Catal A Chem, vol. 359, pp. 8–13, Jul. 2012, doi: 10.1016/j.molcata.2012.03.014.spa
dc.relation.referencesL. L. Ban, P. Liu, C. H. Ma, and B. Dai, “Deep extractive desulfurization of diesel fuels by FeCl3/ionic liquids,” Chinese Chemical Letters, vol. 24, no. 8, pp. 755–758, Aug. 2013, doi: 10.1016/j.cclet.2013.04.031.spa
dc.relation.referencesH. Gao et al., “Deep Desulfurization of Gasoline Fuel using FeCl3-Containing Lewis-Acidic Ionic Liquids,” Separation Science and Technology (Philadelphia), vol. 49, no. 8, pp. 1208–1214, 2014, doi: 10.1080/01496395.2013.868487.spa
dc.relation.referencesT. J. Ren, J. Zhang, Y. H. Hu, J. P. Li, M. S. Liu, and D. S. Zhao, “Extractive desulfurization of fuel oil with metal-based ionic liquids,” Chinese Chemical Letters, vol. 26, no. 9, pp. 1169–1173, Sep. 2015, doi: 10.1016/j.cclet.2015.05.023.spa
dc.relation.referencesT. Yao, S. Yao, C. Pan, X. Dai, and H. Song, “Deep Extraction Desulfurization with a Novel Guanidinium-Based Strong Magnetic Room-Temperature Ionic Liquid,” Energy and Fuels, vol. 30, no. 6, pp. 4740–4749, Jun. 2016, doi: 10.1021/acs.energyfuels.6b00684.spa
dc.relation.referencesE. Li, Y. Zhu, Y. Xu, Y. Zhang, and P. Yao, “Desulfurization of gasoline by [C4, 6, 8mim]Br/FeCl3 ILs collaboration with CTAB,” Separation Science and Technology (Philadelphia), vol. 56, no. 2, pp. 310–321, 2021, doi: 10.1080/01496395.2020.1713817.spa
dc.relation.referencesM. R. Caudle, J. E. Thompson, and A. S. Paluch, “Molecular modeling of 1-butyl-3- methylimidazolium based ionic liquids for potential applications in the desulfurization of diesel fuel,” Journal of Ionic Liquids, vol. 3, no. 2, Dec. 2023, doi: 10.1016/j.jil.2023.100071.spa
dc.relation.referencesJ. Płotka-Wasylka, M. de la Guardia, V. Andruch, and M. Vilková, “Deep eutectic solvents vs ionic liquids: Similarities and differences,” Dec. 01, 2020, Elsevier Inc. doi: 10.1016/j.microc.2020.105539.spa
dc.relation.referencesF. U. Shah, R. An, and N. Muhammad, “Editorial: Properties and Applications of Ionic Liquids in Energy and Environmental Science,” Dec. 15, 2020, Frontiers Media S.A. doi: 10.3389/fchem.2020.627213.spa
dc.relation.referencesJ. K. U. Ling and K. Hadinoto, “Deep Eutectic Solvent as Green Solvent in Extraction of Biological Macromolecules: A Review,” Mar. 01, 2022, MDPI. doi: 10.3390/ijms23063381.spa
dc.relation.referencesQ. Zhang, K. De Oliveira Vigier, S. Royer, and F. Jérôme, “Deep eutectic solvents: Syntheses, properties and applications,” Chem Soc Rev, vol. 41, no. 21, pp. 7108– 7146, Oct. 2012, doi: 10.1039/c2cs35178a.spa
dc.relation.referencesK. A. Omar and R. Sadeghi, “Physicochemical properties of deep eutectic solvents: A review,” Aug. 15, 2022, Elsevier B.V. doi: 10.1016/j.molliq.2022.119524.spa
dc.relation.referencesF. Lima, L. C. Branco, A. J. D. Silvestre, and I. M. Marrucho, “Deep desulfurization of fuels: Are deep eutectic solvents the alternative for ionic liquids?,” Fuel, vol. 293, Jun. 2021, doi: 10.1016/j.fuel.2021.120297.spa
dc.relation.referencesC. Li et al., “Extraction desulfurization process of fuels with ammonium based deep eutectic solvents.,” Green Chemistry, pp. 1–7, 2013, doi: 10.1039/c0xx00000x.spa
dc.relation.referencesZ. S. Gano, F. S. Mjalli, T. Al-Wahaibi, Y. Al-Wahaibi, and I. M. Alnashef, “Solubility of thiophene and dibenzothiophene in anhydrous FeCl3- and ZnCl2-based deep eutectic solvents,” Ind Eng Chem Res, vol. 53, no. 16, pp. 6815–6823, Apr. 2014, doi: 10.1021/ie500466g.spa
dc.relation.referencesC. Shu and T. Sun, “Extractive desulfurisation of gasoline with tetrabutyl ammonium chloride-based deep eutectic solvents,” Separation Science and Technology (Philadelphia), vol. 51, no. 8, pp. 1336–1343, May 2016, doi: 10.1080/01496395.2016.1155602spa
dc.relation.referencesS. E. E. Warrag et al., “Effect of the Type of Ammonium Salt on the Extractive Desulfurization of Fuels Using Deep Eutectic Solvents,” J Chem Eng Data, vol. 63, no. 4, pp. 1088–1095, Apr. 2018, doi: 10.1021/acs.jced.7b00832.spa
dc.relation.referencesK. H. Almashjary, M. Khalid, S. Dharaskar, P. Jagadish, R. Walvekar, and T. C. S. M. Gupta, “Optimisation of extractive desulfurization using Choline Chloride-based deep eutectic solvents,” Fuel, vol. 234, pp. 1388–1400, Dec. 2018, doi: 10.1016/j.fuel.2018.08.005spa
dc.relation.referencesS. R. Shirazinia, A. Semnani, M. Nekoeinia, M. Shirani, and A. Akbari, “Novel sustainable metal complex based deep eutectic solvents for extractive desulphurisation of fuel,” J Mol Liq, vol. 301, Mar. 2020, doi: 10.1016/j.molliq.2019.112364.spa
dc.relation.referencesN. Khan and V. C. Srivastava, “Extractive desulfurization using ethylene glycol and glycerol-based deep eutectic solvents: engineering aspects and intensification using ultrasound,” Chemical Engineering and Processing - Process Intensification, vol. 180, Oct. 2022, doi: 10.1016/j.cep.2022.108973.spa
dc.relation.referencesL. Xu et al., “Hydrogen bonding boosted oxidative desulfurization by ZnCl2/boric acid/polyethylene glycol-based ternary deep eutectic solvents,” J Mol Liq, vol. 368, Dec. 2022, doi: 10.1016/j.molliq.2022.120725.spa
dc.relation.referencesM. Mofidi and S. Shahhosseini, “Ultrasound assisted oxidative desulfurization of a model fuel using a deep eutectic solvent: Optimization and experimental design,”Chemical Engineering and Processing - Process Intensification, vol. 171, Jan. 2022, doi: 10.1016/j.cep.2021.108724.spa
dc.relation.referencesH. Balaraman and S. Rathnasamy, “Synergetic ultrasound assisted catalytic oxidative extractive desulfurization of tire pyrolysis oil employing sustainable protic deep eutectic solvents,” Fuel, vol. 351, Nov. 2023, doi: 10.1016/j.fuel.2023.129031.spa
dc.relation.referencesD. Jha, P. Maheshwari, Y. Singh, M. B. Haider, R. Kumar, and M. S. Balathanigaimani, “A comparative review of extractive desulfurization using designer solvents: Ionic liquids & deep eutectic solvents,” Oct. 01, 2023, Elsevier B.V. doi: 10.1016/j.joei.2023.101313.spa
dc.relation.referencesJasmine Groover, “Hydrogen Chloride: Preparation, Properties and Uses,” Collegedunia. Accessed: Apr. 15, 2024. [Online]. Available: https://collegedunia.com/exams/hydrogen-chloride-chemistry-articleid-205spa
dc.relation.referencesAdriana. Gonzalez, “Lifeder,” Ácido sulfúrico. Accessed: Mar. 18, 2024. [Online]. Available: https://www.lifeder.com/acido-sulfurico/spa
dc.relation.referencesChemicalAid, “NaCl (Cloruro de Sodio),” NaCl, Masa Molar. Accessed: Mar. 18, 2024. [Online]. Available: https://www.chemicalaid.com/tools/molarmass.php?formula=NaCl&hl=esspa
dc.relation.referencesM. J. Arnaud, “The pharmacology of caffeine,” Switzerland, 1987.spa
dc.relation.referencesMerck, “Cloruro de hierro (III) hexahydrate.” Accessed: Apr. 02, 2024. [Online]. Available: https://www.sigmaaldrich.com/CO/es/substance/ironiiichloridehexahydrate2703010 025771spa
dc.relation.referencesR. R. Jones, D. C. Hooper, L. Zhang, D. Wolverson, and V. K. Valev, “Raman Techniques: Fundamentals and Frontiers,” Dec. 01, 2019, Springer New York LLC. doi: 10.1186/s11671-019-3039-2.spa
dc.relation.referencesA. Abiya, A. Ilakiya, S. Hemalakshmi, and S. Ramesh, “OBTAINING AND INVESTIGATE OF CAFFEINE FROM CONTRASTING TEA SPECIMEN USING LIQUID-LIQUID EXTRACTION,” 2022.spa
dc.relation.referencesH. Hitachi, “Thermal Analysis of Caffeine.” Accessed: Mar. 20, 2024. [Online]. Available: https://hha.hitachihightech.com/assets/uploads/assets/uploads/documents/Thermal_Analysis_of_Caf feine.pdfspa
dc.relation.referencesL. Wade, Quimica Orgánica, Séptima., vol. 1. Mexico: Pearson, 2011.spa
dc.relation.referencesK. Rajam, S. Rajendran, and N. N. Banu, “Effect of caffeine-Zn2+ system in preventing corrosion of carbon steel in well water,” J Chem, 2013, doi: 10.1155/2013/521951.spa
dc.relation.referencesS. Butt, S. M. F. Hasan, M. M. Hassan, K. M. Alkharfy, and S. H. Neau, “Directly compressed rosuvastatin calcium tablets that offer hydrotropic and micellar solubilization for improved dissolution rate and extent of drug release,” Saudi Pharmaceutical Journal, vol. 27, no. 5, pp. 619–628, Jul. 2019, doi: 10.1016/j.jsps.2019.03.002.spa
dc.relation.referencesJ. C. Lindon et al., “The Handbook of Metabonomics and Metabolomics NMR Spectroscopy Techniques for Application to Metabonomics,” 2007.spa
dc.relation.referencesJ. Sitkowski, L. Stefaniak, I. L. Nicol, M. L. Martin, G. J. Martin, and G. A. Webb, “Complete assignments of the IH, ~3C and tSN NMR spectra of caffeine,” 1995.spa
dc.relation.referencesG. Colherinhas, V. Ludwig, and Z. M. da Costa Ludwig, “GIAO-NMR spectroscopy of the xanthine’s structures in water solution using S-MC/QM methodology: An evaluation of the DFT-functionals’ efficiency,” J Mol Liq, vol. 347, Feb. 2022, doi: 10.1016/j.molliq.2021.117955spa
dc.relation.referencesW.-T. Ai, W.-K. Su, and F. Su, “Solvents Influence 1H NMR Chemical Shifts and Complete 1H and 13C NMR Spectral Assignments for Florfenicol,” Pharmaceutical Fronts, vol. 05, no. 04, pp. e288–e296, Dec. 2023, doi: 10.1055/s-0043-1777285.spa
dc.relation.referencesM. S. Sitze, E. R. Schreiter, E. V. Patterson, and R. G. Freeman, “Ionic liquids based on FeCl3 and FeCl2. Raman scattering and ab initio calculations,” Inorg Chem, vol. 40, no. 10, pp. 2298–2304, May 2001, doi: 10.1021/ic001042r.spa
dc.relation.referencesJ. Guang Li, Y. Feng-Hu, X. Ming-Peng, and X. Ming-Zhang, “Study of physicochemical properties of FeCl3/[C4mim][Cl] ionic liquids,” J. Chem. Thermodynamics, pp. 277–281, 2016.spa
dc.relation.referencesS. Sharma, “Raman study of ferric chloride hexahydrate and ferric chloride hexadeutrate in crystalline, molten and glassy states.,” J Non Cryst Solids, vol. 15, pp. 83–95, 1974, Accessed: Aug. 12, 2024. [Online]. Available: https://doi.org/10.1016/0022-3093(74)90113-6spa
dc.relation.referencesQ. Li, Y. Dong, K. D. Hammond, and C. Wan, “Revealing the role of hydrogen bonding interactions and supramolecular complexes in lignin dissolution by deep eutectic solvents,” J Mol Liq, vol. 344, Dec. 2021, doi: 10.1016/j.molliq.2021.117779.spa
dc.relation.referencesV. N. Krasil’nikov, A. P. Tyutyunnik, V. P. Zhukov, I. V. Baklanova, O. I. Gyrdasova, and E. V. Chulkov, “Zinc glycolate Zn(OCH2CH2O): Synthesis and structure, spectral and optical properties, electronic structure and chemical bonding,” J Alloys Compd, vol. 924, Nov. 2022, doi: 10.1016/j.jallcom.2022.166320.spa
dc.relation.referencesM. S. Calado, A. S. H. Branco, V. Najdanovic-Visak, and Z. P. Visak, “Solubility of high-value compounds in environmentally friendly solvents-liquid poly(ethylene glycol) and ionic liquids: Experimental study and thermodynamic analysis,” Journal of Chemical Thermodynamics, vol. 70, pp. 154–159, 2014, doi: 10.1016/j.jct.2013.10.036.spa
dc.relation.referencesT. P. Andrejević et al., “Zinc(II) complexes with aromatic nitrogen-containing heterocycles as antifungal agents: Synergistic activity with clinically used drug nystatin,” J Inorg Biochem, vol. 208, Jul. 2020, doi: 10.1016/j.jinorgbio.2020.111089spa
dc.relation.referencesS. Tfaili et al., “Vibrational spectroscopies for the analysis of cutaneous permeation: Experimental limiting factors identified in the case of caffeine penetration,” Anal Bioanal Chem, vol. 405, no. 4, pp. 1325–1332, Feb. 2013, doi: 10.1007/s00216-012-6512-7.spa
dc.relation.referencesM. Zareef et al., “Rapid prediction of caffeine in tea based on surface-enhanced Raman spectroscopy coupled multivariate calibration,” Microchemical Journal, vol. 159, Dec. 2020, doi: 10.1016/j.microc.2020.105431spa
dc.relation.referencesM. Baranska and L. M. Proniewicz, “Raman mapping of caffeine alkaloid,” Vib Spectrosc, vol. 48, no. 1, pp. 153–157, Sep. 2008, doi: 10.1016/j.vibspec.2007.12.016spa
dc.relation.referencesQ. Yang et al., “Qualitative and Quantitative Analysis of Caffeine in Medicines by Terahertz Spectroscopy Using Machine Learning Method,” IEEE Access, vol. 9, pp. 140008–140021, 2021, doi: 10.1109/ACCESS.2021.3116980spa
dc.relation.referencesI. Kupenko, L. Dubrovinsky, V. Dmitriev, and N. Dubrovinskaia, “In situ Raman spectroscopic study of the pressure induced structural changes in ammonia borane,” Journal of Chemical Physics, vol. 137, no. 7, Aug. 2012, doi: 10.1063/1.4746074spa
dc.relation.referencesM. C. C. Ribeiro, M. Wilson, and P. A. Madden, “Raman scattering in the network liquid ZnCl2 relationship to the vibrational density of states,” Journal of Chemical Physics, vol. 110, no. 10, pp. 4803–4811, Mar. 1999, doi: 10.1063/1.478368spa
dc.relation.referencesS. O. Liubimovskii et al., “Raman structural study of ethylene glycol and 1,3- propylene glycol aqueous solutions,” Spectrochim Acta A Mol Biomol Spectrosc, vol. 285, Jan. 2023, doi: 10.1016/j.saa.2022.121927.spa
dc.relation.referencesS. O. Liubimovskii et al., “Raman structural study of ethylene glycol and 1,3- propylene glycol aqueous solutions,” Spectrochim Acta A Mol Biomol Spectrosc, vol. 285, Jan. 2023, doi: 10.1016/j.saa.2022.121927.spa
dc.relation.referencesP. H. Tran and A. H. Thi Hang, “Deep eutectic solvent-catalyzed arylation of benzoxazoles with aromatic aldehydes,” RSC Adv, vol. 8, no. 20, pp. 11127– 11133, 2018, doi: 10.1039/c8ra01094c.spa
dc.relation.referencesS. B. Abdullah, H. A. Aziz, and Z. Man, “Ionic Liquids for Desulphurization: A Review,” in Recent Advances in Ionic Liquids, InTech, 2018. doi: 10.5772/intechopen.79281.spa
dc.relation.referencesY. Nie, C. Li, H. Meng, and Z. Wang, “N,N-dialkylimidazolium dialkylphosphate ionic liquids: Their extractive performance for thiophene series compounds from fuel oils versus the length of alkyl group,” Fuel Processing Technology, vol. 89, no. 10, pp. 978–983, Oct. 2008, doi: 10.1016/j.fuproc.2008.04.003.spa
dc.relation.referencesA. A. P. Kumar and T. Banerjee, “Thiophene separation with ionic liquids for desulphurization: A quantum chemical approach,” Fluid Phase Equilib, vol. 278, no. 1–2, pp. 1–8, Apr. 2009, doi: 10.1016/j.fluid.2008.11.019.spa
dc.relation.referencesS. R. Shirazinia, A. Semnani, M. Nekoeinia, M. Shirani, and A. Akbari, “Novel sustainable metal complex based deep eutectic solvents for extractive desulphurisation of fuel,” J Mol Liq, vol. 301, Mar. 2020, doi: 10.1016/j.molliq.2019.112364spa
dc.relation.referencesC. Li et al., “Extraction desulfurization of fuels with ‘metal ions’ based deep eutectic solvents (MDESs),” Green Chemistry, vol. 18, no. 13, pp. 3789–3795, 2016, doi: 10.1039/c6gc00366d.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc540 - Química y ciencias afinesspa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.lembCompuestos de azufre
dc.subject.proposalSolventes eutécticos profundosspa
dc.subject.proposalLiquidos iónicosspa
dc.subject.proposalCafeínaspa
dc.subject.proposalDesulfuraciónspa
dc.subject.proposalCombustible modelospa
dc.subject.proposalIonic liquids (ILs)eng
dc.subject.proposalDeep eutectic solvents (DES)eng
dc.subject.proposalProtonated caffeine (CafCl)eng
dc.subject.proposalModel fuel (MF)eng
dc.subject.proposalHydrogen bond acceptors (HBAs)eng
dc.subject.proposalHydrogen bond donors (HBDs)eng
dc.titleSíntesis de solventes alternativos (líquidos iónicos y solventes eutécticos profundos) base cafeína protonada con potencial aplicación para la desulfuración de combustiblesspa
dc.title.translatedSynthesis of Alternative Solvents (Ionic Liquids and Deep Eutectic Solvents) Based on Protonated Caffeine with Potential Application for Fuel Desulfurizationeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleDesarrollo de líquidos iónicos a base de cafeína para la desulfuración de combustiblesspa
oaire.fundernameUniversidad Nacional de Colombiaspa
oaire.fundernameConvenio G8spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1053859592.2025.pdf
Tamaño:
1.37 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería: Materiales y Procesos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: