Tecnologías de tratamiento de aguas residuales aplicables al sector rural : Análisis bibliométrico

dc.contributor.advisorMacias Quiroga, Ivan Fernando
dc.contributor.advisorSanabria Gonzalez, Nancy Rocio
dc.contributor.authorAcosta González, Rubén Darío
dc.date.accessioned2025-04-08T18:47:46Z
dc.date.available2025-04-08T18:47:46Z
dc.date.issued2024
dc.descriptiongraficas, tablasspa
dc.description.abstractEl aumento de la contaminación del recurso hídrico en las zonas rurales, debido al vertimiento de efluentes sin tratamiento y el intensivo uso de fuentes de agua por comunidades e industrias, plantea desafíos críticos en la gestión ambiental. Con solo el 0.3% del agua superficial disponible para el consumo humano [1], se vuelve esencial explorar soluciones innovadoras y accesibles para el tratamiento de aguas residuales (AR) en áreas rurales. A pesar de la evidente necesidad del desarrollo de tecnologías para el tratamiento de las aguas residuales (AR) en las zonas rurales, son pocas las publicaciones científicas sobre el tema y no hay análisis bibliométricos que permitan identificar tendencias en la disposición de estas aguas residuales. En este Trabajo Final de Maestría se realizó un análisis bibliométrico detallado de la productividad científica en sistemas de tratamiento de aguas residuales aplicables al sector rural, dado el vacío de conocimiento identificado en esta área. La metodología adoptada se basó en un enfoque estructurado, utilizando una ecuación de búsqueda empleando palabras claves, conectores booleanos, truncadores y bases de datos reconocidas como Scopus y Web of Science. Se implementaron herramientas computacionales avanzadas como Biblioshiny, ToS, Python, RStudio y Gephi para la recopilación, unificación, depuración y análisis de datos para la minería de datos y texto, culminando en la identificación de 909 artículos relevantes sobre los cuales se desarrolló el análisis bibliométrico. El análisis bibliométrico reveló contribuciones significativas de autores clave como Li Yinsheng, Liu Junxin, Zhang Xiaoling y Li Xiaohua, así como de revistas líderes como "Water Science and Technology" y "Journal of Cleaner Production", países con destacado aporte como China, Estados Unidos y Canadá. Se identificaron tecnologías innovadoras para el tratamiento de las AR en zonas rurales como la vermifiltración y los humedales construidos de flujo vertical por goteo con aireación. Además, se identificó una tendencia creciente hacia tecnologías descentralizadas, que ofrecen flexibilidad y adaptabilidad a las condiciones específicas de las comunidades rurales. Los hallazgos enfatizan la creciente importancia de enfoques integrados y sostenibles en el tratamiento de AR rurales, sugiriendo un cambio en la dirección de la investigación y la implementación de políticas. Las tendencias identificadas en este trabajo subrayan la necesidad de considerar aspectos tecnológicos y socioeconómicos, orientando hacia soluciones eficientes y económicas que mitiguen la contaminación del recurso hídrico y protejan la salud y el bienestar de las comunidades rurales. Finalmente, en este trabajo se realiza una descripción de las principales tecnologías empleadas en la disposición de las aguas en las zonas rurales y adicionalmente, a partir del análisis bibliométrico se planteó un diagrama de decisión, que puede ser empleado como herramienta, para el correcto uso de cada una de las tecnologías disponibles según las características de agua residual y área disponible (Texto tomado de la fuente).spa
dc.description.abstractIncreasing water resource pollution in rural areas, due to untreated effluent discharge and intensive use of water sources by communities and industries, poses critical challenges in environmental management. With only 0.3% of surface water available for human consumption [1], it becomes essential to explore innovative and affordable solutions for wastewater treatment in rural areas. Despite the evident need for the development of technologies for wastewater treatment in rural areas, there are few scientific publications on the subject and no bibliometric analysis to identify trends in wastewater disposal. In this Master's Degree Final Project, a detailed bibliometric analysis of scientific productivity in wastewater treatment systems applicable to the rural sector was carried out, to address the knowledge gap identified in this area. The methodology adopted was based on a structured approach, using a search equation using keywords, boolean connectors, truncators and recognized databases such as Scopus and Web of Science. Advanced computational tools such as Biblioshiny, ToS, Python, RStudio and Gephi were implemented for data collection, unification, debugging and analysis for data and text mining, culminating in the identification of 909 relevant articles on which the Bibliometric Analysis was developed. The BA revealed significant contributions from key authors such as Li Yinsheng, Liu Junxin, Zhang Xiaoling and Li Xiaohua, as well as from leading journals such as “Water Science and Technology” and “Journal of Cleaner Production”, countries with outstanding contribution such as China, USA and Canada. Innovative technologies for wastewater treatment in rural areas such as vermifiltration and vertical flow constructed wetlands with drip irrigation and aeration were identified. In addition, a growing trend towards decentralized technologies, which offer flexibility and adaptability to the specific conditions of rural communities, was identified. The findings emphasize the growing importance of integrated and sustainable approaches in in wastewater treatment of rural areas, suggesting a change in the direction of research and policy implementation. The trends identified in this work underscore the need to consider both technological and socioeconomic aspects, leading to efficient and economical solutions that mitigate water pollution and protect the health and well-being of rural communities. Finally, this work describes the main technologies used in the disposal of wastewater in rural areas and, additionally, based on the bibliometric analysis, a decision diagram was presented, which can be used as a tool for the correct use of each of the available technologies according to the characteristics of the wastewater and the available area.eng
dc.description.curricularareaQuímica Y Procesos.Sede Manizalesspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Ambientalspa
dc.format.extent96 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87895
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.facultyFacultad de Ingeniería y Arquitecturaspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Ingeniería Ambientalspa
dc.relation.referencesMacías-Quiroga, I. F., Henao-Aguirre, P. A., Marín-Flórez, A., Arredondo-López, S. M., Sanabria-González, N. R. (2021). Bibliometric analysis of advanced oxidation processes (AOPs) in wastewater treatment: Global and Ibero-American research trends. Environ. Sci. Pollut. Res., 28: p. 23791-23811.spa
dc.relation.referencesAraya, F., Vera, L., Morales, G., López, D., Vidal, G. (2014). Tecnologías de tratamiento para aguas servidas de origen rural. in: Las Aguas Servidas y su Depuración en Zonas Rurales: Situación Actual y Desafíos, Vidal, G., Araya, F. (Eds). Universidad de Concepción: Concepción, CHL. p. 60-83.spa
dc.relation.referencesWWAP (2017). The United Nations World Water Development Report 2017. Wastewater: The Untapped Resource. UNESCO, Paris - FRA. p. 180.spa
dc.relation.referencesOrganization, W. H. (2019). Progress on household drinking water, sanitation and hygiene 2000-2017: special focus on inequalities. World Health Organization.spa
dc.relation.references(UNEP), U. N. E. P. Untreated wastewater - a growing danger. Accesed: 15/08/2023, Available at https://www.unep.org/news-and-stories/story/untreated-wastewater-growing-dangerspa
dc.relation.referencesThaher, R. A., Mahmoud, N., Al-Khatib, I. A., Hung, Y.-T. (2022). Cesspits as Onsite Sanitation Facilities in the Non-Sewered Palestinian Rural Areas: Users’ Satisfaction, Needs and Perception. Water, 14(6): p. 849.spa
dc.relation.referencesChen, P., Zhao, W., Chen, D., Huang, Z., Zhang, C., Zheng, X. (2022). Research Progress on Integrated Treatment Technologies of Rural Domestic Sewage: A Review. Water, 14(15): p. 2439.spa
dc.relation.referencesComité de Cafeteros. Proyecto de saneamiento básico ambiental entre corpocaldas, comite de cafeteros y aliados cumple 20 años de ejecución ininterrumpida Accesed: 15/04/2023, Available at https://caldas.federaciondecafeteros.org/listado-noticias/proyecto-de-saneamiento-basico-ambiental-entre-corpocaldas-comite-de-cafeteros-y-aliados-cumple-20-anos-de-ejecucion-ininiterrumpida/spa
dc.relation.referencesNaranjo, D. (2019). Pozos sépticos en el departamento del Quindío y solución alternativa con humedales subsuperficiales. Trabajo de grado presentado para optar al titulo de Profesional Ingenieria Ambiental. Universidad de los Andes., Bogotá D.C.- COL. p. 20.spa
dc.relation.referencesConde Anzola, A. F., Pinilla Herrera, E. A., Vega Godoy, D. S. (2021). Elaboración de una guía para el diseño de plantas de tratamiento de aguas residuales. Corporación Universitaria Minuto de Dios.spa
dc.relation.referencesTorres Forero, J. E. (2018). Evaluación de las condiciones de las áreas rurales colombianas para la implementación de filtros verdes como tratamiento de agua residual. Trabajo de grado presentado como requisito para optar al titulo de Ingeniero Civil. Universidad Catolica de Colombia, Bogota D.C. - COL. p. 70.spa
dc.relation.referencesLiang, X., Yue, X. (2021). Challenges facing the management of wastewater treatment systems in Chinese rural areas. Water Science and Technology, 84(6): p. 1518-1526.spa
dc.relation.referencesMinisterio de Ambiente, V. y. D. S. d. C. (2015). Decreto 1077 de 2015 - Por medio del cual se expide el Decreto Único Reglamentario del Sector Vivienda, Ciudad y Territorio. Ministerio de Vivienda, Ciudad Y Territorio, Bogota - COL. p. 495.spa
dc.relation.referencesMinisterio de Ambiente, V. y. D. S. d. C. (2020). Decreto 1688 de 2020 - Por el cual se modifican unos artículos y se adiciona una Sección al Capítulo 1, del Título 7, de la Parte 3, del Libro 2 del Decreto Único Reglamentario del Sector Vivienda, Ciudad y Territorio, Decreto 1077 de 2015, reglamentando parcialmente el artículo 279 de la Ley 1955 de 2019 en lo relacionado con la dotación de infraestructura de agua para consumo humano y doméstico o de saneamiento básico en zonas rurales y su entrega directa a las comunidades organizadas beneficiarias, de acuerdo con los esquemas diferenciales definidos por el Gobierno nacional. Ministerio de Vivienda, Ciudad Y Territorio, Bogota - COL. p. 6.spa
dc.relation.referencesMinisterio de Ambiente, V. y. D. S. d. C. (2015). Decreto 1076 2015 - Por medio del cual se expide el Decreto Único Reglamentario del Sector Ambiente y Desarrollo Sostenible. Ministerio de Ambiente y Desarrollo Sostenible, Bogota - COL. p. 653.spa
dc.relation.references(DNP), D. N. d. P. El país solo alcanza a tratar el 60% de sus aguas residuales en las ciudades: DNP. Accesed 02/2/2024, Available at: https://www.dnp.gov.co/Prensa_/Noticias/Paginas/el-pais-solo-alcanza-a-tratar-el-60-de-sus-aguas-residuales-en-las-ciudades-dnp.aspxspa
dc.relation.referencesZamudio, L. E. V. (2019). El plan nacional de desarrollo 2018-2022:" Pacto por Colombia, pacto por la equidad". Apuntes del CENES, 38(68): p. 12-14.spa
dc.relation.referencesTorres, L. D. S., Rubiano, É. Q. (2020). Sostenibilidad de las tecnologías de tratamiento de agua para la zona rural. Revista de Ingeniería,(49): p. 52-61.spa
dc.relation.referencesCarrasco Mantilla, W. (2016). Estado del arte del agua y saneamiento rural en Colombia. Rev. Ing.,(44): p. 46-54.spa
dc.relation.referencesWWAP (2020). The United Nations World Water Development Report 2020: Water and Climate Change. UNESCO, Paris - FRA. p. 219.spa
dc.relation.referencesMinisterio de Vivienda, C. y. T. Saneamiento de vertimientos. Accesed: 15/04/2023, Available at https://www.minvivienda.gov.co/viceministerio-de-agua-y-saneamiento-basico/saneamiento-de-vertimientosspa
dc.relation.referencesIDEAM (2019). Estudio Nacional del Agua 2018. Ideam, Bogotá - COL. p. 452.spa
dc.relation.referencesBritánica, E. Tratamiento de aguas residuales. Accesed 02/2/2024,spa
dc.relation.referencesFAO. Calidad del agua. Accesed: 25/04/2023, Available at https://www.fao.org/land-water/water/water-management/water-quality/en/spa
dc.relation.referencesIDEAM (2020). Estudio Nacional del Agua 2020. IDEAM, Bogotá D.C.- COL. p. 510.spa
dc.relation.referencesSuperintendencia de Servicios Públicos Domiciliarios (SSPD) (2021). Informe sectorial de servicios públicos domiciliarios 2021. SSPD, Bogotá D.C.- COL. p. 106.spa
dc.relation.referencesDíaz-Cuenca, E., Alavarado-Granados, A. R., Camacho-Calzada, K. E. (2012). El tratamiento de agua residual doméstica para el desarrollo local sostenible: el caso de la técnica del sistema unitario de tratamiento de aguas, nutrientes y energía (SUTRANE) en San Miguel Almaya, México. Quivera. Revista de Estudios Territoriales, 14(1): p. 78-97.spa
dc.relation.referencesRojas, R. Curso Internacional: Gestión integral de tratamiento de aguas residuales. in Conferencia: Sistemas de Tratamientos de Aguas Residuales. 2002.spa
dc.relation.referencesJan, I., Ahmad, T., Wani, M. S., Dar, S. A., Wani, N. A., Malik, N. A., Tantary, Y. R. (2022). Threats and consequences of untreated wastewater on freshwater environments. in: Microbial Consortium and Biotransformation for Pollution Decontamination. Elsevier. p. 1-26.spa
dc.relation.referencesAguilar, S., Solano, G. (2018). Evaluación del impacto por vertimientos de aguas residuales domésticas, mediante la aplicación del índice de contaminación (ICOMO) en Caño Grande, localizado en Villavicencio-Meta.spa
dc.relation.referencesPeña, J. F. M. (2018). Reutilización y aprovechamiento de aguas residuales domésticas tratadas en Colombia. Universidad Nacional Abierta y a Distancia (UNAD), Pradera - COL. p. 95.spa
dc.relation.referencesGarcía, S. M. D., González, J. M. T., Mora, M. A. T. (2017). Gestión del agua en comunidades rurales; caso de estudio Cuenca del río Guayuriba, Meta-Colombia. Luna azul,(45): p. 59-70.spa
dc.relation.referencesPeña, S., Mayorga, J., Montoya, R. (2018). Propuesta de tratamiento de las aguas residuales de la ciudad de Yaguachi (Ecuador). Ciencia e Ingeniería, 39(2): p. 161-167.spa
dc.relation.referencesDelgadillo Zurita, M., Condori Carrasco, L. J. (2010). Planta de tratamiento de aguas residuales con macrófitas para comunidades cercanas al Lago Titicaca. Journal Boliviano de Ciencias, 7: p. 63.spa
dc.relation.referencesPiñeres, J. Z., Chamorro, D. I., Solaque, O. A. (2016). Desarrollo e implementación de un sistema de bajo costo con tratamientos por medios naturales para la potabilización de aguas superficiales en hogares del sector rural del municipio de Fusagasugá. Revista Sennova: Revista del Sistema de Ciencia, Tecnología e Innovación, 2(2): p. 14-47.spa
dc.relation.referencesBautista Rodríguez, C. A. (2017). Una mirada al estado actual de la investigación en productos naturales marinos de Colombia.spa
dc.relation.referencesVillarroel, K. (2014). Evaluación de la ciencia: una aproximación teórica al análisis bibliométrico. Revista de Investigación Scientia, 3: p. 56.spa
dc.relation.referencesda Cruz, C. A. B., Paixão, A. E. A. (2018). Bibliometric analysis of indicators system related to patents. Razón y Palabra, 22(103): p. 449-462.spa
dc.relation.referencesColorado, Y. S., Anaya, O. P. (2018). La evaluación de la actividad científica: Indicadores bibliométricos. Corporación Universitaria Reformada. p. 96-118.spa
dc.relation.referencesSánchez, M. V. G., Cancino, J. L. T. (2013). Los mapas bibliométricos o mapas de la ciencia: una herramienta útil para desarrollar estudios métricos de información. Biblioteca Universitaria, 16(2): p. 95-108.spa
dc.relation.referencesSolano López, E., Castellanos Quintero, S., López Rodríguez del Rey, M., Hernández Fernández, J. (2009). La bibliometría: una herramienta eficaz para evaluar la actividad científica postgraduada. MediSur, 7(4): p. 59-62.spa
dc.relation.referencesGómez, D. C. (2015). Síntomas depresivos en docentes universitarios: Una revisión bibliométrica. Facultad de Enfermería.spa
dc.relation.referencesCarrillo-Zambrano, E., Páez-Leal, M. C., Suárez, J. M., Luna-González, M. L. (2018). Modelo de vigilancia tecnológica para la gestión de un grupo de investigación en salud. MedUNAB, 21(1): p. 84-99.spa
dc.relation.referencesMacías-Quiroga, I. F., Henao-Aguirre, P. A., Marín-Flórez, A., Arredondo-López, S. M., Sanabria-González, N. R. (2021). Bibliometric analysis of advanced oxidation processes (AOPs) in wastewater treatment: global and Ibero-American research trends. Environ. Sci. Pollut. Res, 28: p. 23791-23811.spa
dc.relation.referencesElsevier. How can I best use the Advanced search? Accesed: 15/04/2023, Available at https://service-elsevier-com.ezproxy.unal.edu.co/app/answers/detail/a_id/11365/supporthub/scopus/kw/search/spa
dc.relation.referencesUniversidad de Almeria. Ecuacion de busqueda. Accesed: 15/06/2023, Available at https://ci2.ual.es/wp-content/uploads/Ecuacion-de-busqueda-BUNS-UAL-.pdfspa
dc.relation.referencesCalò, L. N. (2022). Métricas de impacto y evaluación de la ciencia. Rev. Peru Med. Exp. Salud Publica, 39: p. 236-240.spa
dc.relation.referencesGarcía-Marco, F.-J. (2014). La nueva norma de tesauros UNE ISO 25964-1. Anuario ThinkEPI, 8: p. 159-163.spa
dc.relation.referencesUNESCO. Tesauro de la UNESCO. Accesed: 15/04/2023, Available at https://vocabularies.unesco.org/browser/thesaurus/es/search?clang=es&q=tecnologias+tratamiento&vocabs=spa
dc.relation.referencesGómez, D. C. (2015). Síntomas depresivos en docentes universitarios: Una revisión bibliométrica. Trabajo de grado presentado para optar al titulo de Magister en Salud y Seguridad en el Trabajo. Universidad Nacional de Colombia, Bogotá D.C.- COL. p. 114.spa
dc.relation.referencesLiberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P., Clarke, M., Devereaux, P. J., Kleijnen, J., Moher, D. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Annals of internal medicine, 151(4): p. W-65-W-94.spa
dc.relation.referencesHuang, J.-H., Duan, X.-Y., He, F.-F., Wang, G.-J., Hu, X.-Y. (2021). A historical review and Bibliometric analysis of research on Weak measurement research over the past decades based on Biblioshiny. arXiv preprint arXiv:2108.11375.spa
dc.relation.referencesZuluaga, M., Robledo, S., Arbelaez-Echeverri, O., Osorio-Zuluaga, G. A., Duque-Méndez, N. (2022). Tree of Science-ToS: A Web-Based Tool for Scientific Literature Recommendation. Search Less, Research More! Issues Sci. Technol. Librariansh.,(100).spa
dc.relation.referencesMartínez, D. A. L., Arenas, D. A. M. (2019). Políticas de salud pública para la prevención y el tratamiento de la enfermedad vascular cerebral: una revisión sistemática por medio de la metodología ToS (Tree of Science). Medicina UPB, 38(2): p. 129-139.spa
dc.relation.referencesYang, J., Cheng, C., Shen, S., Yang, S. (2017). Comparison of complex network analysis software: Citespace, SCI2 and Gephi. 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA): p. 169-172.spa
dc.relation.referencesGrisales, A. M., Robledo, S., Zuluaga, M. (2022). Topic modeling: perspectives from a literature review. IEEE Access.spa
dc.relation.referencesRomaní, F. (2020). Análisis bibliométrico de las publicaciones científicas originales del Instituto Nacional de Salud del Perú en el periodo 1998-2018. Revista Peruana de Medicina Experimental y Salud Publica, 37(3): p. 485-494.spa
dc.relation.referencesEsquivel, A., Marincean, S., Benore, M. (2023). The effect of the Covid-19 pandemic on STEM faculty: Productivity and work-life balance. Plos one, 18(1): p. e0280581.spa
dc.relation.referencesAhmet, A., Aslan, A. (2020). Quartile scores of scientific journals: Meaning, importance and usage. Acta Medica Alanya, 4(1): p. 102-108.spa
dc.relation.referencesLewis, J., Schneegans, S., Straza, T. (2021). UNESCO Science Report: The race against time for smarter development. Vol. 2021: Unesco Publishing.spa
dc.relation.referencesMundial, G. B. Gasto en investigación y desarrollo (% del PIB) - United States. Accesed: 15/08/2023, Available at https://datos.bancomundial.org/indicator/GB.XPD.RSDV.GD.ZS?locations=USspa
dc.relation.referencesHirsch, J. E. (2005). An index to quantify an individual's scientific research output. Proceedings of the National academy of Sciences, 102(46): p. 16569-16572.spa
dc.relation.referencesLove, H. B., Cross, J. E., Fosdick, B., Crooks, K. R., VandeWoude, S., Fisher, E. R. (2021). Interpersonal relationships drive successful team science: an exemplary case-based study. Humanities and Social Sciences Communications, 8(1): p. 1-10.spa
dc.relation.referencesMacroberts, M. H., Macroberts, B. R. (1982). A re-evaluation of Lotka's Law of scientific productivity. Social Studies of Science, 12(3): p. 443-450.spa
dc.relation.referencesVenable, G. T., Shepherd, B. A., Loftis, C. M., McClatchy, S. G., Roberts, M. L., Fillinger, M. E., Tansey, J. B., Klimo, P. (2016). Bradford’s law: identification of the core journals for neurosurgery and its subspecialties. Journal of neurosurgery, 124(2): p. 569-579.spa
dc.relation.referencesMassoud, M. A., Tarhini, A., Nasr, J. A. (2009). Decentralized approaches to wastewater treatment and management: applicability in developing countries. Journal of environmental management, 90(1): p. 652-659.spa
dc.relation.referencesVymazal, J. (2005). Horizontal sub-surface flow and hybrid constructed wetlands systems for wastewater treatment. Ecological engineering, 25(5): p. 478-490.spa
dc.relation.referencesVymazal, J., Švehla, J., Kröpfelová, L., Chrastný, V. (2007). Trace metals in Phragmites australis and Phalaris arundinacea growing in constructed and natural wetlands. Science of the total environment, 380(1-3): p. 154-162.spa
dc.relation.referencesWu, S., Austin, D., Liu, L., Dong, R. (2011). Performance of integrated household constructed wetland for domestic wastewater treatment in rural areas. Ecological Engineering, 37(6): p. 948-954.spa
dc.relation.referencesWu, H., Zhang, J., Ngo, H. H., Guo, W., Hu, Z., Liang, S., Fan, J., Liu, H. (2015). A review on the sustainability of constructed wetlands for wastewater treatment: design and operation. Bioresource technology, 175: p. 594-601.spa
dc.relation.referencesVymazal, J. (2010). Constructed wetlands for wastewater treatment. Water, 2(3): p. 530-549.spa
dc.relation.referencesZhang, Y., Cheng, Y., Yang, C., Luo, W., Zeng, G., Lu, L. (2015). Performance of system consisting of vertical flow trickling filter and horizontal flow multi-soil-layering reactor for treatment of rural wastewater. Bioresource Technology, 193: p. 424-432.spa
dc.relation.referencesSong, P., Huang, G., An, C., Shen, J., Zhang, P., Chen, X., Shen, J., Yao, Y., Zheng, R., Sun, C. (2018). Treatment of rural domestic wastewater using multi-soil-layering systems: Performance evaluation, factorial analysis and numerical modeling. Science of the total environment, 644: p. 536-546.spa
dc.relation.referencesSingh, N. K., Kazmi, A. A., Starkl, M. (2015). A review on full-scale decentralized wastewater treatment systems: techno-economical approach. Water Science and Technology, 71(4): p. 468-478.spa
dc.relation.referencesLatrach, L., Ouazzani, N., Hejjaj, A., Mahi, M., Masunaga, T., Mandi, L. (2018). Two-stage vertical flow multi-soil-layering (MSL) technology for efficient removal of coliforms and human pathogens from domestic wastewater in rural areas under arid climate. International journal of hygiene and environmental health, 221(1): p. 64-80.spa
dc.relation.referencesHong, Y., Huang, G., An, C., Song, P., Xin, X., Chen, X., Zhang, P., Zhao, Y., Zheng, R. (2019). Enhanced nitrogen removal in the treatment of rural domestic sewage using vertical-flow multi-soil-layering systems: Experimental and modeling insights. Journal of Environmental Management, 240: p. 273-284.77. Hu, M., Fan, B., Wang, H., Qu, B., Zhu, S. (2016). Constructing the ecological sanitation: a review on technology and methods. Journal of Cleaner Production, 125: p. 1-21.spa
dc.relation.referencesRahman, M. E., Bin Halmi, M. I. E., Bin Abd Samad, M. Y., Uddin, M. K., Mahmud, K., Abd Shukor, M. Y., Sheikh Abdullah, S. R., Shamsuzzaman, S. (2020). Design, operation and optimization of constructed wetland for removal of pollutant. International Journal of Environmental Research and Public Health, 17(22): p. 8339.spa
dc.relation.referencesSanjrani, M., Zhou, B., Zhao, H., Zheng, Y., Wang, Y., Xia, S. (2020). TREATMENT OF WASTEWATER WITH CONSTRUCTED WETLANDS SYSTEMS AND PLANTS USED IN THIS TECHNOLOGY-A REVIEW. Applied Ecology & Environmental Research, 18(1)spa
dc.relation.referencesZhong, L., Ding, J., Wu, T., Zhao, Y.-l., Pang, J. W., Jiang, J.-P., Jiang, J.-Q., Li, Y., Ren, N.-Q., Yang, S.-S. (2023). Bibliometric overview of research progress, challenges, and prospects of rural domestic sewage: Treatment techniques, resource recovery, and ecological risk. Journal of Water Process Engineering, 51: p. 103389.spa
dc.relation.referencesSehar, S., Nasser, H. (2019). Wastewater treatment of food industries through constructed wetland: a review. International Journal of Environmental Science and Technology, 16: p. 6453-6472.spa
dc.relation.referencesNuamah, L. A., Li, Y., Pu, Y., Nwankwegu, A. S., Haikuo, Z., Norgbey, E., Banahene, P., Bofah-Buoh, R. (2020). Constructed wetlands, status, progress, and challenges. The need for critical operational reassessment for a cleaner productive ecosystem. Journal of cleaner production, 269: p. 122340.spa
dc.relation.referencesZhang, T., Xu, D., He, F., Zhang, Y., Wu, Z. (2012). Application of constructed wetland for water pollution control in China during 1990–2010. Ecological Engineering, 47: p. 189-197.spa
dc.relation.referencesLi, Y., Zhu, G., Ng, W. J., Tan, S. K. (2014). A review on removing pharmaceutical contaminants from wastewater by constructed wetlands: design, performance and mechanism. Science of the Total Environment, 468: p. 908-932.spa
dc.relation.referencesZheng, Y., Wang, X. C., Ge, Y., Dzakpasu, M., Zhao, Y., Xiong, J. (2015). Effects of annual harvesting on plants growth and nutrients removal in surface-flow constructed wetlands in northwestern China. Ecological Engineering, 83: p. 268-275.spa
dc.relation.referencesNelson, M. (1998). Wetland systems for bioregenerative reclamation of Wastewater: from closed systems to developing countries. Life Support & Biosphere Science, 5(3): p. 357-369.spa
dc.relation.referencesLangergraber, G., Muellegger, E. (2005). Ecological Sanitation—a way to solve global sanitation problems? Environment international, 31(3): p. 433-444.spa
dc.relation.referencesVanrolleghem, P. A., Lee, D. S. (2003). On-line monitoring equipment for wastewater treatment processes: state of the art. Water Science and Technology, 47(2): p. 1-34.spa
dc.relation.referencesNhapi, I., Gijzen, H. J. (2004). Wastewater management in Zimbabwe in the context of sustainability. Water policy, 6(6): p. 501-517.spa
dc.relation.referencesChristova-Boal, D., Eden, R. E., McFarlane, S. (1996). An investigation into greywater reuse for urban residential properties. Desalination, 106(1-3): p. 391-397.spa
dc.relation.referencesIgnacio, J. J., Alvin Malenab, R., Pausta, C. M., Beltran, A., Belo, L., Tanhueco, R. M., Era, M., Eusebio, R. C., Promentilla, M. A., Orbecido, A. (2018). Perceptions and attitudes toward eco-toilet systems in rural areas: A case study in the Philippines. Sustainability, 10(2): p. 521.spa
dc.relation.referencesBenetto, E., Nguyen, D., Lohmann, T., Schmitt, B., Schosseler, P. (2009). Life cycle assessment of ecological sanitation system for small-scale wastewater treatment. Science of the total environment, 407(5): p. 1506-1516.spa
dc.relation.referencesOrhon, D., Sözen, S., Görgün, E., Çokgör, E. U., Artan, N. (1999). Technological aspects of wastewater management in coastal tourist areas. Water science and technology, 39(8): p. 177-184.spa
dc.relation.referencesWilderer, P. A., Schreff, D. (2000). Decentralized and centralized wastewater management: a challenge for technology developers. Water Science and Technology, 41(1): p. 1-8.spa
dc.relation.referencesComas, J., Alemany, J., Poch, M., Torrens, A., Salgot, M., Bou, J. (2004). Development of a knowledge-based decision support system for identifying adequate wastewater treatment for small communities. Water Science and Technology, 48(11-12): p. 393-400.spa
dc.relation.referencesBavithra, G., Azevedo, J., Oliveira, F., Morais, J., Pinto, E., Ferreira, I. M., Vasconcelos, V., Campos, A., Almeida, C. M. R. (2019). Assessment of Constructed Wetlands’ Potential for the Removal of Cyanobacteria and Microcystins (MC-LR). Water, 12(1): p. 10.spa
dc.relation.referencesLi, Y., Zhu, S., Zhang, Y., Lv, M., Kinhoun, J. J. R., Qian, T., Fan, B. (2021). Constructed wetland treatment of source separated washing wastewater in rural areas of southern China. Separation and Purification Technology, 272: p. 118725.spa
dc.relation.referencesThuan, N., CONG, N. (2022). REMOVAL OF AMMONIUM AND NITRATE IN WATER BY AN AQUATIC PLANT: WATER LETTUCE (Pistia stratiotes L.). Applied Ecology & Environmental Research, 20(6).spa
dc.relation.referencesAlquwaizany, A. S., Hussain, G., Al-Zarah, A. I. (2022). Changes in physico-chemical composition of wastewater by growing Phragmites australis and Typha latifolia in an arid environment in Saudi Arabia. Environmental Science and Pollution Research, 29(26): p. 39838-39846.spa
dc.relation.referencesRehman, A., Zakir, B., Anees, M., Naz, I., Alhewairini, S. S., Sehar, S. (2022). Bio‐purification of domestic wastewater through constructed wetland planted with Paspalidium flavidum. Water Environment Research, 94(1): p. e1685.spa
dc.relation.referencesBrix, H., Arias, C. A. (2005). Danish guidelines for small-scale constructed wetland systems for onsite treatment of domestic sewage. Water Science and Technology, 51(9): p. 1-9.spa
dc.relation.referencesLi, X., Ding, A., Zheng, L., Anderson, B. C., Kong, L., Wu, A., Xing, L. (2018). Relationship between design parameters and removal efficiency for constructed wetlands in China. Ecological Engineering, 123: p. 135-140.spa
dc.relation.referencesAbunaser, S. G., Abdelhay, A. (2020). Performance of a novel vertical flow constructed wetland for greywater treatment in rural areas in Jordan. Environmental Technology: p. 1-11.spa
dc.relation.referencesSylla, A. (2020). Domestic wastewater treatment using vertical flow constructed wetlands planted with Arundo donax, and the intermittent sand filters impact. Ecohydrology & Hydrobiology, 20(1): p. 48-58.spa
dc.relation.referencesChen, J., Liu, Y.-S., Deng, W.-J., Ying, G.-G. (2019). Removal of steroid hormones and biocides from rural wastewater by an integrated constructed wetland. Science of the Total Environment, 660: p. 358-365.spa
dc.relation.referencesLutterbeck, C. A., Kist, L. T., Lopez, D. R., Zerwes, F. V., Machado, Ê. L. (2017). Life cycle assessment of integrated wastewater treatment systems with constructed wetlands in rural areas. Journal of Cleaner Production, 148: p. 527-536.spa
dc.relation.referencesZhong, H., Hu, N., Wang, Q., Chen, Y., Huang, L. (2022). How to select substrate for alleviating clogging in the subsurface flow constructed wetland? Science of The Total Environment, 828: p. 154529.spa
dc.relation.referencesAuvinen, H., Gebhardt, W., Linnemann, V., Du Laing, G., Rousseau, D. P. (2017). Laboratory-and full-scale studies on the removal of pharmaceuticals in an aerated constructed wetland: effects of aeration and hydraulic retention time on the removal efficiency and assessment of the aquatic risk. Water Science and Technology, 76(6): p. 1457-1465.spa
dc.relation.referencesMohammed, A. A., Mutar, Z. H., Al-Baldawi, I. A. (2021). Alternanthera spp. based-phytoremediation for the removal of acetaminophen and methylparaben at mesocosm-scale constructed wetlands. Heliyon, 7(11).spa
dc.relation.referencesSabry, T. (2010). Evaluation of decentralized treatment of sewage employing Upflow Septic Tank/Baffled Reactor (USBR) in developing countries. Journal of Hazardous Materials, 174(1-3): p. 500-505.spa
dc.relation.referencesLusk, M. G., Toor, G. S., Yang, Y.-Y., Mechtensimer, S., De, M., Obreza, T. A. (2017). A review of the fate and transport of nitrogen, phosphorus, pathogens, and trace organic chemicals in septic systems. Critical Reviews in Environmental Science and Technology, 47(7): p. 455-541.spa
dc.relation.referencesMugani, R., Aba, R. P., Hejjaj, A., El Khalloufi, F., Ouazzani, N., Almeida, C. M. R., Carvalho, P. N., Vasconcelos, V., Campos, A., Mandi, L. (2022). Multi-Soil-Layering Technology: A New Approach to Remove Microcystis aeruginosa and Microcystins from Water. Water, 14(5): p. 686.spa
dc.relation.referencesXu, Y., Li, H., Li, Y., Zheng, X., Zhang, C., Gao, Y., Chen, P., Li, Q., Tan, L. (2022). Systematically assess the advancing and limiting factors of using the multi-soil-layering system for treating rural sewage in China: From the economic, social, and environmental perspectives. Journal of Environmental Management, 312: p. 114912.spa
dc.relation.referencesShen, J., Huang, G., An, C., Song, P., Xin, X., Yao, Y., Zheng, R. (2018). Biophysiological and factorial analyses in the treatment of rural domestic wastewater using multi-soil-layering systems. Journal of environmental management, 226: p. 83-94.spa
dc.relation.referencesHe, Y., Huang, G., An, C., Huang, J., Zhang, P., Chen, X., Xin, X. (2018). Reduction of Escherichia Coli using ceramic disk filter decorated by nano-TiO2: a low-cost solution for household water purification. Science of the Total Environment, 616: p. 1628-1637.spa
dc.relation.referencesYang, Y., Cui, H., Zhen, G., Huang, M., Li, C. (2020). Tubular reactor-enhanced ecological floating bed achieves high nitrogen removal from secondary effluents of wastewater treatment. Environmental Chemistry Letters, 18: p. 1361-1368.spa
dc.relation.referencesJucherski, A., Nastawny, M., Walczowski, A., Jóźwiakowski, K., Gajewska, M. (2017). Assessment of the technological reliability of a hybrid constructed wetland for wastewater treatment in a mountain eco-tourist farm in Poland. Water Science and Technology, 75(11): p. 2649-2658.spa
dc.relation.referencesLi, X., Huang, Y., Guo, Y., Li, W., Li, Y. (2023). Full-scale application and performance of a new multi-self-reflow decentralized Wastewater treatment device: Impact of hydraulic and pollutant loads. Journal of Environmental Sciences, 131: p. 37-47.spa
dc.relation.referencesWang, S., Hu, C., Cheng, F., Lu, X. (2023). Performance of a combined low-consumption biotreatment system with cost-effective ecological treatment technology for rural domestic sewage treatment. Journal of Water Process Engineering, 51: p. 103380.spa
dc.relation.referencesLamon, A. W., Faria Maciel, P. M., Campos, J. R., Corbi, J. J., Dunlop, P. S. M., Fernandez-Ibañez, P., Anthony Byrne, J., Sabogal-Paz, L. P. (2022). Household slow sand filter efficiency with schmutzdecke evaluation by microsensors. Environmental Technology, 43(26): p. 4042-4053.spa
dc.relation.referencesPathak, A. K., Tyagi, V., Anand, S., Pandey, A., Kothari, R. (2022). Advancement in solar still integration with phase change materials-based TES systems and nanofluid for water and wastewater treatment applications. Journal of Thermal Analysis and Calorimetry, 147(17): p. 9181-9227.spa
dc.relation.referencesLi, Y.-S., Xiao, Y.-Q., Qiu, J.-P., Dai, Y.-Q., Robin, P. (2009). Continuous village sewage treatment by vermifiltration and activated sludge process. Water Science and Technology, 60(11): p. 3001-3010.spa
dc.relation.referencesVera-Puerto, I., Valdés, H., Bueno, M., Correa, C., Olave, J., Carrasco-Benavides, M., Schiappacasse, F., Arias, C. A. (2022). Reclamation of treated wastewater for irrigation in Chile: perspectives of the current state and challenges. Water, 14(4): p. 627.spa
dc.relation.referencesMalila, R., Lehtoranta, S., Viskari, E.-L. (2019). The role of source separation in nutrient recovery–comparison of alternative wastewater treatment systems. Journal of Cleaner Production, 219: p. 350-358.spa
dc.relation.referencesKelova, M. E., Ali, A. M., Eich-Greatorex, S., Dörsch, P., Kallenborn, R., Jenssen, P. D. (2021). Small-scale on-site treatment of fecal matter: comparison of treatments for resource recovery and sanitization. Environmental Science and Pollution Research: p. 1-20.spa
dc.relation.referencesKalbar, P. P., Karmakar, S., Asolekar, S. R. (2012). Selection of an appropriate wastewater treatment technology: A scenario-based multiple-attribute decision-making approach. Journal of environmental management, 113: p. 158-169.spa
dc.relation.referencesFan, B., Hu, M., Wang, H., Xu, M., Qu, B., Zhu, S. (2017). Get in sanitation 2.0 by opportunity of rural China: Scheme, simulating application and life cycle assessment. Journal of Cleaner Production, 147: p. 86-95.spa
dc.relation.referencesHu, M., Xiao, J., Fan, B., Sun, W., Zhu, S. (2021). Constructing and selecting optimal sustainable sanitation system based on expanded structured decision-making for global sanitation and resources crisis. Journal of Cleaner Production, 318: p. 128598.spa
dc.relation.referencesBej, S., Ghosh, M., Das, R., Banerjee, P. (2022). Evaluation of nanomaterials-grafted enzymes for application in contaminants degradation: Need of the hour with proposed IoT synchronized nanosensor fit sustainable clean water technology in en masse. Journal of the Indian Chemical Society, 99(5): p. 100429.spa
dc.relation.referencesTang, L., Luo, X., Huang, Y., Du, S., Yan, A. (2023). Can smartphone use increase farmers’ willingness to participate in the centralized treatment of rural domestic sewage? Evidence from rural China. Environment, Development and Sustainability, 25(4): p. 3379-3403.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::628 - Ingeniería sanitariaspa
dc.subject.ddc330 - Economía::333 - Economía de la tierra y de la energíaspa
dc.subject.proposalAgua residualspa
dc.subject.proposalzona ruralspa
dc.subject.proposalanálisis bibliométricospa
dc.subject.proposalproductividad científicaspa
dc.subject.proposaltendenciasspa
dc.subject.proposaltecnologías de tratamientospa
dc.subject.proposalWastewatereng
dc.subject.proposalrural areaeng
dc.subject.proposalbibliometric analysiseng
dc.subject.proposalscientific productivityeng
dc.subject.proposaltrendseng
dc.subject.proposaltreatment technologieseng
dc.subject.unescoAlcantarilladospa
dc.subject.unescoSewerseng
dc.subject.unescoGestión ambientalspa
dc.subject.unescoEnvironmental managementeng
dc.subject.unescoContaminación del aguaspa
dc.subject.unescoWater pollutioneng
dc.titleTecnologías de tratamiento de aguas residuales aplicables al sector rural : Análisis bibliométricospa
dc.title.translatedWastewater treatment technologies applicable to the rural sector : A bibliometric analysiseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_14cbspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
11116259821.2025.pdf
Tamaño:
1.57 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Ambiental

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: