Methods for features classification in point processes on linear networks
dc.contributor.advisor | Rodríguez Cortés, Francisco Javier | |
dc.contributor.author | Díaz Sepúlveda, Juan Felipe | |
dc.contributor.orcid | Díaz Sepúlveda, Juan Felipe [0000-0003-0346-3003] | spa |
dc.contributor.researchgroup | Grupo de Investigación en Estadística Universidad Nacional de Colombia, Sede Medellín | spa |
dc.date.accessioned | 2025-06-09T15:50:51Z | |
dc.date.available | 2025-06-09T15:50:51Z | |
dc.date.issued | 2025 | |
dc.description | Ilustraciones | spa |
dc.description.abstract | In this work, we propose two methods for the analysis of point processes on linear networks with different approaches. We extend methods developed in previous studies to this more complex geometric context, where the classical properties of a point process change and data visualization are not intuitive. The first method is for detecting clusters of points within clustered point patterns in linear networks, focusing on the classification of point processes. Our approach leverages the distribution of the K-th nearest neighbour volumes in linear networks. Our methodology is well-suited for analysing point patterns comprising two overlapping Poisson processes occurring on the same linear network. The second method consider the problem of testing the hypothesis of complete spatial randomness in homogeneous point processes on linear networks. We propose a statistical test based on the fractal dimension, calculated through the Box-counting method. As a result, the method is suitable for testing if a point pattern on linear network is completely random (uniform Poisson) and also to discriminate between clustered or inhibitory behaviour of the point pattern. We present simulations and examples to illustrate these methods. (Tomado de la fuente) | eng |
dc.description.abstract | En este trabajo se proponen dos métodos para el análisis de patrones puntuales en redes lineales con enfoques diferentes. Se extienden métodos desarrollados en estudios anteriores a este contexto geométrico más complejo, donde las propiedades clásicas de un proceso puntual cambian y la visualización de los datos no es intuitiva. El primer método sirve para detectar grupos de puntos dentro de patrones puntuales agrupados en redes lineales, centrándose en la clasificación de procesos puntuales. Este enfoque aprovecha la distribución de los volúmenes de los K-ésimos vecinos más cercanos en redes lineales. La metodología es adecuada para analizar patrones puntuales que comprenden dos procesos Poisson superpuestos que ocurren en la misma red lineal. El segundo método considera el problema de probar la hipótesis de aleatoriedad espacial completa en procesos puntuales homogéneos en redes lineales. Se propone una prueba de hipótesis estadística basada en la dimensión fractal, calculada mediante el método Box-counting. Como resultado, el método es adecuado para comprobar si un patrón puntual en una red lineal es completamente aleatorio (Poisson uniforme) y también para discriminar entre el comportamiento agrupado o inhibitorio del patrón puntual cuando se rechaza la hipótesis de aleatoriedad completa. Presentamos simulaciones y ejemplos para ilustrar estos métodos. | spa |
dc.description.curriculararea | Estadística.Sede Medellín | spa |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctor en Ciencias - Estadística | spa |
dc.description.researcharea | Estadística Espacial | spa |
dc.format.extent | 81 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88208 | |
dc.language.iso | eng | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Medellín, Colombia | spa |
dc.publisher.program | Medellín - Ciencias - Doctorado en Ciencias - Estadística | spa |
dc.relation.indexed | LaReferencia | spa |
dc.relation.references | Allard, D. and Fraley, C. (1997). Nonparametric maximum likelihood estimation of features in spatial point processes using voronoi tessellation. Journal of the American Statistical Association, 92(440):1485--1493. | spa |
dc.relation.references | Ang, Q. W., Baddeley, A., and Nair, G. (2012). Geometrically corrected second order analysis of events on a linear network, with applications to ecology and criminology. Scandinavian Journal of Statistics, 39(4):591--617. | spa |
dc.relation.references | ANSV (2021). Informe Sobre Seguridad Vial Para el Congreso de la República de Colombia. Agencia Nacional de Seguridad Vial, Bogota. | spa |
dc.relation.references | Arroyo, I., Bravo, L. C., Llinás, H., and Muñoz, F. L. (2014). Poisson and Gamma Distributions: A Discrete and Continuous Relationship. Prospectiva, 12:99 -- 107. | spa |
dc.relation.references | Baddeley, A., Jammalamadaka, A., and Nair, G. (2014). Multitype point process analysis of spines on the dendrite network of a neuron. Journal of the Royal Statistical Society: Series C (Applied Statistics), 63(5):673--694. | spa |
dc.relation.references | Baddeley, A., Nair, G., Rakshit, S., and McSwiggan, G. (2017). “stationary” point processes are uncommon on linear networks. Stat, 6(1):68--78. | spa |
dc.relation.references | Baddeley, A., Nair, G., Rakshit, S., McSwiggan, G., and Davies, T. M. (2021a). Analysing point patterns on networks — a review. Spatial Statistics, 42:100435. Towards Spatial Data Science. | spa |
dc.relation.references | Baddeley, A., Rubak, E., and Turner, R. (2015). Spatial Point Patterns: Methodology and Applications with R. Chapman & Hall/CRC Interdisciplinary Statistics. CRC Press. | spa |
dc.relation.references | Baddeley, A., Turner, R., and Rubak, E. (2021b). spatstat.data: Datasets for ’spatstat’ Family. R package version 2.1-2. | spa |
dc.relation.references | Banfield, J. D. and Raftery, A. E. (1993). Model-based gaussian and non-gaussian clustering. Biometrics, pages 803--821. | spa |
dc.relation.references | Byers, S. and Raftery, A. E. (1998). Nearest-neighbor clutter removal for estimating features in spatial point processes. Journal of the American Statistical Association, 93(442):577--584. | spa |
dc.relation.references | Caballero, Y., Giraldo, R., and Mateu, J. (2022). A spatial randomness test based on the box-counting dimension. AStA Advances in Statistical Analysis, 106. | spa |
dc.relation.references | Celeux, G. and Soromenho, G. (1996). An entropy criterion for assessing the number of clusters in a mixture model. Journal of classification, 13(2):195--212. | spa |
dc.relation.references | Cressie, N. (1991). Statistics for spatial data. John Wiley & Sons. | spa |
dc.relation.references | Cronie, O., Moradi, M., and Mateu, J. (2020). Inhomogeneous higher-order summary statistics for point processes on linear networks. Statistics and computing, 30(5):1221--1239. | spa |
dc.relation.references | D’Angelo, N. (2024). Advances in kth nearest-neighbour clutter removal. Environmental and Ecological Statistics, pages 1--18. | spa |
dc.relation.references | D’Angelo, N. and Adelfio, G. (2023). Selecting the kth nearest-neighbour for clutter removal in spatial point processes through segmented regression models. In Book of Abstracts GRASPA 2023, ISBN 979-12-210-3389-2. | spa |
dc.relation.references | D’Angelo, N., Adelfio, G., and Mateu, J. (2021). Assessing local differences between the spatio-temporal second-order structure of two point patterns occurring on the same linear network. Spatial Statistics, 45:100--534. | spa |
dc.relation.references | D’Angelo, N., Adelfio, G., and Mateu, J. (2023). Local inhomogeneous second-order characteristics for spatio-temporal point processes occurring on linear networks. Statistical Papers, 64(3):779--805. | spa |
dc.relation.references | Dasgupta, A. and Raftery, A. E. (1998). Detecting features in spatial point processes with clutter via model-based clustering. Journal of the American statistical Association, 93(441):294--302. | spa |
dc.relation.references | Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39(1):1--38. | spa |
dc.relation.references | Diggle, P. J. (2013). Statistical analysis of spatial and spatio-temporal point patterns. CRC press. | spa |
dc.relation.references | Falconer, K. (2003). FRACTAL GEOMETRY, Mathematical Foundations and Applications. John Wiley & Sons, 2 edition. | spa |
dc.relation.references | Falconer, K. J. (1985). The Geometry of Fractal Sets. Cambridge University Press, USA. | spa |
dc.relation.references | Federer, H. (1969). Geometric measure theory. Springer, Heidelberg. | spa |
dc.relation.references | González, J. A., Rodríguez-Cortés, F. J., Romano, E., and Mateu, J. (2021). Classification of events using local pair correlation functions for spatial point patterns. Journal of Agricultural, Biological and Environmental Statistics, 26(4):538--559. | spa |
dc.relation.references | Graf, S. (1987). Statistically self-similar fractals. Probability Theory and Related Fields, 74:357--392. | spa |
dc.relation.references | Hazelton, M. L. (2017). Testing for changes in spatial relative risk. Statistics in Medicine, 36(17):2735--2749. | spa |
dc.relation.references | Illian, J., Penttinen, A., Stoyan, H., and Stoyan, D. (2008). Statistical analysis and modelling of spatial point patterns. John Wiley & Sons. | spa |
dc.relation.references | ITF (2019). Road Safety Annual Report 2019. OECD Publishing, Paris. | spa |
dc.relation.references | Jammalamadaka, A., Banerjee, S., Manjunath, B. S., and Kosik, K. S. (2013). Statistical analysis of dendritic spine distributions in rat hippocampal cultures. BMC bioinformatics, 14(1):1--19. | spa |
dc.relation.references | Kelsall, J. E. and Diggle, P. J. (1995). Kernel estimation of relative risk. Bernoulli, 1(1/2):3--16. | spa |
dc.relation.references | Kriegel, H.-P., Kröger, P., Sander, J., and Zimek, A. (2011). Density-based clustering. Wiley interdisciplinary reviews: data mining and knowledge discovery, 1(3):231--240. | spa |
dc.relation.references | Mandelbrot, B. (1983). The Fractal Geometry of Nature. Einaudi paperbacks. Henry Holt and Company. | spa |
dc.relation.references | Mateu, J., Lorenzo, G., and Porcu, E. (2007). Detecting features in spatial point processes with clutter via local indicators of spatial association. Journal of Computational and Graphical Statistics, 16(4):968--990. | spa |
dc.relation.references | Mateu, J., Lorenzo, G., and Porcu, E. (2010). Features detection in spatial point processes via multivariate techniques. Environmetrics: The official journal of the International Environmetrics Society, 21(3-4):400--414. | spa |
dc.relation.references | McSwiggan, G., Baddeley, A., and Nair, G. (2017). Kernel density estimation on a linear network. Scandinavian Journal of Statistics, 44(2):324--345. | spa |
dc.relation.references | McSwiggan, G., Baddeley, A., and Nair, G. (2020). Estimation of relative risk for events on a linear network. Statistics and Computing, 30. | spa |
dc.relation.references | Medellín cómo vamos (2021). Informe de Calidad de Vida de Medellín, 2020. Medellín cómo vamos, Medellín. | spa |
dc.relation.references | Møller, J. (2003). Spatial statistics and computational methods, volume 173. Springer Science & Business Media. | spa |
dc.relation.references | Møller, J. and Waagepetersen, R. (2004). Statistical Inference and Simulation for Spatial Point Processes. Chapman & Hall/CRC Monographs on Statistics & Applied Probability. CRC Press. | spa |
dc.relation.references | Moncada, I. (2018). Análisis espacio-temporal de los accidentes de tránsito en bogotá utilizando patrones puntuales. Tesis de Maestría. Universidad Nacional de Colombia. | spa |
dc.relation.references | Mood, A. M., Graybill, F. A., and Boes, D. C. (1974). Introduction to the Theory of Statistics. McGraw-Hill. | spa |
dc.relation.references | Moradi, M. M., Rodríguez-Cortés, F. J., and Mateu, J. (2018). On kernel-based intensity estimation of spatial point patterns on linear networks. Journal of Computational and Graphical Statistics, 27(2):302--311. | spa |
dc.relation.references | Muggeo, V. M. R. (2003). Estimating regression models with unknown break-points. Statistics in Medicine, 22(19):3055--3071. | spa |
dc.relation.references | Muggeo, V. M. R. (2008). segmented: An R package to fit regression models with broken-line relationships. R news, 8(1):20--25. | spa |
dc.relation.references | Myllymäki, M. and Mrkvička, T. (2023). Get: Global envelopes in r. arXiv:1911.06583 [stat.ME]. | spa |
dc.relation.references | Okabe, A. and Yamada, I. (2001). The k-function method on a network and its computational implementation. Geographical Analysis, 33:271--290. | spa |
dc.relation.references | Orozco, C. V., Golay, J., and Kanevski, M. F. (2013). Multifractal portrayal of the swiss population. Cybergeo: European Journal of Geography, pages 1--16. | spa |
dc.relation.references | R Core Team (2021). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. | spa |
dc.relation.references | Rakshit, S., Baddeley, A., and Nair, G. (2019a). Efficient code for second order analysis of events on a linear network. Journal of Statistical Software, 90(1):1--37. | spa |
dc.relation.references | Rakshit, S., Davies, T., Moradi, M. M., McSwiggan, G., Nair, G., Mateu, J., and Baddeley, A. (2019b). Fast kernel smoothing of point patterns on a large network using two-dimensional convolution. International Statistical Review, 87(3):531--556. | spa |
dc.relation.references | Rakshit, S., McSwiggan, G., Nair, G., and Baddeley, A. (2021). Variable selection using penalised likelihoods for point patterns on a linear network. Australian & New Zealand Journal of Statistics, 64(1):1 -- 38. | spa |
dc.relation.references | Ripley, B. D. (1977). Modelling spatial patterns. Journal of the Royal Statistical Society. Series B (Methodological), 39(2):172--212. | spa |
dc.relation.references | Salvadori, G., Ratti, S. P., and Belli, G. (1997). Fractal and multifractal approach to environmental pollution. Environmental Science and Pollution Research, 4(2):91--98. | spa |
dc.relation.references | Scott, D. (1992). Multivariate Density Estimation: Theory, Practice, and Visualization. A Wiley-interscience publication. Wiley. | spa |
dc.relation.references | Scott, D. W. (2015). Multivariate density estimation: theory, practice, and visualization. John Wiley & Sons, New York, 2 edition. | spa |
dc.relation.references | Secretaría de Movilidad (2022). GeoMedellín. Alcaldía de Medellín. | spa |
dc.relation.references | Secretaría Distrital de Movilidad (2015). Movilidad en cifras 2015. Alcaldia Mayor de Bogotá, Bogotá. | spa |
dc.relation.references | Secretaría Distrital de Movilidad (2022). Sistema Integrado de Información sobre Movilidad Urbana Regional. Alcaldía de Bogotá. | spa |
dc.relation.references | Shah, J. (2009). Hausdorff Dimension and its Applications. Chicago University. | spa |
dc.relation.references | Siino, M., Rodríguez-Cortés, F. J., Mateu, J., and Adelfio, G. (2020). Spatio-temporal classification in point patterns under the presence of clutter. Environmetrics, 31(2):e2599. | spa |
dc.relation.references | Stoyan, D., Kendall, W., Chiu, S., and Mecke, J. (2013). Stochastic Geometry and Its Applications. Wiley Series in Probability and Statistics. Wiley. | spa |
dc.relation.references | Stoyan, D. and Stoyan, H. (1994). Fractals, Random Shapes and Point Fields: Methods of Geometrical Statistics. Wiley Series in Probability and Statistics. Wiley. | spa |
dc.relation.references | Tuia, D. and Kanevski, M. (2008). Environmental Monitoring Network Characterization and Clustering. John Wiley & Sons, Ltd. | spa |
dc.relation.references | WHO (2018). Global status report on road safety 2018. World Health Organization, Geneva. | spa |
dc.relation.references | Xu, D. and Tian, Y. (2015). A comprehensive survey of clustering algorithms. Annals of Data Science, 2:165--193. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas | spa |
dc.subject.lemb | Procesos puntuales | |
dc.subject.lemb | Procesos de Poisson | |
dc.subject.lemb | Fractales | |
dc.subject.lemb | Distribución (Teoría de probabilidades) | |
dc.subject.proposal | Cluster | eng |
dc.subject.proposal | Complete spatial randomness | eng |
dc.subject.proposal | Box-counting dimension | eng |
dc.subject.proposal | EM Algorithm | eng |
dc.subject.proposal | Fractal | eng |
dc.subject.proposal | Kth nearest-neighbour | eng |
dc.subject.proposal | Linear network | eng |
dc.subject.proposal | Spatial point pattern | eng |
dc.subject.proposal | Agrupación | spa |
dc.subject.proposal | Aleatoriedad espacial completa | spa |
dc.subject.proposal | Algoritmo EM | spa |
dc.subject.proposal | Dimensión Box-counting | spa |
dc.subject.proposal | Fractal | spa |
dc.subject.proposal | K-ésimo vecino más cercano | spa |
dc.subject.proposal | Patrón puntual espacial | spa |
dc.subject.proposal | Red lineal | spa |
dc.title | Methods for features classification in point processes on linear networks | eng |
dc.title.translated | Métodos para clasificación de características de patrones puntuales en redes lineales | spa |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TD | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 71269839.2025.pdf
- Tamaño:
- 14.6 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Doctorado en Ciencias - Estadística
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: