Síntesis de solventes alternativos (líquidos iónicos y solventes eutécticos profundos) base cafeína protonada con potencial aplicación para la desulfuración de combustibles
dc.contributor.advisor | Ocampo Carmona, Luz Marina | |
dc.contributor.advisor | Echeverry Vargas, Luver | |
dc.contributor.author | Benavides Maya, Laura Sofia | |
dc.contributor.cvlac | Benavides, Laura Sofia | spa |
dc.contributor.googlescholar | Benavides, Laura Sofia | spa |
dc.contributor.orcid | Benavides Maya, Laura Sofía [0009000594237619] | spa |
dc.contributor.researchgate | Benavides-Maya, Laura Sofia | spa |
dc.contributor.researchgroup | Ciencia y Tecnología de Materiales | spa |
dc.contributor.scopus | Benavides-Maya, Laura Sofia | spa |
dc.date.accessioned | 2025-03-17T18:19:36Z | |
dc.date.available | 2025-03-17T18:19:36Z | |
dc.date.issued | 2024-10-18 | |
dc.description | Ilustraciones | spa |
dc.description.abstract | En los últimos años, ha aumentado el interés por encontrar alternativas a los solventes convencionales para mejorar la sostenibilidad en los procesos químicos, destacándose los líquidos iónicos (ILs) y los solventes eutécticos profundos (DES) por sus propiedades únicas y aplicaciones diversas. En esta tesis de maestría, se sintetizaron ILs y DES basados en cafeína protonada para la desulfuración de un combustibles modelo. Para esto, fue necesario la protonación de cafeína comercial, convirtiéndola en una sal de amonio cuaternaria, resultando en la formación de clorhidrato de cafeína (CafCl). Este producto se caracterizó mediante TGA, FTIR y RMN, confirmando la formación del enlace N-H en el anillo de imidazol de la cafeína. Una vez protonada la cafeína, se sintetizó el IL compuesto por CafCl:FeCl3.6H2O en dos relaciones molares (1:2 y 1:3), caracterizados mediante espectroscopía Raman para confirmar la formación del anión tetracloroferrato (FeCl4-). Además, se sintetizaron DES ternarios utilizando etilenglicol (EG) como donantes de enlaces de hidrógeno (HBD) y CafCl y ZnCl2 como aceptores de enlaces de hidrógeno (HBAs), obteniendo dos DES (ZnCl2:EG:CafCl) en relaciones 1:2.0.1 y 1:2:0.06, caracterizados por Raman. Finalmente, se evaluó la capacidad extractiva de los ILs y DES en la desulfuración de un combustible modelo (MF) compuesto por dibenzotiofeno (DBT) en dodecano. Mediante un diseño factorial completo, donde se evaluaron tres factores: temperatura, relación IL/DES y cantidad de CafCl. El IL logró un porcentaje máximo de desulfuración de 12.9%, mientras que el DES alcanzó un 17.44%. Estos resultados sugieren que el mecanismo de desulfuración es la formación de puentes de hidrógeno entre el IL/DES y el MF. (texto tomado de la fuente) | spa |
dc.description.abstract | In recent years, there has been increased interest in finding alternatives to conventional solvents to enhance sustainability in chemical processes, with ionic liquids (ILs) and deep eutectic solvents (DES) standing out due to their unique properties and diverse applications. In this master's thesis, ILs and DES based on protonated caffeine were synthesized for the desulfurization of model fuels. This required the protonation of commercial caffeine, converting it into a quaternary ammonium salt, resulting in the formation of caffeine hydrochloride (CafCl). This product was characterized by TGA, FTIR, and NMR, confirming the formation of the N-H bond in the imidazole ring of caffeine. Once the caffeine was protonated, IL composed of CafCl: FeCl3.6H2O was synthesized in two molar ratios (1:2 and 1:3), characterized by Raman spectroscopy to confirm the formation of the tetrachloroferrate anion (FeCl4 -). Additionally, ternary DES were synthesized using ethylene glycol (EG) as the HBD and CafCl and ZnCl2 as HBAs, obtaining two DES (ZnCl2:EG:CafCl) in 1:2.0.1 and 1:2:0.06 ratios, characterized by Raman. Finally, the extractive capacity of the ILs and DES was evaluated for the desulfurization of a model fuel (MF) composed of dibenzothiophene (DBT) in dodecane. Using a full factorial design , three factors were evaluated: temperature, IL/DES ratio, and amount of CafCl. The IL achieved a maximum desulfurization percentage of 12.9%, while the DES reached 17.44%. These results suggest that the desulfurization mechanism is the formation of hydrogen bonds between the IL/DES and the MF. | eng |
dc.description.curriculararea | Área Curricular de Materiales y Nanotecnología | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Materiales y Procesos | spa |
dc.description.methods | Revisión bibliográfica Aprendizaje de técnicas de caracterización y análisis Construcción y analisis de diseño experimental | spa |
dc.description.notes | Contiene gráficas, tablas, análisis de datos estadísticos. | spa |
dc.description.researcharea | Solventes alternativos | spa |
dc.description.sponsorship | código Hermes 54126 | spa |
dc.description.technicalinfo | Se usó Origin para el análisis de datos obtenidos de las técnicas de caracterización FTIR, TGA y Raman. Para la NMR se usó el software MestReNova | spa |
dc.format.extent | 85 páginas | spa |
dc.format.mimetype | image/jpeg | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87670 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.faculty | Facultad de Minas | spa |
dc.publisher.place | Medellín, Colombia | spa |
dc.publisher.program | Medellín - Minas - Maestría en Ingeniería - Materiales y Procesos | spa |
dc.relation.references | C. J. Clarke, W. C. Tu, O. Levers, A. Bröhl, and J. P. Hallett, “Green and Sustainable Solvents in Chemical Processes,” Chem Rev, vol. 118, no. 2, pp. 747– 800, Jan. 2018, doi: 10.1021/acs.chemrev.7b00571 | spa |
dc.relation.references | B. Nanda, M. Sailaja, P. Mohapatra, R. K. Pradhan, and B. B. Nanda, “Green solvents: A suitable alternative for sustainable chemistry,” in Materials Today: Proceedings, Elsevier Ltd, 2021, pp. 1234–1240. doi: 10.1016/j.matpr.2021.06.458. | spa |
dc.relation.references | W. Bains, J. J. Petkowski, and S. Seager, “Alternative solvents for life: framework for evaluation, current status and future research,” 2022. Accessed: Apr. 16, 2024. [Online]. Available: https://arxiv.org/ftp/arxiv/papers/2401/2401.07296.pdf | spa |
dc.relation.references | S. Armenta, F. A. Esteve-Turrillas, S. Garrigues, and M. de la Guardia, “Alternative green solvents in sample preparation,” Green Analytical Chemistry, vol. 1, Apr. 2022, doi: 10.1016/j.greeac.2022.100007. | spa |
dc.relation.references | A. Bösmann, L. Datsevich, A. Jess, A. Lauter, C. Schmitz, and P. Wasserscheid, “Deep desulfurization of diesel fuel by extraction with ionic liquids,” Chemical Communications, vol. 23, pp. 2494–2495, Dec. 2001, doi: 10.1039/b108411a. | spa |
dc.relation.references | A. A. P. Kumar and T. Banerjee, “Thiophene separation with ionic liquids for desulphurization: A quantum chemical approach,” Fluid Phase Equilib, vol. 278, no. 1–2, pp. 1–8, Apr. 2009, doi: 10.1016/j.fluid.2008.11.019 | spa |
dc.relation.references | Y. Nie, C. Li, H. Meng, and Z. Wang, “N,N-dialkylimidazolium dialkylphosphate ionic liquids: Their extractive performance for thiophene series compounds from fuel oils versus the length of alkyl group,” Fuel Processing Technology, vol. 89, no. 10, pp. 978–983, Oct. 2008, doi: 10.1016/j.fuproc.2008.04.003. | spa |
dc.relation.references | K. Ghandi, “A Review of Ionic Liquids, Their Limits and Applications,” Green and Sustainable Chemistry, vol. 04, no. 01, pp. 44–53, 2014, doi: 10.4236/gsc.2014.41008. | spa |
dc.relation.references | D. F. Montaño Montoya, E. J. Juaristi Cosio, J. Sepúlveda Aguirre, and J. E. Murillo Bocanegra, “Los líquidos iónicos como prometedores catalizadores en síntesis orgánica: Una contribución a la química sostenible,” Rev Lasallista Investig, vol. 14, no. 2, pp. 171–179, 2017, doi: 10.22507/rli.v14n2a16 | spa |
dc.relation.references | J. Carlos Díaz Alvarez, ; Ramiro, M. Rey, and R. B. Acosta, “Líquidos iónicos: propiedades fi sicoquímicas y aplicación potencial en el mejoramiento de crudos pesados Ionic liquids: physicochemical properties and potential application in upgrading of heavy crude oils | spa |
dc.relation.references | F. Lima, L. C. Branco, A. J. D. Silvestre, and I. M. Marrucho, “Deep desulfurization of fuels: Are deep eutectic solvents the alternative for ionic liquids?,” Fuel, vol. 293, Jun. 2021, doi: 10.1016/j.fuel.2021.120297 | spa |
dc.relation.references | Control of Air Polution from motor vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards . United States: http://www.epa.gov/oar/, 2014. | spa |
dc.relation.references | EL MUNDO, “Gasolina Colombiana, entre las más limpias de Latinoamérica.” Accessed: Aug. 30, 2023. [Online]. Available: https://www.elmundo.com/portal/pagina.general.impresion.php?idx=273045 | spa |
dc.relation.references | Ecopetrol, “Calidad de combustibles: Más de tres décadas de mejora continua.” Accessed: Aug. 30, 2023. [Online]. Available: https://www.ecopetrol.com.co/wps/portal/Home/sostecnibilidad/ambiental/airelimpio/calidad-combustibles | spa |
dc.relation.references | “ANÁLISIS DE IMPACTO NORMATIVO DEFINICIÓN DEL PROBLEMA NORMA NACIONAL DE CALIDAD DE COMBUSTIBLES DIESEL Y BIODIESEL,” 2019 | spa |
dc.relation.references | M. Francisco, A. Arce, and A. Soto, “Ionic liquids on desulfurization of fuel oils,” Fluid Phase Equilib, vol. 294, no. 1–2, pp. 39–48, 2010, doi: 10.1016/j.fluid.2009.12.020. | spa |
dc.relation.references | A. Romero, A. Santos, J. Tojo, and A. Rodriguez, “Toxicity and biodegradability of imidazolium ionic liquids,” Journal of Hardazous Materials, pp. 268–273, 2007. | spa |
dc.relation.references | Thermo Fisher Scientific, “Fisher Scientific,” https://www.fishersci.es/shop/products/imidazole-acs-reagent-thermoscientific/10493454#?keyword=imidazol. | spa |
dc.relation.references | Thermo Fisher Scientific, “Fisher Scientific,” https://www.fishersci.es/shop/products/caffeine-99-thermoscientific/11438643#?keyword=caffeine. | spa |
dc.relation.references | F. Bureš, “Quaternary Ammonium Compounds: Simple in Structure, Complex in Application,” Jun. 01, 2019, Springer International Publishing. doi: 10.1007/s41061- 019-0239-2. | spa |
dc.relation.references | J. D. Roberts and M. C. Caserio, “8.Reacciones de sustitución nucleofílica y eliminación,” in Principios básicos de química orgánica, Segunda., W.A Benjamin, Ed., California, 1977. | spa |
dc.relation.references | J. G. Li, Y. F. Hu, S. F. Sun, S. Ling, and J. Z. Zhang, “Ionic structures of nanobased FeCl3/[C4mim]Cl ionic liquids,” Journal of Physical Chemistry B, vol. 116, no. 22, pp. 6461–6464, Jun. 2012, doi: 10.1021/jp206819h. | spa |
dc.relation.references | M. A. Abdel-Fatah, S. I. Hawash, and H. H. Shaarawy, “Cost-effective clean electrochemical preparation of ferric chloride and its applications,” Egypt J Chem, vol. 64, no. 7, pp. 3841–3851, Jul. 2021, doi: 10.21608/ejchem.2021.75921.3717. | spa |
dc.relation.references | D. Díaz Díaz, P. O. Miranda, J. I. Padrón, and V. S. Martín, “Recent Uses of Iron (III) Chloride in Organic Synthesis,” 2006. | spa |
dc.relation.references | L. Lomba, C. B. García, M. P. Ribate, B. Giner, and E. Zuriaga, “Applications of deep eutectic solvents related to health, synthesis, and extraction of natural based chemicals,” Nov. 01, 2021, MDPI. doi: 10.3390/app112110156. | spa |
dc.relation.references | B. E. Gurkan, E. J. Maginn, and E. B. Pentzer, “Deep eutectic solvents: A new class of versatile liquids,” Dec. 17, 2020, American Chemical Society. doi: 10.1021/acs.jpcb.0c10099. | spa |
dc.relation.references | C. Florindo, L. C. Branco, and I. M. Marrucho, “Quest for Green-Solvent Design: From Hydrophilic to Hydrophobic (Deep) Eutectic Solvents,” Apr. 23, 2019, WileyVCH Verlag. doi: 10.1002/cssc.201900147 | spa |
dc.relation.references | Z. Yang, “Natural Deep Eutectic Solvents and Their Applications in Biotechnology,” in Advances in Biochemical Engineering/Biotechnology, vol. 168, Springer Science and Business Media Deutschland GmbH, 2019, pp. 31–59. doi: 10.1007/10_2018_67. | spa |
dc.relation.references | M. Francisco, A. Van Den Bruinhorst, and M. C. Kroon, “Low-transition-temperature mixtures (LTTMs): A new generation of designer solvents,” Mar. 11, 2013. doi: 10.1002/anie.201207548. | spa |
dc.relation.references | M. Salami and A. Ezabadi, “A caffeine-based ionic liquid as a novel and ecofriendly catalyst for the synthesis of 1,8-dioxo-octahydroxanthenes under solventfree conditions,” Research on Chemical Intermediates, 2019, doi: 10.1007/s11164- 019-03814-3. | spa |
dc.relation.references | M. Salami and A. Ezabadi, “Synthesis of the nano-magnetic ionic liquid based on caffeine and its catalytic application in the synthesis of xanthenes,” Research on Chemical Intermediates, vol. 46, no. 10, pp. 4611–4626, Oct. 2020, doi: 10.1007/s11164-020-04224-6. | spa |
dc.relation.references | S. Dalvand, S. Yaghoubi, S. Morteza Mousavi-Khoshdel, and H. Ghafuri, “Investigating the application of caffeine-based ionic liquid modified by zinc bromide as an effective electrode in supercapacitor,” J Energy Storage, vol. 44, Dec. 2021, doi: 10.1016/j.est.2021.103323. | spa |
dc.relation.references | G. Kaur, H. Kumar, and M. Singla, “Diverse applications of ionic liquids: A comprehensive review,” Apr. 01, 2022, Elsevier B.V. doi: 10.1016/j.molliq.2022.118556. | spa |
dc.relation.references | R. L. Vekariya, “A review of ionic liquids: Applications towards catalytic organic transformations,” Feb. 01, 2017, Elsevier B.V. doi: 10.1016/j.molliq.2016.11.123. | spa |
dc.relation.references | P. Sharma, S. Sharma, and H. Kumar, “Introduction to ionic liquids, applications and micellization behaviour in presence of different additives,” Jan. 01, 2024, Elsevier B.V. doi: 10.1016/j.molliq.2023.123447. | spa |
dc.relation.references | S. M. S. Hussain et al., “A review of ionic liquids: Recent synthetic advances and oilfield applications,” J Taiwan Inst Chem Eng, vol. 153, Dec. 2023, doi: 10.1016/j.jtice.2023.105195 | spa |
dc.relation.references | E. L. Smith, A. P. Abbott, and K. S. Ryder, “Deep Eutectic Solvents (DESs) and Their Applications,” Nov. 12, 2014, American Chemical Society. doi: 10.1021/cr300162p. | spa |
dc.relation.references | Karla Amezquita, Alicia Blanco, Nely Rios, and Martha Macias, “Extracción, caracterización y cuantificación de cafeína en bebidas energéticas más populares de México, y su consumo por estudiantes del CUCEI de la Universidad de Guadalajara,” Revista de aplicación científica y técnica, pp. 18–27, 2018. | spa |
dc.relation.references | Labster, “Propiedades químicas de la cafeína,” Labster, Theory pages. Accessed: Mar. 18, 2024. [Online]. Available: https://theory.labster.com/es/caffeines-chemicalstructure/ | spa |
dc.relation.references | Silvia Calle Aznar, “Determinación analítica de la cafeína en diferentes productos comerciales,” 2011. | spa |
dc.relation.references | G. Singh, M. Kaur, H. Kaur, and T. S. Kang, “Synthesis and complexation of a new caffeine based surface active ionic liquid with lysozyme in aqueous medium: Physicochemical, computational and antimicrobial studies,” J Mol Liq, vol. 325, Mar. 2021, doi: 10.1016/j.molliq.2020.115156. | spa |
dc.relation.references | C.-D. Czogalla and F. Boberg, “Sulfur Compounds in Fossil Fuels I,” Sulfur reports, vol. 3, no. 4, pp. 121–161, Jul. 1983, doi: 10.1080/01961778308082450. | spa |
dc.relation.references | Y. Han, Y. Zhang, C. Xu, and C. S. Hsu, “Molecular characterization of sulfurcontaining compounds in petroleum,” Jun. 01, 2018, Elsevier Ltd. doi: 10.1016/j.fuel.2018.02.110. | spa |
dc.relation.references | L. C. Kelly1 and P. Rawson, “Detection and Identification of Sulfur Compounds in an Australian Jet Fuel,” 2010. | spa |
dc.relation.references | M. Safa, B. Mokhtarani, and H. R. Mortaheb, “Deep extractive desulfurization of dibenzothiophene with imidazolium or pyridinium-based ionic liquids,” Chemical Engineering Research and Design, vol. 111, pp. 323–331, Jul. 2016, doi: 10.1016/j.cherd.2016.04.021. | spa |
dc.relation.references | E. Kianpour, S. Azizian, M. Yarie, M. A. Zolfigol, and M. Bayat, “A task-specific phosphonium ionic liquid as an efficient extractant for green desulfurization of liquid fuel: An experimental and computational study,” Chemical Engineering Journal, vol. 295, pp. 500–508, Jul. 2016, doi: 10.1016/j.cej.2016.03.072. | spa |
dc.relation.references | C. Shu, T. Sun, Q. Guo, J. Jia, and Z. Lou, “Desulfurization of diesel fuel with nickel boride in situ generated in an ionic liquid,” Green Chemistry, vol. 16, no. 8, pp. 3881–3889, 2014, doi: 10.1039/c4gc00695j. | spa |
dc.relation.references | Z. Cun, W. Feng, P. Xiao-yu, and L. Xiao-qin, “Study of extraction-oxidation desulfurization of model oil by acidic ionic liquid,” 2011. | spa |
dc.relation.references | X. Lu et al., “Piperazinium-based ionic liquids with lactate anion for extractive desulfurization of fuels,” in Energy and Fuels, Mar. 2014, pp. 1774–1780. doi: 10.1021/ef402154j. | spa |
dc.relation.references | S. A. Dharaskar, K. L. Wasewar, M. N. Varma, D. Z. Shende, and C. K. Yoo, “Extractive desulfurization of liquid fuels by energy efficient green thiazolium based ionic liquids,” in Industrial and Engineering Chemistry Research, American Chemical Society, Dec. 2014, pp. 19845–19854. doi: 10.1021/ie501108w | spa |
dc.relation.references | Z. S. Gano, F. S. Mjalli, T. Al-Wahaibi, Y. Al-Wahaibi, and I. M. AlNashef, “Extractive desulfurization of liquid fuel with FeCl3-based deep eutectic solvents: Experimental design and optimization by central-composite design,” Chemical Engineering and Processing - Process Intensification, vol. 93, pp. 10–20, Jul. 2015, doi: 10.1016/j.cep.2015.04.001. | spa |
dc.relation.references | N. H. Ko et al., “Extractive desulfurization using Fe-containing ionic liquids,” Energy and Fuels, vol. 22, no. 3, pp. 1687–1690, May 2008, doi: 10.1021/ef7007369. | spa |
dc.relation.references | H. Li, W. Zhu, Y. Wang, J. Zhang, J. Lu, and Y. Yan, “Deep oxidative desulfurization of fuels in redox ionic liquids based on iron chloride,” Green Chemistry, vol. 11, no. 6, pp. 810–81, Jun. 2009, doi: 10.1039/b901127g. | spa |
dc.relation.references | Y. Wang et al., “The extractive desulfurization of fuels using ionic liquids based on FeCl3,” Pet Sci Technol, vol. 28, no. 12, pp. 1203–1210, Aug. 2010, doi: 10.1080/10916460903066148. | spa |
dc.relation.references | X. Chen, D. Song, C. Asumana, and G. Yu, “Deep oxidative desulfurization of diesel fuels by Lewis acidic ionic liquids based on 1-n-butyl-3-methylimidazolium metal chloride,” J Mol Catal A Chem, vol. 359, pp. 8–13, Jul. 2012, doi: 10.1016/j.molcata.2012.03.014. | spa |
dc.relation.references | L. L. Ban, P. Liu, C. H. Ma, and B. Dai, “Deep extractive desulfurization of diesel fuels by FeCl3/ionic liquids,” Chinese Chemical Letters, vol. 24, no. 8, pp. 755–758, Aug. 2013, doi: 10.1016/j.cclet.2013.04.031. | spa |
dc.relation.references | H. Gao et al., “Deep Desulfurization of Gasoline Fuel using FeCl3-Containing Lewis-Acidic Ionic Liquids,” Separation Science and Technology (Philadelphia), vol. 49, no. 8, pp. 1208–1214, 2014, doi: 10.1080/01496395.2013.868487. | spa |
dc.relation.references | X. Chen, D. Song, C. Asumana, and G. Yu, “Deep oxidative desulfurization of diesel fuels by Lewis acidic ionic liquids based on 1-n-butyl-3-methylimidazolium metal chloride,” J Mol Catal A Chem, vol. 359, pp. 8–13, Jul. 2012, doi: 10.1016/j.molcata.2012.03.014. | spa |
dc.relation.references | L. L. Ban, P. Liu, C. H. Ma, and B. Dai, “Deep extractive desulfurization of diesel fuels by FeCl3/ionic liquids,” Chinese Chemical Letters, vol. 24, no. 8, pp. 755–758, Aug. 2013, doi: 10.1016/j.cclet.2013.04.031. | spa |
dc.relation.references | H. Gao et al., “Deep Desulfurization of Gasoline Fuel using FeCl3-Containing Lewis-Acidic Ionic Liquids,” Separation Science and Technology (Philadelphia), vol. 49, no. 8, pp. 1208–1214, 2014, doi: 10.1080/01496395.2013.868487. | spa |
dc.relation.references | T. J. Ren, J. Zhang, Y. H. Hu, J. P. Li, M. S. Liu, and D. S. Zhao, “Extractive desulfurization of fuel oil with metal-based ionic liquids,” Chinese Chemical Letters, vol. 26, no. 9, pp. 1169–1173, Sep. 2015, doi: 10.1016/j.cclet.2015.05.023. | spa |
dc.relation.references | T. Yao, S. Yao, C. Pan, X. Dai, and H. Song, “Deep Extraction Desulfurization with a Novel Guanidinium-Based Strong Magnetic Room-Temperature Ionic Liquid,” Energy and Fuels, vol. 30, no. 6, pp. 4740–4749, Jun. 2016, doi: 10.1021/acs.energyfuels.6b00684. | spa |
dc.relation.references | E. Li, Y. Zhu, Y. Xu, Y. Zhang, and P. Yao, “Desulfurization of gasoline by [C4, 6, 8mim]Br/FeCl3 ILs collaboration with CTAB,” Separation Science and Technology (Philadelphia), vol. 56, no. 2, pp. 310–321, 2021, doi: 10.1080/01496395.2020.1713817. | spa |
dc.relation.references | M. R. Caudle, J. E. Thompson, and A. S. Paluch, “Molecular modeling of 1-butyl-3- methylimidazolium based ionic liquids for potential applications in the desulfurization of diesel fuel,” Journal of Ionic Liquids, vol. 3, no. 2, Dec. 2023, doi: 10.1016/j.jil.2023.100071. | spa |
dc.relation.references | J. Płotka-Wasylka, M. de la Guardia, V. Andruch, and M. Vilková, “Deep eutectic solvents vs ionic liquids: Similarities and differences,” Dec. 01, 2020, Elsevier Inc. doi: 10.1016/j.microc.2020.105539. | spa |
dc.relation.references | F. U. Shah, R. An, and N. Muhammad, “Editorial: Properties and Applications of Ionic Liquids in Energy and Environmental Science,” Dec. 15, 2020, Frontiers Media S.A. doi: 10.3389/fchem.2020.627213. | spa |
dc.relation.references | J. K. U. Ling and K. Hadinoto, “Deep Eutectic Solvent as Green Solvent in Extraction of Biological Macromolecules: A Review,” Mar. 01, 2022, MDPI. doi: 10.3390/ijms23063381. | spa |
dc.relation.references | Q. Zhang, K. De Oliveira Vigier, S. Royer, and F. Jérôme, “Deep eutectic solvents: Syntheses, properties and applications,” Chem Soc Rev, vol. 41, no. 21, pp. 7108– 7146, Oct. 2012, doi: 10.1039/c2cs35178a. | spa |
dc.relation.references | K. A. Omar and R. Sadeghi, “Physicochemical properties of deep eutectic solvents: A review,” Aug. 15, 2022, Elsevier B.V. doi: 10.1016/j.molliq.2022.119524. | spa |
dc.relation.references | F. Lima, L. C. Branco, A. J. D. Silvestre, and I. M. Marrucho, “Deep desulfurization of fuels: Are deep eutectic solvents the alternative for ionic liquids?,” Fuel, vol. 293, Jun. 2021, doi: 10.1016/j.fuel.2021.120297. | spa |
dc.relation.references | C. Li et al., “Extraction desulfurization process of fuels with ammonium based deep eutectic solvents.,” Green Chemistry, pp. 1–7, 2013, doi: 10.1039/c0xx00000x. | spa |
dc.relation.references | Z. S. Gano, F. S. Mjalli, T. Al-Wahaibi, Y. Al-Wahaibi, and I. M. Alnashef, “Solubility of thiophene and dibenzothiophene in anhydrous FeCl3- and ZnCl2-based deep eutectic solvents,” Ind Eng Chem Res, vol. 53, no. 16, pp. 6815–6823, Apr. 2014, doi: 10.1021/ie500466g. | spa |
dc.relation.references | C. Shu and T. Sun, “Extractive desulfurisation of gasoline with tetrabutyl ammonium chloride-based deep eutectic solvents,” Separation Science and Technology (Philadelphia), vol. 51, no. 8, pp. 1336–1343, May 2016, doi: 10.1080/01496395.2016.1155602 | spa |
dc.relation.references | S. E. E. Warrag et al., “Effect of the Type of Ammonium Salt on the Extractive Desulfurization of Fuels Using Deep Eutectic Solvents,” J Chem Eng Data, vol. 63, no. 4, pp. 1088–1095, Apr. 2018, doi: 10.1021/acs.jced.7b00832. | spa |
dc.relation.references | K. H. Almashjary, M. Khalid, S. Dharaskar, P. Jagadish, R. Walvekar, and T. C. S. M. Gupta, “Optimisation of extractive desulfurization using Choline Chloride-based deep eutectic solvents,” Fuel, vol. 234, pp. 1388–1400, Dec. 2018, doi: 10.1016/j.fuel.2018.08.005 | spa |
dc.relation.references | S. R. Shirazinia, A. Semnani, M. Nekoeinia, M. Shirani, and A. Akbari, “Novel sustainable metal complex based deep eutectic solvents for extractive desulphurisation of fuel,” J Mol Liq, vol. 301, Mar. 2020, doi: 10.1016/j.molliq.2019.112364. | spa |
dc.relation.references | N. Khan and V. C. Srivastava, “Extractive desulfurization using ethylene glycol and glycerol-based deep eutectic solvents: engineering aspects and intensification using ultrasound,” Chemical Engineering and Processing - Process Intensification, vol. 180, Oct. 2022, doi: 10.1016/j.cep.2022.108973. | spa |
dc.relation.references | L. Xu et al., “Hydrogen bonding boosted oxidative desulfurization by ZnCl2/boric acid/polyethylene glycol-based ternary deep eutectic solvents,” J Mol Liq, vol. 368, Dec. 2022, doi: 10.1016/j.molliq.2022.120725. | spa |
dc.relation.references | M. Mofidi and S. Shahhosseini, “Ultrasound assisted oxidative desulfurization of a model fuel using a deep eutectic solvent: Optimization and experimental design,”Chemical Engineering and Processing - Process Intensification, vol. 171, Jan. 2022, doi: 10.1016/j.cep.2021.108724. | spa |
dc.relation.references | H. Balaraman and S. Rathnasamy, “Synergetic ultrasound assisted catalytic oxidative extractive desulfurization of tire pyrolysis oil employing sustainable protic deep eutectic solvents,” Fuel, vol. 351, Nov. 2023, doi: 10.1016/j.fuel.2023.129031. | spa |
dc.relation.references | D. Jha, P. Maheshwari, Y. Singh, M. B. Haider, R. Kumar, and M. S. Balathanigaimani, “A comparative review of extractive desulfurization using designer solvents: Ionic liquids & deep eutectic solvents,” Oct. 01, 2023, Elsevier B.V. doi: 10.1016/j.joei.2023.101313. | spa |
dc.relation.references | Jasmine Groover, “Hydrogen Chloride: Preparation, Properties and Uses,” Collegedunia. Accessed: Apr. 15, 2024. [Online]. Available: https://collegedunia.com/exams/hydrogen-chloride-chemistry-articleid-205 | spa |
dc.relation.references | Adriana. Gonzalez, “Lifeder,” Ácido sulfúrico. Accessed: Mar. 18, 2024. [Online]. Available: https://www.lifeder.com/acido-sulfurico/ | spa |
dc.relation.references | ChemicalAid, “NaCl (Cloruro de Sodio),” NaCl, Masa Molar. Accessed: Mar. 18, 2024. [Online]. Available: https://www.chemicalaid.com/tools/molarmass.php?formula=NaCl&hl=es | spa |
dc.relation.references | M. J. Arnaud, “The pharmacology of caffeine,” Switzerland, 1987. | spa |
dc.relation.references | Merck, “Cloruro de hierro (III) hexahydrate.” Accessed: Apr. 02, 2024. [Online]. Available: https://www.sigmaaldrich.com/CO/es/substance/ironiiichloridehexahydrate2703010 025771 | spa |
dc.relation.references | R. R. Jones, D. C. Hooper, L. Zhang, D. Wolverson, and V. K. Valev, “Raman Techniques: Fundamentals and Frontiers,” Dec. 01, 2019, Springer New York LLC. doi: 10.1186/s11671-019-3039-2. | spa |
dc.relation.references | A. Abiya, A. Ilakiya, S. Hemalakshmi, and S. Ramesh, “OBTAINING AND INVESTIGATE OF CAFFEINE FROM CONTRASTING TEA SPECIMEN USING LIQUID-LIQUID EXTRACTION,” 2022. | spa |
dc.relation.references | H. Hitachi, “Thermal Analysis of Caffeine.” Accessed: Mar. 20, 2024. [Online]. Available: https://hha.hitachihightech.com/assets/uploads/assets/uploads/documents/Thermal_Analysis_of_Caf feine.pdf | spa |
dc.relation.references | L. Wade, Quimica Orgánica, Séptima., vol. 1. Mexico: Pearson, 2011. | spa |
dc.relation.references | K. Rajam, S. Rajendran, and N. N. Banu, “Effect of caffeine-Zn2+ system in preventing corrosion of carbon steel in well water,” J Chem, 2013, doi: 10.1155/2013/521951. | spa |
dc.relation.references | S. Butt, S. M. F. Hasan, M. M. Hassan, K. M. Alkharfy, and S. H. Neau, “Directly compressed rosuvastatin calcium tablets that offer hydrotropic and micellar solubilization for improved dissolution rate and extent of drug release,” Saudi Pharmaceutical Journal, vol. 27, no. 5, pp. 619–628, Jul. 2019, doi: 10.1016/j.jsps.2019.03.002. | spa |
dc.relation.references | J. C. Lindon et al., “The Handbook of Metabonomics and Metabolomics NMR Spectroscopy Techniques for Application to Metabonomics,” 2007. | spa |
dc.relation.references | J. Sitkowski, L. Stefaniak, I. L. Nicol, M. L. Martin, G. J. Martin, and G. A. Webb, “Complete assignments of the IH, ~3C and tSN NMR spectra of caffeine,” 1995. | spa |
dc.relation.references | G. Colherinhas, V. Ludwig, and Z. M. da Costa Ludwig, “GIAO-NMR spectroscopy of the xanthine’s structures in water solution using S-MC/QM methodology: An evaluation of the DFT-functionals’ efficiency,” J Mol Liq, vol. 347, Feb. 2022, doi: 10.1016/j.molliq.2021.117955 | spa |
dc.relation.references | W.-T. Ai, W.-K. Su, and F. Su, “Solvents Influence 1H NMR Chemical Shifts and Complete 1H and 13C NMR Spectral Assignments for Florfenicol,” Pharmaceutical Fronts, vol. 05, no. 04, pp. e288–e296, Dec. 2023, doi: 10.1055/s-0043-1777285. | spa |
dc.relation.references | M. S. Sitze, E. R. Schreiter, E. V. Patterson, and R. G. Freeman, “Ionic liquids based on FeCl3 and FeCl2. Raman scattering and ab initio calculations,” Inorg Chem, vol. 40, no. 10, pp. 2298–2304, May 2001, doi: 10.1021/ic001042r. | spa |
dc.relation.references | J. Guang Li, Y. Feng-Hu, X. Ming-Peng, and X. Ming-Zhang, “Study of physicochemical properties of FeCl3/[C4mim][Cl] ionic liquids,” J. Chem. Thermodynamics, pp. 277–281, 2016. | spa |
dc.relation.references | S. Sharma, “Raman study of ferric chloride hexahydrate and ferric chloride hexadeutrate in crystalline, molten and glassy states.,” J Non Cryst Solids, vol. 15, pp. 83–95, 1974, Accessed: Aug. 12, 2024. [Online]. Available: https://doi.org/10.1016/0022-3093(74)90113-6 | spa |
dc.relation.references | Q. Li, Y. Dong, K. D. Hammond, and C. Wan, “Revealing the role of hydrogen bonding interactions and supramolecular complexes in lignin dissolution by deep eutectic solvents,” J Mol Liq, vol. 344, Dec. 2021, doi: 10.1016/j.molliq.2021.117779. | spa |
dc.relation.references | V. N. Krasil’nikov, A. P. Tyutyunnik, V. P. Zhukov, I. V. Baklanova, O. I. Gyrdasova, and E. V. Chulkov, “Zinc glycolate Zn(OCH2CH2O): Synthesis and structure, spectral and optical properties, electronic structure and chemical bonding,” J Alloys Compd, vol. 924, Nov. 2022, doi: 10.1016/j.jallcom.2022.166320. | spa |
dc.relation.references | M. S. Calado, A. S. H. Branco, V. Najdanovic-Visak, and Z. P. Visak, “Solubility of high-value compounds in environmentally friendly solvents-liquid poly(ethylene glycol) and ionic liquids: Experimental study and thermodynamic analysis,” Journal of Chemical Thermodynamics, vol. 70, pp. 154–159, 2014, doi: 10.1016/j.jct.2013.10.036. | spa |
dc.relation.references | T. P. Andrejević et al., “Zinc(II) complexes with aromatic nitrogen-containing heterocycles as antifungal agents: Synergistic activity with clinically used drug nystatin,” J Inorg Biochem, vol. 208, Jul. 2020, doi: 10.1016/j.jinorgbio.2020.111089 | spa |
dc.relation.references | S. Tfaili et al., “Vibrational spectroscopies for the analysis of cutaneous permeation: Experimental limiting factors identified in the case of caffeine penetration,” Anal Bioanal Chem, vol. 405, no. 4, pp. 1325–1332, Feb. 2013, doi: 10.1007/s00216-012-6512-7. | spa |
dc.relation.references | M. Zareef et al., “Rapid prediction of caffeine in tea based on surface-enhanced Raman spectroscopy coupled multivariate calibration,” Microchemical Journal, vol. 159, Dec. 2020, doi: 10.1016/j.microc.2020.105431 | spa |
dc.relation.references | M. Baranska and L. M. Proniewicz, “Raman mapping of caffeine alkaloid,” Vib Spectrosc, vol. 48, no. 1, pp. 153–157, Sep. 2008, doi: 10.1016/j.vibspec.2007.12.016 | spa |
dc.relation.references | Q. Yang et al., “Qualitative and Quantitative Analysis of Caffeine in Medicines by Terahertz Spectroscopy Using Machine Learning Method,” IEEE Access, vol. 9, pp. 140008–140021, 2021, doi: 10.1109/ACCESS.2021.3116980 | spa |
dc.relation.references | I. Kupenko, L. Dubrovinsky, V. Dmitriev, and N. Dubrovinskaia, “In situ Raman spectroscopic study of the pressure induced structural changes in ammonia borane,” Journal of Chemical Physics, vol. 137, no. 7, Aug. 2012, doi: 10.1063/1.4746074 | spa |
dc.relation.references | M. C. C. Ribeiro, M. Wilson, and P. A. Madden, “Raman scattering in the network liquid ZnCl2 relationship to the vibrational density of states,” Journal of Chemical Physics, vol. 110, no. 10, pp. 4803–4811, Mar. 1999, doi: 10.1063/1.478368 | spa |
dc.relation.references | S. O. Liubimovskii et al., “Raman structural study of ethylene glycol and 1,3- propylene glycol aqueous solutions,” Spectrochim Acta A Mol Biomol Spectrosc, vol. 285, Jan. 2023, doi: 10.1016/j.saa.2022.121927. | spa |
dc.relation.references | S. O. Liubimovskii et al., “Raman structural study of ethylene glycol and 1,3- propylene glycol aqueous solutions,” Spectrochim Acta A Mol Biomol Spectrosc, vol. 285, Jan. 2023, doi: 10.1016/j.saa.2022.121927. | spa |
dc.relation.references | P. H. Tran and A. H. Thi Hang, “Deep eutectic solvent-catalyzed arylation of benzoxazoles with aromatic aldehydes,” RSC Adv, vol. 8, no. 20, pp. 11127– 11133, 2018, doi: 10.1039/c8ra01094c. | spa |
dc.relation.references | S. B. Abdullah, H. A. Aziz, and Z. Man, “Ionic Liquids for Desulphurization: A Review,” in Recent Advances in Ionic Liquids, InTech, 2018. doi: 10.5772/intechopen.79281. | spa |
dc.relation.references | Y. Nie, C. Li, H. Meng, and Z. Wang, “N,N-dialkylimidazolium dialkylphosphate ionic liquids: Their extractive performance for thiophene series compounds from fuel oils versus the length of alkyl group,” Fuel Processing Technology, vol. 89, no. 10, pp. 978–983, Oct. 2008, doi: 10.1016/j.fuproc.2008.04.003. | spa |
dc.relation.references | A. A. P. Kumar and T. Banerjee, “Thiophene separation with ionic liquids for desulphurization: A quantum chemical approach,” Fluid Phase Equilib, vol. 278, no. 1–2, pp. 1–8, Apr. 2009, doi: 10.1016/j.fluid.2008.11.019. | spa |
dc.relation.references | S. R. Shirazinia, A. Semnani, M. Nekoeinia, M. Shirani, and A. Akbari, “Novel sustainable metal complex based deep eutectic solvents for extractive desulphurisation of fuel,” J Mol Liq, vol. 301, Mar. 2020, doi: 10.1016/j.molliq.2019.112364 | spa |
dc.relation.references | C. Li et al., “Extraction desulfurization of fuels with ‘metal ions’ based deep eutectic solvents (MDESs),” Green Chemistry, vol. 18, no. 13, pp. 3789–3795, 2016, doi: 10.1039/c6gc00366d. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 540 - Química y ciencias afines | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines | spa |
dc.subject.lemb | Compuestos de azufre | |
dc.subject.proposal | Solventes eutécticos profundos | spa |
dc.subject.proposal | Liquidos iónicos | spa |
dc.subject.proposal | Cafeína | spa |
dc.subject.proposal | Desulfuración | spa |
dc.subject.proposal | Combustible modelo | spa |
dc.subject.proposal | Ionic liquids (ILs) | eng |
dc.subject.proposal | Deep eutectic solvents (DES) | eng |
dc.subject.proposal | Protonated caffeine (CafCl) | eng |
dc.subject.proposal | Model fuel (MF) | eng |
dc.subject.proposal | Hydrogen bond acceptors (HBAs) | eng |
dc.subject.proposal | Hydrogen bond donors (HBDs) | eng |
dc.title | Síntesis de solventes alternativos (líquidos iónicos y solventes eutécticos profundos) base cafeína protonada con potencial aplicación para la desulfuración de combustibles | spa |
dc.title.translated | Synthesis of Alternative Solvents (Ionic Liquids and Deep Eutectic Solvents) Based on Protonated Caffeine with Potential Application for Fuel Desulfurization | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.awardtitle | Desarrollo de líquidos iónicos a base de cafeína para la desulfuración de combustibles | spa |
oaire.fundername | Universidad Nacional de Colombia | spa |
oaire.fundername | Convenio G8 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1053859592.2025.pdf
- Tamaño:
- 1.37 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería: Materiales y Procesos
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: