Methods for features classification in point processes on linear networks

dc.contributor.advisorRodríguez Cortés, Francisco Javier
dc.contributor.authorDíaz Sepúlveda, Juan Felipe
dc.contributor.orcidDíaz Sepúlveda, Juan Felipe [0000-0003-0346-3003]spa
dc.contributor.researchgroupGrupo de Investigación en Estadística Universidad Nacional de Colombia, Sede Medellínspa
dc.date.accessioned2025-06-09T15:50:51Z
dc.date.available2025-06-09T15:50:51Z
dc.date.issued2025
dc.descriptionIlustracionesspa
dc.description.abstractIn this work, we propose two methods for the analysis of point processes on linear networks with different approaches. We extend methods developed in previous studies to this more complex geometric context, where the classical properties of a point process change and data visualization are not intuitive. The first method is for detecting clusters of points within clustered point patterns in linear networks, focusing on the classification of point processes. Our approach leverages the distribution of the K-th nearest neighbour volumes in linear networks. Our methodology is well-suited for analysing point patterns comprising two overlapping Poisson processes occurring on the same linear network. The second method consider the problem of testing the hypothesis of complete spatial randomness in homogeneous point processes on linear networks. We propose a statistical test based on the fractal dimension, calculated through the Box-counting method. As a result, the method is suitable for testing if a point pattern on linear network is completely random (uniform Poisson) and also to discriminate between clustered or inhibitory behaviour of the point pattern. We present simulations and examples to illustrate these methods. (Tomado de la fuente)eng
dc.description.abstractEn este trabajo se proponen dos métodos para el análisis de patrones puntuales en redes lineales con enfoques diferentes. Se extienden métodos desarrollados en estudios anteriores a este contexto geométrico más complejo, donde las propiedades clásicas de un proceso puntual cambian y la visualización de los datos no es intuitiva. El primer método sirve para detectar grupos de puntos dentro de patrones puntuales agrupados en redes lineales, centrándose en la clasificación de procesos puntuales. Este enfoque aprovecha la distribución de los volúmenes de los K-ésimos vecinos más cercanos en redes lineales. La metodología es adecuada para analizar patrones puntuales que comprenden dos procesos Poisson superpuestos que ocurren en la misma red lineal. El segundo método considera el problema de probar la hipótesis de aleatoriedad espacial completa en procesos puntuales homogéneos en redes lineales. Se propone una prueba de hipótesis estadística basada en la dimensión fractal, calculada mediante el método Box-counting. Como resultado, el método es adecuado para comprobar si un patrón puntual en una red lineal es completamente aleatorio (Poisson uniforme) y también para discriminar entre el comportamiento agrupado o inhibitorio del patrón puntual cuando se rechaza la hipótesis de aleatoriedad completa. Presentamos simulaciones y ejemplos para ilustrar estos métodos.spa
dc.description.curricularareaEstadística.Sede Medellínspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias - Estadísticaspa
dc.description.researchareaEstadística Espacialspa
dc.format.extent81 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88208
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias - Doctorado en Ciencias - Estadísticaspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAllard, D. and Fraley, C. (1997). Nonparametric maximum likelihood estimation of features in spatial point processes using voronoi tessellation. Journal of the American Statistical Association, 92(440):1485--1493.spa
dc.relation.referencesAng, Q. W., Baddeley, A., and Nair, G. (2012). Geometrically corrected second order analysis of events on a linear network, with applications to ecology and criminology. Scandinavian Journal of Statistics, 39(4):591--617.spa
dc.relation.referencesANSV (2021). Informe Sobre Seguridad Vial Para el Congreso de la República de Colombia. Agencia Nacional de Seguridad Vial, Bogota.spa
dc.relation.referencesArroyo, I., Bravo, L. C., Llinás, H., and Muñoz, F. L. (2014). Poisson and Gamma Distributions: A Discrete and Continuous Relationship. Prospectiva, 12:99 -- 107.spa
dc.relation.referencesBaddeley, A., Jammalamadaka, A., and Nair, G. (2014). Multitype point process analysis of spines on the dendrite network of a neuron. Journal of the Royal Statistical Society: Series C (Applied Statistics), 63(5):673--694.spa
dc.relation.referencesBaddeley, A., Nair, G., Rakshit, S., and McSwiggan, G. (2017). “stationary” point processes are uncommon on linear networks. Stat, 6(1):68--78.spa
dc.relation.referencesBaddeley, A., Nair, G., Rakshit, S., McSwiggan, G., and Davies, T. M. (2021a). Analysing point patterns on networks — a review. Spatial Statistics, 42:100435. Towards Spatial Data Science.spa
dc.relation.referencesBaddeley, A., Rubak, E., and Turner, R. (2015). Spatial Point Patterns: Methodology and Applications with R. Chapman & Hall/CRC Interdisciplinary Statistics. CRC Press.spa
dc.relation.referencesBaddeley, A., Turner, R., and Rubak, E. (2021b). spatstat.data: Datasets for ’spatstat’ Family. R package version 2.1-2.spa
dc.relation.referencesBanfield, J. D. and Raftery, A. E. (1993). Model-based gaussian and non-gaussian clustering. Biometrics, pages 803--821.spa
dc.relation.referencesByers, S. and Raftery, A. E. (1998). Nearest-neighbor clutter removal for estimating features in spatial point processes. Journal of the American Statistical Association, 93(442):577--584.spa
dc.relation.referencesCaballero, Y., Giraldo, R., and Mateu, J. (2022). A spatial randomness test based on the box-counting dimension. AStA Advances in Statistical Analysis, 106.spa
dc.relation.referencesCeleux, G. and Soromenho, G. (1996). An entropy criterion for assessing the number of clusters in a mixture model. Journal of classification, 13(2):195--212.spa
dc.relation.referencesCressie, N. (1991). Statistics for spatial data. John Wiley & Sons.spa
dc.relation.referencesCronie, O., Moradi, M., and Mateu, J. (2020). Inhomogeneous higher-order summary statistics for point processes on linear networks. Statistics and computing, 30(5):1221--1239.spa
dc.relation.referencesD’Angelo, N. (2024). Advances in kth nearest-neighbour clutter removal. Environmental and Ecological Statistics, pages 1--18.spa
dc.relation.referencesD’Angelo, N. and Adelfio, G. (2023). Selecting the kth nearest-neighbour for clutter removal in spatial point processes through segmented regression models. In Book of Abstracts GRASPA 2023, ISBN 979-12-210-3389-2.spa
dc.relation.referencesD’Angelo, N., Adelfio, G., and Mateu, J. (2021). Assessing local differences between the spatio-temporal second-order structure of two point patterns occurring on the same linear network. Spatial Statistics, 45:100--534.spa
dc.relation.referencesD’Angelo, N., Adelfio, G., and Mateu, J. (2023). Local inhomogeneous second-order characteristics for spatio-temporal point processes occurring on linear networks. Statistical Papers, 64(3):779--805.spa
dc.relation.referencesDasgupta, A. and Raftery, A. E. (1998). Detecting features in spatial point processes with clutter via model-based clustering. Journal of the American statistical Association, 93(441):294--302.spa
dc.relation.referencesDempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39(1):1--38.spa
dc.relation.referencesDiggle, P. J. (2013). Statistical analysis of spatial and spatio-temporal point patterns. CRC press.spa
dc.relation.referencesFalconer, K. (2003). FRACTAL GEOMETRY, Mathematical Foundations and Applications. John Wiley & Sons, 2 edition.spa
dc.relation.referencesFalconer, K. J. (1985). The Geometry of Fractal Sets. Cambridge University Press, USA.spa
dc.relation.referencesFederer, H. (1969). Geometric measure theory. Springer, Heidelberg.spa
dc.relation.referencesGonzález, J. A., Rodríguez-Cortés, F. J., Romano, E., and Mateu, J. (2021). Classification of events using local pair correlation functions for spatial point patterns. Journal of Agricultural, Biological and Environmental Statistics, 26(4):538--559.spa
dc.relation.referencesGraf, S. (1987). Statistically self-similar fractals. Probability Theory and Related Fields, 74:357--392.spa
dc.relation.referencesHazelton, M. L. (2017). Testing for changes in spatial relative risk. Statistics in Medicine, 36(17):2735--2749.spa
dc.relation.referencesIllian, J., Penttinen, A., Stoyan, H., and Stoyan, D. (2008). Statistical analysis and modelling of spatial point patterns. John Wiley & Sons.spa
dc.relation.referencesITF (2019). Road Safety Annual Report 2019. OECD Publishing, Paris.spa
dc.relation.referencesJammalamadaka, A., Banerjee, S., Manjunath, B. S., and Kosik, K. S. (2013). Statistical analysis of dendritic spine distributions in rat hippocampal cultures. BMC bioinformatics, 14(1):1--19.spa
dc.relation.referencesKelsall, J. E. and Diggle, P. J. (1995). Kernel estimation of relative risk. Bernoulli, 1(1/2):3--16.spa
dc.relation.referencesKriegel, H.-P., Kröger, P., Sander, J., and Zimek, A. (2011). Density-based clustering. Wiley interdisciplinary reviews: data mining and knowledge discovery, 1(3):231--240.spa
dc.relation.referencesMandelbrot, B. (1983). The Fractal Geometry of Nature. Einaudi paperbacks. Henry Holt and Company.spa
dc.relation.referencesMateu, J., Lorenzo, G., and Porcu, E. (2007). Detecting features in spatial point processes with clutter via local indicators of spatial association. Journal of Computational and Graphical Statistics, 16(4):968--990.spa
dc.relation.referencesMateu, J., Lorenzo, G., and Porcu, E. (2010). Features detection in spatial point processes via multivariate techniques. Environmetrics: The official journal of the International Environmetrics Society, 21(3-4):400--414.spa
dc.relation.referencesMcSwiggan, G., Baddeley, A., and Nair, G. (2017). Kernel density estimation on a linear network. Scandinavian Journal of Statistics, 44(2):324--345.spa
dc.relation.referencesMcSwiggan, G., Baddeley, A., and Nair, G. (2020). Estimation of relative risk for events on a linear network. Statistics and Computing, 30.spa
dc.relation.referencesMedellín cómo vamos (2021). Informe de Calidad de Vida de Medellín, 2020. Medellín cómo vamos, Medellín.spa
dc.relation.referencesMøller, J. (2003). Spatial statistics and computational methods, volume 173. Springer Science & Business Media.spa
dc.relation.referencesMøller, J. and Waagepetersen, R. (2004). Statistical Inference and Simulation for Spatial Point Processes. Chapman & Hall/CRC Monographs on Statistics & Applied Probability. CRC Press.spa
dc.relation.referencesMoncada, I. (2018). Análisis espacio-temporal de los accidentes de tránsito en bogotá utilizando patrones puntuales. Tesis de Maestría. Universidad Nacional de Colombia.spa
dc.relation.referencesMood, A. M., Graybill, F. A., and Boes, D. C. (1974). Introduction to the Theory of Statistics. McGraw-Hill.spa
dc.relation.referencesMoradi, M. M., Rodríguez-Cortés, F. J., and Mateu, J. (2018). On kernel-based intensity estimation of spatial point patterns on linear networks. Journal of Computational and Graphical Statistics, 27(2):302--311.spa
dc.relation.referencesMuggeo, V. M. R. (2003). Estimating regression models with unknown break-points. Statistics in Medicine, 22(19):3055--3071.spa
dc.relation.referencesMuggeo, V. M. R. (2008). segmented: An R package to fit regression models with broken-line relationships. R news, 8(1):20--25.spa
dc.relation.referencesMyllymäki, M. and Mrkvička, T. (2023). Get: Global envelopes in r. arXiv:1911.06583 [stat.ME].spa
dc.relation.referencesOkabe, A. and Yamada, I. (2001). The k-function method on a network and its computational implementation. Geographical Analysis, 33:271--290.spa
dc.relation.referencesOrozco, C. V., Golay, J., and Kanevski, M. F. (2013). Multifractal portrayal of the swiss population. Cybergeo: European Journal of Geography, pages 1--16.spa
dc.relation.referencesR Core Team (2021). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.spa
dc.relation.referencesRakshit, S., Baddeley, A., and Nair, G. (2019a). Efficient code for second order analysis of events on a linear network. Journal of Statistical Software, 90(1):1--37.spa
dc.relation.referencesRakshit, S., Davies, T., Moradi, M. M., McSwiggan, G., Nair, G., Mateu, J., and Baddeley, A. (2019b). Fast kernel smoothing of point patterns on a large network using two-dimensional convolution. International Statistical Review, 87(3):531--556.spa
dc.relation.referencesRakshit, S., McSwiggan, G., Nair, G., and Baddeley, A. (2021). Variable selection using penalised likelihoods for point patterns on a linear network. Australian & New Zealand Journal of Statistics, 64(1):1 -- 38.spa
dc.relation.referencesRipley, B. D. (1977). Modelling spatial patterns. Journal of the Royal Statistical Society. Series B (Methodological), 39(2):172--212.spa
dc.relation.referencesSalvadori, G., Ratti, S. P., and Belli, G. (1997). Fractal and multifractal approach to environmental pollution. Environmental Science and Pollution Research, 4(2):91--98.spa
dc.relation.referencesScott, D. (1992). Multivariate Density Estimation: Theory, Practice, and Visualization. A Wiley-interscience publication. Wiley.spa
dc.relation.referencesScott, D. W. (2015). Multivariate density estimation: theory, practice, and visualization. John Wiley & Sons, New York, 2 edition.spa
dc.relation.referencesSecretaría de Movilidad (2022). GeoMedellín. Alcaldía de Medellín.spa
dc.relation.referencesSecretaría Distrital de Movilidad (2015). Movilidad en cifras 2015. Alcaldia Mayor de Bogotá, Bogotá.spa
dc.relation.referencesSecretaría Distrital de Movilidad (2022). Sistema Integrado de Información sobre Movilidad Urbana Regional. Alcaldía de Bogotá.spa
dc.relation.referencesShah, J. (2009). Hausdorff Dimension and its Applications. Chicago University.spa
dc.relation.referencesSiino, M., Rodríguez-Cortés, F. J., Mateu, J., and Adelfio, G. (2020). Spatio-temporal classification in point patterns under the presence of clutter. Environmetrics, 31(2):e2599.spa
dc.relation.referencesStoyan, D., Kendall, W., Chiu, S., and Mecke, J. (2013). Stochastic Geometry and Its Applications. Wiley Series in Probability and Statistics. Wiley.spa
dc.relation.referencesStoyan, D. and Stoyan, H. (1994). Fractals, Random Shapes and Point Fields: Methods of Geometrical Statistics. Wiley Series in Probability and Statistics. Wiley.spa
dc.relation.referencesTuia, D. and Kanevski, M. (2008). Environmental Monitoring Network Characterization and Clustering. John Wiley & Sons, Ltd.spa
dc.relation.referencesWHO (2018). Global status report on road safety 2018. World Health Organization, Geneva.spa
dc.relation.referencesXu, D. and Tian, Y. (2015). A comprehensive survey of clustering algorithms. Annals of Data Science, 2:165--193.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasspa
dc.subject.lembProcesos puntuales
dc.subject.lembProcesos de Poisson
dc.subject.lembFractales
dc.subject.lembDistribución (Teoría de probabilidades)
dc.subject.proposalClustereng
dc.subject.proposalComplete spatial randomnesseng
dc.subject.proposalBox-counting dimensioneng
dc.subject.proposalEM Algorithmeng
dc.subject.proposalFractaleng
dc.subject.proposalKth nearest-neighboureng
dc.subject.proposalLinear networkeng
dc.subject.proposalSpatial point patterneng
dc.subject.proposalAgrupaciónspa
dc.subject.proposalAleatoriedad espacial completaspa
dc.subject.proposalAlgoritmo EMspa
dc.subject.proposalDimensión Box-countingspa
dc.subject.proposalFractalspa
dc.subject.proposalK-ésimo vecino más cercanospa
dc.subject.proposalPatrón puntual espacialspa
dc.subject.proposalRed linealspa
dc.titleMethods for features classification in point processes on linear networkseng
dc.title.translatedMétodos para clasificación de características de patrones puntuales en redes linealesspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
71269839.2025.pdf
Tamaño:
14.6 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias - Estadística

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: