RNAs largos no codificantes (lncRNAs) de Passiflora edulis Sims f. edulis involucrados en la respuesta a déficit hídrico

dc.contributor.advisorSarmiento Salazar, Felipe
dc.contributor.advisorBermudez Santana, Clara Isabel
dc.contributor.authorRojas Bautista, David Felipe
dc.date.accessioned2026-01-22T15:45:42Z
dc.date.available2026-01-22T15:45:42Z
dc.date.issued2025
dc.descriptionilustraciones a color, diagramas, fotografíasspa
dc.description.abstractLa respuesta transcripcional frente al déficit hídrico comprende una compleja red de interacciones moduladas de forma específica y temporal. Los lncRNAs son transcritos regulatorios que hacen parte importante de estos procesos, sin embargo, su función en la respuesta al déficit hídrico en Passiflora edulis f. edulis sigue siendo desconocida. Para aportar al conocimiento sobre el papel que los lncRNAs tienen durante la respuesta transcripcional de P. edulis f. edulis se realizaron tres aproximaciones: (1) estudio y caracterización de los lncRNAs a partir del transcriptoma; (2) análisis de su expresión y co- expresión y finalmente (3) validación experimental usando RT-qPCR. En una primera aproximación, se identificó y caracterizó la fracción de lncRNAs en Passiflora edulis f. edulis mediante el procesamiento bioinformático de librerías de RNA-seq. Este análisis se basó en un transcriptoma ensamblado, junto con anotaciones funcionales, estructurales y de elementos repetitivos. La identificación de los lncRNAs se realizó siguiendo criterios relacionados con la longitud de los transcritos, su potencial codificante y su contexto genómico. La caracterización abordó características moleculares, expresión diferencial en tejidos, similitud de secuencia con otros lncRNAs y presencia de elementos transponibles. Esto permitió la identificación de 34.206 lncRNAs, de los cuales 4.176 tienen expresión diferencial en tejidos, 10.212 presentan elementos transponibles dentro de su secuencia, y 821 tienen similitud de secuencia de más del 80% con otros lncRNAs reportados en plantas. Estos lncRNAs tienen una menor expresión en comparación con mRNAs, menor longitud, pero mayor especificidad de tejido según valores TAU. Estos resultados proporcionaron un set robusto de lncRNAs que demuestran la complejidad asociada al paisaje transcripcional no codificante en P. edulis f. edulis y es un insumo importante para posteriores estudios. En una segunda aproximación se evaluó el papel de estos 34.206 lncRNAs en la respuesta a déficit hídrico mediante análisis de expresión diferencial y análisis de redes de co-expresión con mRNAs. Para esto se usaron librerías de RNAseq de muestras en déficit hídrico a los 5 y 10 días, de hojas y raíces. Se obtuvieron 187 lncRNAs diferencialmente expresados en déficit hídrico, con una dinámica transcripcional y de regulación específica por tiempo y tejido. Los análisis de redes de co-expresión permitieron asociar lncRNAs en módulos relacionados con la señalización, modulación de la conductancia estomática, modulación del crecimiento, fotosíntesis y biosíntesis de metabolitos secundarios. El análisis de las regiones promotoras de estos lncRNAs y mRNAs, reveló la presencia de motivos de unión de factores de transcripción relacionados con familias de factores de transcripción involucrados en la respuesta al déficit hídrico, como Dof, ERF/AP2, B3, MIKC_MADS y BBR-BPC. Estos resultados podrían explicar la co-expresión de estos lncRNAs y mRNAs dentro de la respuesta a déficit hídrico. Finalmente, como tercera aproximación, se validó la expresión de lncRNAs y mRNAs de estos módulos mediante RT-qPCR en un nuevo experimento de déficit hídrico y una etapa de rehidratación. Los resultados permiten concluir que los lncRNAs identificados son reguladores putativos que, en conjunto con los mRNAs, hacen parte de las redes transcripcionales de respuesta al déficit hídrico. Estos transcritos se asocian a rasgos importantes dentro de la estrategia de evitación como la regulación sobre transporte de agua y la conductancia estomática. Estos resultados proporcionan información acerca de los mecanismos de respuesta innatos que poseen las plantas para responder al déficit hídrico y se presenta como un insumo para posteriores aproximaciones. (Texto tomado de la fuente)spa
dc.description.abstractThe transcriptional response to water deficit involves a complex network of interactions that are modulated in a specific and transient manner. The long non-coding RNAs (lncRNAs) are regulatory transcripts that play an important role in these cellular processes, but their function in the response to water deficit in Passiflora edulis f. edulis remains unknown. To contribute to the knowledge of the role that lncRNAs play during the transcriptional response of P. edulis f. edulis, three approaches were taken: the study and characterization of lncRNAs in a transcriptome, the analysis of their expression and co-expression and, in the final approach, their validation by RT-qPCR. In the first approach, the fraction of lncRNAs in P. edulis f. edulis were identified and characterized through bioinformatic processing of RNAseq libraries, an assembled transcriptome, functional and structural annotation, and annotation of repetitive elements. lncRNAs were identified according to criteria related to transcript length, coding potential and genomic context. Characterization included molecular features, differential expression in tissues, sequence similarity to other lncRNAs and the presence of transposable elements. This allowed the identification of 34.206 lncRNAs, 4.176 of which display differential expression in tissues, 10.212 have transposable elements within their sequence, and 821 have sequence similarity of more than 80% with previously reported lncRNAs. These lncRNAs have lower expression compared to mRNAs, shorter length, but higher tissue specificity according to TAU values. These results provided a robust set of lncRNAs that demonstrate the complexity associated with the non-coding transcriptional landscape in P. edulis f. edulis and represents a valuable resource to test hypotheses related to their function. In the second approach, the role of these 34.206 lncRNAs in the response to water deficit was determined by differential expression analysis using RNAseq libraries of leaves and roots after 5 and 10 days of water deficit and an analysis of co-expression networks with mRNAs. Seven hundred differentially expressed lncRNAs were obtained, with transcriptional dynamics and specific regulation by time and tissue. Co-expression network analyses permitted the association of lncRNAs in modules related to signal transduction, modulation of stomatal conductance, modulation of growth, photosynthesis and biosynthesis of secondary metabolites. Analysis of the promoter regions of these lncRNAs and mRNAs revealed the presence of transcription factor binding motifs related to families of transcription factors involved in the response to water deficit, such as Dof, ERF/AP2, B3, MIKC_MADS, and BBR-BPC. These results could explain the co-expression of these lncRNAs and mRNAs within the response to water deficit, raising the possibility of a context of co-regulation between these transcripts. Finally, as a third approach, the expression of lncRNAs and mRNAs of these modules was validated by RT-qPCR in a new experiment of water deficit, where a rehydration stage was addressed. The result of this work shows that the identified lncRNAs are putative regulatory molecules that, together with mRNAs, are part of the transcriptional networks of response to water deficit. These transcripts are associated with important functions within the avoidance strategy, such as regulation of water transport and stomatal conductance. Overall, these results provide information about the innate response mechanisms that plants have to respond to water deficit and are presented as input for further approaches related to understanding the future persistence of populations in the face of reduced water availability.eng
dc.description.degreelevelMaestría
dc.description.degreenameMagister en Ciencias - Biología
dc.description.methodsSe estableció una metodología de identificación de lncRNAs según distintos filtros de acuerdo a metodologías similares, principalmente el “Método estricto” propuesto previamente en Arabidopsis thaliana (Corona-Gomez et al., 2022) y el pipeline usado por (Villalba-Bermell et al., 2024) que se resumen en la Figura 1. Como primer paso, el set de mRNAs previamente anotado (Lozano-Montaña et al., 2022), y catalogados como mejores hits a proteínas fue filtrado del transcriptoma. Posteriormente, el resto de los transcritos se clasificaron según su contexto genómico usando gffcompare v.0.12.6 (G. Pertea & Pertea, 2020). Gffcompare se usó según la anotación estructural, por lo que en este punto se compararon transcritos sobre transcritos. Esto permitió clasificar cada transcrito según su ubicación genómica respecto a los mRNAs (G. Pertea & Pertea, 2020). Se seleccionaron las clases U, X, I, O y E correspondientes a los transcritos Intergenicos (U), transcritos que se sobreponen con exones de un gen codificante en la hebra opuesta (antisentido) (X), transcritos ubicados en intrones de genes (I), y transcritos que se sobreponen con un exón (O) o intrón (E) de la misma hebra (Figura 1, C). Las demás categorías (C, =, J, P, S, R, K) corresponden a transcritos que son idénticos entre si (=), que coinciden en la ubicación de los intrones (C), exones (J), fragmentos de mRNA (P), repeticiones (R), contigs o transcritos codificantes con ensamblajes incompletos (S), por lo que, no fueron tomados en cuenta (G. Pertea & Pertea, 2020). Finalmente se seleccionaron los transcritos con longitud mayor o igual a 200 nucleótidos (nt).
dc.format.extent105 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/89297
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Biología
dc.relation.referencesAcha, S., Linan, A., MacDougal, J., & Edwards, C. (2021). The evolutionary history of vines in a neotropical biodiversity hotspot: Phylogenomics and biogeography of a large passion flower clade (Passiflora section Decaloba). Molecular Phylogenetics and Evolution, 164, 107260. https://doi.org/10.1016/j.ympev.2021.107260
dc.relation.referencesAl-Yasi, H., Attia, H., Alamer, K., Hassan, F., Ali, E., Elshazly, S., Siddique, K. H. M., & Hessini, K. (2020). Impact of drought on growth, photosynthesis, osmotic adjustment, and cell wall elasticity in Damask rose. Plant Physiology and Biochemistry, 150, 133-139. https://doi.org/10.1016/j.plaphy.2020.02.038
dc.relation.referencesÁngel-Coca, C., Nates-Parra, G., Ospina-Torres, R., Melo Ortiz, C. D., & Amaya-Márquez, M. (2011). Floral and reproductive biology of the «gulupa» Passiflora edulis Sims f. Edulis. Caldasia, 33(2), 433-451.
dc.relation.referencesAppiah, M., Abdulai, I., Schulman, A. H., Moshelion, M., Dewi, E. S., Daszkowska-Golec, A., Bracho-Mujica, G., & Rötter, R. P. (2023). Drought response of water-conserving and non-conserving spring barley cultivars. Frontiers in Plant Science, 14.
dc.relation.referencesAriel, F., Romero-Barrios, N., Jégu, T., Benhamed, M., & Crespi, M. (2015). Battles and hijacks: Noncoding transcription in plants. Trends in Plant Science, 20(6), 362-371. https://doi.org/10.1016/j.tplants.2015.03.003
dc.relation.referencesArisha, M. H., Ahmad, M. Q., Tang, W., Liu, Y., Yan, H., Kou, M., Wang, X., Zhang, Y., & Li, Q. (2020). RNA-sequencing analysis revealed genes associated drought stress responses of different durations in hexaploid sweet potato. Scientific Reports, 10(1), 12573. https://doi.org/10.1038/s41598-020-69232-3
dc.relation.referencesArrigui-Torres, E., Ocampo, J. A., & Rosero-Toro, J. H. (2024). <strong>A new species of <em>Passiflora</em> (Passifloraceae, subgenus <em>Passiflora</em>) in the flora of Colombia discovered in uncharted Andean territory</strong>. Phytotaxa, 642(2), Article 2. https://doi.org/10.11646/phytotaxa.642.2.4
dc.relation.referencesAxelrod, D. I. (1967). Drought, Diastrophism, and Quantum Evolution. Evolution, 21(2), 201-209. https://doi.org/10.2307/2406669
dc.relation.referencesBardou, F., Ariel, F., Simpson, C. G., Romero-Barrios, N., Laporte, P., Balzergue, S., Brown, J. W. S., & Crespi, M. (2014). Long Noncoding RNA Modulates Alternative Splicing Regulators in Arabidopsis. Developmental Cell, 30(2), 166-176.
dc.relation.referencesBasu, S., Ramegowda, V., Kumar, A., & Pereira, A. (2016). Plant adaptation to drought stress (No. 5:1554). F1000Research. https://doi.org/10.12688/f1000research.7678.1
dc.relation.referencesBhogireddy, S., Mangrauthia, S. K., Kumar, R., Pandey, A. K., Singh, S., Jain, A., Budak, H., Varshney, R. K., & Kudapa, H. (2021). Regulatory non-coding RNAs: A new frontier in regulation of plant biology. Functional & Integrative Genomics, 21(3-4), 313-330. https://doi.org/10.1007/s10142-021-00787-8
dc.relation.referencesBiricolti, S., & Chiari, A. (1994). Meristem Culture and Micrografting of «Passiflora edulis» f. «edulis». https://doi.org/10.1400/14314
dc.relation.referencesBoerner, S., & McGinnis, K. M. (2012). Computational Identification and Functional Predictions of Long Noncoding RNA in Zea mays. PLOS ONE, 7(8), e43047. https://doi.org/10.1371/journal.pone.0043047
dc.relation.referencesBonal, D., Burban, B., Stahl, C., Wagner, F., & Hérault, B. (2016). The response of tropical rainforests to drought—lessons from recent research and future prospects. Annals of forest science, 73(1), 27-44. https://doi.org/10.1007/s13595-015-0522-5
dc.relation.referencesBouba, I., Kang, Q., Luan, Y.-S., & Meng, J. (2019). Predicting miRNA-lncRNA interactions and recognizing their regulatory roles in stress response of plants. Mathematical Biosciences, 312, 67-76. https://doi.org/10.1016/j.mbs.2019.04.006
dc.relation.referencesBowles, A. M. C., Paps, J., & Bechtold, U. (2021). Evolutionary Origins of Drought Tolerance in Spermatophytes. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.655924
dc.relation.referencesBranch, H. A., Moxley, D. R., & Angert, A. L. (2024). Regional differences in leaf evolution facilitate photosynthesis following severe drought. New Phytologist, 243(6), 2457-2469. https://doi.org/10.1111/nph.19963
dc.relation.referencesCastillo, N. R., Melgarejo, L. M., & Blair, M. W. (2020). Seed Structural Variability and Germination Capacity in Passiflora edulis Sims f. Edulis. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.00498
dc.relation.referencesCarr, M. K. V. (2013). The water relations and irrigation requirements of passion fruit (Passiflora edulis Sims): a review. Experimental Agriculture, 49(4), 585-596.
dc.relation.referencesCerqueira-Silva, C. B. M., Jesus, O. N., Santos, E. S. L., Corrêa, R. X., & Souza, A. P. (2014). Genetic breeding and diversity of the genus Passiflora: Progress and perspectives in molecular and genetic studies. International Journal of Molecular Sciences, 15(8), 14122-14152. https://doi.org/10.3390/ijms150814122
dc.relation.referencesChorostecki, U., Bologna, N. G., & Ariel, F. (2023). The plant noncoding transcriptome: A versatile environmental sensor. The EMBO Journal, 42(20), e114400. https://doi.org/10.15252/embj.2023114400
dc.relation.referencesConstanty, F., & Shkumatava, A. (2021). lncRNAs in development and differentiation: From sequence motifs to functional characterization. Development, 148(1), dev182741. https://doi.org/10.1242/dev.182741
dc.relation.referencesda Silva, G. J., & Costa de Oliveira, A. (2014). Genes Acting on Transcriptional Control during Abiotic Stress Responses. Advances in Agriculture, 2014(1), 587070. https://doi.org/10.1155/2014/587070
dc.relation.referencesde Fatima, R. T., de Lima, G. S., Soares, L. A. D. A., Oliveira de Sá, V. K. N., Guedes, M. A., Ferreira, J. T. A., Nóbrega J. S., Gheyi H. R, Souto A. G. & Pereira, W. E. (2025). Effect of different timing of water deficit combined with foliar application of ascorbic acid on physiological variables of sour passion fruit. Arid Land Research and Management, 39(2), 237-261. https://doi.org/10.1080/15324982.2024.2387098
dc.relation.referencesDomínguez-Rosas, E., Hernández-Oñate, M. Á., Fernandez-Valverde, S. L., & Tiznado-Hernández, M. E. (2023). Plant long non-coding RNAs: identification and analysis to unveil their physiological functions. Frontiers in Plant Science, 14, 1275399. https://doi.org/10.3389/fpls.2023.1275399
dc.relation.referencesEngelbrecht, B. M. J., Comita, L. S., Condit, R., Kursar, T. A., Tyree, M. T., Turner, B. L., & Hubbell, S. P. (2007). Drought sensitivity shapes species distribution patterns in tropical forests. Nature, 447(7140), 80-82. https://doi.org/10.1038/nature05747
dc.relation.referencesFang, Y., & Xiong, L. (2015). General mechanisms of drought response and their application in drought resistance improvement in plants. Cellular and Molecular Life Sciences: CMLS, 72(4), 673-689. https://doi.org/10.1007/s00018-014-1767-0
dc.relation.referencesFernandes, F. F., Esposito, M. P., da Silva Engela, M. R. G., Cardoso-Gustavson, P., Furlan, C. M., Hoshika, Y., Carrari, E., Magni, G., Domingos, M., & Paoletti, E. (2019). The passion fruit liana (Passiflora edulis Sims, Passifloraceae) is tolerant to ozone. Science of The Total Environment, 656, 1091-1101. https://doi.org/10.1016/j.scitotenv.2018.11.425
dc.relation.referencesGarcía-Castro, A., Volder, A., Restrepo-Diaz, H., Starman, T. W., & Lombardini, L. (2017). Evaluation of Different Drought Stress Regimens on Growth, Leaf Gas Exchange Properties, and Carboxylation Activity in Purple Passionflower Plants. https://doi.org/10.21273/JASHS03961-16
dc.relation.referencesGarcía-Castro, A., Volder, A., Restrepo-Diaz, H., Starman, T. W., & Lombardini, L. (2017). Evaluation of Different Drought Stress Regimens on Growth, Leaf Gas Exchange Properties, and Carboxylation Activity in Purple Passionflower Plants. https://doi.org/10.21273/JASHS03961-16
dc.relation.referencesGianoli, E. (2015). The behavioural ecology of climbing plants. AoB PLANTS, 7, plv013. https://doi.org/10.1093/aobpla/plv013
dc.relation.referencesGianoli, E., Saldaña, A., & Jiménez-Castillo, M. (2012). Ecophysiological Traits May Explain the Abundance of Climbing Plant Species across the Light Gradient in a Temperate Rainforest. PLoS ONE, 7(6), e38831. https://doi.org/10.1371/journal.pone.0038831
dc.relation.referencesGilbert, M. E., & Medina, V. (2016). Drought Adaptation Mechanisms Should Guide Experimental Design. Trends in Plant Science, 21(8), 639-647. https://doi.org/10.1016/j.tplants.2016.03.003
dc.relation.referencesGomes, M. T. G., da Luz, A. C., dos Santos, M. R., do Carmo Pimentel Batitucci, M., Silva, D. M., & Falqueto, A. R. (2012). Drought tolerance of passion fruit plants assessed by the OJIP chlorophyll a fluorescence transient. Scientia Horticulturae, 142, 49-56. https://doi.org/10.1016/j.scienta.2012.04.026
dc.relation.referencesGonzales, L. R., Blom, S., Henriques, R., Bachem, C. W. B., & Immink, R. G. H. (2024). LncRNAs: The art of being influential without protein. Trends in Plant Science, 29(7), 770-785. https://doi.org/10.1016/j.tplants.2024.01.006
dc.relation.referencesHamann, E., Pauli, C. S., Joly‐Lopez, Z., Groen, S. C., Rest, J. S., Kane, N. C., Purugganan, M. D., & Franks, S. J. (2021). Rapid evolutionary changes in gene expression in response to climate fluctuations. Molecular Ecology, 30(1), 193-206. https://doi.org/10.1111/mec.15583
dc.relation.referencesHarb, A., Krishnan, A., Ambavaram, M. M., & Pereira, A. (2010). Molecular and physiological analysis of drought stress in Arabidopsis reveals early responses leading to acclimation in plant growth. Plant physiology, 154(3), 1254-1271.https://10.1104/pp.110.161752
dc.relation.referencesHe, Z., Lan, Y., Zhou, X., Yu, B., Zhu, T., Yang, F., Fu, L.-Y., Chao, H., Wang, J., Feng, R.-X., Zuo, S., Lan, W., Chen, C., Chen, M., Zhao, X., Hu, K., & Chen, D. (2024). Single-cell transcriptome analysis dissects lncRNA-associated gene networks in Arabidopsis. Plant Communications, 5(2). https://doi.org/10.1016/j.xplc.2023.100717
dc.relation.referencesHermsen, E. J. (2023). Pliocene seeds of Passiflora subgenus Decaloba (Gray Fossil Site, Tennessee) and the impact of the fossil record on understanding the diversification and biogeography of Passiflora. American Journal of Botany, 110(3), e16137. https://doi.org/10.1002/ajb2.16137
dc.relation.referencesHuang, W., Xiong, T., Zhao, Y., Heng, J., Han, G., Wang, P., Zhao, Z., Shi, M., Li, J., Wang, J., Wu, Y., Liu, F., Xi, J. J., Wang, Y., & Zhang, Q. C. (2024). Computational prediction and experimental validation identify functionally conserved lncRNAs from zebrafish to human. Nature Genetics, 56(1), 124-135. https://doi.org/10.1038/s41588-023-01620-7
dc.relation.referencesIlyas, M., Nisar, M., Khan, N., Hazrat, A., Khan, A. H., Hayat, K., Fahad, S., Khan, A., & Ullah, A. (2021). Drought Tolerance Strategies in Plants: A Mechanistic Approach. Journal of Plant Growth Regulation, 40(3), 926-944. https://doi.org/10.1007/s00344-020-10174-5
dc.relation.referencesJha, U. C., Nayyar, H., Jha, R., Khurshid, M., Zhou, M., Mantri, N., & Siddique, K. H. M. (2020). Long non-coding RNAs: Emerging players regulating plant abiotic stress response and adaptation. BMC Plant Biology, 20(1), 466. https://doi.org/10.1186/s12870-020-02595-x
dc.relation.referencesKooyers, N. J. (2015a). The evolution of drought escape and avoidance in natural herbaceous populations. Plant Science, 234, 155-162. https://doi.org/10.1016/j.plantsci.2015.02.012
dc.relation.referencesKramer, M. C., Kim, H. J., Palos, K. R., Garcia, B. A., Lyons, E., Beilstein, M. A., Nelson, A. D. L., & Gregory, B. D. (2022). A Conserved Long Intergenic Non-coding RNA Containing snoRNA Sequences, lncCOBRA1, Affects Arabidopsis Germination and Development. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.906603
dc.relation.referencesKrosnick, S. E., & Freudenstein, J. V. (2005). Monophyly and Floral Character Homology of Old World Passiflora (Subgenus Decaloba: Supersection Disemma). Systematic Botany, 30(1), 139-152.
dc.relation.referencesLeone, S., & Santoro, R. (2016). Challenges in the analysis of long noncoding RNA functionality. FEBS Letters, 590(15), 2342-2353. https://doi.org/10.1002/1873-3468.12308
dc.relation.referencesLi, N., Liu, T., Guo, F., Yang, J., Shi, Y., Wang, S., & Sun, D. (2022). Identification of long non-coding RNA-microRNA-mRNA regulatory modules and their potential roles in drought stress response in wheat (Triticum aestivum L.). Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.1011064
dc.relation.referencesLozano-Montaña, P. A., Sarmiento, F., Mejía-Sequera, L. M., Álvarez-Flórez, F., & Melgarejo, L. M. (2021). Physiological, biochemical and transcriptional responses of Passiflora edulis Sims f. Edulis under progressive drought stress. Scientia Horticulturae, 275, 109655. https://doi.org/10.1016/j.scienta.2020.109655
dc.relation.referencesLozano-Montaña et al., 2022. Dinámicas transcripcionales y fisiológicas de la respuesta a déficit hídrico progresivo en gulupa. Tesis de Maestría, Universidad Nacional de Colombia.
dc.relation.referencesLucero, L., Fonouni-Farde, C., Crespi, M., & Ariel, F. (2020). Long noncoding RNAs shape transcription in plants. Transcription, 11(3-4), 160-171. https://doi.org/10.1080/21541264.2020.1764312
dc.relation.referencesMacDougal, D. T. (1893). The Tendrils of Passiflora caerulea. Botanical Gazette, 18(4), 123-130. https://doi.org/10.1086/326914
dc.relation.referencesMelé, M., & Rinn, J. L. (2016). “Cat’s Cradling” the 3D Genome by the Act of LncRNA Transcription. Molecular Cell, 62(5), 657-664. https://doi.org/10.1016/j.molcel.2016.05.011
dc.relation.referencesMeng, X., Zhang, P., Chen, Q., Wang, J., & Chen, M. (2018). Identification and characterization of ncRNA-associated ceRNA networks in Arabidopsis leaf development. BMC Genomics, 19(1), 607. https://doi.org/10.1186/s12864-018-4993-2
dc.relation.referencesMukherjee, A., Dwivedi, S., Bhagavatula, L., & Datta, S. (2023). Integration of light and ABA signaling pathways to combat drought stress in plants. Plant Cell Reports, 42(5), 829-841. https://doi.org/10.1007/s00299-023-02999-7
dc.relation.referencesMurillo, E., Jiménez, Á., Velásquez, A., Clavijo, H., & Velásquez, C. E. (2023). Phenolic Components and Antioxidant Capacity of Six Wild Passiflora Species from the Andean Region of Colombia. Journal of Herbs, Spices & Medicinal Plants, 29(4), 319-335. https://doi.org/10.1080/10496475.2023.2181260
dc.relation.referencesMuschner, V. C., Zamberlan, P. M., Bonatto, S. L., & Freitas, L. B. (2012). Phylogeny, biogeography and divergence times in Passiflora (Passifloraceae). Genetics and Molecular Biology, 35(4 Suppl), 1036-1043.
dc.relation.referencesNelson, A. D. L., Ponciano, G., McMahan, C., Ilut, D. C., Pugh, N. A., Elshikha, D. E., Hunsaker, D. J., & Pauli, D. (2019). Transcriptomic and evolutionary analysis of the mechanisms by which P. argentatum, a rubber producing perennial, responds to drought. BMC Plant Biology, 19(1), 494. https://doi.org/10.1186/s12870-019-2106-2
dc.relation.referencesNojima, T., & Proudfoot, N. J. (2022). Mechanisms of lncRNA biogenesis as revealed by nascent transcriptomics. Nature Reviews Molecular Cell Biology, 23(6), 389-406. https://doi.org/10.1038/s41580-021-00447-6
dc.relation.referencesOcampo Perez, J. A. (2007). Étude de la diversité du genre Passiflora L. (Passifloraceae) et de sa distribution en Colombie [These de doctorat, Montpellier, ENSA]. https://theses.fr/2007ENSA0013
dc.relation.referencesOrtiz, D. C., Bohórquez, A., Duque, M. C., Tohme, J., Cuéllar, D., & Mosquera Vásquez, T. (2012). Evaluating purple passion fruit (Passiflora edulis Sims f. Edulis) genetic variability in individuals from commercial plantations in Colombia. Genetic Resources and Crop Evolution, 59(6), 1089-1099. https://doi.org/10.1007/s10722-011-9745-y
dc.relation.referencesPalazzo, A. F., & Lee, E. S. (2015). Non-coding RNA: What is functional and what is junk? Frontiers in Genetics, 6, 2. https://doi.org/10.3389/fgene.2015.00002
dc.relation.referencesPérez, J. A. O., Pinto, L. E. F., & MacDougal, J. M. (2018). Morphological Analysis Reveals a New Species of Passiflora Subgenus Decaloba (Passifloraceae): Passiflora quimbayensis, an Endemic Species from Colombia. Systematic Botany, 43(1), 231-239. https://doi.org/10.1600/036364418X696923
dc.relation.referencesQi, Y., Ma, L., Ghani, M. I., Peng, Q., Fan, R., Hu, X., & Chen, X. (2023). Effects of Drought Stress Induced by Hypertonic Polyethylene Glycol (PEG-6000) on Passiflora edulis Sims Physiological Properties. Plants, 12(12), Article 12. https://doi.org/10.3390/plants12122296
dc.relation.referencesRai, M. I., Alam, M., Lightfoot, D. A., Gurha, P., & Afzal, A. J. (2019). Classification and experimental identification of plant long non-coding RNAs. Genomics, 111(5), 997-1005. https://doi.org/10.1016/j.ygeno.2018.04.014
dc.relation.referencesReich, P. B., Wright, I. J., Cavender‐Bares, J., Craine, J. M., Oleksyn, J., Westoby, M., & Walters, M. B. (2003). The Evolution of Plant Functional Variation: Traits, Spectra, and Strategies. International Journal of Plant Sciences, 164(S3), S143-S164. https://doi.org/10.1086/374368
dc.relation.referencesRodriguez Castillo, N. C., Wu, X., Chacón, M. I., Melgarejo, L. M., & Blair, M. W. (2021). Genetic Diversity of Purple Passion Fruit, Passiflora edulis f. Edulis, Based on Single-Nucleotide Polymorphism Markers Discovered through Genotyping by Sequencing. Diversity, 13(4), Article 4. https://doi.org/10.3390/d13040144
dc.relation.referencesRodríguez, N. C., Melgarejo, L. M., & Blair, M. W. (2019). Purple Passion Fruit, Passiflora edulis Sims f. Edulis, Variability for Photosynthetic and Physiological Adaptation in Contrasting Environments. Agronomy, 9(5), Article 5. https://doi.org/10.3390/agronomy9050231
dc.relation.referencesRomero, I. G., Ruvinsky, I., & Gilad, Y. (2012). Comparative studies of gene expression and the evolution of gene regulation. Nature Reviews Genetics, 13(7), 505-516. https://doi.org/10.1038/nrg3229
dc.relation.referencesSader, M. A., Amorim, B. S., Costa, L., Souza, G., & Pedrosa-Harand, A. (2019). The role of chromosome changes in the diversification of Passiflora L. (Passifloraceae). Systematics and Biodiversity, 17(1), 7-21. https://doi.org/10.1080/14772000.2018.1546777
dc.relation.referencesSato, H., Mizoi, J., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2024). Complex plant responses to drought and heat stress under climate change. The Plant Journal: For Cell and Molecular Biology, 117(6), 1873-1892. https://doi.org/10.1111/tpj.16612
dc.relation.referencesSchotsmans, W. C., & Fischer, G. (2011). Passion fruit (Passiflora edulis Sim.). En E. M. Yahia (Ed.), Postharvest Biology and Technology of Tropical and Subtropical Fruits (pp. 125-143e). Woodhead Publishing. https://doi.org/10.1533/9780857092618.125
dc.relation.referencesShaar-Moshe, L., Hübner, S., & Peleg, Z. (2015). Identification of conserved drought-adaptive genes using a cross-species meta-analysis approach. BMC Plant Biology, 15(1), 111. https://doi.org/10.1186/s12870-015-0493-6
dc.relation.referencesSouza, P. U., Lima, L. K. S., Soares, T. L., Jesus, O. N. de, Coelho Filho, M. A., & Girardi, E. A. (2018). Biometric, physiological and anatomical responses of Passiflora spp. To controlled water deficit. Scientia Horticulturae, 229, 77-90. https://doi.org/10.1016/j.scienta.2017.10.019
dc.relation.referencesStatello, L., Guo, C.-J., Chen, L.-L., & Huarte, M. (2021). Gene regulation by long non-coding RNAs and its biological functions. Nature Reviews Molecular Cell Biology, 22(2), 96-118. https://doi.org/10.1038/s41580-020-00315-9
dc.relation.referencesSteward, R. A., Giménez, J. O., Choudhary, S., Yi, S., Aken, O. V., & Runemark, A. (2024). Evolved and plastic gene expression in adaptation to a novel niche (p. 2024.03.02.583104). bioRxiv. https://doi.org/10.1101/2024.03.02.583104
dc.relation.referencesTraubenik, S., Charon, C., & Blein, T. (2024). From environmental responses to adaptation: The roles of plant lncRNAs. Plant Physiology, 195(1), 232-244. https://doi.org/10.1093/plphys/kiae034
dc.relation.referencesUrrego, N., Sepúlveda, P., Aragón, M., Ramos, F. A., Costa, G. M., Ospina, L. F., & Castellanos, L. (2021). Flavonoids and saponins from Passiflora edulis f. Edulis leaves (purple passion fruit) and its potential anti-inflammatory activity. The Journal of Pharmacy and Pharmacology, 73(11), 1530-1538. https://doi.org/10.1093/jpp/rgab117
dc.relation.referencesWang, J., Meng, X., Dobrovolskaya, O. B., Orlov, Y. L., & Chen, M. (2017). Non-coding RNAs and Their Roles in Stress Response in Plants. Genomics, Proteomics & Bioinformatics, 15(5), 301-312. https://doi.org/10.1016/j.gpb.2017.01.007
dc.relation.referencesWei, K., Sharifova, S., Zhao, X., Sinha, N., Nakayama, H., Tellier, A., & Silva-Arias, G. A. (2024). Evolution of gene networks underlying adaptation to drought stress in the wild tomato Solanum chilense. Molecular Ecology, 33(21), e17536. https://doi.org/10.1111/mec.17536
dc.relation.referencesWei, M., Li, H., Wang, Q., Liu, R., Yang, L., & Li, Q. (2023). Genome-wide identification and expression profiling of B3 transcription factor genes in Populus alba × Populus glandulosa. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1193065
dc.relation.referencesWierzbicki, A. T., Blevins, T., & Swiezewski, S. (2021). Long Noncoding RNAs in Plants. Annual Review of Plant Biology, 72(Volume 72, 2021), 245-271. https://doi.org/10.1146/annurev-arplant-093020-035446
dc.relation.referencesWu, X., Shi, T., Iqbal, S., Zhang, Y., Liu, L., & Gao, Z. (2019). Genome-wide discovery and characterization of flower development related long non-coding RNAs in Prunus mume. BMC Plant Biology, 19(1), 64. https://doi.org/10.1186/s12870-019-1672-7
dc.relation.referencesWyka, T. P., Oleksyn, J., Karolewski, P., & Schnitzer, S. A. (2013). Phenotypic correlates of the lianescent growth form: A review. Annals of Botany, 112(9), 1667-1681. https://doi.org/10.1093/aob/mct236
dc.relation.referencesXia, Z., Huang, D., Zhang, S., Wang, W., Ma, F., Wu, B., Xu, Y., Xu, B., Chen, D., Zou, M., Xu, H., Zhou, X., Zhan, R., & Song, S. (2021). Chromosome-scale genome assembly provides insights into the evolution and flavor synthesis of passion fruit (Passiflora edulis Sims). Horticulture Research, 8(1), 1-14. https://doi.org/10.1038/s41438-020-00455-1
dc.relation.referencesXu, Y., Huang, D.-M., Ma, F.-N., Yang, L., Wu, B., Xing, W.-T., Sun, P.-G., Chen, D., Xu, B.-Q., & Song, S. (2023). Identification of key genes involved in flavonoid and terpenoid biosynthesis and the pathway of triterpenoid biosynthesis in Passiflora edulis. Journal of Integrative Agriculture, 22, 1412-1423. https://doi.org/10.1016/j.jia.2023.03.005
dc.relation.referencesYang, W., Bai, Q., Li, Y., Chen, J., & Liu, C. (2023). Epigenetic modifications: Allusive clues of lncRNA functions in plants. Computational and Structural Biotechnology Journal, 21, 1989-1994. https://doi.org/10.1016/j.csbj.2023.03.008
dc.relation.referencesYe, X., Wang, S., Zhao, X., Gao, N., Wang, Y., Yang, Y., Wu, E., Jiang, C., Cheng, Y., Wu, W., & Liu, S. (2022). Role of lncRNAs in cis- and trans-regulatory responses to salt in Populus trichocarpa. The Plant Journal: For Cell and Molecular Biology, 110(4), 978-993. https://doi.org/10.1111/tpj.15714
dc.relation.referencesYu, B., Chao, D.-Y., & Zhao, Y. (2024). How plants sense and respond to osmotic stress. Journal of Integrative Plant Biology, 66(3), 394-423. https://doi.org/10.1111/jipb.13622
dc.relation.referencesZhang, Y., Zhou, Y., Zhu, W., Liu, J., & Cheng, F. (2022). Non-coding RNAs fine-tune the balance between plant growth and abiotic stress tolerance. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.965745
dc.relation.referencesZhao, X., Li, J., Lian, B., Gu, H., Li, Y., & Qi, Y. (2018). Global identification of Arabidopsis lncRNAs reveals the regulation of MAF4 by a natural antisense RNA. Nature Communications, 9(1), 5056. https://doi.org/10.1038/s41467-018-07500-7
dc.relation.referencesZhong, V., Archibald, B. N., & Brophy, J. A. (2023). Transcriptional and post-transcriptional controls for tuning gene expression in plants. Current Opinion in Plant Biology, 71, 102315. https://doi.org/10.1016/j.pbi.2022.102315
dc.relation.referencesZhou, D., Zhao, S., Zhou, H., Chen, J., & Huang, L. (2023). A lncRNA bra-miR156HG regulates flowering time and leaf morphology as a precursor of miR156 in Brassica campestris and Arabidopsis thaliana. Plant Science, 337, 111889. https://doi.org/10.1016/j.plantsci.2023.111889
dc.relation.referencesZhou, J., Song, F., He, Y., Zhang, W., Xiao, L., Lu, W., Li, P., Quan, M., Zhang, D., Du, Q., Zhou, J., Song, F., He, Y., Zhang, W., Xiao, L., Lu, W., Li, P., Quan, M., Zhang, D., & Du, Q. (2023). LncRNA evolution and DNA methylation variation participate in photosynthesis pathways of distinct lineages of Populus. Forestry Research, 3(1). https://doi.org/10.48130/FR-2023-0003
dc.relation.referencesBabaei, S., Bhalla, P. L., & Singh, M. B. (2024). Identifying long non-coding RNAs involved in heat stress response during wheat pollen development. Frontiers in Plant Science, 15. https://doi.org/10.3389/fpls.2024.1344928
dc.relation.referencesBai, Y., Dai, X., Li, Y., Wang, L., Li, W., Liu, Y., Cheng, Y., & Qin, Y. (2019). Identification and characterization of pineapple leaf lncRNAs in crassulacean acid metabolism (CAM) photosynthesis pathway. Scientific Reports, 9(1), 6658. https://doi.org/10.1038/s41598-019-43088-8
dc.relation.referencesBerretta, J., & Morillon, A. (2009). Pervasive transcription constitutes a new level of eukaryotic genome regulation. EMBO reports, 10(9), 973-982. https://doi.org/10.1038/embor.2009.181
dc.relation.referencesBhatia, G., Sharma, S., Upadhyay, S. K., & Singh, K. (2019). Long Non-coding RNAs Coordinate Developmental Transitions and Other Key Biological Processes in Grapevine. Scientific Reports, 9(1), 3552. https://doi.org/10.1038/s41598-019-38989-7
dc.relation.referencesBoerner, S., & McGinnis, K. M. (2012). Computational Identification and Functional Predictions of Long Noncoding RNA in Zea mays. PLOS ONE, 7(8), e43047. https://doi.org/10.1371/journal.pone.0043047
dc.relation.referencesBordoloi, K. S., Baruah, P. M., Das, M., & Agarwala, N. (2022). Unravelling lncRNA mediated gene expression as potential mechanism for regulating secondary metabolism in Citrus limon. Food Bioscience, 46, 101448. https://doi.org/10.1016/j.fbio.2021.101448
dc.relation.referencesBuchfink, B., Xie, C., & Huson, D. H. (2015). Fast and sensitive protein alignment using DIAMOND. Nature Methods, 12(1), 59-60. https://doi.org/10.1038/nmeth.3176
dc.relation.referencesCamargo, A. P., Sourkov, V., Pereira, G. A. G., & Carazzolle, M. F. (2020). RNAsamba: Neural network-based assessment of the protein-coding potential of RNA sequences. NAR Genomics and Bioinformatics, 2(1), lqz024. https://doi.org/10.1093/nargab/lqz024
dc.relation.referencesCamargo, A. P., Vasconcelos, A. A., Fiamenghi, M. B., Pereira, G. A. G., & Carazzolle, M. F. (2020). tspex: A tissue-specificity calculator for gene expression data. Research Square. https://doi.org/10.21203/rs.3.rs-51998/v1
dc.relation.referencesCampbell, M. S., Holt, C., Moore, B., & Yandell, M. (2014). Genome Annotation and Curation Using MAKER and MAKER-P. Current Protocols in Bioinformatics, 48, 4.11.1-4.11.39. https://doi.org/10.1002/0471250953.bi0411s48
dc.relation.referencesChen, L., & Zhu, Q.-H. (2022). The evolutionary landscape and expression pattern of plant lincRNAs. RNA Biology, 19(1), 1190-1207. https://doi.org/10.1080/15476286.2022.2144609
dc.relation.referencesChen, N. (2004). Using RepeatMasker to Identify Repetitive Elements in Genomic Sequences. Current Protocols in Bioinformatics, 5(1), 4.10.1-4.10.14. https://doi.org/10.1002/0471250953.bi0410s05
dc.relation.referencesConstanty, F., & Shkumatava, A. (2021). lncRNAs in development and differentiation: From sequence motifs to functional characterization. Development, 148(1), dev182741. https://doi.org/10.1242/dev.182741
dc.relation.referencesCorona-Gomez, J. A., Coss-Navarrete, E. L., Garcia-Lopez, I. J., Klapproth, C., Pérez-Patiño, J. A., & Fernandez-Valverde, S. L. (2022). Transcriptome-guided annotation and functional classification of long non-coding RNAs in Arabidopsis thaliana. Scientific Reports, 12(1), 14063. https://doi.org/10.1038/s41598-022-18254-0
dc.relation.referencesDas, P., Grover, M., Mishra, D. C., Guha Majumdar, S., Shree, B., Kumar, S., Mir, Z. A., Chaturvedi, K. K., Bhardwaj, S. C., Singh, A. K., & Rai, A. (2023). Genome-wide identification and characterization of Puccinia striiformis-responsive lncRNAs in Triticum aestivum. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1120898
dc.relation.referencesDe Quattro, C., Pè, M. E., & Bertolini, E. (2017). Long noncoding RNAs in the model species Brachypodium distachyon. Scientific Reports, 7(1), 11252. https://doi.org/10.1038/s41598-017-11206-z
dc.relation.referencesDeng, P., Liu, S., Nie, X., Weining, S., & Wu, L. (2018). Conservation analysis of long non-coding RNAs in plants. Science China Life Sciences, 61(2), 190-198. https://doi.org/10.1007/s11427-017-9174-9
dc.relation.referencesDeng, Z.-L., Münch, P. C., Mreches, R., & McHardy, A. C. (2022). Rapid and accurate identification of ribosomal RNA sequences via deep learning. Nucleic Acids Research, 50(10), e60. https://doi.org/10.1093/nar/gkac112
dc.relation.referencesDi, C., Yuan, J., Wu, Y., Li, J., Lin, H., Hu, L., Zhang, T., Qi, Y., Gerstein, M. B., Guo, Y., & Lu, Z. J. (2014). Characterization of stress-responsive lncRNAs in Arabidopsis thaliana by integrating expression, epigenetic and structural features. The Plant Journal: For Cell and Molecular Biology, 80(5), 848-861. https://doi.org/10.1111/tpj.12679
dc.relation.referencesDi Marsico, M., Paytuvi Gallart, A., Sanseverino, W., & Aiese Cigliano, R. (2022). GreeNC 2.0: A comprehensive database of plant long non-coding RNAs. Nucleic Acids Research, 50(D1), D1442-D1447. https://doi.org/10.1093/nar/gkab1014
dc.relation.referencesDong, S., Xiao, L., Li, Z., Shen, J., Yan, H., Li, S., Liao, W., & Peng, M. (2022). A novel long non-coding RNA, DIR, increases drought tolerance in cassava by modifying stress-related gene expression. Journal of Integrative Agriculture, 21(9), 2588-2602. https://doi.org/10.1016/j.jia.2022.07.022
dc.relation.referencesEddy, S. R. (2009). A new generation of homology search tools based on probabilistic inference. Genome Informatics. International Conference on Genome Informatics, 23(1), 205-211.
dc.relation.referencesFahad, M., Tariq, L., Muhammad, S., & Wu, L. (2024). Underground communication: Long non-coding RNA signaling in the plant rhizosphere. Plant Communications, 5(7). https://doi.org/10.1016/j.xplc.2024.100927
dc.relation.referencesFesenko, I., Shabalina, S. A., Mamaeva, A., Knyazev, A., Glushkevich, A., Lyapina, I., Ziganshin, R., Kovalchuk, S., Kharlampieva, D., Lazarev, V., Taliansky, M., & Koonin, E. V. (2021). A vast pool of lineage-specific microproteins encoded by long non-coding RNAs in plants. Nucleic Acids Research, 49(18), 10328-10346. https://doi.org/10.1093/nar/gkab816
dc.relation.referencesFranco-Zorrilla, J. M., Valli, A., Todesco, M., Mateos, I., Puga, M. I., Rubio-Somoza, I., Leyva, A., Weigel, D., García, J. A., & Paz-Ares, J. (2007). Target mimicry provides a new mechanism for regulation of microRNA activity. Nature Genetics, 39(8), 1033-1037. https://doi.org/10.1038/ng2079
dc.relation.referencesGhorbani, F., Abolghasemi, R., Haghighi, M., Etemadi, N., Wang, S., Karimi, M., & Soorni, A. (2021). Global identification of long non-coding RNAs involved in the induction of spinach flowering. BMC Genomics, 22(1), 704. https://doi.org/10.1186/s12864-021-07989-1
dc.relation.referencesGlad, H. M., Tralamazza, S. M., & Croll, D. (2023). The expression landscape and pangenome of long non-coding RNA in the fungal wheat pathogen Zymoseptoria tritici. Microbial Genomics, 9(11), 001136. https://doi.org/10.1099/mgen.0.001136
dc.relation.referencesGolicz, A. A., Singh, M. B., & Bhalla, P. L. (2018). The Long Intergenic Noncoding RNA (LincRNA) Landscape of the Soybean Genome. Plant Physiology, 176(3), 2133-2147. https://doi.org/10.1104/pp.17.01657
dc.relation.referencesGrabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A., Rhind, N., di Palma, F., Birren, B. W., Nusbaum, C., Lindblad-Toh, K., … Regev, A. (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 29(7), 644-652. https://doi.org/10.1038/nbt.1883
dc.relation.referencesGu, Z., Gu, L., Eils, R., Schlesner, M., & Brors, B. (2014). Circlize implements and enhances circular visualization in R. Bioinformatics, 30(19), 2811-2812. https://doi.org/10.1093/bioinformatics/btu393
dc.relation.referencesHawkes, E. J., Hennelly, S. P., Novikova, I. V., Irwin, J. A., Dean, C., & Sanbonmatsu, K. Y. (2016). COOLAIR Antisense RNAs Form Evolutionarily Conserved Elaborate Secondary Structures. Cell Reports, 16(12), 3087-3096. https://doi.org/10.1016/j.celrep.2016.08.045
dc.relation.referencesHu, H., Yang, W., Zheng, Z., Niu, Z., Yang, Y., Wan, D., ... & Ma, T. (2020). Analysis of alternative splicing and alternative polyadenylation in Populus alba var. pyramidalis by single-molecular long-read sequencing. Frontiers in genetics, 11, 48. https://doi.org/10.3389/fgene.2020.00048
dc.relation.referencesJampala, P., Garhewal, A., & Lodha, M. (2021). Functions of long non-coding RNA in Arabidopsis thaliana. Plant Signaling & Behavior, 16(9), 1925440. https://doi.org/10.1080/15592324.2021.1925440
dc.relation.referencesJiang, H., Jia, Z., Liu, S., Zhao, B., Li, W., Jin, B., & Wang, L. (2019). Identification and characterization of long non-coding RNAs involved in embryo development of Ginkgo biloba. Plant Signaling & Behavior. https://www.tandfonline.com/doi/abs/10.1080/15592324.2019.1674606
dc.relation.referencesJin, J., Liu, J., Wang, H., Wong, L., & Chua, N.-H. (2013). PLncDB: Plant long non-coding RNA database. Bioinformatics, 29(8), 1068-1071. https://doi.org/10.1093/bioinformatics/btt107
dc.relation.referencesJohnson, R., & Guigó, R. (2014a). The RIDL hypothesis: Transposable elements as functional domains of long noncoding RNAs. RNA, 20(7), 959-976. https://doi.org/10.1261/rna.044560.114
dc.relation.referencesJohnsson, P., Lipovich, L., Grandér, D., & Morris, K. V. (2014). Evolutionary conservation of long noncoding RNAs; sequence, structure, function. Biochimica et biophysica acta, 1840(3), 1063-1071. https://doi.org/10.1016/j.bbagen.2013.10.035
dc.relation.referencesKang, C., & Liu, Z. (2015). Global identification and analysis of long non-coding RNAs in diploid strawberry Fragaria vesca during flower and fruit development. BMC Genomics, 16(1), 815. https://doi.org/10.1186/s12864-015-2014-2
dc.relation.referencesKang, Y.-J., Yang, D.-C., Kong, L., Hou, M., Meng, Y.-Q., Wei, L., & Gao, G. (2017). CPC2: A fast and accurate coding potential calculator based on sequence intrinsic features. Nucleic Acids Research, 45(W1), W12-W16. https://doi.org/10.1093/nar/gkx428
dc.relation.referencesKapranov, P., Cheng, J., Dike, S., Nix, D. A., Duttagupta, R., Willingham, A. T., Stadler, P. F., Hertel, J., Hackermüller, J., Hofacker, I. L., Bell, I., Cheung, E., Drenkow, J., Dumais, E., Patel, S., Helt, G., Ganesh, M., Ghosh, S., Piccolboni, A., … Gingeras, T. R. (2007). RNA Maps Reveal New RNA Classes and a Possible Function for Pervasive Transcription. Science, 316(5830), 1484-1488. https://doi.org/10.1126/science.1138341
dc.relation.referencesKapusta, A., & Feschotte, C. (2014). Volatile evolution of long noncoding RNA repertoires: Mechanisms and biological implications. Trends in Genetics, 30(10), 439-452. https://doi.org/10.1016/j.tig.2014.08.004
dc.relation.referencesKe, L., Zhou, Z., Xu, X.-W., Wang, X., Liu, Y., Xu, Y., Huang, Y., Wang, S., Deng, X., Chen, L.-L., & Xu, Q. (2019). Evolutionary dynamics of lincRNA transcription in nine citrus species. The Plant Journal, 98(5), 912-927. https://doi.org/10.1111/tpj.14279
dc.relation.referencesKornienko, A. E., Nizhynska, V., Molla Morales, A., Pisupati, R., & Nordborg, M. (2024). Population-level annotation of lncRNAs in Arabidopsis reveals extensive expression variation associated with transposable element–like silencing. The Plant Cell, 36(1), 85-111. https://doi.org/10.1093/plcell/koad233
dc.relation.referencesKumar, S., Suleski, M., Craig, J. M., Kasprowicz, A. E., Sanderford, M., Li, M., Stecher, G., & Hedges, S. B. (2022). TimeTree 5: An Expanded Resource for Species Divergence Times. Molecular Biology and Evolution, 39(8), msac174. https://doi.org/10.1093/molbev/msac174
dc.relation.referencesLeebens-Mack, J. H., Barker, M. S., Carpenter, E. J., Deyholos, M. K., Gitzendanner, M. A., Graham, S. W., Grosse, I., Li, Z., Melkonian, M., Mirarab, S., Porsch, M., Quint, M., Rensing, S. A., Soltis, D. E., Soltis, P. S., Stevenson, D. W., Ullrich, K. K., Wickett, N. J., DeGironimo, L., … One Thousand Plant Transcriptomes Initiative. (2019). One thousand plant transcriptomes and the phylogenomics of green plants. Nature, 574(7780), 679-685. https://doi.org/10.1038/s41586-019-1693-2
dc.relation.referencesLi, B., Feng, C., Zhang, W., Sun, S., Yue, D., Zhang, X., & Yang, X. (2023). Comprehensive non-coding RNA analysis reveals specific lncRNA/circRNA–miRNA–mRNA regulatory networks in the cotton response to drought stress. International Journal of Biological Macromolecules, 253, 126558. https://doi.org/10.1016/j.ijbiomac.2023.126558
dc.relation.referencesLi, S., Cheng, Z., Dong, S., Li, Z., Zou, L., Zhao, P., Guo, X., Bao, Y., Wang, W., & Peng, M. (2022). Global identification of full-length cassava lncRNAs unveils the role of cold-responsive intergenic lncRNA 1 in cold stress response. Plant, Cell & Environment, 45(2), 412-426. https://doi.org/10.1111/pce.14236
dc.relation.referencesLiu, X., Li, D., Zhang, D., Yin, D., Zhao, Y., Ji, C., Zhao, X., Li, X., He, Q., Chen, R., Hu, S., & Zhu, L. (2018). A novel antisense long noncoding RNA, , maintains leaf blade flattening by regulating its associated sense R2R3-MYB gene in rice. New Phytologist, 218(2), 774-788. https://doi.org/10.1111/nph.15023
dc.relation.referencesLou, D., Li, F., Ge, J., Fan, W., Liu, Z., Wang, Y., Huang, J., Xing, M., Guo, W., Wang, S., Qiao, W., Han, Z., Qian, Q., Yang, Q., & Zheng, X. (2022). LncPheDB: A genome-wide lncRNAs regulated phenotypes database in plants. aBIOTECH, 3(3), 169-177. https://doi.org/10.1007/s42994-022-00084-3
dc.relation.referencesLove, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12), 550. https://doi.org/10.1186/s13059-014-0550-8
dc.relation.referencesLu, X., Chen, X., Mu, M., Wang, J., Wang, X., Wang, D., Yin, Z., Fan, W., Wang, S., Guo, L., & Ye, W. (2016). Genome-Wide Analysis of Long Noncoding RNAs and Their Responses to Drought Stress in Cotton (Gossypium hirsutum L.). PloS One, 11(6), e0156723. https://doi.org/10.1371/journal.pone.0156723
dc.relation.referencesLu, Z., Xia, X., Jiang, B., Ma, K., Zhu, L., Wang, L., & Jin, B. (2017). Identification and characterization of novel lncRNAs in Arabidopsis thaliana. Biochemical and Biophysical Research Communications, 488(2), 348-354. https://doi.org/10.1016/j.bbrc.2017.05.051
dc.relation.referencesLuo, C., He, B., Shi, P., Xi, J., Gui, H., Pang, B., Cheng, J., Hu, F., Chen, X., & Lv, Y. (2022). Transcriptome dynamics uncovers long non-coding RNAs response to salinity stress in Chenopodium quinoa. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.988845
dc.relation.referencesLv, Y., Hu, F., Zhou, Y., Wu, F., & Gaut, B. S. (2019). Maize transposable elements contribute to long non-coding RNAs that are regulatory hubs for abiotic stress response. BMC Genomics, 20(1), 864. https://doi.org/10.1186/s12864-019-6245-5
dc.relation.referencesMa, D., Dong, S., Zhang, S., Wei, X., Xie, Q., Ding, Q., Xia, R., & Zhang, X. (2021). Chromosome-level reference genome assembly provides insights into aroma biosynthesis in passion fruit (Passiflora edulis). Molecular Ecology Resources, 21(3), 955-968. https://doi.org/10.1111/1755-0998.13310
dc.relation.referencesMa, L., Bajic, V. B., & Zhang, Z. (2013). On the classification of long non-coding RNAs. RNA Biology, 10(6), 924-933. https://doi.org/10.4161/rna.24604
dc.relation.referencesMa, X., Zhang, X., Traore, S. M., Xin, Z., Ning, L., Li, K., Zhao, K., Li, Z., He, G., & Yin, D. (2020). Genome-wide identification and analysis of long noncoding RNAs (lncRNAs) during seed development in peanut (Arachis hypogaea L.). BMC Plant Biology, 20(1), 192. https://doi.org/10.1186/s12870-020-02405-4
dc.relation.referencesMattioli, K., Volders, P.-J., Gerhardinger, C., Lee, J. C., Maass, P. G., Melé, M., & Rinn, J. L. (2019). High-throughput functional analysis of lncRNA core promoters elucidates rules governing tissue specificity. Genome Research, 29(3), 344-355. https://doi.org/10.1101/gr.242222.118
dc.relation.referencesMistry, J., Chuguransky, S., Williams, L., Qureshi, M., Salazar, G. A., Sonnhammer, E. L. L., Tosatto, S. C. E., Paladin, L., Raj, S., Richardson, L. J., Finn, R. D., & Bateman, A. (2021). Pfam: The protein families database in 2021. Nucleic Acids Research, 49(D1), D412-D419. https://doi.org/10.1093/nar/gkaa913
dc.relation.referencesMohammadin, S., Edger, P. P., Pires, J. C., & Schranz, M. E. (2015). Positionally-conserved but sequence-diverged: Identification of long non-coding RNAs in the Brassicaceae and Cleomaceae. BMC Plant Biology, 15(1), 217. https://doi.org/10.1186/s12870-015-0603-5
dc.relation.referencesNawrocki, E. P., & Eddy, S. R. (2013). Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics (Oxford, England), 29(22), 2933-2935. https://doi.org/10.1093/bioinformatics/btt509
dc.relation.referencesNie, H., Zhao, N., Li, B., Jiang, K., Li, H., Zhang, J., Guo, A., & Hua, J. (2024). Evolutionary comparison of lncRNAs in four cotton species and functional identification of LncR4682-PAS2-KCS19 module in fiber elongation. The Plant Journal, 120(4), 1421-1437. https://doi.org/10.1111/tpj.17058
dc.relation.referencesNojima, T., & Proudfoot, N. J. (2022). Mechanisms of lncRNA biogenesis as revealed by nascent transcriptomics. Nature Reviews Molecular Cell Biology, 23(6), 389-406. https://doi.org/10.1038/s41580-021-00447-6
dc.relation.referencesPacheco, J. M., Mansilla, N., Moison, M., Lucero, L., Gabarain, V. B., Ariel, F., & Estevez, J. M. (2021). The lncRNA APOLO and the transcription factor WRKY42 target common cell wall EXTENSIN encoding genes to trigger root hair cell elongation. Plant Signaling & Behavior, 16(8), 1920191. https://doi.org/10.1080/15592324.2021.1920191
dc.relation.referencesParadis, E., Claude, J., & Strimmer, K. (2004). APE: Analyses of Phylogenetics and Evolution in R language. Bioinformatics (Oxford, England), 20(2), 289-290. https://doi.org/10.1093/bioinformatics/btg412
dc.relation.referencesPertea, G., & Pertea, M. (2020). GFF Utilities: GffRead and GffCompare (No. 9:304). F1000Research. https://doi.org/10.12688/f1000research.23297.2
dc.relation.referencesPertea, M., Pertea, G. M., Antonescu, C. M., Chang, T.-C., Mendell, J. T., & Salzberg, S. L. (2015). StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology, 33(3), 290-295. https://doi.org/10.1038/nbt.3122
dc.relation.referencesPieri, A., Pè, M. E., & Bertolini, E. (2018). Long non-coding RNAs in wild wheat progenitors (p. 301804). bioRxiv. https://doi.org/10.1101/301804
dc.relation.referencesPruesse, E., Peplies, J., & Glöckner, F. O. (2012). SINA: Accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics (Oxford, England), 28(14), 1823-1829. https://doi.org/10.1093/bioinformatics/bts252
dc.relation.referencesPruesse, E., Quast, C., Knittel, K., Fuchs, B. M., Ludwig, W., Peplies, J., & Glöckner, F. O. (2007). SILVA: A comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Research, 35(21), 7188-7196. https://doi.org/10.1093/nar/gkm864
dc.relation.referencesQin, T., Zhao, H., Cui, P., Albesher, N., & Xiong, L. (2017). A Nucleus-Localized Long Non-Coding RNA Enhances Drought and Salt Stress Tolerance. Plant Physiology, 175(3), 1321-1336. https://doi.org/10.1104/pp.17.00574
dc.relation.referencesQuan, C., Li, Y., Chen, G., Tian, X., Jia, Z., Tu, J., Shen, J., Yi, B., Fu, T., Ma, C., & Dai, C. (2022). The dynamics of lncRNAs transcription in interspecific F1 allotriploid hybrids between Brassica species. Genomics, 114(6), 110505. https://doi.org/10.1016/j.ygeno.2022.110505
dc.relation.referencesQuinlan, A. R., & Hall, I. M. (2010). BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics (Oxford, England), 26(6), 841-842. https://doi.org/10.1093/bioinformatics/btq033
dc.relation.referencesRansohoff, J. D., Wei, Y., & Khavari, P. A. (2018). The functions and unique features of long intergenic non-coding RNA. Nature Reviews Molecular Cell Biology, 19(3), 143-157. https://doi.org/10.1038/nrm.2017.104
dc.relation.referencesRice, P., Longden, I., & Bleasby, A. (2000). EMBOSS: The European Molecular Biology Open Software Suite. Trends in Genetics: TIG, 16(6), 276-277. https://doi.org/10.1016/s0168-9525(00)02024-2
dc.relation.referencesSang, S., Chen, W., Zhang, D., Zhang, X., Yang, W., & Liu, C. (2021). Data integration and evolutionary analysis of long non-coding RNAs in 25 flowering plants. BMC genomics, 22(Suppl 3), 739. https://doi.org/10.1186/s12864-021-08047-6
dc.relation.referencesSeo, J. S., Sun, H.-X., Park, B. S., Huang, C.-H., Yeh, S.-D., Jung, C., & Chua, N.-H. (2017). ELF18-INDUCED LONG-NONCODING RNA Associates with Mediator to Enhance Expression of Innate Immune Response Genes in Arabidopsis. The Plant Cell, 29(5), 1024-1038. https://doi.org/10.1105/tpc.16.00886
dc.relation.referencesSimopoulos, C. M. A., Weretilnyk, E. A., & Golding, G. B. (2019). Molecular Traits of Long Non-protein Coding RNAs from Diverse Plant Species Show Little Evidence of Phylogenetic Relationships. G3 Genes|Genomes|Genetics, 9(8), 2511-2520. https://doi.org/10.1534/g3.119.400201
dc.relation.referencesSingh, A., Vivek, A. T., & Kumar, S. (2021). AlnC: An extensive database of long non-coding RNAs in angiosperms. PLOS ONE, 16(4), e0247215. https://doi.org/10.1371/journal.pone.0247215
dc.relation.referencesSwiezewski, S., Liu, F., Magusin, A., & Dean, C. (2009). Cold-induced silencing by long antisense transcripts of an Arabidopsis Polycomb target. Nature, 462(7274), 799-802. https://doi.org/10.1038/nature08618
dc.relation.referencesSzcześniak, M. W., Kubiak, M. R., Wanowska, E., & Makałowska, I. (2021). Comparative genomics in the search for conserved long noncoding RNAs. Essays in Biochemistry, 65(4), 741-749. https://doi.org/10.1042/EBC20200069
dc.relation.referencesSzcześniak, M. W., & Wanowska, E. (2024). CANTATAdb 3.0: An Updated Repository of Plant Long Non-Coding RNAs. Plant and Cell Physiology, 65(9), 1486-1493. https://doi.org/10.1093/pcp/pcae081
dc.relation.referencesTian, H., Guo, F., Zhang, Z., Ding, H., Meng, J., Li, X., Peng, Z., & Wan, S. (2020). Discovery, identification, and functional characterization of long noncoding RNAs in Arachis hypogaea L. BMC Plant Biology, 20(1), 308. https://doi.org/10.1186/s12870-020-02510-4
dc.relation.referencesTraubenik, S., Charon, C., & Blein, T. (2024). From environmental responses to adaptation: The roles of plant lncRNAs. Plant Physiology, 195(1), 232-244. https://doi.org/10.1093/plphys/kiae034
dc.relation.referencesVelandia-Huerto, C. A., Gittenberger, A. A., Brown, F. D., Stadler, P. F., & Bermúdez-Santana, C. I. (2016). Automated detection of ncRNAs in the draft genome sequence of a colonial tunicate: The carpet sea squirt Didemnum vexillum. BMC Genomics, 17(1), 691. https://doi.org/10.1186/s12864-016-2934-5
dc.relation.referencesVillalba-Bermell, P., Marquez-Molins, J., & Gomez, G. (2024). A multispecies study reveals the diversity and potential regulatory role of long noncoding RNAs in cucurbits. The Plant Journal, 120(2), 799-817. https://doi.org/10.1111/tpj.17013
dc.relation.referencesWang, B., Tseng, E., Regulski, M., Clark, T. A., Hon, T., Jiao, Y., Lu, Z., Olson, A., Stein, J., & Ware, D. (2016). Unveiling the complexity of the maize transcriptome by single-molecule long-read sequencing. Nature communications, 7(1), 11708.https://doi.org/10.1038/ncomms11708
dc.relation.referencesWang, D., Qu, Z., Yang, L., Zhang, Q., Liu, Z.-H., Do, T., Adelson, D. L., Wang, Z.-Y., Searle, I., & Zhu, J.-K. (2017). Transposable elements (TEs) contribute to stress-related long intergenic noncoding RNAs in plants. The Plant Journal, 90(1), 133-146. https://doi.org/10.1111/tpj.13481
dc.relation.referencesWang, H., Niu, Q.-W., Wu, H.-W., Liu, J., Ye, J., Yu, N., & Chua, N.-H. (2015). Analysis of non-coding transcriptome in rice and maize uncovers roles of conserved lncRNAs associated with agriculture traits. The Plant Journal, 84(2), 404-416. https://doi.org/10.1111/tpj.13018
dc.relation.referencesWang, L., Park, H. J., Dasari, S., Wang, S., Kocher, J.-P., & Li, W. (2013). CPAT: Coding-Potential Assessment Tool using an alignment-free logistic regression model. Nucleic Acids Research, 41(6), e74. https://doi.org/10.1093/nar/gkt006
dc.relation.referencesWang, L., Wang, J., Chen, H., & Hu, B. (2022). Genome-wide identification, characterization, and functional analysis of lncRNAs in Hevea brasiliensis. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.1012576
dc.relation.referencesWang, L., Yuan, Z., Wang, J., & Guan, Y. (2024). Genome-wide identification and functional profile analysis of long non-coding RNAs in Avicennia marina. The Plant Genome, 17(2), e20450. https://doi.org/10.1002/tpg2.20450
dc.relation.referencesWang, M., Zhao, W., Gao, L., & Zhao, L. (2018). Genome-wide profiling of long non-coding RNAs from tomato and a comparison with mRNAs associated with the regulation of fruit ripening. BMC Plant Biology, 18(1), 75. https://doi.org/10.1186/s12870-018-1300-y
dc.relation.referencesWang, X., Ai, G., Zhang, C., Cui, L., Wang, J., Li, H., Zhang, J., & Ye, Z. (2016). Expression and diversification analysis reveals transposable elements play important roles in the origin of Lycopersicon-specific lncRNAs in tomato. New Phytologist, 209(4), 1442-1455. https://doi.org/10.1111/nph.13718
dc.relation.referencesWang, Y., Dai, J., Chen, R., Song, C., Wei, P., Wang, Y., Cai, Y., & Han, B. (2021). Long noncoding RNA-based drought regulation in the important medicinal plant Dendrobium huoshanense. Acta Physiologiae Plantarum, 43(11), 144. https://doi.org/10.1007/s11738-021-03314-1
dc.relation.referencesWang, Y., Fan, X., Lin, F., He, G., Terzaghi, W., Zhu, D., & Deng, X. W. (2014). Arabidopsis noncoding RNA mediates control of photomorphogenesis by red light. Proceedings of the National Academy of Sciences, 111(28), 10359-10364. https://doi.org/10.1073/pnas.1409457111
dc.relation.referencesWierzbicki, A. T., Blevins, T., & Swiezewski, S. (2021). Long Noncoding RNAs in Plants. Annual Review of Plant Biology, 72(Volume 72, 2021), 245-271. https://doi.org/10.1146/annurev-arplant-093020-035446
dc.relation.referencesWu, W., Wu, Y., Hu, D., Zhou, Y., Hu, Y., Chen, Y., & Chen, M. (2020). PncStress: A manually curated database of experimentally validated stress-responsive non-coding RNAs in plants. Database, 2020, baaa001. https://doi.org/10.1093/database/baaa001
dc.relation.referencesWucher, V., Legeai, F., Hédan, B., Rizk, G., Lagoutte, L., Leeb, T., Jagannathan, V., Cadieu, E., David, A., Lohi, H., Cirera, S., Fredholm, M., Botherel, N., Leegwater, P. A. J., Le Béguec, C., Fieten, H., Johnson, J., Alföldi, J., André, C., … Derrien, T. (2017). FEELnc: A tool for long non-coding RNA annotation and its application to the dog transcriptome. Nucleic Acids Research, 45(8), e57. https://doi.org/10.1093/nar/gkw1306
dc.relation.referencesXia, S. W., Song, C. J., Zheng, X. F., Zhang, Y., Anwar, W., Dissanayaka, D. D., Zhu, P. Z., Liu J. L., & Lai, Y. S. (2025). Identification and characterization of long non-coding RNA (lncRNA) in wild and semi-wild cucumbers. BMC Plant Biology, 25(1), 748. https://doi.org/10.1186/s12870-025-06752-y
dc.relation.referencesXia, Z., Huang, D., Zhang, S., Wang, W., Ma, F., Wu, B., Xu, Y., Xu, B., Chen, D., Zou, M., Xu, H., Zhou, X., Zhan, R., & Song, S. (2021). Chromosome-scale genome assembly provides insights into the evolution and flavor synthesis of passion fruit (Passiflora edulis Sims). Horticulture Research, 8(1), 1-14. https://doi.org/10.1038/s41438-020-00455-1
dc.relation.referencesXu, Q., Song, Z., Zhu, C., Tao, C., Kang, L., Liu, W., He, F., Yan, J., & Sang, T. (2017). Systematic comparison of lncRNAs with protein coding mRNAs in population expression and their response to environmental change. BMC Plant Biology, 17(1), 42. https://doi.org/10.1186/s12870-017-0984-8
dc.relation.referencesXu, W., Yang, T., Wang, B., Han, B., Zhou, H., Wang, Y., Li, D.-Z., & Liu, A. (2018). Differential expression networks and inheritance patterns of long non-coding RNAs in castor bean seeds. The Plant Journal, 95(2), 324-340. https://doi.org/10.1111/tpj.13953
dc.relation.referencesYamada, M. (2017). Functions of long intergenic non-coding (linc) RNAs in plants. Journal of Plant Research, 130(1), 67-73. https://doi.org/10.1007/s10265-016-0894-0
dc.relation.referencesYan, X., Ma, L., & Yang, M. (2020). Identification and characterization of long non-coding RNA (lncRNA) in the developing seeds of Jatropha curcas. Scientific Reports, 10(1), 10395. https://doi.org/10.1038/s41598-020-67410-x
dc.relation.referencesYanai, I., Benjamin, H., Shmoish, M., Chalifa-Caspi, V., Shklar, M., Ophir, R., Bar-Even, A., Horn-Saban, S., Safran, M., Domany, E., Lancet, D., & Shmueli, O. (2005). Genome-wide midrange transcription profiles reveal expression level relationships in human tissue specification. Bioinformatics (Oxford, England), 21(5), 650-659. https://doi.org/10.1093/bioinformatics/bti042
dc.relation.referencesYang, H., Cui, Y., Feng, Y., Hu, Y., Liu, L., & Duan, L. (2023). Long non-coding RNAs of plants in response to abiotic stresses and their regulating roles in promoting environmental adaption. Cells, 12(5), 729. https://doi.org/10.3390/cells12050729
dc.relation.referencesYatusevich, R., Fedak, H., Ciesielski, A., Krzyczmonik, K., Kulik, A., Dobrowolska, G., & Swiezewski, S. (2017). Antisense transcription represses Arabidopsis seed dormancy QTL DOG1 to regulate drought tolerance. EMBO Reports, 18(12), 2186-2196. https://doi.org/10.15252/embr.201744862
dc.relation.referencesYi, X., Zhang, Z., Ling, Y., Xu, W., & Su, Z. (2015). PNRD: A plant non-coding RNA database. Nucleic Acids Research, 43(D1), D982-D989. https://doi.org/10.1093/nar/gku1162
dc.relation.referencesYu, C., Wang, P., Zhang, S., Liu, J., Cheng, Y., Zhang, S., & Wu, Z. (2024). Passionfruit Genomic Database (PGD): A comprehensive resource for passionfruit genomics. BMC Genomics, 25(1), 157. https://doi.org/10.1186/s12864-024-10069-9
dc.relation.referencesYu, Y., Zhou, Y. F., Feng, Y. Z., He, H., Lian, J. P., Yang, Y. W., Lei, M. Q., Zhang, Y. C., & Chen, Y. Q. (2020). Transcriptional landscape of pathogen‐responsive lncRNAs in rice unveils the role of ALEX 1 in jasmonate pathway and disease resistance. Plant Biotechnology Journal, 18(3), 679-690. https://doi.org/10.1111/pbi.13234
dc.relation.referencesZaretskaya, M. V., Lebedeva, O. N., & Fedorenko, O. M. (2023). Peculiarities of the Transcriptional Activity of Long Non-Coding RNAs (COOLAIR, COLDAIR, and COLDWRAP) during the Vernalization of the Plant Arabidopsis thaliana of Northern Natural Populations. Russian Journal of Genetics, 59(8), 817-823. https://doi.org/10.1134/S1022795423080112
dc.relation.referencesZhang, C., Jiang, M., Liu, J., Wu, B., & Liu, C. (2024). Genome-wide view and characterization of natural antisense transcripts in Cannabis Sativa L. Plant Molecular Biology, 114(3), 47. https://doi.org/10.1007/s11103-024-01434-z
dc.relation.referencesZhang, G., Chen, D., Zhang, T., Duan, A., Zhang, J., & He, C. (2018). Transcriptomic and functional analyses unveil the role of long non-coding RNAs in anthocyanin biosynthesis during sea buckthorn fruit ripening. DNA Research, 25(5), 465-476. https://doi.org/10.1093/dnares/dsy017
dc.relation.referencesZhang, W., Han, Z., Guo, Q., Liu, Y., Zheng, Y., Wu, F., & Jin, W. (2014). Identification of maize long non-coding RNAs responsive to drought stress. PloS One, 9(6), e98958. https://doi.org/10.1371/journal.pone.0098958
dc.relation.referencesZhao, J., Ding, Y., Ramakrishnan, M., Zou, L.-H., Chen, Y., & Zhou, M. (2025). LTR retrotransposon-derived novel lncRNA2 enhances cold tolerance in Moso bamboo by modulating antioxidant activity and photosynthetic efficiency. PeerJ, 13, e19056. https://doi.org/10.7717/peerj.19056
dc.relation.referencesZhao, L., Wang, J., Li, Y., Song, T., Wu, Y., Fang, S., Bu, D., Li, H., Sun, L., Pei, D., Zheng, Y., Huang, J., Xu, M., Chen, R., Zhao, Y., & He, S. (2021). NONCODEV6: An updated database dedicated to long non-coding RNA annotation in both animals and plants. Nucleic Acids Research, 49(D1), D165-D171. https://doi.org/10.1093/nar/gkaa1046
dc.relation.referencesZhao, M., Wang, T., Sun, T., Yu, X., Tian, R., & Zhang, W.-H. (2020). Identification of tissue-specific and cold-responsive lncRNAs in Medicago truncatula by high-throughput RNA sequencing. BMC Plant Biology, 20(1), 99. https://doi.org/10.1186/s12870-020-2301-1
dc.relation.referencesZhao, X., Li, J., Lian, B., Gu, H., Li, Y., & Qi, Y. (2018). Global identification of Arabidopsis lncRNAs reveals the regulation of MAF4 by a natural antisense RNA. Nature Communications, 9(1), 5056. https://doi.org/10.1038/s41467-018-07500-7
dc.relation.referencesZhou, H., Yan, R., He, H., Wei, X., Liu, S., Guo, B., Zhang, Y., Liu, X., Rahman, S. U., Zhou, C., & He, Z. (2023). Transcriptional profiling of long noncoding RNAs associated with flower color formation in Ipomoea nil. Planta, 258(1), 6. https://doi.org/10.1007/s00425-023-04142-y
dc.relation.referencesZhou, J., Song, F., He, Y., Zhang, W., Xiao, L., Lu, W., Li, P., Quan, M., Zhang, D., Du, Q., Zhou, J., Song, F., He, Y., Zhang, W., Xiao, L., Lu, W., Li, P., Quan, M., Zhang, D., & Du, Q. (2023). LncRNA evolution and DNA methylation variation participate in photosynthesis pathways of distinct lineages of Populus. Forestry Research, 3(1). https://doi.org/10.48130/FR-2023-0003
dc.relation.referencesZhou, R., Sanz-Jimenez, P., Zhu, X.-T., Feng, J.-W., Shao, L., Song, J.-M., & Chen, L.-L. (2021). Analysis of Rice Transcriptome Reveals the LncRNA/CircRNA Regulation in Tissue Development. Rice, 14(1), 14. https://doi.org/10.1186/s12284-021-00455-2
dc.relation.referencesZou, C., Guo, Z., Zhao, S., Chen, J., Zhang, C., & Han, H. (2023). Genome-wide analysis of long non-coding RNAs in sugar beet (Beta vulgaris L.) under drought stress. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1118011
dc.relation.referencesZou, C., Zhao, S., Yang, B., Chai, W., Zhu, L., Zhang, C., & Gai, Z. (2024). Genome-wide characterization of drought-responsive long non-coding RNAs in sorghum (Sorghum bicolor). Plant Physiology and Biochemistry, 214, 108908. https://doi.org/10.1016/j.plaphy.2024.108908
dc.relation.referencesZou, X., Ali, F., Jin, S., Li, F., & Wang, Z. (2022). RNA-Seq with a novel glabrous-ZM24 fl reveals some key lncRNAs and the associated targets in fiber initiation of cotton. BMC Plant Biology, 22(1), 61. https://doi.org/10.1186/s12870-022-03444-9
dc.relation.referencesAbdElgawad, H., Avramova, V., Baggerman, G., Van Raemdonck, G., Valkenborg, D., Van Ostade, X., Guisez, Y., Prinsen, E., Asard, H., Van den Ende, W., & Beemster, G. T. S. (2020). Starch biosynthesis contributes to the maintenance of photosynthesis and leaf growth under drought stress in maize. Plant, Cell & Environment, 43(9), 2254-2271. https://doi.org/10.1111/pce.13813
dc.relation.referencesAlghamdi, S. S., Khan, M. A., Ammar, M. H., Sun, Q., Huang, L., Migdadi, H. M., El-Harty, E. H., & Al-Faifi, S. A. (2018). Characterization of drought stress-responsive root transcriptome of faba bean (Vicia faba L.) using RNA sequencing. 3 Biotech, 8(12), 502. https://doi.org/10.1007/s13205-018-1518-2
dc.relation.referencesAn, C., Liao, J., Lu, L., Cai, X., Liu, R., Chen, S., Shen, M., Wang, X., Qin, Y., Zheng, P., An, C., Liao, J., Lu, L., Cai, X., Liu, R., Chen, S., Shen, M., Wang, X., Qin, Y., & Zheng, P. (2024). From gene expression to flower patterns: Genome-wide characterization of the MADS-box gene family in passion fruit (Passiflora edulis). Tropical Plants, 3(1), Article tp-0024-0004. https://doi.org/10.48130/tp-0024-0004
dc.relation.referencesArisha, M. H., Ahmad, M. Q., Tang, W., Liu, Y., Yan, H., Kou, M., Wang, X., Zhang, Y., & Li, Q. (2020). RNA-sequencing analysis revealed genes associated drought stress responses of different durations in hexaploid sweet potato. Scientific Reports, 10(1), 12573. https://doi.org/10.1038/s41598-020-69232-3
dc.relation.referencesAxelrod, D. I. (1967). Drought, Diastrophism, and Quantum Evolution. Evolution, 21(2), 201-209. https://doi.org/10.2307/2406669
dc.relation.referencesBechtold, U., Penfold, C. A., Jenkins, D. J., Legaie, R., Moore, J. D., Lawson, T., Matthews, J. S. A., Vialet-Chabrand, S. R. M., Baxter, L., Subramaniam, S., Hickman, R., Florance, H., Sambles, C., Salmon, D. L., Feil, R., Bowden, L., Hill, C., Baker, N. R., Lunn, J. E., … Mullineaux, P. M. (2016). Time-Series Transcriptomics Reveals That AGAMOUS-LIKE22 Affects Primary Metabolism and Developmental Processes in Drought-Stressed Arabidopsis. The Plant Cell, 28(2), 345-366. https://doi.org/10.1105/tpc.15.00910
dc.relation.referencesBhogireddy, S., Mangrauthia, S. K., Kumar, R., Pandey, A. K., Singh, S., Jain, A., Budak, H., Varshney, R. K., & Kudapa, H. (2021). Regulatory non-coding RNAs: A new frontier in regulation of plant biology. Functional & Integrative Genomics, 21(3-4), 313-330. https://doi.org/10.1007/s10142-021-00787-8
dc.relation.referencesBowles, A. M. C., Paps, J., & Bechtold, U. (2021). Evolutionary Origins of Drought Tolerance in Spermatophytes. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.655924
dc.relation.referencesBlighe, K., Rana, S., & Lewis, M. (2019). EnhancedVolcano: Publication-ready volcano plots with enhanced colouring and labeling. R package version, 1(0), 10-18129.
dc.relation.referencesCai, J., Zhang, Y., He, R., Jiang, L., Qu, Z., Gu, J., Yang, J., Legascue, M. F., Wang, Z.-Y., Ariel, F., Adelson, D. L., Zhu, Y., & Wang, D. (2024). LncRNA DANA1 promotes drought tolerance and histone deacetylation of drought responsive genes in Arabidopsis. EMBO reports, 25(2), 796-812. https://doi.org/10.1038/s44319-023-00030-4
dc.relation.referencesChang, L., Wang, L., Peng, C., Tong, Z., Wang, D., Ding, G., Xiao, J., Guo, A., & Wang, X. (2019). The chloroplast proteome response to drought stress in cassava leaves. Plant Physiology and Biochemistry: PPB, 142, 351-362. https://doi.org/10.1016/j.plaphy.2019.07.025
dc.relation.referencesChen, G., Xu, Y., Gui, J., Huang, Y., Ma, F., Wu, W., Han, T., Qiu, W., Yang, L., & Song, S. (2023). Characterization of Dof Transcription Factors and the Heat-Tolerant Function of PeDof-11 in Passion Fruit (Passiflora edulis). International Journal of Molecular Sciences, 24(15), 12091. https://doi.org/10.3390/ijms241512091
dc.relation.referencesChen, K., Huang, Y., Liu, C., Liang, Y., & Li, M. (2021). Transcriptome Profile Analysis of Arabidopsis Reveals the Drought Stress-Induced Long Non-coding RNAs Associated With Photosynthesis, Chlorophyll Synthesis, Fatty Acid Synthesis and Degradation. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.643182
dc.relation.referencesCho, J. (2018). Transposon-Derived Non-coding RNAs and Their Function in Plants. Frontiers in Plant Science, 9. https://doi.org/10.3389/fpls.2018.00600
dc.relation.referencesChung, P. J., Jung, H., Jeong, D.-H., Ha, S.-H., Choi, Y. D., & Kim, J.-K. (2016). Transcriptome profiling of drought responsive noncoding RNAs and their target genes in rice. BMC Genomics, 17(1), 563. https://doi.org/10.1186/s12864-016-2997-3
dc.relation.referencesCintra, L. A., Souza, T. B. de, Parteka, L. M., Barreto, L. M., Pereira, L. F. P., Gaeta, M. L., Guyot, R., & Vanzela, A. L. L. (2022). An 82 bp tandem repeat family typical of 3’ non-coding end of Gypsy/TAT LTR retrotransposons is conserved in Coffea spp. Pericentromeres. Genome, 65(3), 137-151. https://doi.org/10.1139/gen-2021-0045
dc.relation.referencesContiliani, D. F., Nebó, J. F. C. de O., Ribeiro, R. V., Landell, M. G. de A., Pereira, T. C., Ming, R., Figueira, A., & Creste, S. (2023). Drought-triggered leaf transcriptional responses disclose key molecular pathways underlying leaf water use efficiency in sugarcane (Saccharum spp.). Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1182461
dc.relation.referencesCorrales, A.-R., Nebauer, S. G., Carrillo, L., Fernández-Nohales, P., Marqués, J., Renau-Morata, B., Granell, A., Pollmann, S., Vicente-Carbajosa, J., Molina, R.-V., & Medina, J. (2014). Characterization of tomato Cycling Dof Factors reveals conserved and new functions in the control of flowering time and abiotic stress responses. Journal of Experimental Botany, 65(4), 995-1012. https://doi.org/10.1093/jxb/ert451
dc.relation.referencesda Silva, G. J., & Costa de Oliveira, A. (2014). Genes Acting on Transcriptional Control during Abiotic Stress Responses. Advances in Agriculture, 2014(1), 587070. https://doi.org/10.1155/2014/587070
dc.relation.referencesDash, P. K., Cao, Y., Jailani, A. K., Gupta, P., Venglat, P., Xiang, D., Rai, R., Sharma, R., Thirunavukkarasu, N., Abdin, M. Z., Yadava, D. K., Singh, N. K., Singh, J., Selvaraj, G., Deyholos, M., Kumar, P. A., & Datla, R. (2014). Genome-wide analysis of drought induced gene expression changes in flax (Linum usitatissimum). GM Crops & Food, 5(2), 106-119. https://doi.org/10.4161/gmcr.29742
dc.relation.referencesDong, S., Xiao, L., Li, Z., Shen, J., Yan, H., Li, S., Liao, W., & Peng, M. (2022). A novel long non-coding RNA, DIR, increases drought tolerance in cassava by modifying stress-related gene expression. Journal of Integrative Agriculture, 21(9), 2588-2602. https://doi.org/10.1016/j.jia.2022.07.022
dc.relation.referencesDu, Y., Zhao, Q., Chen, L., Yao, X., Zhang, W., Zhang, B., & Xie, F. (2020). Effect of drought stress on sugar metabolism in leaves and roots of soybean seedlings. Plant Physiology and Biochemistry: PPB, 146, 1-12. https://doi.org/10.1016/j.plaphy.2019.11.003
dc.relation.referencesElakhdar, A., El-Naggar, A. A., Kubo, T., & Kumamaru, T. (2023). Genome-wide transcriptomic and functional analyses provide new insights into the response of spring barley to drought stress. Physiologia Plantarum, 175(6), e14089. https://doi.org/10.1111/ppl.14089
dc.relation.referencesEngelbrecht, B. M. J., Comita, L. S., Condit, R., Kursar, T. A., Tyree, M. T., Turner, B. L., & Hubbell, S. P. (2007). Drought sensitivity shapes species distribution patterns in tropical forests. Nature, 447(7140), 80-82. https://doi.org/10.1038/nature05747
dc.relation.referencesFagny, M., Kuijjer, M. L., Stam, M., Joets, J., Turc, O., Rozière, J., Pateyron, S., Venon, A., & Vitte, C. (2021). Identification of Key Tissue-Specific, Biological Processes by Integrating Enhancer Information in Maize Gene Regulatory Networks. Frontiers in Genetics, 11. https://doi.org/10.3389/fgene.2020.606285
dc.relation.referencesFan, M., Zou, L., Tian, K., Chen, G., Cheng, K., & Li, Y. (2023). Chemistry, bioactivity, biosynthesis, and total synthesis of stemmadenine alkaloids. Natural Product Reports, 40(5), 1022-1044. https://doi.org/10.1039/D2NP00052K
dc.relation.referencesFan, W., Hai, M., Guo, Y., Ding, Z., Tie, W., Ding, X., Yan, Y., Wei, Y., Liu, Y., Wu, C., Shi, H., Li, K., & Hu, W. (2016). The ERF transcription factor family in cassava: Genome-wide characterization and expression analyses against drought stress. Scientific Reports, 6(1), 37379. https://doi.org/10.1038/srep37379
dc.relation.referencesFei, X., Shi, Q., Liu, Y., Yang, T., & Wei, A. (2020). RNA sequencing and functional analyses reveal regulation of novel drought-responsive, long-non-coding RNA in Zanthoxylum bungeanum Maxim. Plant Growth Regulation, 90(3), 425-440. https://doi.org/10.1007/s10725-019-00541-y
dc.relation.referencesFox, H., Doron-Faigenboim, A., Kelly, G., Bourstein, R., Attia, Z., Zhou, J., Moshe, Y., Moshelion, M., & David-Schwartz, R. (2018). Transcriptome analysis of Pinus halepensis under drought stress and during recovery. Tree Physiology, 38(3), 423-441. https://doi.org/10.1093/treephys/tpx137
dc.relation.referencesFromm, H., & Fichman, Y. (2019). Water Sensing in Plants. En S. Sopory (Ed.), Sensory Biology of Plants (pp. 79-94). Springer. https://doi.org/10.1007/978-981-13-8922-1_4
dc.relation.referencesGe, S. X., Jung, D., & Yao, R. (2020). ShinyGO: A graphical gene-set enrichment tool for animals and plants. Bioinformatics (Oxford, England), 36(8), 2628-2629. https://doi.org/10.1093/bioinformatics/btz931
dc.relation.referencesGilbert, M. E., & Medina, V. (2016). Drought Adaptation Mechanisms Should Guide Experimental Design. Trends in Plant Science, 21(8), 639-647. https://doi.org/10.1016/j.tplants.2016.03.003
dc.relation.referencesGomes, M. T. G., da Luz, A. C., dos Santos, M. R., do Carmo Pimentel Batitucci, M., Silva, D. M., & Falqueto, A. R. (2012). Drought tolerance of passion fruit plants assessed by the OJIP chlorophyll a fluorescence transient. Scientia Horticulturae, 142, 49-56. https://doi.org/10.1016/j.scienta.2012.04.026
dc.relation.referencesGrant, C. E., Bailey, T. L., & Noble, W. S. (2011). FIMO: Scanning for occurrences of a given motif. Bioinformatics, 27(7), 1017-1018. https://doi.org/10.1093/bioinformatics/btr064
dc.relation.referencesHayford, R. K., Serba, D. D., Xie, S., Ayyappan, V., Thimmapuram, J., Saha, M. C., Wu, C. H., & Kalavacharla, V. K. (2022). Global analysis of switchgrass (Panicum virgatum L.) transcriptomes in response to interactive effects of drought and heat stresses. BMC Plant Biology, 22(1), 107. https://doi.org/10.1186/s12870-022-03477-0
dc.relation.referencesHe, C., Du, Y., Fu, J., Zeng, E., Park, S., White, F., Zheng, J., & Liu, S. (2020). Early Drought-Responsive Genes Are Variable and Relevant to Drought Tolerance. G3: Genes|Genomes|Genetics, 10(5), 1657-1670. https://doi.org/10.1534/g3.120.401199
dc.relation.referencesHe, Z., Lan, Y., Zhou, X., Yu, B., Zhu, T., Yang, F., Fu, L.-Y., Chao, H., Wang, J., Feng, R.-X., Zuo, S., Lan, W., Chen, C., Chen, M., Zhao, X., Hu, K., & Chen, D. (2024). Single-cell transcriptome analysis dissects lncRNA-associated gene networks in Arabidopsis. Plant Communications, 5(2). https://doi.org/10.1016/j.xplc.2023.100717
dc.relation.referencesHu, Y., Chen, X., & Shen, X. (2022). Regulatory network established by transcription factors transmits drought stress signals in plant. Stress Biology, 2(1), 26. https://doi.org/10.1007/s44154-022-00048-z
dc.relation.referencesJannesar, M., Seyedi, S. M., Moazzam Jazi, M., Niknam, V., Ebrahimzadeh, H., & Botanga, C. (2020). A genome-wide identification, characterization and functional analysis of salt-related long non-coding RNAs in non-model plant Pistacia vera L. using transcriptome high throughput sequencing. Scientific Reports, 10(1), 5585. https://doi.org/10.1038/s41598-020-62108-6
dc.relation.referencesJia, Y., Zhao, H., Niu, Y., & Wang, Y. (2023). Identification of birch lncRNAs and mRNAs responding to salt stress and characterization of functions of lncRNA. Horticulture Research, 10(2), uhac277. https://doi.org/10.1093/hr/uhac277
dc.relation.referencesJunbao, Z., Yushu, C., Xuesong, W., Jiaang, C., Sen, Y., Qingyi, S., Mengdi, Y., Zhongmin, J., & Lijie, L. (2024). Identification and Expression Analysis of Low-Temperature Stress Responsive MIKC-Type MADS-Box Gene Family in Wheat. Tropical Plant Biology, 18(1), 17. https://doi.org/10.1007/s12042-024-09387-9
dc.relation.referencesKarimi, M., Pakdel, M. H., Bali lashaki, K., & Soorni, A. (2022). Identification of hub salt-responsive genes in Cucumis sativus using a long non-coding RNA and mRNA interaction network. Horticulture, Environment, and Biotechnology, 63(4), 539-556. https://doi.org/10.1007/s13580-021-00418-y
dc.relation.referencesKazemi-Shahandashti, S.-S., & Maali-Amiri, R. (2018). Global insights of protein responses to cold stress in plants: Signaling, defence, and degradation. Journal of Plant Physiology, 226, 123-135. https://doi.org/10.1016/j.jplph.2018.03.022
dc.relation.referencesKe, X., Yao, J., Jiang, Z., Gu, X., & Xu, P. (2025). Recover and surpass: The mechanisms of plants transition upon rehydration from drought. Plant Stress, 15, 100782. https://doi.org/10.1016/j.stress.2025.100782
dc.relation.referencesKolde, R., & Kolde, M. R. (2015). Package ‘pheatmap’. R package, 1(7), 790.
dc.relation.referencesKonopka-Postupolska, D., & Dobrowolska, G. (2020). ABA perception is modulated by membrane receptor-like kinases. Journal of Experimental Botany, 71(4), 1210-1214. https://doi.org/10.1093/jxb/erz531
dc.relation.referencesKornienko, A. E., Nizhynska, V., Molla Morales, A., Pisupati, R., & Nordborg, M. (2023). Population-level annotation of lncRNAs in Arabidopsis reveals extensive expression variation associated with transposable element-like silencing. The Plant Cell, 36(1), 85-111. https://doi.org/10.1093/plcell/koad233
dc.relation.referencesLangfelder, P., & Horvath, S. (2008). WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics, 9(1), 559. https://doi.org/10.1186/1471-2105-9-559
dc.relation.referencesLee, H., Zhang, Z., & Krause, H. M. (2019). Long Noncoding RNAs and Repetitive Elements: Junk or Intimate Evolutionary Partners? Trends in Genetics: TIG, 35(12), 892-902. https://doi.org/10.1016/j.tig.2019.09.006
dc.relation.referencesLi, N., Zhang, S., Liang, Y., Qi, Y., Chen, J., Zhu, W., & Zhang, L. (2018). Label-free quantitative proteomic analysis of drought stress-responsive late embryogenesis abundant proteins in the seedling leaves of two wheat (Triticum aestivum L.) genotypes. Journal of Proteomics, 172, 122-142. https://doi.org/10.1016/j.jprot.2017.09.016
dc.relation.referencesLi, Z., Zhou, H., Xu, G., Zhang, P., Zhai, N., Zheng, Q., Liu, P., Jin, L., Bai, G., & Zhang, H. (2023). Genome-wide analysis of long noncoding RNAs in response to salt stress in Nicotiana tabacum. BMC Plant Biology, 23(1), 646. https://doi.org/10.1186/s12870-023-04659-0
dc.relation.referencesLópez-Maury, L., Marguerat, S., & Bähler, J. (2008). Tuning gene expression to changing environments: From rapid responses to evolutionary adaptation. Nature Reviews Genetics, 9(8), 583-593. https://doi.org/10.1038/nrg2398
dc.relation.referencesLove, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12), 550. https://doi.org/10.1186/s13059-014-0550-8
dc.relation.referencesLozano-Montaña, P. A., Sarmiento, F., Mejía-Sequera, L. M., Álvarez-Flórez, F., & Melgarejo, L. M. (2021). Physiological, biochemical and transcriptional responses of Passiflora edulis Sims f. Edulis under progressive drought stress. Scientia Horticulturae, 275, 109655. https://doi.org/10.1016/j.scienta.2020.109655
dc.relation.referencesLuo, L., Zhang, L., Gu, R., Ni, S., Yu, J., Gao, Y., & Fang, C. (2025). Genome-Wide Identification and Functional Analysis of AP2/ERF Gene Family in Passiflora edulis Sims. Plants, 14(5), Article 5. https://doi.org/10.3390/plants14050645
dc.relation.referencesLv, L., Chen, X., Li, H., Huang, J., Liu, Y., & Zhao, A. (2022). Different adaptive patterns of wheat with different drought tolerance under drought stresses and rehydration revealed by integrated metabolomic and transcriptomic analysis. Frontiers in Plant Science, 13, 1008624. https://doi.org/10.3389/fpls.2022.1008624
dc.relation.referencesMizoi, J., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2012). AP2/ERF family transcription factors in plant abiotic stress responses. Biochimica Et Biophysica Acta, 1819(2), 86-96. https://doi.org/10.1016/j.bbagrm.2011.08.004
dc.relation.referencesMoghadam, A., Taghizadeh, M. S., Haghi, R., Tahmasebi, A., Niazi, A., & Ebrahimie, E. (2024). Exploring novel insights: Methyl jasmonate treatment reveals novel lncRNA-mediated regulation of secondary metabolite biosynthesis pathways in Echinacea purpurea. Food Bioscience, 57, 103457. https://doi.org/10.1016/j.fbio.2023.103457
dc.relation.referencesMomonoki, Y. S., Yamamoto, K., & Oguri, S. (2009). Molecular Cloning of Oxygen-Evolving Enhancer Genes Induced by Salt Treatment in a Halophyte, Salicornia europaea L. Plant Production Science, 12(2), 193-198. https://doi.org/10.1626/pps.12.193
dc.relation.referencesMore, S. J., Bardhan, K., Ravi, V., Pasala, R., Chaturvedi, A. K., Lal, M. K., & Siddique, K. H. M. (2023). Morphophysiological Responses and Tolerance Mechanisms in Cassava (Manihot esculenta Crantz) Under Drought Stress. Journal of Soil Science and Plant Nutrition, 23(1), 71-91. https://doi.org/10.1007/s42729-023-01127-4
dc.relation.referencesMou, Y., Yuan, C., Sun, Q., Yan, C., Zhao, X., Wang, J., Wang, Q., Shan, S., & Li, C. (2022). MIKC-type MADS-box transcription factor gene family in peanut: Genome-wide characterization and expression analysis under abiotic stress. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.980933
dc.relation.referencesMukarram, M., Choudhary, S., Kurjak, D., Petek, A., & Khan, M. M. A. (2021). Drought: Sensing, signalling, effects and tolerance in higher plants. Physiologia Plantarum, 172(2), 1291-1300. https://doi.org/10.1111/ppl.13423
dc.relation.referencesOzturk, M., Turkyilmaz Unal, B., García-Caparrós, P., Khursheed, A., Gul, A., & Hasanuzzaman, M. (2021). Osmoregulation and its actions during the drought stress in plants. Physiologia Plantarum, 172(2), 1321-1335. https://doi.org/10.1111/ppl.13297
dc.relation.referencesPalos, K., Nelson Dittrich, A. C., Yu, L., Brock, J. R., Railey, C. E., Wu, H.-Y. L., Sokolowska, E., Skirycz, A., Hsu, P. Y., Gregory, B. D., Lyons, E., Beilstein, M. A., & Nelson, A. D. L. (2022). Identification and functional annotation of long intergenic non-coding RNAs in Brassicaceae. The Plant Cell, 34(9), 3233-3260. https://doi.org/10.1093/plcell/koac166
dc.relation.referencesPatro, R., Duggal, G., Love, M. I., Irizarry, R. A., & Kingsford, C. (2017). Salmon provides fast and bias-aware quantification of transcript expression. Nature Methods, 14(4), 417-419. https://doi.org/10.1038/nmeth.4197
dc.relation.referencesPorcel, R., Aroca, R., Azcón, R., & Ruiz-Lozano, J. M. (2006). PIP aquaporin gene expression in arbuscular mycorrhizal Glycine max and Lactuca sativa plants in relation to drought stress tolerance. Plant Molecular Biology, 60(3), 389-404. https://doi.org/10.1007/s11103-005-4210-y
dc.relation.referencesQiu, W., Li, H., Song, Y., Ding, J., chen, S., Ma, C., & Yu, B. (2024). Genome-Wide Analysis of DREB Genes in Sugar Beet and Their Potential Functions in Response to Drought Stress. Sugar Tech, 26(5), 1306-1322. https://doi.org/10.1007/s12355-023-01337-1
dc.relation.referencesQuick, P., Siegl, G., Neuhaus, E., Feil, R., & Stitt, M. (1989). Short-term water stress leads to a stimulation of sucrose synthesis by activating sucrose-phosphate synthase. Planta, 177(4), 535-546. https://doi.org/10.1007/BF00392622
dc.relation.referencesRajeev, A. C., G, P., & Pan, A. (2024). Integrated gene expression and network analysis identify drought-response genes and pathways in Solanum: A computational study. Discover Applied Sciences, 6(9), 468. https://doi.org/10.1007/s42452-024-06025-7
dc.relation.referencesSall, K., Hendrix, D., Sekine, T., Katsuragawa, Y., Koyari, R., & Nonogaki, H. (2017). Transcriptomics of nine-cis-epoxycarotenoid dioxygenase 6 induction in imbibed seeds reveals feedback mechanisms and long non-coding RNAs. Seed Science Research, 27(4), 251-261. https://doi.org/10.1017/S0960258517000216
dc.relation.referencesSaradadevi, R., Palta, J. A., & Siddique, K. H. M. (2017). ABA-Mediated Stomatal Response in Regulating Water Use during the Development of Terminal Drought in Wheat. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.01251
dc.relation.referencesScharwies, J. D., & Dinneny, J. R. (2019). Water transport, perception, and response in plants. Journal of Plant Research, 132(3), 311-324. https://doi.org/10.1007/s10265-019-01089-8
dc.relation.referencesSimova-Stoilova, L., Vaseva, I., Grigorova, B., Demirevska, K., & Feller, U. (2010). Proteolytic activity and cysteine protease expression in wheat leaves under severe soil drought and recovery. Plant Physiology and Biochemistry: PPB, 48(2-3), 200-206. https://doi.org/10.1016/j.plaphy.2009.11.003
dc.relation.referencesSingh, P. K., Srivastava, D., Tiwari, P., Tiwari, M., Verma, G., & Chakrabarty, D. (2019). Drought Tolerance in Plants. En Plant Signaling Molecules (pp. 105-123). Elsevier. https://doi.org/10.1016/B978-0-12-816451-8.00006-X
dc.relation.referencesSteward, R. A., Giménez, J. O., Choudhary, S., Yi, S., Aken, O. V., & Runemark, A. (2024). Evolved and plastic gene expression in adaptation to a novel niche (p. 2024.03.02.583104). bioRxiv. https://doi.org/10.1101/2024.03.02.583104
dc.relation.referencesSun, X., Tang, M., Xu, L., Luo, X., Shang, Y., Duan, W., Huang, Z., Jin, C., & Chen, G. (2023). Genome-wide identification of long non-coding RNAs and their potential functions in radish response to salt stress. Frontiers in Genetics, 14, 1232363. https://doi.org/10.3389/fgene.2023.1232363
dc.relation.referencesSymanczik, S., Krützmann, J., Nehls, U., Boller, T., & Courty, P.-E. (2020). Expression of major intrinsic protein genes in Sorghum bicolor roots under water deficit depends on arbuscular mycorrhizal fungal species. Soil Biology and Biochemistry, 140, 107643. https://doi.org/10.1016/j.soilbio.2019.107643
dc.relation.referencesSzlachtowska, Z., & Rurek, M. (2023). Plant dehydrins and dehydrin-like proteins: Characterization and participation in abiotic stress response. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1213188
dc.relation.referencesTan, X., Li, S., Hu, L., & Zhang, C. (2020). Genome-wide analysis of long non-coding RNAs (lncRNAs) in two contrasting rapeseed (Brassica napus L.) genotypes subjected to drought stress and re-watering. BMC Plant Biology, 20(1), 81. https://doi.org/10.1186/s12870-020-2286-9
dc.relation.referencesTang, X., Li, Q., Feng, X., Yang, B., Zhong, X., Zhou, Y., Wang, Q., Mao, Y., Xie, W., Liu, T., Tang, Q., Guo, W., Wu, F., Feng, X., Wang, Q., Lu, Y., & Xu, J. (2023). Identification and Functional Analysis of Drought-Responsive Long Noncoding RNAs in Maize Roots. International Journal of Molecular Sciences, 24(20), Article 20. https://doi.org/10.3390/ijms242015039
dc.relation.referencesTaylor, S. C., Nadeau, K., Abbasi, M., Lachance, C., Nguyen, M., & Fenrich, J. (2019). The Ultimate qPCR Experiment: Producing Publication Quality, Reproducible Data the First Time. Trends in Biotechnology, 37(7), 761-774. https://doi.org/10.1016/j.tibtech.2018.12.002
dc.relation.referencesTuteja, N., Tran, N. Q., Dang, H. Q., & Tuteja, R. (2011). Plant MCM proteins: Role in DNA replication and beyond. Plant Molecular Biology, 77(6), 537-545. https://doi.org/10.1007/s11103-011-9836-3
dc.relation.referencesWang, D., Qu, Z., Yang, L., Zhang, Q., Liu, Z.-H., Do, T., Adelson, D. L., Wang, Z.-Y., Searle, I., & Zhu, J.-K. (2017). Transposable elements (TEs) contribute to stress-related long intergenic noncoding RNAs in plants. The Plant Journal, 90(1), 133-146. https://doi.org/10.1111/tpj.13481
dc.relation.referencesWang, X., Liu, H., Zhang, D., Zou, D., Wang, J., Zheng, H., Jia, Y., Qu, Z., Sun, B., & Zhao, H. (2022). Photosynthetic Carbon Fixation and Sucrose Metabolism Supplemented by Weighted Gene Co-expression Network Analysis in Response to Water Stress in Rice With Overlapping Growth Stages. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.864605
dc.relation.referencesWang, Y., Dai, J., Chen, R., Song, C., Wei, P., Wang, Y., Cai, Y., & Han, B. (2021). Long noncoding RNA-based drought regulation in the important medicinal plant Dendrobium huoshanense. Acta Physiologiae Plantarum, 43(11), 144. https://doi.org/10.1007/s11738-021-03314-1
dc.relation.referencesWang, Y., Zhang, H., Zhang, Z., Hua, B., Liu, J., & Miao, M. (2024). Source leaves are regulated by sink strengths through non-coding RNAs and alternative polyadenylation in cucumber (Cucumis sativus L.). BMC Plant Biology, 24(1), 812. https://doi.org/10.1186/s12870-024-05416-7
dc.relation.referencesWei, K., Sharifova, S., Zhao, X., Sinha, N., Nakayama, H., Tellier, A., & Silva-Arias, G. A. (2024). Evolution of gene networks underlying adaptation to drought stress in the wild tomato Solanum chilense. Molecular Ecology, 33(21), e17536. https://doi.org/10.1111/mec.17536
dc.relation.referencesWei, M., Li, H., Wang, Q., Liu, R., Yang, L., & Li, Q. (2023). Genome-wide identification and expression profiling of B3 transcription factor genes in Populus alba × Populus glandulosa. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1193065
dc.relation.referencesWos, G., Choudhury, R. R., Kolář, F., & Parisod, C. (2021). Transcriptional activity of transposable elements along an elevational gradient in Arabidopsis arenosa. Mobile DNA, 12(1), 7. https://doi.org/10.1186/s13100-021-00236-0
dc.relation.referencesWu, C., Ding, Z., Chen, M., Yang, G., Tie, W., Yan, Y., Zeng, J., He, G., & Hu, W. (2019). Identification and functional prediction of lncRNAs in response to PEG and ABA treatment in cassava. Environmental and Experimental Botany, 166, 103809. https://doi.org/10.1016/j.envexpbot.2019.103809
dc.relation.referencesWu, Y., Ke, Y., Wen, J., Guo, P., Ran, F., Wang, M., Liu, M., Li, P., Li, J., & Du, H. (2018). Evolution and expression analyses of the MADS-box gene family in Brassica napus. PLOS ONE, 13(7), e0200762. https://doi.org/10.1371/journal.pone.0200762
dc.relation.referencesYan, Q., Wu, F., Yan, Z., Li, J., Ma, T., Zhang, Y., Zhao, Y., Wang, Y., & Zhang, J. (2019). Differential co-expression networks of long non-coding RNAs and mRNAs in Cleistogenes songorica under water stress and during recovery. BMC Plant Biology, 19(1), 23. https://doi.org/10.1186/s12870-018-1626-5
dc.relation.referencesYao, T., Zhang, J., Xie, M., Yuan, G., Tschaplinski, T. J., Muchero, W., & Chen, J.-G. (2021). Transcriptional Regulation of Drought Response in Arabidopsis and Woody Plants. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.572137
dc.relation.referencesYatusevich, R., Fedak, H., Ciesielski, A., Krzyczmonik, K., Kulik, A., Dobrowolska, G., & Swiezewski, S. (2017). Antisense transcription represses Arabidopsis seed dormancy QTL DOG1 to regulate drought tolerance. EMBO Reports, 18(12), 2186-2196. https://doi.org/10.15252/embr.201744862
dc.relation.referencesYu, B., Chao, D.-Y., & Zhao, Y. (2024). How plants sense and respond to osmotic stress. Journal of Integrative Plant Biology, 66(3), 394-423. https://doi.org/10.1111/jipb.13622
dc.relation.referencesZhang, H., Zhao, Y., & Zhu, J.-K. (2020). Thriving under Stress: How Plants Balance Growth and the Stress Response. Developmental Cell, 55(5), 529-543. https://doi.org/10.1016/j.devcel.2020.10.012
dc.relation.referencesZhang, W., Wang, D., Yin, Z., Tang, L., Pan, X., & Guo, C. (2024). RNA sequencing and functional analysis uncover key long non-coding RNAs involved in regulating pollen fertility during the process of gametocidal action in wheat. The Plant Journal: For Cell and Molecular Biology, 120(5), 1826-1841. https://doi.org/10.1111/tpj.17082
dc.relation.referencesZhang, X., Lei, L., Lai, J., Zhao, H., & Song, W. (2018). Effects of drought stress and water recovery on physiological responses and gene expression in maize seedlings. BMC Plant Biology, 18(1), 68. https://doi.org/10.1186/s12870-018-1281-x
dc.relation.referencesZhao, M., Fan, H., Tu, Z., Cai, G., Zhang, L., Li, A., & Xu, M. (2022). Stable reference gene selection for quantitative real-time PCR normalization in passion fruit (Passiflora edulis Sims.). Molecular Biology Reports, 49(7), 5985-5995. https://doi.org/10.1007/s11033-022-07382-5
dc.relation.referencesZou, C., Zhao, S., Yang, B., Chai, W., Zhu, L., Zhang, C., & Gai, Z. (2024). Genome-wide characterization of drought-responsive long non-coding RNAs in sorghum (Sorghum bicolor). Plant Physiology and Biochemistry, 214, 108908. https://doi.org/10.1016/j.plaphy.2024.108908
dc.relation.referencesZupin, M., Sedlar, A., Kidrič, M., & Meglič, V. (2017). Drought-induced expression of aquaporin genes in leaves of two common bean cultivars differing in tolerance to drought stress. Journal of Plant Research, 130(4), 735-745. https://doi.org/10.1007/s10265-017-0920-x
dc.relation.referencesBai, Y., Dai, X., Li, Y., Wang, L., Li, W., Liu, Y., Cheng, Y., & Qin, Y. (2019). Identification and characterization of pineapple leaf lncRNAs in crassulacean acid metabolism (CAM) photosynthesis pathway. Scientific Reports, 9(1), 6658. https://doi.org/10.1038/s41598-019-43088-8
dc.relation.referencesChen, J., Zhong, Y., & Qi, X. (2021). LncRNA TCONS_00021861 is functionally associated with drought tolerance in rice (Oryza sativa L.) via competing endogenous RNA regulation. BMC Plant Biology, 21(1), 410. https://doi.org/10.1186/s12870-021-03195-z
dc.relation.referencesChen, K., Huang, Y., Liu, C., Liang, Y., & Li, M. (2021). Transcriptome Profile Analysis of Arabidopsis Reveals the Drought Stress-Induced Long Non-coding RNAs Associated With Photosynthesis, Chlorophyll Synthesis, Fatty Acid Synthesis and Degradation. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.643182
dc.relation.referencesCorona-Gomez, J. A., Coss-Navarrete, E. L., Garcia-Lopez, I. J., Klapproth, C., Pérez-Patiño, J. A., & Fernandez-Valverde, S. L. (2022). Transcriptome-guided annotation and functional classification of long non-coding RNAs in Arabidopsis thaliana. Scientific Reports, 12(1), 14063. https://doi.org/10.1038/s41598-022-18254-0
dc.relation.referencesGolicz, A. A., Singh, M. B., & Bhalla, P. L. (2018). The Long Intergenic Noncoding RNA (LincRNA) Landscape of the Soybean Genome. Plant Physiology, 176(3), 2133-2147. https://doi.org/10.1104/pp.17.01657
dc.relation.referencesKe, L., Zhou, Z., Xu, X.-W., Wang, X., Liu, Y., Xu, Y., Huang, Y., Wang, S., Deng, X., Chen, L.-L., & Xu, Q. (2019). Evolutionary dynamics of lincRNA transcription in nine citrus species. The Plant Journal, 98(5), 912-927. https://doi.org/10.1111/tpj.14279
dc.relation.referencesLeone, S., & Santoro, R. (2016). Challenges in the analysis of long noncoding RNA functionality. FEBS letters, 590(15), 2342-2353.
dc.relation.referencesPalazzo, A. F., & Koonin, E. V. (2020). Functional Long Non-coding RNAs Evolve from Junk Transcripts. Cell, 183(5), 1151-1161. https://doi.org/10.1016/j.cell.2020.09.047
dc.relation.referencesSingh, A., Vivek, A. T., & Kumar, S. (2021). AlnC: An extensive database of long non-coding RNAs in angiosperms. PLOS ONE, 16(4), e0247215. https://doi.org/10.1371/journal.pone.0247215
dc.relation.referencesVillalba-Bermell, P., Marquez-Molins, J., & Gomez, G. (2024). A multispecies study reveals the diversity and potential regulatory role of long noncoding RNAs in cucurbits. The Plant Journal, 120(2), 799-817. https://doi.org/10.1111/tpj.17013
dc.relation.referencesWang, Y., Dai, J., Chen, R., Song, C., Wei, P., Wang, Y., Cai, Y., & Han, B. (2021). Long noncoding RNA-based drought regulation in the important medicinal plant Dendrobium huoshanense. Acta Physiologiae Plantarum, 43(11), 144. https://doi.org/10.1007/s11738-021-03314-1
dc.relation.referencesWei, J., Li, H., Huang, X., Zhao, Y., Ouyang, L., Wei, M., Wang, C., Wang, J., & Lu, G. (2024). Elucidating the regulatory role of long non-coding RNAs in drought stress response during seed germination in leaf mustard. PeerJ, 12, e17661. https://doi.org/10.7717/peerj.17661
dc.relation.referencesWei, K., Sharifova, S., Zhao, X., Sinha, N., Nakayama, H., Tellier, A., & Silva-Arias, G. A. (2024). Evolution of gene networks underlying adaptation to drought stress in the wild tomato Solanum chilense. Molecular Ecology, 33(21), e17536. https://doi.org/10.1111/mec.17536
dc.relation.referencesYu, C., Wang, P., Zhang, S., Liu, J., Cheng, Y., Zhang, S., & Wu, Z. (2024). Passionfruit Genomic Database (PGD): A comprehensive resource for passionfruit genomics. BMC Genomics, 25(1), 157. https://doi.org/10.1186/s12864-024-10069-9
dc.relation.referencesZhao, X., Li, J., Lian, B., Gu, H., Li, Y., & Qi, Y. (2018). Global identification of Arabidopsis lncRNAs reveals the regulation of MAF4 by a natural antisense RNA. Nature communications, 9(1), 5056.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc570 - Biología::572 - Bioquímica
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::634 - Huertos, frutas, silvicultura
dc.subject.lembNUCLEOTIDOSspa
dc.subject.lembNucleotideseng
dc.subject.lembDIFERENCIACION CELULARspa
dc.subject.lembCell differentiationeng
dc.subject.lembFRUTAS TROPICALESspa
dc.subject.lembTropical fruiteng
dc.subject.lembFRUTAS CITRICASspa
dc.subject.lembCitrus fruitseng
dc.subject.lembARNspa
dc.subject.lembRibonucleic acideng
dc.subject.proposalPassifloraceaespa
dc.subject.proposalExpresión diferencialspa
dc.subject.proposalTranscriptómicaspa
dc.subject.proposalRNAseqspa
dc.subject.proposalElementos transponiblesspa
dc.subject.proposalWGCNAspa
dc.subject.proposalRT-qPCRspa
dc.subject.proposalPassifloraceaeeng
dc.subject.proposalGene differential expressioneng
dc.subject.proposalTranscriptomicseng
dc.subject.proposalRT-qPCReng
dc.titleRNAs largos no codificantes (lncRNAs) de Passiflora edulis Sims f. edulis involucrados en la respuesta a déficit hídricospa
dc.title.translatedLong non-coding RNAs (lncRNAs) of Passiflora edulis Sims f. edulis involved in the response to water deficiteng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
RNAs largos no codificantes (lncRNAs) de Passiflora edulis Sims f. edulis involucrados en la respuesta a déficit hídrico-Rojas-Bautista.pdf
Tamaño:
7.98 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Biología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: