Tecnologías de tratamiento de aguas residuales aplicables al sector rural : Análisis bibliométrico
dc.contributor.advisor | Macias Quiroga, Ivan Fernando | |
dc.contributor.advisor | Sanabria Gonzalez, Nancy Rocio | |
dc.contributor.author | Acosta González, Rubén Darío | |
dc.date.accessioned | 2025-04-08T18:47:46Z | |
dc.date.available | 2025-04-08T18:47:46Z | |
dc.date.issued | 2024 | |
dc.description | graficas, tablas | spa |
dc.description.abstract | El aumento de la contaminación del recurso hídrico en las zonas rurales, debido al vertimiento de efluentes sin tratamiento y el intensivo uso de fuentes de agua por comunidades e industrias, plantea desafíos críticos en la gestión ambiental. Con solo el 0.3% del agua superficial disponible para el consumo humano [1], se vuelve esencial explorar soluciones innovadoras y accesibles para el tratamiento de aguas residuales (AR) en áreas rurales. A pesar de la evidente necesidad del desarrollo de tecnologías para el tratamiento de las aguas residuales (AR) en las zonas rurales, son pocas las publicaciones científicas sobre el tema y no hay análisis bibliométricos que permitan identificar tendencias en la disposición de estas aguas residuales. En este Trabajo Final de Maestría se realizó un análisis bibliométrico detallado de la productividad científica en sistemas de tratamiento de aguas residuales aplicables al sector rural, dado el vacío de conocimiento identificado en esta área. La metodología adoptada se basó en un enfoque estructurado, utilizando una ecuación de búsqueda empleando palabras claves, conectores booleanos, truncadores y bases de datos reconocidas como Scopus y Web of Science. Se implementaron herramientas computacionales avanzadas como Biblioshiny, ToS, Python, RStudio y Gephi para la recopilación, unificación, depuración y análisis de datos para la minería de datos y texto, culminando en la identificación de 909 artículos relevantes sobre los cuales se desarrolló el análisis bibliométrico. El análisis bibliométrico reveló contribuciones significativas de autores clave como Li Yinsheng, Liu Junxin, Zhang Xiaoling y Li Xiaohua, así como de revistas líderes como "Water Science and Technology" y "Journal of Cleaner Production", países con destacado aporte como China, Estados Unidos y Canadá. Se identificaron tecnologías innovadoras para el tratamiento de las AR en zonas rurales como la vermifiltración y los humedales construidos de flujo vertical por goteo con aireación. Además, se identificó una tendencia creciente hacia tecnologías descentralizadas, que ofrecen flexibilidad y adaptabilidad a las condiciones específicas de las comunidades rurales. Los hallazgos enfatizan la creciente importancia de enfoques integrados y sostenibles en el tratamiento de AR rurales, sugiriendo un cambio en la dirección de la investigación y la implementación de políticas. Las tendencias identificadas en este trabajo subrayan la necesidad de considerar aspectos tecnológicos y socioeconómicos, orientando hacia soluciones eficientes y económicas que mitiguen la contaminación del recurso hídrico y protejan la salud y el bienestar de las comunidades rurales. Finalmente, en este trabajo se realiza una descripción de las principales tecnologías empleadas en la disposición de las aguas en las zonas rurales y adicionalmente, a partir del análisis bibliométrico se planteó un diagrama de decisión, que puede ser empleado como herramienta, para el correcto uso de cada una de las tecnologías disponibles según las características de agua residual y área disponible (Texto tomado de la fuente). | spa |
dc.description.abstract | Increasing water resource pollution in rural areas, due to untreated effluent discharge and intensive use of water sources by communities and industries, poses critical challenges in environmental management. With only 0.3% of surface water available for human consumption [1], it becomes essential to explore innovative and affordable solutions for wastewater treatment in rural areas. Despite the evident need for the development of technologies for wastewater treatment in rural areas, there are few scientific publications on the subject and no bibliometric analysis to identify trends in wastewater disposal. In this Master's Degree Final Project, a detailed bibliometric analysis of scientific productivity in wastewater treatment systems applicable to the rural sector was carried out, to address the knowledge gap identified in this area. The methodology adopted was based on a structured approach, using a search equation using keywords, boolean connectors, truncators and recognized databases such as Scopus and Web of Science. Advanced computational tools such as Biblioshiny, ToS, Python, RStudio and Gephi were implemented for data collection, unification, debugging and analysis for data and text mining, culminating in the identification of 909 relevant articles on which the Bibliometric Analysis was developed. The BA revealed significant contributions from key authors such as Li Yinsheng, Liu Junxin, Zhang Xiaoling and Li Xiaohua, as well as from leading journals such as “Water Science and Technology” and “Journal of Cleaner Production”, countries with outstanding contribution such as China, USA and Canada. Innovative technologies for wastewater treatment in rural areas such as vermifiltration and vertical flow constructed wetlands with drip irrigation and aeration were identified. In addition, a growing trend towards decentralized technologies, which offer flexibility and adaptability to the specific conditions of rural communities, was identified. The findings emphasize the growing importance of integrated and sustainable approaches in in wastewater treatment of rural areas, suggesting a change in the direction of research and policy implementation. The trends identified in this work underscore the need to consider both technological and socioeconomic aspects, leading to efficient and economical solutions that mitigate water pollution and protect the health and well-being of rural communities. Finally, this work describes the main technologies used in the disposal of wastewater in rural areas and, additionally, based on the bibliometric analysis, a decision diagram was presented, which can be used as a tool for the correct use of each of the available technologies according to the characteristics of the wastewater and the available area. | eng |
dc.description.curriculararea | Química Y Procesos.Sede Manizales | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Ingeniería Ambiental | spa |
dc.format.extent | 96 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87895 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Manizales | spa |
dc.publisher.faculty | Facultad de Ingeniería y Arquitectura | spa |
dc.publisher.place | Manizales, Colombia | spa |
dc.publisher.program | Manizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Ingeniería Ambiental | spa |
dc.relation.references | Macías-Quiroga, I. F., Henao-Aguirre, P. A., Marín-Flórez, A., Arredondo-López, S. M., Sanabria-González, N. R. (2021). Bibliometric analysis of advanced oxidation processes (AOPs) in wastewater treatment: Global and Ibero-American research trends. Environ. Sci. Pollut. Res., 28: p. 23791-23811. | spa |
dc.relation.references | Araya, F., Vera, L., Morales, G., López, D., Vidal, G. (2014). Tecnologías de tratamiento para aguas servidas de origen rural. in: Las Aguas Servidas y su Depuración en Zonas Rurales: Situación Actual y Desafíos, Vidal, G., Araya, F. (Eds). Universidad de Concepción: Concepción, CHL. p. 60-83. | spa |
dc.relation.references | WWAP (2017). The United Nations World Water Development Report 2017. Wastewater: The Untapped Resource. UNESCO, Paris - FRA. p. 180. | spa |
dc.relation.references | Organization, W. H. (2019). Progress on household drinking water, sanitation and hygiene 2000-2017: special focus on inequalities. World Health Organization. | spa |
dc.relation.references | (UNEP), U. N. E. P. Untreated wastewater - a growing danger. Accesed: 15/08/2023, Available at https://www.unep.org/news-and-stories/story/untreated-wastewater-growing-danger | spa |
dc.relation.references | Thaher, R. A., Mahmoud, N., Al-Khatib, I. A., Hung, Y.-T. (2022). Cesspits as Onsite Sanitation Facilities in the Non-Sewered Palestinian Rural Areas: Users’ Satisfaction, Needs and Perception. Water, 14(6): p. 849. | spa |
dc.relation.references | Chen, P., Zhao, W., Chen, D., Huang, Z., Zhang, C., Zheng, X. (2022). Research Progress on Integrated Treatment Technologies of Rural Domestic Sewage: A Review. Water, 14(15): p. 2439. | spa |
dc.relation.references | Comité de Cafeteros. Proyecto de saneamiento básico ambiental entre corpocaldas, comite de cafeteros y aliados cumple 20 años de ejecución ininterrumpida Accesed: 15/04/2023, Available at https://caldas.federaciondecafeteros.org/listado-noticias/proyecto-de-saneamiento-basico-ambiental-entre-corpocaldas-comite-de-cafeteros-y-aliados-cumple-20-anos-de-ejecucion-ininiterrumpida/ | spa |
dc.relation.references | Naranjo, D. (2019). Pozos sépticos en el departamento del Quindío y solución alternativa con humedales subsuperficiales. Trabajo de grado presentado para optar al titulo de Profesional Ingenieria Ambiental. Universidad de los Andes., Bogotá D.C.- COL. p. 20. | spa |
dc.relation.references | Conde Anzola, A. F., Pinilla Herrera, E. A., Vega Godoy, D. S. (2021). Elaboración de una guía para el diseño de plantas de tratamiento de aguas residuales. Corporación Universitaria Minuto de Dios. | spa |
dc.relation.references | Torres Forero, J. E. (2018). Evaluación de las condiciones de las áreas rurales colombianas para la implementación de filtros verdes como tratamiento de agua residual. Trabajo de grado presentado como requisito para optar al titulo de Ingeniero Civil. Universidad Catolica de Colombia, Bogota D.C. - COL. p. 70. | spa |
dc.relation.references | Liang, X., Yue, X. (2021). Challenges facing the management of wastewater treatment systems in Chinese rural areas. Water Science and Technology, 84(6): p. 1518-1526. | spa |
dc.relation.references | Ministerio de Ambiente, V. y. D. S. d. C. (2015). Decreto 1077 de 2015 - Por medio del cual se expide el Decreto Único Reglamentario del Sector Vivienda, Ciudad y Territorio. Ministerio de Vivienda, Ciudad Y Territorio, Bogota - COL. p. 495. | spa |
dc.relation.references | Ministerio de Ambiente, V. y. D. S. d. C. (2020). Decreto 1688 de 2020 - Por el cual se modifican unos artículos y se adiciona una Sección al Capítulo 1, del Título 7, de la Parte 3, del Libro 2 del Decreto Único Reglamentario del Sector Vivienda, Ciudad y Territorio, Decreto 1077 de 2015, reglamentando parcialmente el artículo 279 de la Ley 1955 de 2019 en lo relacionado con la dotación de infraestructura de agua para consumo humano y doméstico o de saneamiento básico en zonas rurales y su entrega directa a las comunidades organizadas beneficiarias, de acuerdo con los esquemas diferenciales definidos por el Gobierno nacional. Ministerio de Vivienda, Ciudad Y Territorio, Bogota - COL. p. 6. | spa |
dc.relation.references | Ministerio de Ambiente, V. y. D. S. d. C. (2015). Decreto 1076 2015 - Por medio del cual se expide el Decreto Único Reglamentario del Sector Ambiente y Desarrollo Sostenible. Ministerio de Ambiente y Desarrollo Sostenible, Bogota - COL. p. 653. | spa |
dc.relation.references | (DNP), D. N. d. P. El país solo alcanza a tratar el 60% de sus aguas residuales en las ciudades: DNP. Accesed 02/2/2024, Available at: https://www.dnp.gov.co/Prensa_/Noticias/Paginas/el-pais-solo-alcanza-a-tratar-el-60-de-sus-aguas-residuales-en-las-ciudades-dnp.aspx | spa |
dc.relation.references | Zamudio, L. E. V. (2019). El plan nacional de desarrollo 2018-2022:" Pacto por Colombia, pacto por la equidad". Apuntes del CENES, 38(68): p. 12-14. | spa |
dc.relation.references | Torres, L. D. S., Rubiano, É. Q. (2020). Sostenibilidad de las tecnologías de tratamiento de agua para la zona rural. Revista de Ingeniería,(49): p. 52-61. | spa |
dc.relation.references | Carrasco Mantilla, W. (2016). Estado del arte del agua y saneamiento rural en Colombia. Rev. Ing.,(44): p. 46-54. | spa |
dc.relation.references | WWAP (2020). The United Nations World Water Development Report 2020: Water and Climate Change. UNESCO, Paris - FRA. p. 219. | spa |
dc.relation.references | Ministerio de Vivienda, C. y. T. Saneamiento de vertimientos. Accesed: 15/04/2023, Available at https://www.minvivienda.gov.co/viceministerio-de-agua-y-saneamiento-basico/saneamiento-de-vertimientos | spa |
dc.relation.references | IDEAM (2019). Estudio Nacional del Agua 2018. Ideam, Bogotá - COL. p. 452. | spa |
dc.relation.references | Británica, E. Tratamiento de aguas residuales. Accesed 02/2/2024, | spa |
dc.relation.references | FAO. Calidad del agua. Accesed: 25/04/2023, Available at https://www.fao.org/land-water/water/water-management/water-quality/en/ | spa |
dc.relation.references | IDEAM (2020). Estudio Nacional del Agua 2020. IDEAM, Bogotá D.C.- COL. p. 510. | spa |
dc.relation.references | Superintendencia de Servicios Públicos Domiciliarios (SSPD) (2021). Informe sectorial de servicios públicos domiciliarios 2021. SSPD, Bogotá D.C.- COL. p. 106. | spa |
dc.relation.references | Díaz-Cuenca, E., Alavarado-Granados, A. R., Camacho-Calzada, K. E. (2012). El tratamiento de agua residual doméstica para el desarrollo local sostenible: el caso de la técnica del sistema unitario de tratamiento de aguas, nutrientes y energía (SUTRANE) en San Miguel Almaya, México. Quivera. Revista de Estudios Territoriales, 14(1): p. 78-97. | spa |
dc.relation.references | Rojas, R. Curso Internacional: Gestión integral de tratamiento de aguas residuales. in Conferencia: Sistemas de Tratamientos de Aguas Residuales. 2002. | spa |
dc.relation.references | Jan, I., Ahmad, T., Wani, M. S., Dar, S. A., Wani, N. A., Malik, N. A., Tantary, Y. R. (2022). Threats and consequences of untreated wastewater on freshwater environments. in: Microbial Consortium and Biotransformation for Pollution Decontamination. Elsevier. p. 1-26. | spa |
dc.relation.references | Aguilar, S., Solano, G. (2018). Evaluación del impacto por vertimientos de aguas residuales domésticas, mediante la aplicación del índice de contaminación (ICOMO) en Caño Grande, localizado en Villavicencio-Meta. | spa |
dc.relation.references | Peña, J. F. M. (2018). Reutilización y aprovechamiento de aguas residuales domésticas tratadas en Colombia. Universidad Nacional Abierta y a Distancia (UNAD), Pradera - COL. p. 95. | spa |
dc.relation.references | García, S. M. D., González, J. M. T., Mora, M. A. T. (2017). Gestión del agua en comunidades rurales; caso de estudio Cuenca del río Guayuriba, Meta-Colombia. Luna azul,(45): p. 59-70. | spa |
dc.relation.references | Peña, S., Mayorga, J., Montoya, R. (2018). Propuesta de tratamiento de las aguas residuales de la ciudad de Yaguachi (Ecuador). Ciencia e Ingeniería, 39(2): p. 161-167. | spa |
dc.relation.references | Delgadillo Zurita, M., Condori Carrasco, L. J. (2010). Planta de tratamiento de aguas residuales con macrófitas para comunidades cercanas al Lago Titicaca. Journal Boliviano de Ciencias, 7: p. 63. | spa |
dc.relation.references | Piñeres, J. Z., Chamorro, D. I., Solaque, O. A. (2016). Desarrollo e implementación de un sistema de bajo costo con tratamientos por medios naturales para la potabilización de aguas superficiales en hogares del sector rural del municipio de Fusagasugá. Revista Sennova: Revista del Sistema de Ciencia, Tecnología e Innovación, 2(2): p. 14-47. | spa |
dc.relation.references | Bautista Rodríguez, C. A. (2017). Una mirada al estado actual de la investigación en productos naturales marinos de Colombia. | spa |
dc.relation.references | Villarroel, K. (2014). Evaluación de la ciencia: una aproximación teórica al análisis bibliométrico. Revista de Investigación Scientia, 3: p. 56. | spa |
dc.relation.references | da Cruz, C. A. B., Paixão, A. E. A. (2018). Bibliometric analysis of indicators system related to patents. Razón y Palabra, 22(103): p. 449-462. | spa |
dc.relation.references | Colorado, Y. S., Anaya, O. P. (2018). La evaluación de la actividad científica: Indicadores bibliométricos. Corporación Universitaria Reformada. p. 96-118. | spa |
dc.relation.references | Sánchez, M. V. G., Cancino, J. L. T. (2013). Los mapas bibliométricos o mapas de la ciencia: una herramienta útil para desarrollar estudios métricos de información. Biblioteca Universitaria, 16(2): p. 95-108. | spa |
dc.relation.references | Solano López, E., Castellanos Quintero, S., López Rodríguez del Rey, M., Hernández Fernández, J. (2009). La bibliometría: una herramienta eficaz para evaluar la actividad científica postgraduada. MediSur, 7(4): p. 59-62. | spa |
dc.relation.references | Gómez, D. C. (2015). Síntomas depresivos en docentes universitarios: Una revisión bibliométrica. Facultad de Enfermería. | spa |
dc.relation.references | Carrillo-Zambrano, E., Páez-Leal, M. C., Suárez, J. M., Luna-González, M. L. (2018). Modelo de vigilancia tecnológica para la gestión de un grupo de investigación en salud. MedUNAB, 21(1): p. 84-99. | spa |
dc.relation.references | Macías-Quiroga, I. F., Henao-Aguirre, P. A., Marín-Flórez, A., Arredondo-López, S. M., Sanabria-González, N. R. (2021). Bibliometric analysis of advanced oxidation processes (AOPs) in wastewater treatment: global and Ibero-American research trends. Environ. Sci. Pollut. Res, 28: p. 23791-23811. | spa |
dc.relation.references | Elsevier. How can I best use the Advanced search? Accesed: 15/04/2023, Available at https://service-elsevier-com.ezproxy.unal.edu.co/app/answers/detail/a_id/11365/supporthub/scopus/kw/search/ | spa |
dc.relation.references | Universidad de Almeria. Ecuacion de busqueda. Accesed: 15/06/2023, Available at https://ci2.ual.es/wp-content/uploads/Ecuacion-de-busqueda-BUNS-UAL-.pdf | spa |
dc.relation.references | Calò, L. N. (2022). Métricas de impacto y evaluación de la ciencia. Rev. Peru Med. Exp. Salud Publica, 39: p. 236-240. | spa |
dc.relation.references | García-Marco, F.-J. (2014). La nueva norma de tesauros UNE ISO 25964-1. Anuario ThinkEPI, 8: p. 159-163. | spa |
dc.relation.references | UNESCO. Tesauro de la UNESCO. Accesed: 15/04/2023, Available at https://vocabularies.unesco.org/browser/thesaurus/es/search?clang=es&q=tecnologias+tratamiento&vocabs= | spa |
dc.relation.references | Gómez, D. C. (2015). Síntomas depresivos en docentes universitarios: Una revisión bibliométrica. Trabajo de grado presentado para optar al titulo de Magister en Salud y Seguridad en el Trabajo. Universidad Nacional de Colombia, Bogotá D.C.- COL. p. 114. | spa |
dc.relation.references | Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P., Clarke, M., Devereaux, P. J., Kleijnen, J., Moher, D. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Annals of internal medicine, 151(4): p. W-65-W-94. | spa |
dc.relation.references | Huang, J.-H., Duan, X.-Y., He, F.-F., Wang, G.-J., Hu, X.-Y. (2021). A historical review and Bibliometric analysis of research on Weak measurement research over the past decades based on Biblioshiny. arXiv preprint arXiv:2108.11375. | spa |
dc.relation.references | Zuluaga, M., Robledo, S., Arbelaez-Echeverri, O., Osorio-Zuluaga, G. A., Duque-Méndez, N. (2022). Tree of Science-ToS: A Web-Based Tool for Scientific Literature Recommendation. Search Less, Research More! Issues Sci. Technol. Librariansh.,(100). | spa |
dc.relation.references | Martínez, D. A. L., Arenas, D. A. M. (2019). Políticas de salud pública para la prevención y el tratamiento de la enfermedad vascular cerebral: una revisión sistemática por medio de la metodología ToS (Tree of Science). Medicina UPB, 38(2): p. 129-139. | spa |
dc.relation.references | Yang, J., Cheng, C., Shen, S., Yang, S. (2017). Comparison of complex network analysis software: Citespace, SCI2 and Gephi. 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA): p. 169-172. | spa |
dc.relation.references | Grisales, A. M., Robledo, S., Zuluaga, M. (2022). Topic modeling: perspectives from a literature review. IEEE Access. | spa |
dc.relation.references | Romaní, F. (2020). Análisis bibliométrico de las publicaciones científicas originales del Instituto Nacional de Salud del Perú en el periodo 1998-2018. Revista Peruana de Medicina Experimental y Salud Publica, 37(3): p. 485-494. | spa |
dc.relation.references | Esquivel, A., Marincean, S., Benore, M. (2023). The effect of the Covid-19 pandemic on STEM faculty: Productivity and work-life balance. Plos one, 18(1): p. e0280581. | spa |
dc.relation.references | Ahmet, A., Aslan, A. (2020). Quartile scores of scientific journals: Meaning, importance and usage. Acta Medica Alanya, 4(1): p. 102-108. | spa |
dc.relation.references | Lewis, J., Schneegans, S., Straza, T. (2021). UNESCO Science Report: The race against time for smarter development. Vol. 2021: Unesco Publishing. | spa |
dc.relation.references | Mundial, G. B. Gasto en investigación y desarrollo (% del PIB) - United States. Accesed: 15/08/2023, Available at https://datos.bancomundial.org/indicator/GB.XPD.RSDV.GD.ZS?locations=US | spa |
dc.relation.references | Hirsch, J. E. (2005). An index to quantify an individual's scientific research output. Proceedings of the National academy of Sciences, 102(46): p. 16569-16572. | spa |
dc.relation.references | Love, H. B., Cross, J. E., Fosdick, B., Crooks, K. R., VandeWoude, S., Fisher, E. R. (2021). Interpersonal relationships drive successful team science: an exemplary case-based study. Humanities and Social Sciences Communications, 8(1): p. 1-10. | spa |
dc.relation.references | Macroberts, M. H., Macroberts, B. R. (1982). A re-evaluation of Lotka's Law of scientific productivity. Social Studies of Science, 12(3): p. 443-450. | spa |
dc.relation.references | Venable, G. T., Shepherd, B. A., Loftis, C. M., McClatchy, S. G., Roberts, M. L., Fillinger, M. E., Tansey, J. B., Klimo, P. (2016). Bradford’s law: identification of the core journals for neurosurgery and its subspecialties. Journal of neurosurgery, 124(2): p. 569-579. | spa |
dc.relation.references | Massoud, M. A., Tarhini, A., Nasr, J. A. (2009). Decentralized approaches to wastewater treatment and management: applicability in developing countries. Journal of environmental management, 90(1): p. 652-659. | spa |
dc.relation.references | Vymazal, J. (2005). Horizontal sub-surface flow and hybrid constructed wetlands systems for wastewater treatment. Ecological engineering, 25(5): p. 478-490. | spa |
dc.relation.references | Vymazal, J., Švehla, J., Kröpfelová, L., Chrastný, V. (2007). Trace metals in Phragmites australis and Phalaris arundinacea growing in constructed and natural wetlands. Science of the total environment, 380(1-3): p. 154-162. | spa |
dc.relation.references | Wu, S., Austin, D., Liu, L., Dong, R. (2011). Performance of integrated household constructed wetland for domestic wastewater treatment in rural areas. Ecological Engineering, 37(6): p. 948-954. | spa |
dc.relation.references | Wu, H., Zhang, J., Ngo, H. H., Guo, W., Hu, Z., Liang, S., Fan, J., Liu, H. (2015). A review on the sustainability of constructed wetlands for wastewater treatment: design and operation. Bioresource technology, 175: p. 594-601. | spa |
dc.relation.references | Vymazal, J. (2010). Constructed wetlands for wastewater treatment. Water, 2(3): p. 530-549. | spa |
dc.relation.references | Zhang, Y., Cheng, Y., Yang, C., Luo, W., Zeng, G., Lu, L. (2015). Performance of system consisting of vertical flow trickling filter and horizontal flow multi-soil-layering reactor for treatment of rural wastewater. Bioresource Technology, 193: p. 424-432. | spa |
dc.relation.references | Song, P., Huang, G., An, C., Shen, J., Zhang, P., Chen, X., Shen, J., Yao, Y., Zheng, R., Sun, C. (2018). Treatment of rural domestic wastewater using multi-soil-layering systems: Performance evaluation, factorial analysis and numerical modeling. Science of the total environment, 644: p. 536-546. | spa |
dc.relation.references | Singh, N. K., Kazmi, A. A., Starkl, M. (2015). A review on full-scale decentralized wastewater treatment systems: techno-economical approach. Water Science and Technology, 71(4): p. 468-478. | spa |
dc.relation.references | Latrach, L., Ouazzani, N., Hejjaj, A., Mahi, M., Masunaga, T., Mandi, L. (2018). Two-stage vertical flow multi-soil-layering (MSL) technology for efficient removal of coliforms and human pathogens from domestic wastewater in rural areas under arid climate. International journal of hygiene and environmental health, 221(1): p. 64-80. | spa |
dc.relation.references | Hong, Y., Huang, G., An, C., Song, P., Xin, X., Chen, X., Zhang, P., Zhao, Y., Zheng, R. (2019). Enhanced nitrogen removal in the treatment of rural domestic sewage using vertical-flow multi-soil-layering systems: Experimental and modeling insights. Journal of Environmental Management, 240: p. 273-284.77. Hu, M., Fan, B., Wang, H., Qu, B., Zhu, S. (2016). Constructing the ecological sanitation: a review on technology and methods. Journal of Cleaner Production, 125: p. 1-21. | spa |
dc.relation.references | Rahman, M. E., Bin Halmi, M. I. E., Bin Abd Samad, M. Y., Uddin, M. K., Mahmud, K., Abd Shukor, M. Y., Sheikh Abdullah, S. R., Shamsuzzaman, S. (2020). Design, operation and optimization of constructed wetland for removal of pollutant. International Journal of Environmental Research and Public Health, 17(22): p. 8339. | spa |
dc.relation.references | Sanjrani, M., Zhou, B., Zhao, H., Zheng, Y., Wang, Y., Xia, S. (2020). TREATMENT OF WASTEWATER WITH CONSTRUCTED WETLANDS SYSTEMS AND PLANTS USED IN THIS TECHNOLOGY-A REVIEW. Applied Ecology & Environmental Research, 18(1) | spa |
dc.relation.references | Zhong, L., Ding, J., Wu, T., Zhao, Y.-l., Pang, J. W., Jiang, J.-P., Jiang, J.-Q., Li, Y., Ren, N.-Q., Yang, S.-S. (2023). Bibliometric overview of research progress, challenges, and prospects of rural domestic sewage: Treatment techniques, resource recovery, and ecological risk. Journal of Water Process Engineering, 51: p. 103389. | spa |
dc.relation.references | Sehar, S., Nasser, H. (2019). Wastewater treatment of food industries through constructed wetland: a review. International Journal of Environmental Science and Technology, 16: p. 6453-6472. | spa |
dc.relation.references | Nuamah, L. A., Li, Y., Pu, Y., Nwankwegu, A. S., Haikuo, Z., Norgbey, E., Banahene, P., Bofah-Buoh, R. (2020). Constructed wetlands, status, progress, and challenges. The need for critical operational reassessment for a cleaner productive ecosystem. Journal of cleaner production, 269: p. 122340. | spa |
dc.relation.references | Zhang, T., Xu, D., He, F., Zhang, Y., Wu, Z. (2012). Application of constructed wetland for water pollution control in China during 1990–2010. Ecological Engineering, 47: p. 189-197. | spa |
dc.relation.references | Li, Y., Zhu, G., Ng, W. J., Tan, S. K. (2014). A review on removing pharmaceutical contaminants from wastewater by constructed wetlands: design, performance and mechanism. Science of the Total Environment, 468: p. 908-932. | spa |
dc.relation.references | Zheng, Y., Wang, X. C., Ge, Y., Dzakpasu, M., Zhao, Y., Xiong, J. (2015). Effects of annual harvesting on plants growth and nutrients removal in surface-flow constructed wetlands in northwestern China. Ecological Engineering, 83: p. 268-275. | spa |
dc.relation.references | Nelson, M. (1998). Wetland systems for bioregenerative reclamation of Wastewater: from closed systems to developing countries. Life Support & Biosphere Science, 5(3): p. 357-369. | spa |
dc.relation.references | Langergraber, G., Muellegger, E. (2005). Ecological Sanitation—a way to solve global sanitation problems? Environment international, 31(3): p. 433-444. | spa |
dc.relation.references | Vanrolleghem, P. A., Lee, D. S. (2003). On-line monitoring equipment for wastewater treatment processes: state of the art. Water Science and Technology, 47(2): p. 1-34. | spa |
dc.relation.references | Nhapi, I., Gijzen, H. J. (2004). Wastewater management in Zimbabwe in the context of sustainability. Water policy, 6(6): p. 501-517. | spa |
dc.relation.references | Christova-Boal, D., Eden, R. E., McFarlane, S. (1996). An investigation into greywater reuse for urban residential properties. Desalination, 106(1-3): p. 391-397. | spa |
dc.relation.references | Ignacio, J. J., Alvin Malenab, R., Pausta, C. M., Beltran, A., Belo, L., Tanhueco, R. M., Era, M., Eusebio, R. C., Promentilla, M. A., Orbecido, A. (2018). Perceptions and attitudes toward eco-toilet systems in rural areas: A case study in the Philippines. Sustainability, 10(2): p. 521. | spa |
dc.relation.references | Benetto, E., Nguyen, D., Lohmann, T., Schmitt, B., Schosseler, P. (2009). Life cycle assessment of ecological sanitation system for small-scale wastewater treatment. Science of the total environment, 407(5): p. 1506-1516. | spa |
dc.relation.references | Orhon, D., Sözen, S., Görgün, E., Çokgör, E. U., Artan, N. (1999). Technological aspects of wastewater management in coastal tourist areas. Water science and technology, 39(8): p. 177-184. | spa |
dc.relation.references | Wilderer, P. A., Schreff, D. (2000). Decentralized and centralized wastewater management: a challenge for technology developers. Water Science and Technology, 41(1): p. 1-8. | spa |
dc.relation.references | Comas, J., Alemany, J., Poch, M., Torrens, A., Salgot, M., Bou, J. (2004). Development of a knowledge-based decision support system for identifying adequate wastewater treatment for small communities. Water Science and Technology, 48(11-12): p. 393-400. | spa |
dc.relation.references | Bavithra, G., Azevedo, J., Oliveira, F., Morais, J., Pinto, E., Ferreira, I. M., Vasconcelos, V., Campos, A., Almeida, C. M. R. (2019). Assessment of Constructed Wetlands’ Potential for the Removal of Cyanobacteria and Microcystins (MC-LR). Water, 12(1): p. 10. | spa |
dc.relation.references | Li, Y., Zhu, S., Zhang, Y., Lv, M., Kinhoun, J. J. R., Qian, T., Fan, B. (2021). Constructed wetland treatment of source separated washing wastewater in rural areas of southern China. Separation and Purification Technology, 272: p. 118725. | spa |
dc.relation.references | Thuan, N., CONG, N. (2022). REMOVAL OF AMMONIUM AND NITRATE IN WATER BY AN AQUATIC PLANT: WATER LETTUCE (Pistia stratiotes L.). Applied Ecology & Environmental Research, 20(6). | spa |
dc.relation.references | Alquwaizany, A. S., Hussain, G., Al-Zarah, A. I. (2022). Changes in physico-chemical composition of wastewater by growing Phragmites australis and Typha latifolia in an arid environment in Saudi Arabia. Environmental Science and Pollution Research, 29(26): p. 39838-39846. | spa |
dc.relation.references | Rehman, A., Zakir, B., Anees, M., Naz, I., Alhewairini, S. S., Sehar, S. (2022). Bio‐purification of domestic wastewater through constructed wetland planted with Paspalidium flavidum. Water Environment Research, 94(1): p. e1685. | spa |
dc.relation.references | Brix, H., Arias, C. A. (2005). Danish guidelines for small-scale constructed wetland systems for onsite treatment of domestic sewage. Water Science and Technology, 51(9): p. 1-9. | spa |
dc.relation.references | Li, X., Ding, A., Zheng, L., Anderson, B. C., Kong, L., Wu, A., Xing, L. (2018). Relationship between design parameters and removal efficiency for constructed wetlands in China. Ecological Engineering, 123: p. 135-140. | spa |
dc.relation.references | Abunaser, S. G., Abdelhay, A. (2020). Performance of a novel vertical flow constructed wetland for greywater treatment in rural areas in Jordan. Environmental Technology: p. 1-11. | spa |
dc.relation.references | Sylla, A. (2020). Domestic wastewater treatment using vertical flow constructed wetlands planted with Arundo donax, and the intermittent sand filters impact. Ecohydrology & Hydrobiology, 20(1): p. 48-58. | spa |
dc.relation.references | Chen, J., Liu, Y.-S., Deng, W.-J., Ying, G.-G. (2019). Removal of steroid hormones and biocides from rural wastewater by an integrated constructed wetland. Science of the Total Environment, 660: p. 358-365. | spa |
dc.relation.references | Lutterbeck, C. A., Kist, L. T., Lopez, D. R., Zerwes, F. V., Machado, Ê. L. (2017). Life cycle assessment of integrated wastewater treatment systems with constructed wetlands in rural areas. Journal of Cleaner Production, 148: p. 527-536. | spa |
dc.relation.references | Zhong, H., Hu, N., Wang, Q., Chen, Y., Huang, L. (2022). How to select substrate for alleviating clogging in the subsurface flow constructed wetland? Science of The Total Environment, 828: p. 154529. | spa |
dc.relation.references | Auvinen, H., Gebhardt, W., Linnemann, V., Du Laing, G., Rousseau, D. P. (2017). Laboratory-and full-scale studies on the removal of pharmaceuticals in an aerated constructed wetland: effects of aeration and hydraulic retention time on the removal efficiency and assessment of the aquatic risk. Water Science and Technology, 76(6): p. 1457-1465. | spa |
dc.relation.references | Mohammed, A. A., Mutar, Z. H., Al-Baldawi, I. A. (2021). Alternanthera spp. based-phytoremediation for the removal of acetaminophen and methylparaben at mesocosm-scale constructed wetlands. Heliyon, 7(11). | spa |
dc.relation.references | Sabry, T. (2010). Evaluation of decentralized treatment of sewage employing Upflow Septic Tank/Baffled Reactor (USBR) in developing countries. Journal of Hazardous Materials, 174(1-3): p. 500-505. | spa |
dc.relation.references | Lusk, M. G., Toor, G. S., Yang, Y.-Y., Mechtensimer, S., De, M., Obreza, T. A. (2017). A review of the fate and transport of nitrogen, phosphorus, pathogens, and trace organic chemicals in septic systems. Critical Reviews in Environmental Science and Technology, 47(7): p. 455-541. | spa |
dc.relation.references | Mugani, R., Aba, R. P., Hejjaj, A., El Khalloufi, F., Ouazzani, N., Almeida, C. M. R., Carvalho, P. N., Vasconcelos, V., Campos, A., Mandi, L. (2022). Multi-Soil-Layering Technology: A New Approach to Remove Microcystis aeruginosa and Microcystins from Water. Water, 14(5): p. 686. | spa |
dc.relation.references | Xu, Y., Li, H., Li, Y., Zheng, X., Zhang, C., Gao, Y., Chen, P., Li, Q., Tan, L. (2022). Systematically assess the advancing and limiting factors of using the multi-soil-layering system for treating rural sewage in China: From the economic, social, and environmental perspectives. Journal of Environmental Management, 312: p. 114912. | spa |
dc.relation.references | Shen, J., Huang, G., An, C., Song, P., Xin, X., Yao, Y., Zheng, R. (2018). Biophysiological and factorial analyses in the treatment of rural domestic wastewater using multi-soil-layering systems. Journal of environmental management, 226: p. 83-94. | spa |
dc.relation.references | He, Y., Huang, G., An, C., Huang, J., Zhang, P., Chen, X., Xin, X. (2018). Reduction of Escherichia Coli using ceramic disk filter decorated by nano-TiO2: a low-cost solution for household water purification. Science of the Total Environment, 616: p. 1628-1637. | spa |
dc.relation.references | Yang, Y., Cui, H., Zhen, G., Huang, M., Li, C. (2020). Tubular reactor-enhanced ecological floating bed achieves high nitrogen removal from secondary effluents of wastewater treatment. Environmental Chemistry Letters, 18: p. 1361-1368. | spa |
dc.relation.references | Jucherski, A., Nastawny, M., Walczowski, A., Jóźwiakowski, K., Gajewska, M. (2017). Assessment of the technological reliability of a hybrid constructed wetland for wastewater treatment in a mountain eco-tourist farm in Poland. Water Science and Technology, 75(11): p. 2649-2658. | spa |
dc.relation.references | Li, X., Huang, Y., Guo, Y., Li, W., Li, Y. (2023). Full-scale application and performance of a new multi-self-reflow decentralized Wastewater treatment device: Impact of hydraulic and pollutant loads. Journal of Environmental Sciences, 131: p. 37-47. | spa |
dc.relation.references | Wang, S., Hu, C., Cheng, F., Lu, X. (2023). Performance of a combined low-consumption biotreatment system with cost-effective ecological treatment technology for rural domestic sewage treatment. Journal of Water Process Engineering, 51: p. 103380. | spa |
dc.relation.references | Lamon, A. W., Faria Maciel, P. M., Campos, J. R., Corbi, J. J., Dunlop, P. S. M., Fernandez-Ibañez, P., Anthony Byrne, J., Sabogal-Paz, L. P. (2022). Household slow sand filter efficiency with schmutzdecke evaluation by microsensors. Environmental Technology, 43(26): p. 4042-4053. | spa |
dc.relation.references | Pathak, A. K., Tyagi, V., Anand, S., Pandey, A., Kothari, R. (2022). Advancement in solar still integration with phase change materials-based TES systems and nanofluid for water and wastewater treatment applications. Journal of Thermal Analysis and Calorimetry, 147(17): p. 9181-9227. | spa |
dc.relation.references | Li, Y.-S., Xiao, Y.-Q., Qiu, J.-P., Dai, Y.-Q., Robin, P. (2009). Continuous village sewage treatment by vermifiltration and activated sludge process. Water Science and Technology, 60(11): p. 3001-3010. | spa |
dc.relation.references | Vera-Puerto, I., Valdés, H., Bueno, M., Correa, C., Olave, J., Carrasco-Benavides, M., Schiappacasse, F., Arias, C. A. (2022). Reclamation of treated wastewater for irrigation in Chile: perspectives of the current state and challenges. Water, 14(4): p. 627. | spa |
dc.relation.references | Malila, R., Lehtoranta, S., Viskari, E.-L. (2019). The role of source separation in nutrient recovery–comparison of alternative wastewater treatment systems. Journal of Cleaner Production, 219: p. 350-358. | spa |
dc.relation.references | Kelova, M. E., Ali, A. M., Eich-Greatorex, S., Dörsch, P., Kallenborn, R., Jenssen, P. D. (2021). Small-scale on-site treatment of fecal matter: comparison of treatments for resource recovery and sanitization. Environmental Science and Pollution Research: p. 1-20. | spa |
dc.relation.references | Kalbar, P. P., Karmakar, S., Asolekar, S. R. (2012). Selection of an appropriate wastewater treatment technology: A scenario-based multiple-attribute decision-making approach. Journal of environmental management, 113: p. 158-169. | spa |
dc.relation.references | Fan, B., Hu, M., Wang, H., Xu, M., Qu, B., Zhu, S. (2017). Get in sanitation 2.0 by opportunity of rural China: Scheme, simulating application and life cycle assessment. Journal of Cleaner Production, 147: p. 86-95. | spa |
dc.relation.references | Hu, M., Xiao, J., Fan, B., Sun, W., Zhu, S. (2021). Constructing and selecting optimal sustainable sanitation system based on expanded structured decision-making for global sanitation and resources crisis. Journal of Cleaner Production, 318: p. 128598. | spa |
dc.relation.references | Bej, S., Ghosh, M., Das, R., Banerjee, P. (2022). Evaluation of nanomaterials-grafted enzymes for application in contaminants degradation: Need of the hour with proposed IoT synchronized nanosensor fit sustainable clean water technology in en masse. Journal of the Indian Chemical Society, 99(5): p. 100429. | spa |
dc.relation.references | Tang, L., Luo, X., Huang, Y., Du, S., Yan, A. (2023). Can smartphone use increase farmers’ willingness to participate in the centralized treatment of rural domestic sewage? Evidence from rural China. Environment, Development and Sustainability, 25(4): p. 3379-3403. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::628 - Ingeniería sanitaria | spa |
dc.subject.ddc | 330 - Economía::333 - Economía de la tierra y de la energía | spa |
dc.subject.proposal | Agua residual | spa |
dc.subject.proposal | zona rural | spa |
dc.subject.proposal | análisis bibliométrico | spa |
dc.subject.proposal | productividad científica | spa |
dc.subject.proposal | tendencias | spa |
dc.subject.proposal | tecnologías de tratamiento | spa |
dc.subject.proposal | Wastewater | eng |
dc.subject.proposal | rural area | eng |
dc.subject.proposal | bibliometric analysis | eng |
dc.subject.proposal | scientific productivity | eng |
dc.subject.proposal | trends | eng |
dc.subject.proposal | treatment technologies | eng |
dc.subject.unesco | Alcantarillado | spa |
dc.subject.unesco | Sewers | eng |
dc.subject.unesco | Gestión ambiental | spa |
dc.subject.unesco | Environmental management | eng |
dc.subject.unesco | Contaminación del agua | spa |
dc.subject.unesco | Water pollution | eng |
dc.title | Tecnologías de tratamiento de aguas residuales aplicables al sector rural : Análisis bibliométrico | spa |
dc.title.translated | Wastewater treatment technologies applicable to the rural sector : A bibliometric analysis | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_14cb | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 11116259821.2025.pdf
- Tamaño:
- 1.57 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Ingeniería Ambiental
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: